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Abstract

In recent years, vision-based end-to-end autonomous driving has emerged as a new
paradigm. However, popular end-to-end approaches typically rely on visual feature
extraction networks trained under label supervision. This limited supervision frame-
work restricts the generality and applicability of driving models. In this paper, we
propose a novel paradigm termed E3AD, which advocates for comparative learn-
ing between visual feature extraction networks and the general EEG large model,
in order to learn latent human driving cognition for enhancing end-to-end planning.
In this work, we collected a cognitive dataset for the mentioned contrastive learning
process. Subsequently, we investigated the methods and potential mechanisms
for enhancing end-to-end planning with human driving cognition, using popular
driving models as baselines on publicly available autonomous driving datasets.
Both open-loop and closed-loop tests are conducted for a comprehensive evalua-
tion of planning performance. Experimental results demonstrate that the E3AD
paradigm significantly enhances the end-to-end planning performance of baseline
models. Ablation studies further validate the contribution of driving cognition and
the effectiveness of comparative learning process. To the best of our knowledge,
this is the first work to integrate human driving cognition for improving end-to-end
autonomous driving planning. It represents an initial attempt to incorporate embod-
ied cognitive data into end-to-end autonomous driving, providing valuable insights
for future brain-inspired autonomous driving systems. Our code will be made
available at https://github.com/AIR-DISCOVER/E-cubed-AD.
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1 INTRODUCTION

Autonomous driving technology is crucial for transferring driving authority from human drivers to
sensors and artificial intelligence, promising to enhance efficiency and safety in transportation. In
the pursuit of autonomous driving, the emergence of end-to-end autonomous driving has recently
garnered increasing attention [10, 12, 26, 31, 16, 14]. However, existing end-to-end autonomous
(E2E-AD) driving model frameworks often rely on sequential 3D visual representations, such as
Bird’s Eye View (BEV) features[18, 17]. BEV features contain rich latent information essential for
autonomous driving. However, in existing end-to-end approaches, BEV feature extraction networks
are typically supervised using annotated data for downstream tasks such as 3D perception, motion
prediction, and semantic segmentation[15, 29]. This limited supervision framework restricts the
model’s ability to extract visual information.

Models trained only on labeled data are limited, while the human brain uses embodied reasoning to
anticipate hazards and adapt to new situations. Recently developed general-purpose EEG models (e.g.,
LaBraM [13]) can extract rich cognitive features directly from EEG signals and achieve excellent
performance across various general tasks. By leveraging the cognitive features provided by such
universal brain-inspired models, it becomes possible to offer broader supervision to the feature
extraction networks of E2E-AD models.

In this study, we first trained the “Driving-Thinking Model,” a spatio-temporal feature extraction
network. Unlike traditional supervised approaches relying on manually annotated labels, our model
was trained on a specifically collected dataset, utilizing paired video data and corresponding EEG
segments. The Driving-Thinking Model is refined through contrastive learning with a large EEG
model, enabling it to infer driving-related cognitive information from visual inputs. Subsequently,
we explored multiple frameworks to investigate the potential of the driving cognition in enhancing
mainstream end-to-end autonomous driving models.

The E3AD paradigm is the first to incorporate human driving cognition to enhance end-to-end
autonomous driving models, yielding significant findings. E3AD can be directly applied to baseline
end-to-end driving models, achieving substantial improvements in driving performance with only a
tiny increase in computational cost, while reaching the level of state-of-the-art methods. Moreover, our
study investigates the methods and underlying mechanisms by which driving cognition enhances end-
to-end planning, making novel contributions to the field of embodied human intelligence augmentation
in AI algorithms. At the same time, Our work represents an exploration of a more end-to-end styled
autonomous driving framework, enabling the model to acquire richer semantic information from raw
data through implicit supervision, rather than being limited to manually annotated labels.

2 Related Work

2.1 End-to-End Planning

Learning-based planning, particularly reinforcement learning and imitation learning [3, 4, 27], has
emerged as a promising approach since Pomerleau’s pioneering work [22]. The latest trend in this
field is the end-to-end training of multiple functional modules [8, 2]. ST-P3 introduces improvements
in perception, prediction, and planning modules, integrating auxiliary tasks such as depth estimation
and BEV segmentation to enhance spatio-temporal features learning. UniAD [10] integrated six
subtasks (object detection, tracking, map segmentation, trajectory prediction, occupancy prediction,
and planning) into a unified network. VAD [12] uses fully vectorized representations of driving
scenarios. GenAD formulates autonomous driving as a generative modeling problem, predicting the
evolution of the ego vehicle and its surrounding environment based on past scenes, and employs
motion and planning heads consistent with VAD. LAW enhances planning by extracting richer
spatiotemporal features through a self-supervised paradigm, predicting future scene features based
on current features and the ego trajectory. In contrast, our model advocates for contrastive learning
between the spatio-temporal feature extraction network and the general EEG model, aiming to acquire
potential human driving cognition from visual inputs to further enhance planning.
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2.2 Cognitive-Enhanced AI Algorithms

Recent research has explored integrating human cognitive data to enhance AI models. In NLP,
BrainBERT and CogBERT incorporate brain signals and eye-tracking data, respectively, improving
performance [24, 5]. In autonomous driving, world models mimicking human cognitive structures
show promise [7], with models like HLTP enhancing trajectory prediction [19]. Liao et al. proposed a
model integrating cognitive insights for perceived safety and dynamic decision-making [20]. However,
emulating complex human driving processes requires high-quality cognitive data, such as EEG, which
provides rich information about intricate cognitive processes. Currently, there is a lack of research
exploring whether such high-quality cognitive data can effectively enhance complex tasks like
autonomous driving. Recently, the LaBraM framework (Large Brain Model) [13] learns universal
EEG representations by self-supervised pre-training on 2,500+ hours of diverse EEG data: it splits
signals into channel patches, trains a vector-quantized tokenizer [28], and uses masked-modeling
to predict masked tokens. LaBraM sets new state-of-the-art on downstream BCI tasks like anomaly
detection and emotion recognition [13]. Due to the good performance of LaBraM, we use it in our
work to extract rich and generalizable EEG features which will provide human cognition insights for
end2end autonomous driving models.

3 METHOD

Given the EEG data are not included in traditional end-to-end autonomous driving training
datasets [25, 6, 1], a gap exists between the self-collected dataset and typical autonomous driv-
ing datasets. To address this challenge, we propose a two-stage training approach as shown in Fig. 1:
EEG data are utilized only during the first stage of training, while in the second stage and during
inference, only mainstream autonomous driving datasets are employed to ensure fairness.

1. Driving-Thinking Model Training: A visual feature extraction network is trained on a self-
collected dataset and supervised using cognitive features from LaBraM [13]. Specifically,
inspired by the successful paradigm of CLIP [23], contrastive learning is employed to
achieve cross-modal self-supervised learning.

2. Embodied Cognition Augmented End2End Model Training: We freeze the Driving-
Thinking model and integrate it into popular E2E-AD frameworks. The integrated model
is then trained on large-scale driving datasets, followed by open-loop testing and closed-
loop simulation. To ensure fairness, only the original data is used at this stage, without
introducing any additional inputs, maintaining consistency with other baseline models.

In this section, we will first describe how we train the Driving-Thinking model, followed by the
process of integrating it into an end-to-end autonomous driving algorithm.

3.1 Embodied Cognitive Dataset

To our knowledge, few cognitive-related datasets have been collected in real-world driving scenarios.
Thus, we gathered a multi-modal physiological dataset from 27 subjects driving a fixed route in
complex traffic. We recorded CAN bus data, EEG, heart rate, skin conductance, and front-facing
camera footage. After filtering data and controlling for variables, we selected 20 male drivers (10
experts, 10 novices).

All EEG recordings were preprocessed in EEGLAB2 by first re-referencing signals to the M1 and M2
electrodes. We then applied a 0.1–50 Hz band-pass filter to remove drift and high-frequency noise,
followed by a 50 Hz notch filter to suppress power-line interference. Next, we employed Independent
Component Analysis (ICA) to remove ocular, cardiac, channel, and muscle artifacts, effectively
filtering out various noise sources. To match the input requirements of the Large Brain Model[13],
the data were downsampled from 1000 Hz to 200 Hz, and amplitudes (±0.1 mV) were normalized
by dividing by 0.1 mV, mapping signals into [–1,1]. Finally, each driver’s continuous session was
manually split into 14 condition-specific segments and uniformly cut into 2 s clips (including those
shorter than 2 s as individual samples).

2https://eeglab.org/
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Figure 1: The training is divided into two stages. In the first stage, contrastive learning is conducted
between the Driving-Thinking Model—a pretrained spatio-temporal feature extraction network—and
the large EEG model LaBraM[13] on a self-collected dataset. In the second stage training and
inference processes, we use the same inputs as other driving models, without introducing EEG data.
Instead, the entire Driving-Thinking Model is kept frozen. Subsequently, we design three different
frameworks to investigate how the driving cognition learned by the Driving-Thinking Model enhances
end-to-end planning, as well as the associated mechanisms.

We split the dataset into training set validation, and test set. The structured data was shuffled and
divided into two parts with a ratio of 80:10:10. The training set comprised 1894 clips (1037 from
expert drivers and 857 from novice drivers), the validation set consists of 236 clips (144 expert, and
92 novice), and the test set contained 237 clips (118 from expert drivers and 119 from novice drivers).
For details regarding cognitive data collection and our data, comprehensive information can be found
in the Appendix.

3.2 Driving–Thinking Model

Let {(vi, ei)}Ni=1 be a minibatch of paired video–EEG samples. We define

gv : Video→ Rd′
, hv : Rd′

→ Rd, fe : EEG→ Rd,

where gv is implemented as a Video Swin Transformer[21], hv is a learnable linear projection head,
and fe is the frozen Large Brain Model (LaBraM)[13]. During training only the video-branch
parameters θv = {gv, hv} are updated, while fe remains fixed.

We begin with feature extraction and normalization: video clips are processed by gv and hv, and
EEG segments by fe, then each is ℓ2-normalized:

zvi =
hv

(
gv(vi)

)
∥hv(gv(vi))∥

, zei =
fe(ei)

∥fe(ei)∥
. (1)

Next, we compute a similarity matrix using a learnable log-temperature β (so that τ = eβ):

sij = eβ ⟨zvi , zej ⟩, S = [ sij ]
N
i,j=1. (2)
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The model is trained with a symmetric InfoNCE loss:

Lv = − 1

N

N∑
i=1

log
esii∑N
j=1 e

sij
,

Le = −
1

N

N∑
i=1

log
esii∑N
j=1 e

sji
,

L = 1
2 (Lv + Le).

(3)

Finally, we update only the video-branch parameters θv by gradient descent, keeping fe frozen:
θv ← θv − η∇θvL. (4)

3.3 Embodied Cognition Augmented End2End Model Training

Perception is crucial in autonomous driving for extracting visual features from sensor data. Among
methods, BEV has become popular because it effectively integrates spatial and temporal visual
information. As illustrated in Fig. 1, popular end-to-end frameworks inherit the BEV encoder
architecture to produce label-supervised spatio-temporal features. These features are further interacted
with ego-vehicle queries that encapsulate the historical motion of the ego vehicle, which are then
processed by a planning head to generate the final predicted trajectory. It is worth noting that different
end-to-end methods exhibit subtle differences in their choices of supervised spatio-temporal features.
For example, some approaches[18, 10] adopt the entire BEV feature map as the visual representation.
In contrast, other methods[14, 12] propose extracting a sparse features from the BEV feature map,
with the aim of enhancing computational efficiency. Despite these divergent design strategies, the
overarching framework adopted by mainstream end-to-end methods remains consistent.

Therefore, this study focuses on how human cognition can be integrated to enhance end-to-end
planning, as well as the underlying mechanisms. We designed the following three frameworks and
corresponding hypotheses:

1. Attach to Spatio-temporal features: We hypothesize that the Driving-Thinking model
has learned human drivers’ attention mechanisms toward visual features. Leveraging this
driving cognition, the model can select potential visual features related to planning from
raw visual inputs, thereby enhancing end-to-end planning.

2. Interact with the Ego Query: We hypothesize that the Driving-Thinking model has
acquired driving-related cognitive knowledge about visual features from LaBraM. This
knowledge, when interactively embedded into the ego query, can guide the process by which
the ego query interacts with visual features to generate planning features.

3. Interact with planing features: We hypothesize that the Driving-Thinking model learns
more advanced driving cognition directly related to planning tasks. We believe that such
higher-level driving cognition can directly interact with the features, improving the prelimi-
nary planning results. Therefore, we directly enable its interaction with the features, which
is then fed into the planning head for trajectory decoding.

3.4 Attach to Spatio-temporal features

BEV features contain visual information aggregated across both spatial and temporal dimensions.
Therefore, by interacting the cognitive feature Vt generated by the Driving-Thinking model with
Bt, we can highlight the potential brain-aware BEV feature Bbrain

t . Considering that BEV features
typically have large spatial dimensions, we employ an Attention Gate to generate an attention map
based on the max-pooled features of Bt and Vt, thereby selecting Bbrain

t .

Bbrain
t = Bt ⊙AttnGate(Maxpooling(Bt),Vt) (5)

Both Bbrain
t and Bt share the same spatial dimensions of b× hw × c, which is not computationally

efficient. Therefore, inspired by the success of the BEV TokenLearner, we adopt adaptive spatial
attention to obtain brain-aware sparse visual representations St. The process is as follows:

St = ρ(ϖ(Bbrain
t )Bbrain

t )

St = SelfAttn(St)
(6)
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where the spatial attention function ϖ maps Bbrain
t to an attention map for each sparse visual query:

Rb×hw×c → Rb×ns×hw, where nS denotes the number of sparse visual queries. The average pooling
function ρ is utilized to aggregate spatial features across the h×w dimensions. Finally, a self-attention
layer is applied to enhance the representation capability of St. Subsequently, St interacts with the
ego-query Qego via a decoder-only transformer to generate brain-aware planning features. These
features are concatenated with the planning features produced by the end-to-end baseline model, and
the combined featuress are then fed into the planning head for trajectory decoding. For HD-map-free
planning, a high-level driving command c has been demonstrated to be necessary[12, 10]. Therefore,
we adopt the planning head from mainstream end-to-end approaches, and feed the updated features
together with the high-level driving command as input to output the planned trajectory T̂t. The
decoding process is formulated as follows:

Fb
plan = CrossAttn(Qego,St,St)

Fs
plan = CrossAttn(Qego,V

s
t ,V

s
t )

Fplan = [Fs
plan,F

b
plan]

T̂ = PlanHead(Fplan, cmd = c)

(7)

where, Vs
t denotes the visual features learned by the end-to-end baseline model through supervised

learning with labels. Fs
plan and Fb

plan represent the planning features obtained from Vs
t and St,

respectively. The symbol [·] denotes the concatenation operation.

3.5 Interaction with the Ego Query

As previously discussed, Qego contains only the historical trajectory information of the ego vehicle.
According to the second framework and hypothesis described in Section 3.3, the Driving-Thinking
model learns the driver’s cognition of visual features from the general EEG large model. Therefore,
we construct query-key pairs based on Qego and the output Vt of the Driving-Thinking model, and
obtain new ego-vehicle query Q′

ego embedding with driving visual cognition through cross-attention.
The enriched Q′

ego then interacts with the spatio-temporal features Vs
t , allowing the embedded

driving visual cognition to inform the generation of planning feature based on visual information.
Similarly, we use the planning head to decode the planned trajectory:

Q′
ego = CrossAttn(Qego,Vt,Vt)

Fplan = CrossAttn(Q′
ego,V

s
t ,V

s
t )

T̂ = PlanHead(Fplan, cmd = c)

(8)

3.6 Interaction with planing features

Recent studies[13] have shown that EEG signals often exhibit changes in specific frequency bands
during tasks involving decision-making, attention, and memory. Inspired by these findings, in
third framework, we hypothesize that the Driving-Thinking model is capable of acquiring advanced
cognitive abilities related to driving decisions and reasoning. This includes human-like reasoning
and judgment for preliminary decisions, allowing the model to identify and correct mistakes already
in the initial planning stage, and thereby directly influence the quality of the planning feature. To
this end, we adopt a multi-layer decoder architecture, which integrates driving-related cognitive
information to perform chained reasoning over the initial planning feature Fplan. Specifically, Fplan

contain information about the trajectory sequence, while Vs
t is obtained from a spatio-temporal

features extraction network. Therefore, we introduce learnable positional encodings to align the latent
temporal dependencies present in both Fplan and Vs

t , ultimately producing the planning feature
(F′′

plan) inferred through reasoning combined with human driving cognition.

F′′
plan = TransformerDecoder(q, k, v, qpos, kpos)

q = Fplan, k = v = Vt

T̂ = PlanHead(F′′
plan, cmd = c)

(9)

where, qpos and kpos are learnable positional encodings.
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4 EXPERIMENTS

4.1 Implementation Details

In our implementation, we employ the Video Swin Transformer [21] to extract spatio-temporal
visual features from 2s video clips at 2 fps, and the Large Brain Model [13] to extract generic
EEG embeddings. Both branches are initialized with pretrained weights, then fine-tuned via a
CLIP-style contrastive objective [23]. Each branch’s output passes through a two-layer MLP adapter
head projecting features into a shared 200-dimensional space. We train the model on aligned 2s
video–EEG segment pairs with a batch size of 16 for 120 epochs using Adam (learning rate 2e-5 on
both backbones and adapters, lr ratio 1:1), dropout of 0.01, and weight decay of 1e-5. Training on the
full dataset requires approximately 12 h on a single NVIDIA A100 40 GB GPU.

Table 1: Open-loop planning performance comparison of different driving models. The ego status
was not used in the planning module. † indicates the FPS measured on our NVIDIA A100 GPU,
while others use the reported FPS. * denote the best performing models.

ST-P3 Metrics UniAD Metrics

L2(m) ↓ Collision(%) ↓ L2(m) ↓ Collision(%) ↓Method
1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

FPS

ST-P3[9] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71 - - - - - - - - 1.6
VAD-Base[12] 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 - - - - - - - - 4.5
VAD-Tiny[12] 0.46 0.76 1.12 0.78 0.21 0.35 0.58 0.38 - - - - - - - - 16.8
UniAD[10] - - - - - - - - 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 1.8
GenAD[31] 0.28 0.49 0.78 0.52 0.08 0.14 0.34 0.19 0.36 0.83 1.55 0.91 0.06 0.23 1.00 0.43 6.7
BEV-Planner[18] 0.28 0.42 0.68 0.46 0.04 0.37 1.07 0.49 - - - - - - - - _
LAW[16] 0.26 0.57 1.01 0.61 0.14 0.21 0.54 0.30 - - - - - - - - 19.5

VAD-Tiny[12] 0.46 0.76 1.12 0.78 0.21 0.35 0.58 0.38 - - - - - - - - 9.8†
E3AD(VAD-Tiny) 0.40 0.66 0.98 0.68 0.18 0.33 0.55 0.35 - - - - - - - - 8.8†
VAD-Base[12] 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 - - - - - - - - 3.8†
E3AD(VAD-Base) 0.35 0.62 0.96 0.64 0.06 0.13 0.36 0.18* - - - - - - - - 3.7†
UniAD[10] - - - - - - - - 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 1.4†
E3AD(UniAD) - - - - - - - - 0.48 0.96 1.64 1.03 0.07 0.10 0.52 0.23* 1.4†
GenAD(official checkpoint)[31] 0.25 0.46 0.76 0.49 0.11 0.21 0.45 0.26 0.33 0.81 1.58 0.91 0.06 0.43 1.19 0.56 6.7†
GenAD(Reproduce) 0.25 0.46 0.76 0.49 0.14 0.26 0.50 0.30 0.33 0.79 1.58 0.90 0.17 0.49 1.15 0.60 6.7†
E3AD(GenAD) 0.24 0.44 0.74 0.47 0.10 0.21 0.42 0.24 0.32 0.78 1.52 0.87 0.15 0.35 1.09 0.53 6.6†
LAW[16] 0.26 0.57 1.01 0.61 0.14 0.21 0.54 0.30 - - - - - - - - 16.5†
E3AD(LAW) 0.28 0.57 0.98 0.61 0.11 0.13 0.42 0.22 - - - - - - - - 16.1†

Table 2: Open-loop and Closed-loop Results of E2E-AD Methods in Bench2Drive under base training
set.

Method Open-loop Metric Closed-loop Metric

Avg.L2(m) ↓ DS ↑ SR(%) ↑
AD-MLP 3.64 18.05 0.00
UniAD-Tiny 0.80 40.73 13.18
UniAD-Base 0.73 45.81 16.36
VAD 0.91 42.35 15.00

E3AD(UniAD-Base) 0.69 50.07 20.12
E3AD(VAD) 0.86 47.63 19.54

Table 3: Ablation study on the impact of the Driving-Thinking model on driving models is conducted,
using the E3AD(V AD −Base) as the experimental baseline.

Contrastive Learning Freeze L2(m) ↓ Collision(%) ↓
Expert Novice Video Encoder 1s 2s 3s Avg. 1s 2s 3s Avg.

- - ✓ 0.39 0.68 1.02 0.70 0.13 0.21 0.40 0.25
✓ ✓ - 0.40 0.64 1.04 0.69 0.15 0.18 0.42 0.25
✓ - ✓ 0.33 0.59 0.92 0.61 0.05 0.18 0.40 0.21
- ✓ ✓ 0.38 0.65 0.99 0.67 0.07 0.18 0.38 0.21
✓ ✓ ✓ 0.35 0.62 0.96 0.64 0.06 0.13 0.36 0.18
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Table 4: Comparison of different Frameworks, using the E3AD(V AD −Base) as the baseline.
L2(m) ↓ Collision(%)↓

Framework 1s 2s 3s Avg. 1s 2s 3s Avg.

Attach to Spatio-temporal features 0.38 0.67 1.02 0.69 0.09 0.17 0.39 0.22
Interact with the Ego Query 0.37 0.66 1.04 0.69 0.06 0.14 0.41 0.20
Interact with the Planning Features 0.35 0.62 0.96 0.64 0.06 0.13 0.36 0.18

4.2 Dataset and Metrics

We conducted experiments on the publicly available nuScenes dataset [1], which provides 1,000 urban
driving scenes under diverse weather conditions. The dataset includes 700 training, 150 validation,
and 150 test scenes, each lasting about 20 s with keyframes annotated at 2 Hz. It offers multi-sensor
inputs, including six cameras with 360◦ horizontal FOV, a LiDAR, radar, and IMUs. Following
established end-to-end model testing methodologies [9, 10, 12], we employ l2 displacement errors and
collision rates as metrics to evaluate the quality of the planning process. For closed-loop evaluation,
we use Bench2Drive[11], which under CARLA Leaderboard 2.0 for end-to-end autonomous driving.
It provides an official training set, where we use the base set (1000 clips) for fair comparison with all
the other baselines. We use the official 220 routes for evaluation.

4.3 Main Result

Open-Loop Evaluation Our method achieves outstanding performance on the NuScenes dataset, as
shown in Tab. 1. In line with recent studies, we recognize that the L2 error primarily reflects model
convergence, yet we report it for completeness. According to the experimental results, after applying
the E3AD method, the average collision rates of UniAD and VAD-Base decreased by 0.08% (25.8%
relatively) and 0.04% (18.2% relatively), respectively, even surpassing the recent state-of-the-art
methods. In addition, the convergence L2 errors were reduced by 0.08 m (11.1% relatively) and 0.05
m (6.7% relatively), respectively. Moreover, the E3AD method is also applicable to the lightweight
VAD-Tiny model, where the average collision rate and the L2 error was significantly discreased. It
is worth noting that, beyond the aforementioned autoregressive trajectory generation framework,
our approach generalizes well to other paradigms, including GenAD, which employs a VAE-based
trajectory generation mechanism, and LAW, which leverages world model theory for self-supervised
BEV feature learning. In both cases, our method yields consistent improvements compared to the
official checkpoints and our reproduced results. Despite these improvements, our method maintains
the efficient inference speed of lightweight driving models.

Closed-Loop Evaluation As presented in Tab. 2. In the CARLA simulation environment, our method
significantly outperforms vision-based baseline driving models on the challenging Bench2Drive
benchmark in terms of route completion rate and driving score. After enhancement with our approach,
the completion rates of the UniAD and VAD baselines reduced by 3.76% (23.0% relatively) and
4.54% (30.3% relatively), and the driving scores also increased by 4.26 (10.1% relatively) and 5.28
(12.5% relatively). In the supplementary material, we present several driving scenarios where the
original models failed but could be completed successfully with the E3AD method, along with
more detailed statistical results for further reference. These findings demonstrate the comprehensive
capability and robust performance of E3AD in challenging environments.

4.4 Ablation Study and Comparison

In Tab. 3,we conducted ablation studies on key components of the Driving-Thinking model. When the
Video Encoder was used solely as a pretrained visual feature extraction network without contrastive
learning with LaBraM, experimental results showed that the additional visual features were redundant
and did not yield performance improvements. Furthermore, when the Driving-Thinking model
was unfrozen during the stage 2 training phase, the model tended to forget the acquired driving
cognition during random training, which similarly did not lead to any improvement. These results
comprehensively validate the effectiveness of the proposed contrastive learning paradigm, in which
the Video Encoder learns from the features of LaBraM.
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In addition, we conducted ablation studies on the sources of EEG data. Compared to novice drivers,
using EEG from expert drivers significantly reduced the L2 error by bringing the model outputs closer
to expert trajectories. Meanwhile, both expert and novice EEG enhanced the driving performance of
the model by reducing collision rates. We also observed that, by mixing EEG data from both expert
and novice drivers and training the Driving-Thinking model with a larger volume of EEG data, the
driving performance of the model could be further improved.

In Tab. 4, we compared the three frameworks described in Section 3.3. Detailed experimental data
on the design specifications and hyperparameter selection for each framework are provided in the
supplementary material. Here, we present only the results of the optimal configurations. The first
framework did not yield significant improvements, while both the second and third frameworks
enhanced the model’s driving ability by reducing collision rates and L2 error. Notably, the third
framework achieved the greatest improvement in driving performance. These results demonstrate that
the Driving-Thinking model learns high-level planning-related cognition, which can directly enhance
the planning performance of driving models.

4.5 Analysis and Discussion

What enhances E2E-AD? Our ablation studies demonstrate that the improvements brought by
E3AD to end-to-end autonomous driving baseline models do not originate from additional visual
feature inputs, nor from the capacity of the Video Swin Transformer framework, but rather from
the process of contrastive learning with LaBraM. LaBraM is a powerful brain-inspired large model
capable of extracting general features from input EEG signals to accomplish complex and diverse
downstream tasks. By learning on paired EEG and video data, the Driving-Thinking model can
acquire corresponding driving cognition from the brain feature space based on visual inputs. Our
experiments confirm that the information learned from the brain-inspired large model is what assists
the driving model’s planning, indicating that it is indeed driving cognition that benefits E2E-AD.

How driving cognition enhances E2E-AD? To investigate the mechanisms by which driving
cognition enhances E2E-AD, we first formulated three hypotheses. Specifically, we hypothesized
that the driving cognition learned by the Driving-Thinking model falls into three categories: visual
feature attention, understanding, and decision reasoning. Each of these categories represents a
hypothesis at an increasing level of cognitive difficulty and complexity. For each hypothesis, we
carefully designed a corresponding framework, enabling the driving cognition associated with each
hypothesis to enhance key planning features in an appropriate manner. Our experiments show that
the effectiveness of the three frameworks in improving E2E-AD also increases correspondingly. This
suggests that, for end-to-end driving tasks, the greatest improvements may result from high-level
driving cognition, including knowledge related to human-like decision reasoning.

5 Contributions and Limitations

The E3AD paradigm is the first to incorporate human driving cognition to enhance end-to-end
autonomous driving models. It can be directly applied to baseline models, achieving substantial
improvements in driving performance with small computational cost, while reaching the level of
state-of-the-art methods. Moreover, this study making novel contributions to the field of embodied
human intelligence augmentation in AI algorithms. However, due to the cost and time of EEG
acquisition and processing, the paired EEG–video dataset is relatively small. In addition, the precise
mechanisms by which EEG alignment enhances planning have not been fully explored. To address
these limitations, we commit to publicly releasing the dataset and data collection procedures soon
to facilitate data expansion. Furthermore, our future work will investigate the models’ underlying
mechanisms.
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A Cognitive Data Collection

In this study, we recruited 27 participants; due to incomplete or corrupted data from some subjects,
data from 20 participants were ultimately analyzed (10 novice drivers and 10 expert drivers). All
experiments employed the Neuroscan 64-channel Quik-Cap3 system and Headbox for EEG acquisi-
tion, with cables connecting the amplifier to the acquisition unit, the stimulator, and the headbox;
stimulation and synchronization were performed using a YOGA stimuli host and E-Prime software.
Data were recorded in real time via CURRY9, and usage of experimental and analysis software was
controlled by hardware dongles.

The experiment consisted of three phases: setup, recording, and termination. During setup, par-
ticipants donned the electrode cap and applied conductive paste, the vehicle idled, and the in-car
industrial PC and Docker environment were started; Dreamview was then launched to synchronize
system time. During recording, the external operator configured the COM port in the tester software,
Curry9 injected timestamps, and E-Prime triggered cross-modal synchronization via spacebar
presses and audio cues (marker 161 for beeps, 192 for other events), while eye-tracking signals were
monitored. At the end of the session, the vehicle parked and the parking brake was engaged, the
operator stopped recording with Ctrl+C, verified completeness of the .record files, and saved
the raw .cnt files.

Subsequent data processing involved electrode localization, removal of non-EEG electrodes (EKG,
EMG, Trigger, etc.), re-referencing to M1/M2, band-pass filtering at 0.1–50Hz, bad-electrodes
rejection, and artifact correction via ICA; events were then imported and data were epoched according
to driving conditions. Using the processed data, we conducted statistical comparisons of fatigue
levels, workload (theta/alpha plasticity), and task engagement between expert and novice drivers
across driving scenarios, finding that experts exhibited more stable fatigue management and greater
EEG adaptability in complex road sections.

Table A.1: EEG System Components and Accessories

Type Hardware Materials Type Hardware Materials

Headbox 64-channel Quik-Cap, Headbox unit Cables
Cable 1 (Amplifier → Acquisition),

Cable 2 (Amplifier → Stimuli, white),
Cable 3 (Amplifier → Headbox)

Master Unit 1 Amplifier (wide-band main unit),
Amplifier power cable

Software
Licenses

Experimental software dongle,
Analysis software dongle, E-Prime

dongle

Master Unit 2 Stimulus generator unit Subject
Consumables

EEG paste (bulk), paste syringe,
abrasive gel, cotton swabs, adhesive
tape, shampoo, hair dryer, disposable

absorbent wipes

Master Unit 3 Acquisition unit, Power cable Other Equipment

Power strip, Expansion dock, Speaker
set, Portable power bank, Serial-port
interface box, Eye-tracking EEG sync

cable

B Hardware and Software

B.1 Equipment

Hardware

• DJI Action 3 action cameras ×6
• DJI Action battery charging case ×2
• Insta360 X3 panoramic camera

3https://compumedicsneuroscan.com/products/caps/quik-cap/
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Figure A.1: Example snapshots of the video modalities: top left – Baseline (forward road view); top
right – Driver1 (driver’s face view); bottom left – Driver2 (driver’s posture view); bottom right –
Driver3 (driver’s feet view).

• Insta360 charging case
• SD memory cards ×6
• Mounting brackets (multiple)
• High-power Bluetooth speaker (for audio synchronization)

Software

• E-Prime (for EEG synchronization)
• Jianying (video editing)

B.2 Modalities

RGB Action Cameras Six in-vehicle viewpoints captured by DJI Action 3 cameras:
• Baseline: forward road view (dashcam)
• Driver1: driver’s face
• Driver2: driver’s feet
• Driver3: driver’s posture
• Passenger1: front passenger posture
• Passenger2: rear passenger posture

Recording starts when synchronization is initiated and ends when the vehicle is safely
parked.

360° Panoramic HDR 360° exterior view recorded by Insta360 X3, capturing surrounding road
environment and vehicle pose. Recording interval matches the RGB cameras. All in-vehicle
RGB action cameras (DJI Action 3) record at 1080 P resolution and 30 fps with a wide-
angle lens ( 155°) and subsequent distortion correction; the panoramic camera (Insta360
X3) captures 360° surround video in 5.7 K HDR at 30 fps to ensure strict timestamp
synchronization with the RGB cameras.

B.3 Collection Procedure

1. Preparation and Inspection
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1) Verify battery levels and free storage on all cameras; prepare spares.
2) Clean windshield and remove obstacles to minimize glare.
3) Mount and secure all six Action 3 cameras at predetermined positions; tighten brackets.
4) Check each camera’s field of view against the setup diagram.
5) For the test drive, power on only the Baseline camera.
6) Configure Insta360 X3 to HDR mode and dual-lens (360°) capture; secure on roof

mount and level the camera.
2. Power-On

1) During the practice drive, the external operator starts the Baseline camera.
2) Before the formal trial, the in-vehicle operator gives the start command; the external

operator powers on all cameras.
3. Recording Start

1) In-vehicle operator issues a voice command to initiate recording on all RGB cameras
simultaneously.

2) External operator confirms LED indicators and starts the Insta360 X3.
4. Recording Stop

1) Upon safe stop of the vehicle, the in-vehicle operator issues a voice command to stop
all RGB cameras.

2) External operator stops the Insta360 X3 recording on command.

C Ablation Study and Comparison

First and foremost, it should be clarified that, in line with many recent studies[30, 18], we view
L2 error solely as an indicator of model convergence, whereas the ultimate goal of autonomous
driving is safe, collision-free operation. In this study, we doubled the coefficient of the L2 loss
term in the source code of VAD-Base[12] and found that, although the L2 error decreased by 0.15
m (20.8%, respectively), the collision rate increased by 0.07% (31.8%, respectively), as shown in
Table. A.2. Additionally, Ego-MLP[30] performs planning using only the vehicle’s historical state
information without any visual input, the L2 error achieved is comparable to that of VAD, yet both
the collision rate and closed-loop evaluation results are terrible. These findings motivate us to adopt
collision rate as the primary performance metric for open-loop evaluation during model design and
hyperparameter selection, while relegating L2 error to a secondary role as an indicator of model
convergence, and coefficient settings are kept consistent with the baseline model to ensure a fair
comparison. Additionally, due to the low computational efficiency of UniAD[10], we primarily select
VAD as the baseline model in the large-scale experiments discussed in the following sections.

As shown in Table. A.3, we compare the number of blocks, the dropout rate, and the number of
cross-attention heads in the "Interact with the Ego Query" framework. Our observations indicate
that, even with only one layer, the model achieves a stable improvement over the baseline. When the
number of cross-attention heads is reduced by half, the model converges more easily and exhibits
lower L2 error, while the collision rate remains unaffected. Additionally, dropout is a key parameter;
excessively low dropout rates can lead to overfitting, resulting in degraded driving performance on
the test set.

The comparison results of hyperparameters for the "Interact with Planning Features" framework are
presented in Table.A.4. We observe that employing just one layer of our designed Decoder block
can already lead to notable performance improvements. Nevertheless, appropriately increasing the
number of layers can further enhance the overall performance of the model. It is also crucial to
select a suitable dropout value, as excessively large or small dropout rates may lead to underfitting
or overfitting, respectively, thereby degrading performance. Additionally, moderately reducing
the number of attention heads can facilitate model convergence and improve driving performance.
However, setting the number of attention heads too low may compromise the model’s learning
capacity.

For the "Attach to the Spatio-temporal Features" framework, we compare the impact of the number
of vision feature queries ns, which are selected by human visual attention. We observe that as ns

increases, the model’s L2 error gradually decreases. However, the collision rate does not decrease
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accordingly and even increases when ns is excessively high, as shown in Table. A.5. This phenomenon
can be attributed to the fact that this framework only captures visual features attended by the human
brain, without learning planning-related driving cognition. These visual features primarily help the
model to fit the expert driving trajectories, but their contribution to enhancing the model’s driving
performance is limited. Furthermore, when the visual features become overly redundant, they may
even impair the model’s performance.

Table. A.6 presents a comparison of detailed metrics between our model and baseline models under
closed-loop evaluation. It can be observed that our model substantially reduces the rate of vehicle
collisions and red light violations by 11.82% (38.8%, respectively) and 1.37% (37.6%, respectively).
The rate of stop infraction is also significantly reduced by 0.46% (16.8%, respectively). In addition,
occurrences of collisions with layouts and lane departures have also been mitigated. These results
demonstrate that the E3AD paradigm achieves significant improvements in driving performance,
particularly in complex driving tasks such as interacting with other vehicles and understanding traffic
signals.

Table. A.7 presents the results of cross-dataset validation and generalization analysis. To further
evaluate the robustness of our model in unseen geographic domains and to address the reviewer’s
concerns, we conducted additional experiments on the nuScenes dataset. The dataset was divided into
two subsets according to the acquisition locations (Singapore and Boston). Specifically, the training
set consists of 12,435 and 15,695 samples for Singapore and Boston, respectively, while the test set
contains 2,929 and 3,090 samples. We trained the model using data collected from one location and
evaluated it on the other, ensuring that the validation was performed on entirely unseen geographic
domains. As shown in the Table. A.7, our model consistently outperforms the baseline (VAD-tiny)
on unseen data. Particularly, when training on Singapore and validating on Boston, our approach
achieves a 14.1% reduction in baseline L2 error and a 22.7% decrease in collision rate compared to
the baseline.

Table A.2: Relationship Between L2 Error and Collision Rate.
L2(m)↓ Collision(%)↓

Method
1s 2s 3s Avg. 1s 2s 3s Avg.

VAD-Base[12] 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
VAD-Base (Doubling L2 loss) 0.31 0.54 0.85 0.57 0.16 0.21 0.51 0.29
Ego-MLP[30] 0.46 0.76 1.12 0.78 0.21 0.35 0.58 0.38

Table A.3: Comparison of Hyperparameters in the "Interact with the Ego Query" Framework.

Framework Options L2(m)↓ Collision(%)↓
Layers Dropout heads 1s 2s 3s Avg. 1s 2s 3s Avg.

VAD[12] _ _ _ 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
VAD (Reproduced) _ _ _ 0.40 0.70 1.04 0.71 0.10 0.16 0.44 0.23

Ours

1 0.1 8 0.37 0.66 1.04 0.69 0.06 0.14 0.41 0.20
2 0.1 8 0.39 0.68 1.03 0.70 0.09 0.19 0.42 0.23
4 0.1 8 0.36 0.62 0.95 0.64 0.08 0.19 0.41 0.23
1 0.05 8 0.39 0.66 1.00 0.68 0.09 0.18 0.37 0.21
1 0.1 4 0.33 0.58 0.92 0.61 0.07 0.14 0.39 0.20

D Visualization

Similar to other end-to-end methods[18, 10, 12, 16], we also provide visualization results, as shown
in Fig. A.2. It demonstrates a successful case from the closed-loop simulation experiments: when a
vehicle parked ahead on the right suddenly starts moving, the baseline model adopts a more aggressive
and risky avoidance maneuver, attempting to pass quickly and causing a severe collision. In contrast,
our model learns to interact with the suddenly moving vehicle by slowing down and waiting until
it has completely departed before accelerating to proceed along the route, thus avoiding a collision.
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Table A.4: Comparison of Hyperparameters in the "Interact with the Planning Features" Framework.

Framework Options L2(m)↓ Collision(%)↓
Layers Dropout heads 1s 2s 3s Avg. 1s 2s 3s Avg.

VAD _ _ _ 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
VAD (Reproduced) _ _ _ 0.40 0.70 1.04 0.71 0.10 0.16 0.44 0.23

Ours

4 0.1 8 0.33 0.59 0.93 0.62 0.06 0.14 0.41 0.20
1 0.1 8 0.39 0.70 1.07 0.72 0.03 0.14 0.44 0.20
2 0.1 8 0.34 0.59 0.91 0.61 0.12 0.20 0.32 0.21
6 0.1 8 0.38 0.64 0.96 0.66 0.09 0.18 0.39 0.22
4 0.05 8 0.38 0.67 1.04 0.70 0.07 0.15 0.41 0.21
4 0.15 8 0.34 0.61 0.96 0.63 0.06 0.17 0.40 0.21
4 0.1 4 0.35 0.62 0.96 0.64 0.06 0.13 0.36 0.18
4 0.1 2 0.33 0.59 0.93 0.62 0.06 0.14 0.41 0.20

Table A.5: Comparison of Hyperparameters in the "Attach to the Spatio-temporal Features " Frame-
work.

Options L2(m)↓ Collision(%)↓
Framework

ns 1s 2s 3s Avg. 1s 2s 3s Avg.

VAD _ 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
VAD (Reproduced) _ 0.40 0.70 1.04 0.71 0.10 0.16 0.44 0.23

Ours
4 0.38 0.67 1.04 0.70 0.09 0.17 0.400 0.22
8 0.38 0.67 1.02 0.69 0.09 0.17 0.38 0.21

16 0.34 0.60 0.95 0.63 0.12 0.19 0.49 0.27

Table A.6: Comparison of E3AD and Baseline Models on Closed-Loop Metrics.
Method

Closed-loop Metrics ↓
Layouts Collision(%) Pedestrians Collision(%) Vehicles Collision(%) Running Red light(%) Stop Infraction(%) Off-road(%)

VAD-Base 15.46 0.91 30.46 3.64 2.73 23.64
Ours 15.00(↓3.1%) 0.91 18.64(↓38.8%) 2.27(↓37.6%) 2.27(↓16.8%) 22.73(↓3.8%)

Table A.7: Cross-Dataset Validation and Generalization Study
L2 ColMethod

1s 2s 3s Avg. 1s 2s 3s Avg.
Baseline (Training on Singapore) 0.51 0.84 1.21 0.85 0.29 0.42 0.61 0.44
E3AD (Training on Singapore) 0.44 0.71 1.03 0.73 0.15 0.30 0.56 0.34
Baseline (Training on Boston) 0.45 0.77 1.17 0.80 0.22 0.35 0.76 0.44
E3AD (Training on Boston) 0.46 0.76 1.13 0.78 0.22 0.42 0.50 0.38
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This case to some extent suggest that E3AD exhibits behaviors that are closer to human driving style
and are characterized by enhanced safety.

Fig. A.3 illustrates the real-world data validation conducted in China. We collected real-world data
using a vehicle-mounted platform equipped with an Insta360 panoramic fisheye camera and an inertial
sensor. Following the nuScenes protocol, the panoramic videos were undistorted and split into six
perspective-view videos. Using these multi-view videos together with CAN bus data, we evaluated
our model. The E3AD model demonstrated smooth trajectory continuity.

E³AD E³AD E³AD

VAD VAD VAD

Frame 1

Frame 1

Frame 2

Frame 2

Frame 3

Frame 3

Figure A.2: Visualization Comparison of E3AD (VAD-Base) and the Baseline on Closed-loop
Evaluation.

Figure A.3: Real-world data validation

17



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction explicitly list the E3AD paradigm, the use of
EEG-based comparative learning, and the resulting planning performance gains, which align
exactly with our experimental results in Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: We have not yet included an explicit discussion of limitations; we will add a
dedicated “Limitations” section in the final version.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [No]
Justification: Our paper does not include any novel theoretical results or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full preprocessing and data details in Sec. 3.1; complete model
architectures, and loss formulations in Secs. 3.2–3.6; and training hyperparameters (learning
rate, batch size, optimizer) Experimental setups, metrics, and evaluation protocols are
described in Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the official link and open-source the code after the public
review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide information on data splits, hyperparameters, optimizers, etc., in
Sections 3.1 and 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We detail the various experiments in Sections 4.2–4.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the various experiments in Sections 4.2–4.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All EEG data collection followed IRB-approved protocols and informed
consent (Sec. 2.1). We anonymized personal identifiers, stored data securely, and comply
with privacy, fairness, and participant-safety guidelines in the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential benefits—improved safety, robustness, and generality of
autonomous driving

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have explicitly referenced the datasets in Section 3.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The information explicitly cited in the paper. A detailed README will be
provided once the code is open-sourced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: While we describe participant recruitment and EEG cap setup in Sec. 2.1, we
have not yet included the full stimulus instructions or compensation details; these will be
provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: All EEG data collection was conducted under IRB-approved protocols with
informed consent and risk disclosure, in full compliance with ethical guidelines.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used large language models (LLMs) to assist with tasks such as polishing
and refining the writing of the paper
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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