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Abstract

Inspired by the success of foundation models in applications such as ChatGPT,
as graph data has been ubiquitous, one can envision the far-reaching impacts that
can be brought by Graph Foundation Models (GFMs) with broader applications
in the areas such as scientific research, social network analysis, drug discovery,
and e-commerce. Despite the significant progress of pre-trained graph neural
networks, there haven’t been GFMs that can achieve desired performance on
various graph-learning-related tasks. Building GFMs may rely on a vocabulary that
encodes transferable patterns shared among different tasks and domains. Unlike
image and text, defining such transferable patterns for graphs remains an open
question. In this paper, we aim to bridge this gap by rethinking the transferable
patterns on graphs as computation trees – i.e., tree structures derived from the
message-passing process. Based on this insight, we propose a cross-task, cross-
domain graph foundation model named GFT, short for Graph Foundation model
with transferable Tree vocabulary. By treating computation trees as tokens within
the transferable vocabulary, GFT improves model generalization and reduces the
risk of negative transfer. The theoretical analyses and extensive experimental
studies have demonstrated the transferability of computation trees and shown the
effectiveness of GFT across diverse tasks and domains in graph learning. The open
source code and data are available at https://github.com/Zehong-Wang/GFT.

1 Introduction

Foundation models such as Large Language Models (LLMs) and Large Vision Models (LVMs) keep
reshaping our view of the world [7, 100, 51, 112, 50]. These models are designed to be general-
purpose, adaptable across various tasks and domains through fine-tuning or prompting, such as
GPT-4 [1] in Natural Language Processing (NLP) and Sora [46] in Computer Vision (CV). Research
attributes the success of foundation models to the uniformity of tasks and a general vocabulary that
defines basic transferable patterns across tasks [98, 76, 112, 3, 50]. For example, LLMs [1, 112] treat
language tasks as question-answering or next-word prediction and deconstruct sentences using a
word vocabulary. Similarly, LVMs [100, 98, 3] reformulate image tasks as image question-answering,
converting images into discrete tokens using a vision vocabulary. Inspired by the success of LLMs
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and LVMs, as graph-structured data (e.g., citation networks, social networks, computer networks,
molecular structures, and recommender systems) have become ubiquitous, one can envision the far-
reaching real-world impacts that can be brought by pre-trained Graph Foundation Models (GFMs).

Although there has been significant progress of pre-trained Graph Neural Networks (GNNs), there
haven’t been GFMs that can achieve desired performance on a wide range of graph-learning-related
tasks. Unlike CV and NLP, as graphs represent complex, non-Euclidean relationships among entities
[92, 48, 104, 58, 107], a grand challenge of building GFMs lies in identifying transferable patterns
across graphs [50, 93, 25]. There have been extensive studies aiming to tackle this challenges,
which can mainly be categorized into two groups: (1) Utilizing graphon theory: Ruiz et al. [62]
provide theoretical evidence of transferability between two graphs generated from the same graphon.
Cao et al. [8] further extend these findings by both empirically and theoretically analyzing graph
transferability in pre-training and fine-tuning scenarios. Despite these theoretical guarantees, the
stringent assumptions of graphon theory often prove difficult to satisfy in real-world, cross-domain
datasets [42], thus limiting its applicability in defining transferable graph vocabularies. (2) Exploring
graph transferability using subgraph structures [114, 59, 50]: Zhu et al. [114] demonstrate that the
transferability between graphs is linked to the ego-graph patterns of individual nodes and establish
a stability bound using the graph Laplacian. They suggest that localized subgraphs could serve as
transferable patterns within graph vocabularies. Building on this finding, Sun et al. [68] develop a
GFM by reformulating graph tasks as subgraph classification, enabling a single model to be applied to
diverse tasks. Huang et al. [30], Liu et al. [45] expand GFMs to cross-domain scenarios by unifying
the node feature space across different graphs through LLMs [60, 76]. Despite these successes, the
process of explicit subgraph extraction remains time and memory intensive [30]. More importantly,
numerous studies such as [20, 10, 53, 103] show that message-passing GNNs [40, 24, 21] fail to
detect critical substructures or motifs within subgraphs, reducing the feasibility of using subgraphs to
define graph vocabularies.

How to identify a vocabulary that can encode transferable patterns shared among different tasks
and domains for the construction of GFMs? In this paper, we aim to address the limitations of
existing works by answering this question. Specifically, based on message-passing mechanism of
GNNs, we have observed that the learned embeddings of each node can be essentially captured in
the form of its computation tree. Based on this insight, we bridge the research gap by rethinking
the transferable patterns on graphs as computation trees – i.e., subtree structures derived from the
message-passing process. Using computation tree as a transferable pattern across graphs will bring
three primary advantages: (1) Efficiency: As the extraction and encoding of computation trees are
integrated within a single message-passing GNN process [20], it eliminates the need for the explicit
subgraph extraction for GFMs [30, 45]. (2) Expressiveness: Since computation trees are capable of
capturing localized patterns [52], it’s able to represent a graph as a multiset of computation trees [23].
(3) Learnability: As the information of computation trees is completely captured by message-passing
GNNs, it can tackle the issue that certain motifs within subgraphs remain elusive. We theoretically
investigate the transferability of computation trees and empirically demonstrate a strong correlation
between computation tree similarity and transfer learning performance across various graphs.

Based on the key idea above, by treating computation trees as graph vocabulary tokens, we develop
a cross-task, cross-domain graph foundation model – namely GFT – short for Graph Foundation
model with transferable Tree vocabulary. GFT consists of pre-training and fine-tuning phases,
enabling it to handle datasets across different tasks and domains effectively. During pre-training, we
introduce a computation tree reconstruction task to acquire generalized knowledge from cross-domain
graphs. We obtain a discrete tree vocabulary of prototypical tree tokens by quantizing the embedding
space of computation trees, which theoretically improves model generalization. In the fine-tuning
phase, we utilize this learned tree vocabulary to unify various graph-related tasks into computation
tree classification, thereby preventing negative transfer [89, 87]. Extensive experimental results
demonstrate the effectiveness of GFT in graph learning on cross-task and cross-domain datasets.

2 Rethinking Transferable Patterns on Graphs

2.1 Transferability on GNNs

Transferability refers to a model’s capability to extract patterns from source tasks and apply this
knowledge to enhance performance on related target tasks [5, 33, 90]. Understanding transferable
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patterns is essential for developing graph foundation models. Early research focuses on analyzing
transferability through the perspectives of graph spectrum [41, 42] and subgraphs/substructures [114],
defining transferability as model invariance to minor permutations on the graph. A more recent
study [50] investigates the transferable vocabulary in graphs by identifying key substructures relevant
to various tasks. For instance, they find that triadic closure, homophily, and heterophily are vital
for node classification; local and global structural proximities are crucial for link prediction; and
certain motifs [103], such as triangles, k-cliques, and stars, serve as fundamental components for
graph classification. Another line of research [62, 8, 69] incorporates graphon theory to provide a
theoretical basis for transferability. Specifically, Ruiz et al. [62] establish a bound on the embeddings
of two graphs sampled from the same graphon. Cao et al. [8] expand this to include pre-training
and fine-tuning scenarios, assessing the distance between graphs based on their alignment within the
graphon space. However, the stringent assumptions of graphon theory limit its practical application
in the design of graph foundation models.

We identify two primary limitations in analyzing transferable patterns on graphs: (1) While certain
domains [110, 87, 43, 108] or tasks [114, 111, 19] exhibit transferable patterns, the challenge of
identifying universally transferable substructures is difficult. (2) More critically, basic message-
passing GNNs, constrained by the 1-WL test [94, 52], fail to recognize certain subgraphs (or motifs)
[20, 10, 103], such as stars, conjoint cycles, and k-cliques, as well as heterophily patterns [113].
This limitation in recognizing substructures impedes using subgraphs as transferable tokens in graph
vocabulary [68, 30, 45]. More related works are elaborated in Appendix A.

2.2 Computation Tree as Transferable Pattern

Node Link Graph

Task-relevant Nodes

Figure 1: Graph tasks (top)
and the corresponding compu-
tation trees (bottom). A vir-
tual node can be added at the
top to connect all task-relevant
nodes, unifying different tasks
as the tree-level task.

In this paper, we rethink the transferable pattern in graphs as the
computation tree — a specialized subtree pattern that emerges from
unfolding the message-passing process [12]. This pattern is demon-
strably effective at capturing critical localized information within
the graph [20, 52, 94, 12]. Treating computation trees as tokens
within a graph vocabulary offers two distinct advantages: (1) com-
putation trees preserve the essential structural information of the
graph, which is learnable through message-passing GNNs, and (2)
the computation tree structure occurs across various graph-based
tasks. These tasks can be unified as computation tree classification
by integrating a virtual node, as shown in Figure 1.

Before diving into transferability analysis, we first establish the
necessary notations. Consider a graph G = (V, E) composed of node
set V and edge set E . Each node v ∈ V is associated with a feature
vector xv ∈ Rd and a computation tree Tv with L layers. A GNN
encoder ϕ processes these computation trees as inputs, producing
embeddings for root nodes z = ϕ(Tv) ∈ Rd′

.

Definition 2.1 (Computation Trees [12]). Given a graph G = (V, E), define T 1
v = v and T L

v
as the L-layer computation tree. This tree is constructed by recursively integrating the subtrees of
neighborhoods. The multiset of L-layer computation trees on graph G is denoted by T L

G := {T L
v }v∈V .

Figure 1 demonstrates the construction of computation trees across various graph tasks, including
node-, link-, and graph-level tasks. These trees capture essential localized subtree patterns within
the graphs [55, 64, 12]. If the L-layer computation trees for two nodes are similar, it indicates that
these nodes share similar neighborhoods, suggesting they represent analogous phenomena [42]. Thus,
it is rational to assess transferability of computation trees by examining the stability of GNNs in
producing analogous embeddings for similar trees [62, 42].

Theorem 2.2 (Transferability of Computation Tree ). Given two L-layer computation trees Tv1 , Tv2
derived from the graph G and a GNN encoder ϕ, the Euclidean distance between the tree embeddings
∆ ≜ ∥ϕ(Tv1)− ϕ(Tv2

)∥2 is bounded as follows:

∆ ≤ C1∥xv1 − xv2∥2 + C2
∑

j∈N (v)

∆L−1
v1,v2,j

≤ 2Bx(C1 +
L∑

l=1

Cl
2Dl) (1)
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where ∆L−1
v1,v2,j

represents the distance between the (L − 1)-layer subtrees of the j-th children of
nodes v1 and v2, C1, C2 are constants, and Bx denote bounded norm of x. The variable dl indicates
the number of children in the l-layer subtrees, and Dl = dldl−1...d1.

Proof. All proofs in the paper are detailed in Appendix D.

Remark 2.3. Theorem 2.2 derives a recursive bound for computation tree similarity. In particular,
the distance between two computation trees is closely correlated to the similarity of their subtrees,
where higher subtree similarity results in a closer distance. This suggests that computation trees
with similar structures are likely to have similar embeddings, which enhances their transferability
[114, 33, 62]. This aligns with our empirical observations that higher computation tree similarity
between two graphs leads to improved transferability.

Supportive Observations — Synthetic Graphs. Figure 3 shows that high computation tree similarity
between graphs correlates with improved transfer learning performance on synthetic graphs (Figure
2). Specifically, we construct three distinct graphs: G1 and G2 share similar motifs but differ in
computation tree distributions, while G1 and G3 exhibit dissimilar motifs but similar computation tree
distributions. We employ the WL subtree kernel [64] and the graphlet sampling kernel [57] to assess
tree and motif similarity, respectively, and utilize the inverse of the Central Moment Discrepancy
[102] to measure transferability. Further details on experimental settings and additional results are
available in Appendix E.1. Our findings indicate that transferability is strongly associated with
computation tree similarity rather than motif similarity, regardless of the scale of graphs (# blocks).

𝒢1 𝒢2 𝒢3

Figure 2: Synthetic graphs
composed of two basic
blocks. More blocks can
scale up the graph sizes.
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Figure 3: Transfer performance on synthetic graphs with G1 as the target
graph. Higher tree similarity correlates with enhanced transferability.

Supportive Observations — Real-world Graphs. Table 1 validates the correlation between
computation tree similarity and transferability in real-world graphs, including homophily Airport
networks [61] and heterophily WebKB networks [56]. We evaluate transferability based on transfer
learning performance in node classification tasks. Detailed experimental settings and additional
results are available in Appendix E.2. Our findings in real-world graphs corroborate those in synthetic
graphs: higher computation tree similarity enhances transferability, while the impact of motifs is
marginal, no matter using original node features (Table 1) or randomized node features (Table 9).

Table 1: Transfer learning performance on homophily (above) and heterophily (below) graphs. For
any target graph, source graphs with higher tree similarity lead to improved accuracy, highlighted
with Blue . Conversely, the influence of motif similarity is marginal, marked by LightBlue .

Gtarget → Brazil Europe USA

Gsource → Europe USA Brazil USA Brazil Europe

Motif Sim. 99.01 92.65 99.00 96.81 92.68 96.81
Acc. / Tree Sim. 53.1 / 34.6 56.8 / 62.2 50.8 / 34.6 51.4 / 88.7 54.5 / 62.2 57.9 / 88.7

Gtarget → Cornell Texas Wisconsin

Gsource → Texas Wisconsin Cornell Wisconsin Cornell Texas

Motif Sim. 99.97 99.98 99.99 99.99 99.98 99.99
Acc. / Tree Sim. 46.5 / 65.3 42.4 / 42.7 56.0 / 65.3 53.1 / 41.7 48.6 / 42.7 48.2 / 41.7

3 GFT: Graph Foundation Model with Transferable Tree Vocabulary

We develop GFT, a cross-domain and cross-task graph foundation model that leverages computation
trees as transferable patterns within graph vocabulary. As illustrated in Figure 4, GFT undergoes
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Computation
Tree

Graph
Database

(a) Pre-training with Tree Reconstruction

(b) Fine-tuning with Tree Classification

Unseen
Graph

Encoder
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Tree Classification
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Query
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Orthogonal Regularizer Eq. (5)

Tree Vocabulary
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Figure 4: During pre-training, GFT encodes general knowledge from a graph database into a tree
vocabulary through tree reconstruction. In fine-tuning, the learned tree vocabulary is applied to unify
graph-related tasks as tree classification, adapting the general knowledge to specific tasks.

pre-training through a computation tree reconstruction task to acquire general knowledge from a cross-
domain graph database. Subsequently, GFT quantizes the embedding space of computation trees to
form a discrete tree vocabulary, encapsulating fundamental, transferable computation tree patterns
for diverse tasks. In the fine-tuning phase, GFT utilizes this tree vocabulary to unify graph-related
tasks (including node-, link-, and graph-level tasks) as computation tree classification, adapting the
general knowledge to specific target tasks.

3.1 Pre-training with Computation Tree Reconstruction

The pre-training stage focuses on learning general computation tree patterns on graphs, facing
two primary challenges: (i) obtaining transferable patterns, and (ii) comprehensively capturing
computation tree knowledge. For the first challenge, we learn a discrete tree vocabulary by quantizing
the embedding space of computation trees [77]. For the second challenge, we introduce a computation
tree reconstruction task that considers multiple aspects of computation trees.

Learning Tree Vocabulary. The idea of learning a discrete computation tree vocabulary originates
from the principles of sparse distributed memory in cognitive science [37, 38], which stores and
retrieves memory in a distributed manner. By adopting these principles, the tree vocabulary maintains
a set of tokens that are reusable and adaptable across various tasks, improving model transferability.

We adopt the Vector Quantization (VQ) [77] to develop the tree vocabulary. Given a graph database2

D = {Gi}ni=1, we randomly extract a set of computation trees T = {Ti}mi=1 and employ a GNN
encoder ϕ to generate the tree embeddings Z = {zi}mi=1. We define the computation tree vocabulary
as a set of learnable tokens C = {c1, ..., cK}. The tree embedding space is quantized by assigning
each embedding to the nearest token, resulting in quantized tree embeddings qi = cj , where
j = argminj ∥zi − cj∥2. We optimize this projection by back-propagating the reconstruction
error to the tree vocabulary C and applying a straight-through gradient estimator [6] to the encoder
ϕ. In particular, we jointly optimize vocabulary loss and commitment loss [77], along with tree
reconstruction loss (discussed later), where the former updates the token vectors c using the fixed
quantization q, and the latter ensures alignment between the tokens in the vocabulary and the
quantized tree embeddings, serving as a regularizer. The pre-training objective is thus defined as:

Lpretrain = Ltree +
1

m

m∑
i=1

∥∥sg[zi]− ci
∥∥2
2︸ ︷︷ ︸

vocabulary loss

+β1 ·
1

m

m∑
i=1

∥∥zi − sg[ci]
∥∥2
2︸ ︷︷ ︸

commitment loss

, (2)

where sg[·] denotes the stop-gradient operator and β1 is the weight.
2We use text-attributed graphs in our experiments due to the data availability, and use textual encoder to

align the node features, similar to Liu et al. [45]. Despite designing node feature alignment method is crucial in
GFMs, it is beyond the scope of this paper.
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Computation Tree Reconstruction. We introduce a computation tree reconstruction task designed
to enable a deep understanding of the structural and semantical attributes of computation trees [36].
We use the tree tokens to reconstruct the original computation tree, retaining general knowledge while
discarding irrelevant details. Specifically, we develop three reconstruction tasks: (i) reconstructing the
features of the root node Lfeat, (ii) reconstructing the connectivity among nodes in the computation
trees Ltopo, and (iii) reconstructing the overall semantics of the computation trees Lsem:

Lfeat =
1

m

m∑
i=1

∥∥∥q̂2
i − xi

∥∥∥2
2
, Lsem =

1

m

m∑
i=1

(
1− q̂1

i

T
ẑi

∥q̂1
i ∥∥ẑi∥

)γ

, (3)

Ltopo =
∑

(i,j)∈E,(i,j′)∈Ê

− 1

|E|
log

(
σ(q̂3

i

T
q̂3
j )
)
− 1

|Ê |
log

(
1− σ(q̂3

i

T
q̂3
j′)

)
+

1

|E|

∥∥∥[q4
i ∥q4

j ]− eij

∥∥∥2
2
,

where ẑi = ϕ̂(Ti) represents the semantics of the original computation trees, and ϕ̂ is updated
through a moving average of the tree encoder ϕ. The quantized tree embedding q is projected via
different decoders defined by MLP, q̂j = δj(q), γ is the scaling factor, and E and Ê represent sets
of existing and non-existing connections in computation trees, respectively. eij denotes the edge
embedding between nodes i and j. By jointly optimizing these tasks, we establish a comprehensive
reconstruction objective:

Ltree = β2 · Lfeat + β3 · Lsem + β4 · Ltopo, (4)

where βi indicates the weights of respective losses. The philosophies under these loss functions
separately correspond to existing works [39, 26, 74, 86]. For example, Kipf and Welling [39]
reconstruct the graph structure, aligning to the philosophy of Ltopo, Hou et al. [26] reconstruct node
feature that is similar to Lfeat, and Thakoor et al. [74], Wang et al. [86] employ contrastive learning
to maximize the alignment between two views, aligning to Lsem. Unlike existing methods that
typically focus on reconstructing a single aspect of computation trees, GFT integrates multiple facets
[85] to learn a general and transferable tree vocabulary.

Enhancing the Quality of Tree Vocabulary. The effectiveness of GFT is correlated to the quality
of the tree vocabulary, which should be both comprehensive and expressive. A comprehensive
vocabulary is inclusive enough to accommodate new patterns, while an expressive vocabulary ensures
that different tree tokens do not overlap in representation [50]. To enhance comprehensiveness, we
augment the computation trees during pre-training, increasing the variety of observed computation
trees through node feature augmentation and structural augmentation, as described by [115]. To
improve expressiveness, we regularize the tree vocabulary space by intentionally increasing the
distance between distinct tokens [65]. Specifically, we introduce an orthogonal regularizer designed
to maintain tree tokens orthogonal to each other, effectively expanding the tree token space:

Lortho = λ
1

K2

∥∥∥CCT − IK

∥∥∥2
F
, C = [c1, ..., cK ]T ∈ RK×d′

, (5)

where ci is tree token, IK is the identity matrix for K dimensions, and ∥ · ∥F denotes the Frobenius
norm. The orthogonal loss Lortho is integrated with Equation 2. More analysis is in Appendix C.2.

3.2 Fine-tuning with Computation Tree Classification

The pre-training stage encodes general knowledge into the tree vocabulary, while the fine-tuning
phase adapts this knowledge to specific tasks. This adaptation is challenging because identical
patterns can have different meanings across domains and tasks [8]. For example, a triangular structure
indicates stable relationships in social networks (node classification) but denotes unstable chemical
properties in molecular networks (graph classification). To this end, we propose computation tree
classification that utilizes the tree vocabulary to unify graph tasks as the tree-level task, ensuring the
adaptation is applicable across diverse tasks and domains.

Reformulate Graph Tasks as Computation Tree Classification. Graph-related tasks can be
represented by task-specific computation trees, as illustrated in Figure 1. Specifically, for node
classification, the task-specific computation tree, denoted as Tnode = Ti, is derived directly from
the node itself, resulting in the embedding z = ϕ(Ti). For link prediction, the computation tree,
Tlink = Combine(Ts, Tt), merges the computation trees of two nodes of the edge, with the embedding
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z = mean(ϕ(Ts), ϕ(Tt)). For graph classification, the task-specific computation tree Tgraph =
Combine({Tv}v∈V) integrates the computation trees of all nodes within the graph, and computes the
embedding as z = mean({ϕ(Tv)}v∈V). Subsequently, the embeddings of these task-specific trees
are used to query the tree vocabulary and then make predictions, adapting the general knowledge
encoded in the vocabulary to various tasks and domains.

Prototype Classifier. The prototype classifier fproto constructs class prototypes using tokens from
the tree vocabulary. Given a set of task-specific computation trees {(Ti, yi)}ni=1 with |C| classes, we
employ the pre-trained GNN encoder ϕ to generate tree embeddings Z = {zi}ni=1. These embeddings
are then used to query the tree vocabulary and produce quantized embeddings Q = {qi}ni=1.
Subsequently, we construct a class-wise memory bank S = {S1, ...,S|C|}, where Sk = {qi ∈
Q|yi = k}, to store tree tokens of the same class. The memory bank typically includes all instances
from the training set. From this, we derive a set of prototypes for each class {pk}|C|

k=1, calculated as
pk = (1/|Sk|)

∑
qi∈Sk qi. These prototypes are then used for predictions:

p(y = k|z) = exp(−sim(z,pk)/τ)∑
c exp(−sim(z,pc)/τ)

, (6)

where sim(·) denotes the cosine distance and τ is a temperature scaling factor. We optimize the
cross-entropy loss between the classifier’s output and the ground truth to update the encoder ϕ.

Linear Classifier. Different from the prototype classifier, which utilizes class prototypes to adapt
to target tasks, the linear classifier flin directly applies the knowledge encoded in each tree token.
Specifically, given a task-specific computation tree Ti, we use the encoder to generate tree embeddings
zi and then query the tree vocabulary to retrieve qi. These embeddings are used for predictions as:

p(y = k|z) = exp(link(q)/τ)∑
c exp(lin

c(q)/τ)
, (7)

We optimize the cross-entropy loss between the prediction flin(z) and the ground truth to update
the parameters of the encoder and the linear classifier. During inference, predictions from both the
prototype and linear classifiers are combined to form the final output. It is important to note that the
tree vocabulary remains fixed during fine-tuning to preserve the integrity of the encoded knowledge.

3.3 Additional Analysis

Tree Vocabulary Learns Generalizable Tokens. Learning tree vocabulary via VQ involves clus-
tering within the embedding space of computation trees, utilizing a margin-aware classifier [14]
that assigns each computation tree to a specific cluster. Assuming that each computation tree T
is associated with an underlying clustering label y, and that each pair (Ti, yi) is sampled from the
distribution PT , we derive the following theorem:

Theorem 3.1. Given a set of computation trees {(Ti, yi)}ni=1 sampled from the distribution PT , the
VQ process functions as a margin-aware prototype classifier f that predicts the class of computation
trees via a distance measure. The risk R(f) of classifier f can be bounded with probability 1− δ:

R(f) ≤ R̂(f) +
20 · C · p(p− 1) ·

√
n

ρ · n
+

√
ln(2/δ)

2n
, (8)

where R̂(f) is the empirical risk, p denotes the number of tokens, C is a constant, and ρ acts as the
margin, serving as a penalty factor in evaluating the distance between computation trees and tokens.

Remark 3.2. The generalizability of tokens within the vocabulary highly correlates to the margin
ρ, the number of observed computation trees n, and the number of tokens p. (i) A larger margin ρ
results in a tighter bound by ensuring higher inter-cluster distances and lower intra-cluster distances.
This supports the use of an orthogonal regularizer (Equation 5) that explicitly pushes tokens apart,
enhancing cluster distinction. (ii) An increased number of observed computation trees n leads to
a tighter generalization bound, which supports the use of augmentations to increase the diversity
of computation trees. (iii) More tokens p may loose the upper bound of the generalization error,
potentially due to a higher risk of overfitting. This aligns with our experimental findings that more
tokens do not necessarily lead to improved performance (Section 4.4).
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Tree Vocabulary Mitigates Negative Transfer. Negative Trans-
fer (NT) occurs when the pre-training process degrades model
performance on a target task. This issue often results from mis-
alignment between the pre-training and fine-tuning tasks [89, 8].
Following the approach in [89], we characterize the NT gap,
R(S, T )−R(∅, T ), as the risk gap on task T with (R(S, T )) and
without (R(∅, T )) pre-training on task S, where a smaller NT
gap indicates improved transferability. As illustrated in Figure 5,
employing the learned tree vocabulary to align the tree reconstruc-
tion task in pre-training and tree classification task in fine-tuning
can significantly mitigate negative transfer.

Complexity Analysis. A comprehensive complexity analysis of GFT is provided in Appendix
B. Notably, GFT employs a single GNN to decompose and encode computation trees, taking
O(L · (|E| · d+ |V| · d2)). In contrast, subgraph-based GFMs [30, 45] require the explicit extraction
of subgraphs for each node, taking additional O(|V|3) using adjacency matrix-based BFS. This
contrast highlights the efficiency of using computation trees as transferable patterns in terms of time
complexity. More discussions are in Appendix C.

4 Experiments

4.1 Experimental Setting

We employ cross-domain and cross-task graph datasets to evaluate the effectiveness of GFT. For
node-level tasks, we utilize citation networks such as Cora, PubMed, Arxiv, and the web link network
WikiCS. For edge-level tasks, we include two Knowledge Graphs (KGs), WN18RR and FB15K237. For
graph-level tasks, we use molecule networks, including HIV, PCBA, and ChEMBL. All preprocessing
steps follow [45]. We take various baselines, encompassing MLP, supervised GNNs such as GCN
[40], GAT [78], GIN [94], and self-supervised methods like BGRL [74], GraphMAE [26], GIANT
[11], and GFMs including Prodigy [30] and OFA [45]. We replicate each experiment ten times
and report the average performance to minimize the influence of randomness. Further details on
experimental settings are available in Appendix F.

4.2 Effectiveness on Cross-Domain and Cross-Task Datasets

Pre-training and Fine-tuning. Table 2 demonstrates the model performance across cross-domain
and cross-task datasets in pre-training and fine-tuning setting. We evaluate the effectiveness of graph
foundation models [30, 45] in the following few-shot setting due their distinctive training mechanisms,
such as in-context pre-training [30] and fully supervised training [45]. For supervised baselines,
models are trained directly on the target graph; for self-supervised methods, we pre-train across
all datasets before adapting to the specific target graph. Our approach demonstrates a substantial
performance improvement, exceeding the best baseline by an average of over 6%. Specifically, our
method outperforms the best baseline by 2% across three datasets and by 5% across another three
datasets. This underscores the effectiveness of using computation trees as transferable patterns.

Few-shot Learning Table 3 presents the few-shot learning performance of GFT compared to self-
supervised methods [74, 26, 11] and graph foundation models [30, 45, 25]. We randomly select k
samples per way from the training set for fine-tuning3. This method is similar to Prodigy [30], and is
much more label-efficient than OFA [45] with supervised pre-training. Despite the extremely limited
labels for fine-tuning, GFT significantly surpasses existing methods, showing the fast adaptation
capability. Appendix H shows more fine-tuning instances can significantly improve performance.

4.3 Transferability

Table 5 shows the impact of different pre-training datasets under the pre-training and fine-tuning
setting, where comprehensive results (including the following ablation studies) are available in
Appendix I. The performance for specific tasks (node-, link-, graph-level) represent the average
across all involved datasets. We examine three scenarios with distinct pre-training datasets: (i) all

3Cora & WN18RR: 1; Arxiv: 5; HIV & PCBA: 20; FB15K237: 30.
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Table 2: Model performance in pre-training and fine-tuning setting. Bold and underline highlight the
best and sub-best performance, and ∗ and ‡ denote a 2% and 5% improvement over the best baseline.
The model performance with standard deviation is in Appendix G.

Node Classification Link Classification Graph Classification

Method Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

Linear 58.03 68.66 70.36 66.50 78.50 87.39 66.37 72.30 71.01
GCN [40] 75.65 75.61 75.28 71.40 73.79 82.22 64.84 71.32 73.76
GAT [78] 76.24 74.86 76.78 70.87 80.16 88.93 65.54 70.12 75.44
GIN [94] 73.59 69.51 49.77 65.05 74.02 83.21 66.86 72.69 69.34

DGI [79] 72.10 73.13 75.32 69.15 75.75 81.34 59.62 63.31 71.22
BGRL [74] 71.20 75.29 76.53 71.19 75.44 80.66 63.95 67.09 72.67
GraphMAE [26] 73.10 74.32 77.61 70.90 78.99 85.30 61.04 63.30 73.07
GIANT [11] 75.13 72.31 76.56 70.10 84.36 87.45 65.44 61.49 74.11

GFT 78.62∗ 77.19∗ 79.39∗ 71.93 91.91‡ 89.72 72.67‡ 77.90‡ 79.92‡

Table 3: Few-shot learning performance. Additional results with more baselines are in Appendix H.
Arxiv - 40 way Arxiv - 5 way FB15K237 - 40 way FB15K237 - 10 way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

BGRL [74] - 17.98 - - 48.43 - - 29.24 - - 67.23 -
GraphMAE [26] - 19.12 - - 49.24 - - 32.07 - - 69.75 -
GIANT [11] - 20.12 - - 54.33 - - 52.63 - - 77.21 -

Prodigy [30] 25.51 23.69 21.44 61.09 58.64 48.23 62.03 59.58 54.30 84.30 79.61 66.10
OFA [45] 24.01 22.13 21.34 59.92 58.68 52.80 66.51 65.76 63.48 83.64 83.14 83.46
GFT 36.29‡ 34.36‡ 26.49‡ 68.00‡ 66.00‡ 58.20‡ 75.01‡ 74.56‡ 74.97‡ 89.13‡ 88.53‡ 88.07‡

WN18RR 10-way Cora 5-way HIV 2-way PCBA 2-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 10-shot 5-shot 1-shot 10-shot 5-shot 1-shot

OFA [45] 32.64 30.56 25.82 42.28 31.28 23.68 54.36 57.56 57.17 54.58 54.80 54.92
GFT 35.50‡ 35.50‡ 35.33‡ 52.30‡ 51.47‡ 49.80‡ 58.67‡ 58.78∗ 59.94∗ 59.34‡ 59.34‡ 55.88

datasets, (ii) only the target dataset, and (iii) datasets excluding the target dataset. These variants are
compared against GAT and GIANT, which represent the best supervised and self-supervised baselines,
respectively. Notably, GFT consistently outperforms all baselines, regardless of the pre-training
dataset utilized. Interestingly, performance improves when using datasets excluding the target dataset
compared to pre-training solely on the target dataset. We hypothesize that the computation trees from
the non-target datasets provide sufficient information to facilitate the learning of a transferable tree
vocabulary, thereby promoting positive transfer.

We further evaluate the impact of various combinations of pre-training datasets on the target tasks,
as depicted in Figure 7. For pre-training, we select FB15K237, Arxiv, and ChEMBL, while Cora,
WikiCS, WN18RR, and HIV serve as the target datasets. Our findings indicate that an increased
number of pre-training datasets consistently enhances performance across all target datasets. However,
for existing GFMs, transferability closely correlates with the selection of pre-training datasets, with
more datasets sometimes leading to negative transfer [25, 43]. This observation underscores the
adaptability of using computation trees as transferable patterns in graph vocabulary.

4.4 Ablation Study

Tree Reconstruction and Classification. Table 4 shows the impact of various reconstruction tasks in
pre-training and tree classifiers in fine-tuning. All reconstruction tasks enhance model performance
compared to models without pre-training. Notably, semantic reconstruction is most effective for
node-level and graph-level tasks due to its comprehensive consideration of node features and graph
structures. Feature reconstruction is particularly beneficial for link-level tasks, as it preserves the
original node semantics, which are crucial for KGs. The optimal performance is achieved when
three tasks are jointly optimized, aligning with findings in Ju et al. [36]. Similarly, the combination
of prototype and linear classifiers in tree classification leads to superior performance. Furthermore,
removing strategies designed to enhance the quality of the tree vocabulary results in model degradation
across all settings (Appendix I.3).
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Figure 7: GFT consistently improves model perfor-
mance with more pre-training datasets.

Table 4: Ablation on tree reconstruction
(above) and tree classification (bottom).

Node Link Graph Avg.

Different Pre-training Tasks

n/a 72.52 47.30 73.83 66.54
w. Lsem 76.25 90.39 74.99 79.47
w. Lfeat 75.85 90.42 74.42 79.13
w. Ltopo 75.50 90.28 74.57 78.96

Different Fine-tuning Classifiers

w. fproto 76.64 38.71 59.89 62.97
w. flin 75.51 88.99 72.21 78.06

GFT 76.78 90.82 75.29 79.92

Table 5: The impact of pre-training datasets.

Node Link Graph Avg.

GAT [78] 74.69 84.55 67.83 75.44
GIANT [11] 73.53 85.91 63.47 74.11

Different Pre-training Datasets

All Datasets 76.78 90.82 75.29 79.92
Target Dataset 76.12 90.67 74.08 79.25
Remaining Datasets 75.94 90.71 74.86 79.36

Table 6: The impact of tree vocabulary.

Node Link Graph Avg.

Different Vocabulary Size

# Tokens = 128 76.78 90.82 75.29 79.92
# Tokens = 256 76.71 90.86 75.17 79.86
# Tokens = 512 76.94 90.86 75.21 79.99
Without Vocabulary

w/o. Vocab. 75.90 86.70 69.17 76.91

Tree Vocabulary. Table 6 shows the importance of the vocabulary, where the use of vocabulary
significantly enhances model performance, particularly in link- and graph-level tasks, which aligns to
the theoretical analysis that the tree vocabulary improves generalization. However, we observe that
increasing the number of tokens in the vocabulary does not necessarily enhance model performance;
indeed, the improvements are often marginal.

5 Conclusion

Conclusion. In this paper, we rethink the transferable pattern in graphs as computation trees
and validate their transferability both empirically and theoretically. Building on this insight, we
propose a cross-domain and cross-task GFM named GFT. This model leverages computation tree
reconstruction to acquire general graph knowledge from cross-domain datasets and uses computation
tree classification to facilitate adaptation to various target tasks. In future work, we aim to explore its
capabilities for in-context learning and zero-shot learning.

Limitations. In this paper, we focus primarily on message-passing GNNs, as message-passing can
be naturally unrolled as a tree-like structure. However, our analysis excludes graph transformers and
expressive GNNs with specialized computational architectures. We plan to extend our analysis to
understand the transferable patterns of these advanced learning algorithms in future work. Addition-
ally, message-passing GNNs may lack the expressiveness needed to address isomorphism problems
in graphs. One can apply advanced techniques [105] to handle link isomorphism and use advanced
expressive GNNs [103] to tackle graph isomorphism. Moreover, the deployment of GFT in real-world
applications may encounter efficiency issues, which can be mitigated by techniques like [106, 88].

Boarder Impact. The proposed GFT is a cross-domain and cross-task graph foundation model,
designed for rapid adaptation to target tasks with extremely limited labels. We wish our research can
support applications where label acquisition is challenging and model training is time-consuming,
such as in molecular discovery and financial fraud detection.
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A More Related Work

Transferability of GNNs. Early studies on the transferability of GNNs are based on two main
approaches. The first approach utilizes graphon theory. Ruiz et al. [62] derive a bound between
the embeddings of two graphs sampled from the same graphon. However, identifying a common
graphon in many real-world graphs is often unfeasible, limiting the direct application of this theorem
in the design of graph foundation models. Cao et al. [8] employ the graphon theory to analyze
transferability in pre-training and fine-tuning setting. They fit pre-trained graphs into a graphon space,
ensuring transferability if the target graph can be generated within this space. Like Ruiz et al. [62],
the challenge lies in acquiring sufficient data to adequately represent the graphon space for graph
foundation model. Following this, Sun et al. [69] designed a fine-tuning method based on graphon
theory. Although these studies consider graphon as a transferable pattern in graphs, the assumption is
challenging to satisfy in cross-domain real-world graphs. Furthermore, graphon theory is generally
limited to single-task applications, making it difficult to identify a shared graphon across node-,
link-, and graph-level tasks. The send approach examines transferability through subgraphs [114] or
graph spectrum [41, 42]. Specifically, Levie et al. [41] analyze transferability from the perspective of
stability, positing that effective transferability minimizes the impact of small perturbations. Similarly,
Levie et al. [42] explore transferability through stability, demonstrating that transfer between graphs
is feasible when they discretize the same underlying space in a generic sense. Zhu et al. [114] focus
on transferability through ego-graphs, showing a higher similar ego-graph distribution leads to better
transferability. In contrast to these two approaches, we treat computation trees as transferable patterns
on graphs, and conduct both empirically and theoretically analysis to show their transferability.
Additionally, we develop a graph foundation model that utilizes these computation tree patterns.

Generalization of GNNs. Generalization is a closely related topic to transferability. For instance,
Scarselli et al. [63] pioneer the analysis of GNNs’ VC-dimension, focusing solely on the number of
nodes. Garg et al. [20] leverage Rademacher complexity to evaluate GNN generalization through
computation tree perspectives. Furthermore, the Rademacher complexity has been extended to
transductive settings by Esser et al. [16] and Cong et al. [13]. Under the PAC-Bayesian framework,
Liao et al. [44] offer a tighter generalization bound for GNNs compared to Garg et al. [20], and Ju
et al. [35] further improve the bound. Additionally, Sun et al. [66] investigate these bounds through
the lens of graph topology. Stability is another lens through which generalization is examined, with
Verma and Zhang [80] focusing on 1-layer GNNs and linking generalization to the largest absolute
eigenvalue of the graph convolution filter. Tang and Liu [72] further establish bounds for transductive
node classification, highlighting the significance of graph structural information for different GNN
architectures.

GNN-based Graph Foundation Models. Developing graph foundation models involves two
primary steps: (i) unifying the task space and (ii) unifying the domain space. Several studies
focus on aligning the task space. Qiu et al. [59] introduce a self-supervised model that empirically
demonstrates the transferability of subgraphs across tasks. Sun et al. [67], Liu et al. [47] pinpoint the
task gap between pre-training and fine-tuning as the primary performance bottleneck, addressing it
through link prediction to unify these tasks. Yan et al. [95] further adapt this model to an inductive
setting, where the pre-training and fine-tuning graphs differ, proposing methods to bridge both the
graph signal and structure gaps. Yu et al. [99] implement multi-task pre-training to support various
downstream tasks. Sun et al. [68] employ subgraphs as fundamental transferable patterns, integrating
node-, link-, and graph-level tasks into a unified subgraph-level task. Instead of extensive model
fine-tuning, they incorporate a learnable subgraph into the original graph. Other research focuses
on aligning the domain space. Li et al. [43] introduce a zero-shot graph learning framework for
cross-domain node classification, leveraging LLMs to unify node features across different graphs. In
a similar vein, Zhao et al. [108] propose a graph prompting method for cross-domain classification,
utilizing singular value decomposition to align the feature space across various graphs. However, all
of these methods are generally limited to single tasks or domains, and do not effectively address the
complexities of datasets that span multiple domains and tasks.

To this end, Huang et al. [30] introduce a graph foundation model that utilizes LLMs to align the
feature space of graphs and utilizes in-context learning to facilitate applications in node-level and
link-level tasks. In particular, they extract the subgraphs for different tasks and conduct subgraph
classification. However, this approach necessitates that the pre-training and fine-tuning tasks be
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identical due to the specialized in-context pre-training strategy. To address this constraint, Liu et al.
[45] use LLMs to align the feature spaces of cross-domain graph datasets and introduce a prompt
graph to align various tasks on graphs. Xia et al. [93] leverages a graph tokenizer to convert the graph
into sequence and propose to use transformer to handle such information. Following, He and Hooi
[25] concurrently train GNNs and LLMs to enhance performance further. Despite their empirical
success, subgraph-based graph foundation models face challenges due to the GNNs’ limitations in
encoding substructures within subgraphs. Differently, we rethink computation trees as transferable
patterns and propose a new graph foundation model based on that.

LLM-based Graph Foundation Models. LLMs present a promising avenue for the development
of graph foundation models due to their ability to unify the output of various graph tasks [17, 22, 81].
While GNNs require task-specific adjustments for model training, LLMs can accommodate a wide
range of questions and generate appropriate answers. The primary challenge, though, lies in effectively
translating graph structures into a natural language format that LLMs can comprehend. Current
efforts in this domain focus on two main approaches. The first is to use natural language to describe
the graph structure, such as what the nodes are and which pairs of nodes are connected [17]. Such
methods can be further enhanced with extra embedding [9] or prompt engineer techniques to enhance
the understanding of LLM. For example, Guo et al. [22] employ a self-prompting methods to utilize
the context generated by LLM as input context; Chai et al. [9] used Build-a-Graph and Algorithmic
prompting to faciliate LLM understanding. Zhao et al. [109] map a graph into tree-like tokens for
designing LLM prompt, further enhancing learning capability. Additionally, another line of works
[75, 73] follow Visual Language Models (VLMs) to process the graph into embeddings by GNNs
first and then employ LLM as a translator to decode the graph embedding.

It is noted that prior research such as Wang et al. [81], Huang et al. [29] indicate that LLMs can
indeed capture structural information from graphs, which enhances their performance on downstream
tasks. However, while LLMs show promise in basic graph reasoning tasks like connectivity checks
and cycle detection, they struggle with complex graph patterns in graph learning tasks such as node
and graph classification. Moreover, there is limited research on cross-domain graph foundation
models, largely due to the diverse patterns and distributions of graphs across different domains. This
underscores the importance of our work in identifying transferable patterns within graphs to pave the
way for future advancements in graph foundation models.

Computation Tree. The computation tree, or more broadly, the subtree, is a fundamental structure
on graphs [20]. It serves to (i) enhance the performance of existing GNNs and to (ii) measure graph
similarity. Several studies [34, 18, 70, 84] employ tree decomposition to develop advanced GNNs.
Specifically, Jin et al. [34] treat the joint tree as complementary to the original graphs, while Fey
et al. [18] introduce inter-modality message passing between joint trees and the original graphs.
Talak et al. [70] construct an H-tree by organizing nodes and subgraphs hierarchically, developing a
neural tree model capable of approximating any probability distribution on a probabilistic graphical
model. Wang and Derr [84] propose a more efficient tree decomposition algorithm by separating
the model layer and tree construction. Furthermore, Huang et al. [31] investigate the significance of
trees in learning node representations and design a framework to identify the most crucial trees in a
graph. Additionally, Nikolentzos et al. [54] design a hyperbolic learning framework to utilize the
computation tree structure in creating expressive GNNs. Bai et al. [2] adapt the computation tree
concept to knowledge graphs by optimizing the solution in query computation trees. Another avenue
of research utilizes computation tree distributions to measure graph similarity. Notably, Shervashidze
et al. [64] introduce the WL subtree kernel to measure discrepancies between graphs based on subtree
structures. Chuang and Jegelka [12] employs optimal transport to propose the tree mover’s distance,
estimating distribution shifts between graphs. Wu et al. [91] utilizes a hierarchical WL subtree kernel
to assess graph discrepancies and derive a generalization bound for cross-domain classification.

Different from these approaches, our work rethink the role of computation trees. We consider
computation tree as a transferable pattern on graphs and both empirically and theoretically validate
its transferability, thereby expanding the analysis for computation trees in graph learning.
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B Complexity Analysis

B.1 Computation Tree Decomposition and Encoding

The decomposition and encoding of computation trees can be jointly finished by message-passing
GNNs. Specifically, the learning process in message passing GNNs involves (i) extracting computa-
tion trees for each node and (ii) updating node embeddings within these trees from bottom to top.
Utilizing a GraphSAGE-like architecture, as detailed in Appendix F, each layer’s learning comprises
both aggregation and updating operations. We will analyze these two operations in the following.

Aggregation is an edge-wise operation that propagates messages from neighboring nodes to the target
node. Consequently, this operation’s computational complexity is linear to the number of edges in
the graph G = (V, E), expressed as O(|E| · d), where d is the embedding dimension. The update
process, on the other hand, is a node-wise operation that updates the state of each node based on
aggregated messages through a neural network. Therefore, its time complexity is O(|V| · d2), as the
complexity of the neural network operations per node is O(d2). By integrating both aggregation and
update processes in each layer, the overall complexity of our model is O(L · (|E| · d+ |V| · d2)).
For node-level tasks, we directly use the embeddings of computation trees of the target node, which
incurs a constant time complexity of O(1). For link-level and graph-level tasks, we apply a non-
parametric pooling function to aggregate subtree embeddings into a computation tree embedding,
also with a time complexity of O(1).

B.2 Subgraph Extraction

Current graph foundation models [30, 45] treat subgraphs as transferable patterns and explicitly
extract subgraphs for each node. For a given graph G = (V, E), the extraction of ego-graph for
all nodes results in a computational cost of O(|V|3) when using an adjacency matrix for the BFS
algorithm.

B.3 Vector Quantization

Vector quantization assigns each instance to the nearest token in the vocabulary. This process involves
measuring the distance between the instance and every token, then selecting the token with the
minimum distance as the quantized embedding. Assuming there are K tokens, the complexity of
distance measurement (no matter Euclidean or Cosine) is O(K × d) per instance. Then, determining
the shortest distance from K measured distances can be achieved in O(K), and replacing the original
instance embedding with the selected token requires O(1). Therefore, the predominant computational
cost is distance measurement, leading to an overall complexity of O(|T | ·K ·d), where |T | represents
the number of computation trees.

B.4 Tree Reconstruction

The computation tree reconstruction comprises three main tasks: feature reconstruction, semantic
reconstruction, and topology reconstruction. Feature reconstruction utilizes a neural network-based
decoder with a complexity of O(d2) and a mean squared error (MSE) loss of O(|T |), resulting in a
total complexity of O(d2 + |T |). Topology reconstruction focuses on edge information and takes a
computational cost of O(|E| · d). Semantic reconstruction involves an additional GNN and a distance
measurement, leading to a complexity of O(L · (|E| · d + |V| · d2) + |T | · d). Consequently, the
overall computational complexity is approximated as O(L · (|E| · d+ |V| · d2) + |T | · d).

B.5 Tree Classification

The computation tree classification process employs both a prototype-based classifier and a linear
classifier. The prototype-based classifier constructs prototypes from a memory bank, which incurs a
complexity of O(|T |). It then classifies instances by measuring their distances to these prototypes,
resulting in a complexity of O(|T | · |C| · d), where |C| represents the number of classes. On the other
hand, the linear classifier incurs a complexity of O(|T | · d). Consequently, the total computational
complexity can be approximated as O(|T | · |C| · d).
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C More Analysis

C.1 The Difference Between Computation Tree and Subgraph

Our concept of computation trees is closely aligned with [12], representing tree-like patterns derived
from unfolding the message passing process. Encoding the computation trees of a node is equivalent
to encoding the node itself via message passing GNNs, implying that the information in computation
trees can be fully learned by basic GNNs, demonstrating both learnability and efficiency in encoding
computation trees. Notably, computation tree can be reinterpreted as a special pattern preserved on
the ego-graph of the target node, differing from junction trees [34] or H-trees [70], which construct
additional tree-like graphs to complement the original graph.

Subgraphs, on the other hand, are graph-like substructures within the original graph, such as motifs in
molecule graphs. Sun et al. [68] identifies subgraphs as basic patterns across graph-related tasks and
reformulates these tasks into subgraph-level tasks. For example, in node classification, they extract
the ego-graph around each node and assign the label of the induced graph as the label of the center
node, converting node classification into subgraph classification. This process involves (1) extracting
ego-graphs around task-relevant nodes and (2) using GNNs to learn graph-level embeddings for
classification. However, this extraction process introduces additional time consumption and increased
memory usage for storing induced subgraphs. More importantly, the information in subgraphs is
not always learnable by basic GNNs, as they cannot detect some critical substructures necessary
for learning graph-level embeddings [10, 103], reducing the feasibility of using subgraphs to define
graph vocabularies.

We provide empirical analysis for better understanding. Efficiency analysis is presented in Figure
8. Subgraphs generally incur an extra 1/3 time consumption compared to computation trees and
encounter out-of-memory errors when batch size exceeds 2048, compared to 8192 for computation
trees. The performance comparison is shown in Table 7, where the subgraph version (GFT - Subgraph)
performs worse than the computation tree version (GFT). We use GAT and GraphMAE as additional
baselines and apply linear classifiers on all models for a fair comparison.

Table 7: The comparison between computation trees and subgraphs.
Node Link Graph Avg.

GAT 74.69 84.55 67.83 75.44
GraphMAE 73.98 82.15 62.17 73.07

GFT - Subgraph 74.23 86.49 67.89 76.13
GFT - Tree 75.51 88.99 72.21 78.06
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(a) The memory allocation in an A40 (48GB) GPU.
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Figure 8: The efficiency analysis between computation trees and subgraphs. Our GFT is based on the
computation trees and we further replace the computation trees with subgraphs called GFT-Subgraph.
We compare their memory usage (a) and time consumption (b) during pretraining. With the increase
of batch sizes, Subgraph-based GFT encounters out-of-memory, yet computation tree-based GFT can
still fit in the GPU.
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C.2 Preventing Vocabulary Collapse

Another challenge in developing a robust discrete vocabulary is known as vocabulary collapse (or
codebook collapse in VQ). The commitment loss (Equation 2) effectively prevents this issue by
aligning the quantized tree embeddings with the token space [77]. Furthermore, we have empirically
discovered that using Euclidean distance to query tree tokens leads to vocabulary collapse. Con-
sequently, we have switched to Cosine distance to enforce querying within a hyper-sphere space,
thereby enhancing training stability [97]. Alternatively, other techniques such as expiring stale codes
[101] or affine re-parameterization [32] (not evaluated in this paper) can also be employed to mitigate
this problem.

C.3 Scaling to Large-scale Graphs

Due to the emergence of large-scale graphs [27, 28], efficient training often requires the use of
mini-batches. We facilitate mini-batch training through subgraph sampling. In pre-training, we
employ basic subgraph sampling techniques [24] to extract a smaller graph from the original graph
and then extract computation trees for each node within this subgraph. This method serves as an
additional topology augmentation, further enhancing the diversity of computation trees through
re-sampling. In the fine-tuning phase, subgraph sampling remains effective for the linear classifier, as
it directly processes the computation tree. However, the prototype-based classifier, which requires the
aggregation of instances with identical labels to form class prototypes, faces efficiency challenges in
this mini-batch training setting. To address this, we randomly sample a small subset of the training
set for each class to construct the memory bank S. Based on our empirical observations, a limited
number of samples per class suffices to achieve desirable performance.

C.4 Discussion on Homophily and Heterophily

Homophily and heterophily [49] are both critical properties for node-level tasks. The primary
distinction between these types of graphs is that identical connectivity patterns can indicate different
meanings. We consider our model is also effective for heterophily graphs. Although we only evaluate
the performance of GFT on homophily graphs (Cora, PubMed, WikiCS, Arxiv), two considerations
support its applicability to heterophily graphs: (i) The analysis of computation tree transferability
shows that, similar to homophily, higher computation tree similarity in heterophily graphs correlates
with enhanced transferability, matching the principle of our GFT. (ii) Our proposed computation tree
classification in fine-tuning can adaptively reinterpret the patterns encoded in the tree vocabulary
across various tasks. We will leave the experiments on heterophily graphs in the future work.

C.5 Comparison to VQGraph

The major connection between GFT and VQGraph [96] is the usage of vector quantization in learning
a discrete vocabulary for downstream tasks. However, there are four major differences between GFT
and VQGraph. (1) Model Objective: GFT focuses on building a general task reasoner, but VQGraph
aims to train a structure-aware MLP for efficient inference. (2) Pretrain Dataset: GFT is pre-trained
on cross-domain and cross-task datasets to acquire transferable patterns among graphs, but VQGraph
is pre-trained on a single dataset to better capture the structural information. (3) Usage of Tokens:
GFT treats tokens as specific transferable patterns, using them directly to build classifiers. VQGraph,
on the other hand, treats tokens as external structural knowledge to complement the training of MLP
classifiers. (4) Downstream Tasks: GFT can be applied to various graph-related tasks with different
settings like few-shot and zero-shot learning. VQGraph is designed for node classification with a
basic pre-training and fine-tuning setting.

C.6 Comparison to LLM-based Methods

Recent researches [17, 22, 81] utilize LLMs to reformulate graph-related tasks as question answering,
transforming graph datasets into sentence structures and leveraging the inference capabilities of
LLMs to implicitly infer structural knowledge from the original graphs. This approach exploits
the transferable patterns in the word vocabulary of LLMs to reinterpret the transferable patterns
on graphs. The main challenges include (i) aligning the transformed graphs (sentences) with the
word vocabulary of LLMs, and (ii) employing LLMs to infer essential structural knowledge for
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graph-structured data. Due to these challenges, existing methods often fall short in handling graph
datasets with LLMs, resulting in inconsistent performance. Unlike these approaches, which entirely
abandon GNNs, we utilize a GNN as an encoder to analyze transferable patterns on graphs. We
consider these LLM-based approaches as complementary to our work.

C.7 Comparison to Subgraph-based GFMs

Table 8: Comparison
of number of parameters
across different models

Model # Params
Prodigy 2M
OFA 29M
UniGraph 180M

GFT 7M

Several studies [30, 45] identify subgraphs as transferable patterns across
graphs, unifying graph-related tasks into subgraph classification tasks and
explicitly extracting subgraphs for classification. However, this extraction
process incurs additional time and memory costs due to overlapping
nodes in the extracted subgraphs. Moreover, other research [20, 103]
suggests that certain substructure or motif patterns within subgraphs are
not learnable by basic message-passing GNNs. Unlike these methods, our
GFT treats computation trees as transferable patterns, offering advantages
over these GFMs in both respects. Firstly, GFT does not require the
explicit extraction and encoding of computation trees, instead employing
message passing to inherently processes computation trees rooted at all
nodes, ensuring efficiency in both time and memory. Furthermore, the
computation tree can be seen a unique subgraph structure, which is fully learnable by GNNs without
information loss.

In addition, we also compare the number of parameters of these GFMs in Table 8. Considering
the number of parameters, Prodigy [30] has 2 million parameters, while OFA [45] has 29 million
since the use of more GNN layers. UniGraph [25] has 180 million parameters, primarily due to its
explicit integration with LLMs in encoding node features in an end-to-end way. Our GFT consistently
maintains 7 million parameters during both pre-training and fine-tuning phases, making it comparable
to Prodigy but significantly fewer than OFA and UniGraph.

C.8 Detailed Illustration of Computation Tree Reconstruction

See Figure 9.

(1) Feat. Recon.

Dec ℒ Dec ℒ

(2) Sem. Recon.

Dec ℒ
?

?

?

(3) Topo. Recon.

Figure 9: The detailed illustration of tree reconstruction tasks at three levels.

D Proofs

D.1 Proof for Theorem 2.2

We restate Theorem 2.2 from the main paper as below.
Theorem D.1 (Transferability of Computation Tree). Given two L-layer computation trees Tv1 , Tv2
derived from the graph G and a GNN encoder ϕ with parameters W = (W1,W2), the Euclidean
distance between the tree embeddings ∆ ≜ ∥ϕ(Tv1)− ϕ(Tv2)∥2 is bounded as follows:

∆ ≤ C1∥xv1 − xv2∥2 + C2
∑

j∈N (v)

∆L−1
v1,v2,j

≤ 2Bx(C1 +
L∑

l=1

Cl
2Dl) ≤ 2Bx

C1 − (C2d)L

1− C2d
. (9)

where ∆L−1
v1,v2,j

represents the distance between the L − 1-layer subtrees of the j-th children of
nodes v1 and v2, and constants C1 = CσBW1 and C2 = CσCρCgBW2 . Here Cσ, Cρ, Cg are Lipschitz
terms for GNN components, and BW1 ,BW2 ,Bx denote bounded norms of W1,W2,x, respectively.
The variable dl indicates the number of children in the l-layer subtrees, with each dl ≤ d, and
Dl = dldl−1...d1.
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Proof. We calculate the embedding distance between two L-layer computation trees generated from
a single GNN encoder ϕ with parameters W = (W1,W2). Here we use a GraphSAGE-like encoder,
as described in the Appendix F.1, that W1 transforms the target node, while W2 transforms the
neighboring nodes. For simplicity, we assume that all GNN layers share the same parameters.
Without loss of generality, this assumption does not affect the validity of our proofs. The term xv

represents the features of node v, and N (v) denotes the set of direct neighborhood in the graph,
which correspond to the children of node v in the computation tree Tv .

With a bit of notation abuse, we define the GNN as:

zv = ϕ(Tv) = σ
(
W1xv +W2ρ

( ∑
j∈N (v)

g(T L−1
j (W))

))
(10)

where σ as the non-linear activation function, ρ as the permutation-invariant aggregator function, and
g as the update function (ρ and g are all based on neural networks). To simplify notation, we denote
the computation tree embeddings by T (W) = ϕ(T ). Since these functions and neural networks
exhibit Lipschitz continuity, we represent their Lipschitz constants as Cσ, Cρ, and Cg, respectively.
Additionally, we assume that the norm of node features is bounded by ∥W1∥ ≤ BW1

, and the norms
of model weights by ∥W1∥ ≤ BW1

and ∥W2∥ ≤ BW2
.

Given the absence of constraints on the tree structures, we manually align the structures of the two
trees by incorporating non-sense nodes and edges, as depicted in Figure 10. Initially, the structures of
tree 1 and tree 2 are entirely distinct, as illustrated by solid lines. By integrating non-sense branches,
we ensure both trees have the same structure, with three branches per node in the first layer and two
in the second. These non-sense branches, considered as virtual branches, are purely for theoretical
analysis convenience and hold no inherent meaning, similar to the approach in [12]. Consequently,
we assume the node features of each non-sense node to be a zero vector. This alignment of tree
structures enhances the coherence of subsequent analyses.

Tree 1 Tree 2

True Branch in Computation Tree

Non-sense Virtual Branch

Figure 10: Adding non-sense branches to computation trees to align their structures.

Following, we expand the stability term ∆:

∆ ≜

∥∥∥∥T L
v1(W)− T L

v2(W)

∥∥∥∥
2

=

∥∥∥∥σ(W1xv1 +W2ρ(
∑

i∈N (v1)

g(T L−1
i (W))))− σ(W1xv2 +W2ρ(

∑
j∈N (v2)

g(T L−1
j (W))))

∥∥∥∥
2

≤ Cσ
∥∥∥∥W1xv1 +W2ρ(

∑
i∈N (v1)

g(T L−1
i (W)))−W1xv2 −W2ρ(

∑
j∈N (v2)

g(T L−1
j (W)))

∥∥∥∥
2

≤ Cσ
∥∥∥∥W1xv1 −W1xv2

∥∥∥∥+ Cσ
∥∥∥∥W2ρ(

∑
i∈N (v1)

g(T L−1
i (W)))−W2ρ(

∑
j∈N (v2)

g(T L−1
j (W)))

∥∥∥∥
2

≤ CσBW1

∥∥∥∥xv1 − xv2

∥∥∥∥
2

+ CσBW2

∥∥∥∥R(W, T L
v1)−R(W, T L

v2)

∥∥∥∥
2

, (11)
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where R(W, T L
v ) = ρ(

∑
j∈N (v) g(T

L−1
j (W))). We can further bound the term as:∥∥∥∥R(W, T L

v1)−R(W, T L
v2
)

∥∥∥∥
2

≤ Cρ
∥∥∥∥ ∑
i∈N (v1)

g(T L−1
i (W))−

∑
j∈N (v2)

g(T L−1
j (W))

∥∥∥∥
2

(12)

As we already align the structures of two computation trees by adding non-sense branches to ensure
|N (v)| = |N (v1)| = |N (v2)|, we can merge the two terms in the RHS:∥∥∥∥R(W, T L

v1)−R(W, T L
v2)

∥∥∥∥
2

≤ Cρ
∥∥∥∥ ∑
j∈N (v)

g(T L−1
v1,j

(W))−
∑

j∈N (v)

g(T L−1
v2,j

(W))

∥∥∥∥
2

≤ Cρ
∑

j∈N (v)

∥∥∥∥g(T L−1
v1,j

(W))− g(T L−1
v2,j

(W))

∥∥∥∥
2

≤ CρCg
∑

j∈N (v)

∥∥∥∥T L−1
v1,j

(W)− T L−1
v2,j

(W)

∥∥∥∥
2

≤ CρCg
∑

j∈N (v)

∆L−1
v1,v2,j

, (13)

where ∆L−1
v1,v2,j

= ∥T L−1
v1,j

(W)− T L−1
v2,j

(W)∥2.

We now establish a bound on the distance between two computation trees of identical structure
by analyzing the node-wise differences from bottom to top. Denote the number of branches (i.e.,
children) at each l-layer as dl, we simplify this bound as follows:∥∥∥∥R(W, T L

v1)−R(W, T L
v2)

∥∥∥∥
2

≤ CρCgdL−1 max
j∈N (v)

∆L−1
v1,v2,j

. (14)

This bound prioritizes the most influential children of a node to dominate all other branches. By
combining Equation 11 with Equation 14, we recursively establish the bound of the distance between
two computation trees:

∆ ≤ CσBW1

∥∥∥∥xv1 − xv2

∥∥∥∥
2

+ CσBW2
CρCgdL−1 max

j∈N (v)
∆L−1

v1,v2,j

≤ C1
∥∥∥∥xv1 − xv2

∥∥∥∥
2

+ C2dL−1 max
j∈N (v)

∆L−1
v1,v2,j

, (15)

where C1 = CσBW1
and C2 = CσBW2

CρCg .

Without loss of generality, we consider the distance between the original computation trees as the
distance between the L-layer computation trees rooted at nodes v1 and v2, denoted as ∆ = ∆L

v1,v2
.

This allows us to recursively bound the distance. Given that all x are bounded by ∥x∥2 ≤ Bx,
the distance between the node features xv1 and xv2 satisfies ∥xv1

− xv2∥2 ≤ 2Bx by the triangle
inequality. Consequently, we can further develop the recursion as follows:

∆ ≤ C1
∥∥∥∥xv1 − xv2

∥∥∥∥
2

+ C2dL−1 max
j∈N (v)

∆L−1
v1,v2,j

≤ 2Bx(C1 +
L∑

l=1

Cl
2Dl), (16)

where Dl = dldl−1...d1.

Assuming that the number of branches (i.e., children) at each l-layer does not exceed the maximum
number of branches in the tree, such that d1, ..., dL ≤ d. We can further simplify the recursion by:

∆ ≤ C1
∥∥∥∥xv1 − xv2

∥∥∥∥
2

+ C2
∑

j∈N (v)

∆L−1
v1,v2,j

≤ 2Bx(C1 +
L∑

l=1

Cl
2Dl)

≤ 2Bx
C1 − (C2d)L

1− C2d
. (17)
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D.2 Proof for Theorem 3.1

Before proving Theorem 3.1, it is necessary to first establish a more general version of the theorem,
as detailed below:
Theorem D.2. Given a set of instances {(xi, yi)}ni=1 sampled from the distribution P , and a margin-
aware prototype classifier f that predicts the class of instances via a distance measure. The risk
R(f) can be bounded with probability 1− δ:

R(f) ≤ R̂(f) +
20 · C · p(p− 1) · B3 ·

√
n

ρ · n
+

√
ln(2/δ)

2n
, (18)

where R̂(f) is the empirical risk, p denotes the number of tokens, C is a constant, B is the bounded
norm of x and p, and ρ acts as the margin, serving as a penalty factor in evaluating the distance
between computation trees and tokens.

Proof. Given a set of tokens (prototypes), margin-based classification involves using instances to
identify the nearest tokens and assigning the labels of these nearest tokens to the target instances. We
denote the set of p tokens by {pi}pi=1, each with a norm bounded by B, and the labels associated
with each token by {ci}pi=1. Given an instance (xi, yi) sampled from a distribution P , the classifier
can be defined as follows:

f(x) := cj , where j = argmin
j

∥pj − x∥22, (19)

where x ∈ Rd is a random variable with a norm also bounded by B, consistent with the norms of the
tokens.

In this proof, we focus on a binary classification problem with only two classes, {−1, 1}. Conse-
quently, the function can be represented as f : Rd → {−1, 1}. Without loss of generality, this
binary classification setting can be readily extended to multi-class scenarios using one-versus-all or
one-versus-one strategies [4]. We then define a class of functions as follows:

F = {f : Rn → {−1, 1}}. (20)

We denote dc+ as the distance to the nearest tokens with the same label yi = c+ and dc− as the
distance to the closest tokens with the different label yi = c−. If dc+ is less than dc− , the instance is
correctly classified. Thus, the classification margin is defined as:

Mf (x, y) := −dc+ + dc− , (21)

where a positive value indicates correct classification. Moreover, we introduce a penalty term to
estimate the classification margin, defined as:

LM(t) :=


1 if t ≤ 0,

1− t
ρ if 0 < t ≤ ρ,

0 if t > ρ,

(22)

where ρ > 0 is a pre-defined margin threshold.

For this classifier, the risk R(f) and the corresponding empirical risk R̂(f) is defined as:

R(f) := P(f(x) ̸= y), (23)

R̂(f) :=
1

n

n∑
i=1

L(M(f(x), y)). (24)

We can establish a Gaussian complexity bound by applying Theorem 7 from [4], which holds with a
probability of at least 1− δ. This is expressed as:

R(f) ≤ R̂(f) +
2C
ρ

·Gn(F) +

√
ln(2/δ)

2n
, (25)
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where C represents the Lipschitz constant, and ρ represents the margin. This formulation allows us to
explicitly incorporate the prediction margin into the complexity analysis. The term Gn(F) denotes
the Gaussian complexity defined over the function class F , and an empirical Gaussian complexity
can be estimated as:

Ĝn(F) = Eσ

[
sup
f∈F

∣∣∣ 2
n

n∑
i=1

σif(xi)
∣∣∣], (26)

where σ = (σ1, σ2, ..., σn) are independent standard Gaussian random variables, σi ∼ N (0, 1).

It is important to note that the Gaussian complexity of the function class F can be bounded by
aggregating the complexities of all its sub-classes (Theorem 16 from [4]). In our model, the token
classifier leverages p tokens simultaneously; hence, it is logical to define sub-classes of F that utilize
only two tokens for predictions. We define each sub-class as Fij , which specifically uses tokens pi

and pj with differing labels ci ̸= cj . Consequently, the total number of sub-classes is bounded by
p · (p− 1)/2. This allows us to simplify the complexity bound as follows:

R(f) ≤ R̂(f) +
2C
ρ

· p · (p− 1) ·Gn(Fij) +

√
ln(2/δ)

2n
. (27)

To further simplify the bound, we must derive it for each Gn(Fij). It is important to note that Fij

can be regarded as a binary classification function class for di − dj , where the weights are bounded:

di − dj = ∥x− pi∥22 − ∥x− pj∥22
= (∥x∥22 + ∥pi∥22 − 2xTpi)− (∥x∥22 + ∥pj∥22 − 2xTpj)

= 2xT (pj − pi) + ∥pi∥22 − ∥pj∥22
≤ 4B2 + B2 = 5B2. (28)

Based on Lemma 22 in [4], which establishes that the empirical Gaussian complexity is bounded by a
kernel function defined by Fij , we can simplify the empirical Gaussian complexity of each sub-class
as follows:

Ĝn(Fij) ≤
10 · B3 ·

√
n

n
. (29)

The difference between the Gaussian complexity and empirical Gaussian complexity is estimated to
be ϵ with a probability of 2 · exp(−ϵ2n

8 ) (Theorem 11 from [4]). We can simplify the risk as follows:

R(f) ≤ R̂(f) +
20 · C · p(p− 1) · B3 ·

√
n

ρ · n
+

√
ln(2/δ)

2n
. (30)

We can readily extend the Theorem D.2 to Theorem 3.1 in the main paper.

Proof. Theorem D.2 establishes bounds on the generalization error of margin-based classifiers using
Gaussian complexity. Analogously, vector quantization functions as a margin-based classifier by
assigning instances to the nearest tokens in the vocabulary. Specifically, vector quantization utilizes
this classifier for clustering, where each cluster center corresponds to a token. We assume each
computation tree has a corresponding ground-truth cluster index based on the latent distribution,
denoted as PT , where (T , y) ∼ PT . Thus, the vector quantization process employed in the main
paper converts to a margin-based classification problem, consistent with Theorem D.2. Moreover,
we can cancel the term B since the Cosine distance, used to measure the similarity between tree
embeddings and tokens, ensures the bounded norm B = 1.

E Detailed Analysis on Computation Tree Transferability

E.1 Synthetic Dataset

Experimental Setting. We randomly sample node features from a uniform distribution with a
dimension of 4 and conduct experiments 100 times using different seeds to report average performance.
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Figure 11: Transfer performance on synthetic graphs with G2 as the target graph.
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Figure 12: Transfer performance on synthetic graphs with G3 as the target graph.

Since the synthetic datasets do not have labels for each node, we employ a graph auto-encoder [39]
for self-supervised training. The encoder is a basic 2-layer GCN model with a dimension of 4,
and the decoder uses a standard inner product approach, computing the inner product between the
embeddings of two nodes to determine their linkage. We set the number of training epochs at 200
and use Adam as the optimizer with a learning rate of 1e-3 and a weight decay of 0. To evaluate
transferability, we use the inverse of the Central Moment Discrepancy (CMD) [102], a measure
that serves as an indicator of transferability, defined as transferability = 1

CMD . We ensure that the
number of blocks in the source and target graphs is the same.

To compute the computation tree similarity (Tree Sim.), we employ the Weisfeiler-Lehman subtree
kernel [64], which evaluate similarity between two graphs by considering the subtrees patterns in
terms of both structure and features. To match the capabilities of the 2-layer GNN encoder used, we
limit the maximum iterations of the WL subtree kernel to two. Additionally, we mitigate the impact
of randomness by randomly sampling node features from a uniform distribution and repeating the
process 100 times. For evaluating the motif similarity (Motif Sim.), we utilize the graphlet sampling
kernel [57] with sampled graphlet size as 5.

Additional Results. We present additional results analyzing transferability on synthetic graphs
in Figure 11 and 12. We observe that higher computation tree similarity correlates with better
transferability when using G2 and G3 as target graphs. However, the impact of motif similarity is
marginal. We plan to analyze link-level and graph-level tasks in future work.

E.2 Real-world Dataset

Experimental Setting. We conduct transfer learning to evaluate the correlation between transfer-
ability and specific graph patterns on real-world graphs. Similar to synthetic datasets, we utilize the
Weisfeiler-Lehman subtree kernel and the graphlet sampling kernel to compute tree similarity and
motif similarity, respectively. We include homophily Airport graphs, consisting of USA, Europe, and
Brazil [61], where each node represents an airport and edges denote flight connections. Nodes are
labeled based on airport connectivity levels. Additionally, we also use heterophily graphs [56] that
represent web links from universities such as Cornell, Texas, and Wisconsin, where nodes are
web pages and edges are hyperlinks. The objective is to classify nodes into five categories: categories,
student, project, course, staff, and faculty. In our analysis of real graphs, we consider two settings:
(1) use randomly sampled node features and (2) use raw node features. This approach will offer more
comprehensive insights, as node features are also related to homophily and heterophily.

The experimental settings are detailed as follows. We evaluate the transfer learning performance
using a basic 2-layer GCN model with ReLU activation, running the experiments 20 times to report
the average results. We pre-train the model on the source graph with 60% of nodes randomly selected
and subsequently fine-tune it on the target graph with 10% of nodes randomly selected. The hidden
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dimension is set to 64, and we use the AdamW optimizer with a weight decay of 1e-6. The pre-
training learning rate is set at 1e-3 for all settings with 500 pre-train epochs, while the fine-tuning
learning rate is set at 1e-2 for heterophily graphs and 5e-4 for homophily graphs. In the random
feature setting, we sample node features from a uniform distribution across 64 dimensions. For
computing graph similarity with randomly sampled node features, we conduct the experiments 100
times using different seeds. The graphlet kernel samples motifs 10,000 times, and the maximum
motif size is set to 5. The maximum iteration of the subtree WL kernel is limited to 2, aligning with
the number of GNN layers.

Additional Results. See Table 9 for transfer learning performance on graphs with random features.
Even though the node features are randomly initialized, we still observe that a high tree similarity
correlates with improved transferability.

Table 9: Transfer learning performance on homophily (above) and heterophily (below) graphs with
random features.
Gtarget → Brazil Europe USA

Gsource → Europe USA Brazil USA Brazil Europe

Motif Sim. 99.01 92.65 99.00 96.81 92.68 96.81
Acc. / Tree Sim. 39.2 / 52.3 43.0 / 59.2 42.6 / 52.4 45.1 / 76.2 45.4 / 58.9 46.1 / 76.1

Gtarget → Cornell Texas Wisconsin

Gsource → Texas Wisconsin Cornell Wisconsin Cornell Texas

Motif Sim. 99.97 99.98 99.99 99.99 99.98 99.99
Acc. / Tree Sim. 33.4 / 47.2 34.3 / 51.4 40.9 / 47.2 42.1 / 51.9 35.9 / 51.4 37.4 / 51.8

F Experimental Setup

F.1 GNN Encoder

We employ a GraphSAGE-like architecture to encode node and edge features in a graph G = (V, E),
where node features are represented as X ∈ R|V|×df and edge features as E ∈ R|E|×de . Considering
a GNN with L layers, the (l + 1)-th layer node embedding for node v is given by:

H(l+1)
v = σ

W
(l)
1 H(l)

v +ReLU

 ∑
u∈N (v)

W
(l)
2

(
H(l)

u + φ(Eu,v)
) , (31)

where H
(l)
v represents the node embedding at the l-th layer, Eu,v denotes the edge features between

nodes u and v, and W1 and W2 are the learnable matrices. The function φ, used to align feature
dimensions, is chosen as the identity function, Id(·), in this study. While we utilize the basic
GraphSAGE-like framework as the encoder, alternative, more advanced encoders such as graph
attention networks [78] or other expressive GNNs [52] could potentially enhance model performance.

F.2 Dataset

Dataset Statistics. We utilize nine datasets from various domains and tasks, as detailed in Table
10. We follow the preprocessing method described in [45], using the Sentence Transformer [60] to
convert raw textual descriptions of nodes and edges into 768-dimensional features. It should be noted
that for knowledge graphs (KGs), we do not transform edge textual information into edge features, as
the textual information already provides sufficient knowledge for KG completion.

Dataset Splitting. For Cora and PubMed, we follow the common split setting with 20 labeled
nodes per class for training, utilizing a predefined 10 splits with different seeds to report average
performance. For WikiCS, we also employ the standard split, reporting average accuracy across
20 different training splits, each with 20 random seeds, and using 5% of nodes in each class for
training. For Arxiv, HIV, and PCBA, we follow the official splits, conducting experiments 10 times
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Table 10: Dataset statistics [45].
Dataset Domain Task # Graphs Avg. #Nodes Avg. #Edges # Classes
Cora Citation Node 1 2,708 10,556 7
PubMed Citation Node 1 19,717 44,338 3
Arxiv Citation Node 1 169,343 1,166,243 40
WikiCS Web link Node 1 11,701 216,123 10
FB15K237 Knowledge Link 1 14,541 310,116 237
WN18RR Knowledge Link 1 40,943 93,003 11
PCBA Molecule Graph 437,929 26.0 28.1 128
HIV Molecule Graph 41,127 25.5 27.5 2
ChEMBL Molecule Graph 365,065 25.9 55.9 1,048

with random seeds to determine average accuracy. For WN18RR and FB15K237, we follow the splits
outlined in Liu et al. [45]. Specifically, for FB15K237, the training set comprises 272,115 edges, the
validation set 17,535 edges, and the test set 20,466 edges; for WN18RR, the numbers are 86,835,
3,034, and 3,134, respectively. We repeat each experiment 10 times with random seeds and report the
average accuracy.

F.3 Baseline

We compare GFT against a broad spectrum of baselines, encompassing supervised GNNs, self-
supervised GNNs, graph few-shot learning, and graph foundation models.

Supervised GNNs/MLP. The supervised approaches include a basic MLP (Linear), GCN [40],
GAT [78], and GIN [94].

Self-supervised GNNs. Our analysis also covers self-supervised methods for graph learning. DGI
[79] utilizes contrastive learning between graph summaries and node patches. BGRL [74] employs
bootstrapping to predict the same node in different views. GraphMAE [26] reconstructs node features
using structural information. GIANT [11] combines language models with graph neural networks in
a self-supervised fashion, achieving state-of-the-art performance.

Graph Few-shot Learning. To assess performance in few-shot learning scenarios, we evaluate
GFT alongside methods such as GPN [15], TENT [83], GLITTER [82], and TLP [71]. Experimental
results are detailed in Appendix H.

Graph Foundation Models. We include two primary baselines: Prodigy [30], which specializes
in pre-training for in-context learning, although it is not applicable in standard pre-training and
fine-tuning scenarios. For this model, we pre-train on MAG240M and evaluate performance on Arxiv,
and on Wiki for FB15K237. OFA [45], in contrast, utilizes language models to align the feature
spaces of different graphs and introduces a prompt graph to align task spaces, trained in a supervised
manner.

F.4 Hyper-parameter Setting

Baselines. For the baseline methods, we follow the hyper-parameters reported in [30, 45]. If specific
hyper-parameters for a task are not reported, we set the learning rate to 5e-3 for Cora, PubMed,
WikiCS, WN18RR, and HIV, and to 1e-4 for Arxiv, FB15K237, and PCBA. We configure all GNN
encoders with two layers, a hidden dimension of 768, and incorporate batch normalization and ReLU
activation. AdamW is used as the optimizer with a weight decay of 1e-5. For methods that utilize
attention mechanisms, we specify four attention heads.

Pre-training of GFT. We configure our model with two layers, each having a dimension of 768,
and use ReLU activation complemented by batch normalization. In vector quantization, we set the
number of tokens to 128 with each token dimension at 768. We empirically determine the weights for
different losses as β1 = 10, β2 = 100, β3 = 1, and β4 = 0.01. Additionally, we set the weight for
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the orthogonal regularizer, λ, to 1. AdamW is utilized as the optimizer with a learning rate of 1e-4
and a weight decay of 1e-5. The pre-training phase lasts for 25 epochs with a batch size of 1024. For
data augmentation, we implement an edge drop rate and a node feature drop rate, both set at 0.2. For
topology reconstruction, we selectively reconstruct 10% of links and choose an equivalent number of
negative samples. The sampling factor γ for semantic reconstruction is fixed at 1.

Fine-tuning of GFT. We detail the hyper-parameters for different datasets in Table 11. λproto

and λlin represent the weights of the losses for the prototype classifier and the linear classifier,
respectively.

Table 11: Hyper-parameters in fine-tuning.
Hyper-parameters Cora PubMed Arxiv Wikics WN18RR FB15K237 HIV PCBA

Learning Rate 5e-4 5e-3 5e-4 1e-4 1e-3 5e-4 3e-4 1e-3
# Epochs 1,000 1,000 1,000 2,000 1,000 3,000 100 50
Early Stop 200 200 200 500 200 200 20 10
Batch Size 0 0 0 0 0 1,024 1,024 1,024
# Instances per Class in S n/a n/a n/a n/a n/a 50 1,500 20
τ in fproto 1 used for all datasets
τ in flin 1 used for all datasets
λproto 1 0.1 1 1 0.1 0.1 0.1 1
λlin 0.1 1 0.1 1 1 0.1 1 1

F.5 Running environment

We utilize an NVIDIA A40 with 48GB GPU memory for all experiments. Both the pre-training and
fine-tuning phases can be conducted on a single Nvidia GeForce RTX 3090 with 24GB memory.

G Pre-training and Fine-tuning Results with std.

We report the average results of the pre-training and fine-tuning settings in the main paper. The model
results along with the standard deviations are presented in Table 12.

Table 12: Model performance in pre-training and fine-tuning setting with std.
Node Classification Link Classification Graph Classification

Method Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

Linear 58.03 ±2.33 68.66 ±2.24 70.36 ±0.58 66.50 ±0.14 78.50 ±0.59 87.39 ±0.07 66.37 ±1.11 72.30 ±0.34 71.01
GCN [40] 75.65 ±1.37 75.61 ±2.10 75.28 ±1.34 71.40 ±0.08 73.79 ±0.39 82.22 ±0.28 64.84 ±4.78 71.32 ±0.49 73.76
GAT [78] 76.24 ±1.62 74.86 ±1.87 76.78 ±0.78 70.87 ±0.24 80.16 ±0.27 88.93 ±0.15 65.54 ±6.93 70.12 ±0.89 75.44
GIN [94] 73.59 ±2.10 69.51 ±6.87 49.77 ±4.72 65.05 ±0.50 74.02 ±0.55 83.21 ±0.53 66.86 ±3.48 72.69 ±0.22 69.34

DGI [79] 72.10 ±0.34 73.13 ±0.64 75.32 ±0.95 69.15 ±0.20 75.75 ±0.59 81.34 ±0.15 59.62 ±1.21 63.31 ±0.89 71.22
BGRL [74] 71.20 ±0.30 75.29 ±1.33 76.53 ±0.69 71.19 ±0.18 75.44 ±0.30 80.66 ±0.29 63.95 ±1.06 67.09 ±1.00 72.67
GraphMAE [26] 73.10 ±0.40 74.32 ±0.33 77.61 ±0.39 70.90 ±0.31 78.99 ±0.48 85.30 ±0.16 61.04 ±0.55 63.30 ±0.78 73.07
GIANT [11] 75.13 ±0.49 72.31 ±0.53 76.56 ±0.88 70.10 ±0.32 84.36 ±0.30 87.45 ±0.54 65.44 ±1.39 61.49 ±0.99 74.11

GFT 78.62 ±1.21 77.19 ±1.99 79.39 ±0.42 71.93 ±0.12 91.91 ±0.34 89.72 ±0.20 72.67 ±1.38 77.90 ±0.64 79.92

H Additional Few-shot Learning Results

We present the extended few-shot learning performance across multiple tables: Table 13, 14, 15, 16,
17, 18, and 19. In each run, we sample 20 few-shot tasks to mitigate the impact of randomness. The
baselines consist of graph foundation models such as Prodigy [30] and OFA [45], alongside few-shot
learning methods including GPN [15], TENT [83], GLITTER [82], and TLP [71]. In terms of graph
foundation models, we compare GFT to OFA across all datasets and to Prodigy on the Arxiv and
FB15K237 datasets only, as Prodigy’s application is limited to these datasets by its in-context training
strategy. GFT not only significantly enhances performance over Prodigy and OFA but also surpasses
a broad range of specialized few-shot learning methods. Furthermore, as the number of fine-tuning
instances per class increases, there is a marked improvement in model performance, demonstrating
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significant adaptability to target tasks. Notably, even with extremely limited training instances, the
model substantially outperforms the baselines, showcasing rapid adaptation capabilities.

Table 13: The few-shot learning performance on Arxiv (Part 1). We use the bold to indicate the
performance of best baselines and best our methods. The term “# trains” indicates the number of
fine-tuning instances per class.

5-way 3-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

GPN [15] 50.53 ±3.07 48.32 ±3.80 38.58 ±1.61 62.25 ±4.94 58.52 ±3.00 48.45 ±5.60

TENT [83] 60.83 ±7.45 56.03 ±8.90 45.62 ±10.70 74.20 ±9.93 70.48 ±11.50 59.38 ±13.55

GLITTER [82] 56.00 ±4.40 57.44 ±4.90 47.12 ±2.73 62.13 ±10.85 60.93 ±12.12 59.20 ±5.48

TLP-BGRL [71] 50.13 ±8.78 46.21 ±7.92 35.81 ±8.58 62.93 ±11.74 58.37 ±11.34 46.30 ±10.83

TLP-SURGL [71] 77.89 ±6.46 74.19 ±7.55 61.75 ±10.07 86.27 ±7.54 83.75 ±8.86 73.46 ±12.68

Prodigy [30] 61.09 ±5.85 58.64 ±5.84 48.23 ±6.18 73.64 ±6.93 71.43 ±7.28 61.59 ±8.53

OFA [45] 59.92 ±1.32 58.68 ±6.40 52.80 ±3.94 72.18 ±3.33 71.80 ±1.59 60.47 ±2.65

GFT (# train = 5) 68.00 ±1.89 66.00 ±2.53 58.20 ±4.15 78.56 ±4.02 74.00 ±3.19 66.22 ±4.12

GFT (# train = 10) 72.40 ±3.60 71.73 ±2.86 62.40 ±2.64 78.78 ±1.19 76.22 ±4.21 69.89 ±3.76

GFT (# train = 20) 73.13 ±2.80 71.67 ±2.43 64.20 ±2.07 80.67 ±2.34 79.33 ±2.34 72.89 ±3.01

GFT (# train = 30) 74.67 ±2.96 73.27 ±3.68 65.13 ±3.76 79.56 ±2.59 76.78 ±2.69 73.22 ±3.40

Table 14: The few-shot learning performance on Arxiv (Part 2).
40-way 20-way 10-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

Prodigy [30] 25.51 ±0.14 23.69 ±0.07 21.44 ±0.22 34.29 ±0.43 31.30 ±0.68 29.21 ±0.99 50.84 ±1.79 47.39 ±2.99 41.05 ±6.30

OFA [45] 24.01 ±0.58 22.13 ±0.89 21.34 ±1.30 36.33 ±0.48 32.56 ±0.19 29.40 ±1.21 49.59 ±2.67 48.11 ±3.69 39.53 ±5.39

GFT (# train = 5) 36.29 ±1.04 34.36 ±0.95 26.49 ±1.11 45.75 ±1.10 42.58 ±1.17 35.02 ±1.00 56.43 ±3.45 52.43 ±1.13 44.40 ±2.60

GFT (# train = 10) 41.83 ±0.86 39.10 ±1.87 30.82 ±0.59 49.65 ±1.98 46.85 ±1.46 40.95 ±1.78 60.20 ±1.12 57.57 ±1.56 48.07 ±2.50

GFT (# train = 20) 45.07 ±1.23 43.90 ±1.41 35.02 ±1.45 53.25 ±1.37 50.85 ±1.74 42.97 ±1.83 63.47 ±1.57 61.37 ±2.99 53.23 ±1.82

GFT (# train = 30) 46.68 ±1.11 44.60 ±1.04 35.88 ±1.24 53.97 ±1.41 51.85 ±1.17 43.75 ±1.87 64.43 ±1.25 62.77 ±0.88 54.73 ±1.55

Table 15: The few-shot learning performance on Cora.
7-way 5-way 2-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

GPN [15] – – – – – – 63.83 ±2.86 – 56.09 ±2.08

TENT [83] – – – – – – 58.97 ±2.40 – 54.33 ±2.10

TLP-BGRL [71] – – – – – – 81.31 ±1.89 – 59.16 ±2.48

TLP-SURGL [71] – – – – – – 92.49 ±1.02 – 81.52 ±2.09

OFA [45] 32.10 ±1.79 36.03 ±2.11 30.38 ±2.39 42.28 ±2.35 31.28 ±2.63 23.68 ±1.67 72.20 ±3.82 62.22 ±1.17 51.85 ±4.35

GFT (# train = 1) 43.55 ±7.43 43.31 ±8.11 41.40 ±8.04 52.30 ±6.57 51.47 ±6.33 49.80 ±6.79 75.00 ±4.08 76.33 ±3.56 72.92 ±4.64

GFT (# train = 2) 56.48 ±3.54 55.90 ±3.49 53.64 ±4.52 63.67 ±3.44 62.40 ±4.36 60.47 ±4.62 82.25 ±4.01 81.67 ±3.75 78.00 ±6.29

GFT (# train = 5) 67.36 ±4.31 67.29 ±4.39 66.10 ±4.39 74.10 ±4.26 74.37 ±4.53 72.70 ±4.87 87.00 ±3.36 86.00 ±3.33 86.00 ±3.35

GFT (# train = 10) 74.02 ±3.90 74.26 ±3.70 72.55 ±3.80 78.53 ±3.02 78.90 ±2.62 76.87 ±2.19 87.92 ±2.89 88.50 ±2.38 88.42 ±2.90

Table 16: The few-shot learning performance on FB15K237.
40-way 10-way 5-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

Prodigy [30] 62.03 ±0.59 59.58 ±0.22 54.30 ±0.69 84.30 ±7.80 79.61 ±8.28 66.10 ±9.89 88.05 ±0.68 88.02 ±0.48 87.59 ±0.84

OFA [45] 66.51 ±0.31 65.76 ±0.54 63.48 ±0.90 83.64 ±6.23 83.14 ±1.54 83.46 ±4.12 91.43 ±0.55 91.12 ±0.73 91.01 ±0.95

GFT (# train = 10) 61.12 ±1.64 61.48 ±1.32 60.79 ±1.41 78.83 ±1.80 79.13 ±1.57 79.17 ±1.76 86.27 ±1.10 86.00 ±1.84 87.67 ±0.89

GFT (# train = 20) 70.36 ±1.73 70.56 ±2.12 70.19 ±1.44 85.40 ±2.10 85.57 ±1.29 85.93 ±1.48 91.80 ±1.07 91.80 ±0.62 91.80 ±1.54

GFT (# train = 30) 75.01 ±1.03 74.56 ±0.65 74.97 ±0.91 89.13 ±1.68 88.53 ±2.23 88.07 ±1.39 91.93 ±1.24 92.27 ±1.93 92.40 ±1.29

I Complete Ablation Study

I.1 Pre-training Datasets

The complete results detailing the impact of different pre-training datasets are presented in Table
20, which serves as a complement to Table 5. We explore three variants: (1) pre-training on all
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Table 17: The few-shot learning performance on WN18RR.
10-way 5-way 3-way

Method 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

OFA [45] 32.64 ±1.56 30.56 ±1.02 25.82 ±1.07 48.32 ±3.19 45.04 ±2.39 34.40 ±1.47 60.72 ±3.82 61.29 ±2.56 51.77 ±2.65

GFT (# train = 1) 35.50 ±4.59 35.50 ±5.02 35.33 ±4.20 48.80 ±3.61 48.53 ±3.68 48.13 ±4.37 62.56 ±2.71 60.67 ±3.93 58.44 ±3.84

GFT (# train = 2) 42.43 ±3.07 42.50 ±2.88 42.00 ±3.00 55.87 ±2.63 54.80 ±2.32 54.40 ±2.22 66.33 ±1.91 66.44 ±1.67 64.89 ±3.32

GFT (# train = 5) 44.83 ±2.88 44.90 ±3.07 44.77 ±3.50 58.00 ±2.61 57.73 ±2.18 57.40 ±2.53 68.89 ±2.19 69.67 ±2.10 68.78 ±0.96

GFT (# train = 10) 51.20 ±4.57 51.30 ±4.84 50.87 ±4.15 62.67 ±4.90 63.00 ±5.89 63.60 ±6.33 72.22 ±3.70 72.56 ±4.85 72.56 ±4.75

Table 18: The few-shot learning performance on HIV.
2-way

Method 10-shot 5-shot 3-shot 1-shot

OFA [45] 54.36 ±4.90 57.56 ±3.66 59.30 ±3.04 57.17 ±1.82

GFT (# train = 10) 53.22 ±11.79 54.17 ±10.64 57.61 ±10.53 58.28 ±9.14

GFT (# train = 20) 58.67 ±7.54 58.78 ±6.92 58.44 ±7.28 59.94 ±7.09

GFT (# train = 30) 58.11 ±5.27 58.56 ±5.14 58.33 ±5.42 59.11 ±5.16

Table 19: The few-shot learning performance on PCBA.
2-way

Method 10-shot 5-shot 3-shot 1-shot

OFA [45] 54.58 ±2.90 54.80 ±3.75 54.67 ±4.35 54.92 ±4.38

GFT (# train = 10) 55.98 ±1.39 56.13 ±1.32 56.29 ±1.31 56.39 ±1.49

GFT (# train = 20) 59.34 ±6.99 59.34 ±6.77 55.72 ±5.92 55.88 ±5.64

GFT (# train = 30) 54.81 ±2.23 55.14 ±2.22 55.18 ±2.15 55.33 ±1.90

datasets, (2) pre-training solely on the target dataset, and (3) pre-training on the remaining datasets.
Our observations suggest that using only the target graph can still achieve desirable performance,
as it provides graph-specific information without spurious noise. More importantly, performance
improves significantly when the target graph is excluded and the remaining datasets are utilized. We
hypothesize that observing more computation trees generally enhances model performance. Even
without the target graph, the presence of numerous computation trees shared across various domains
provides sufficient information. Moreover, using all datasets typically yields the best performance, as
it offers a more comprehensive approximation of the computation tree distribution.

Table 20: Complete results of the ablation study on pre-training datasets.
Node Classification Link Classification Graph Classification

Variant Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

All Datasets 78.62 ±1.21 77.19 ±1.99 79.39 ±0.42 71.93 ±0.12 91.91 ±0.34 89.72 ±0.20 72.67 ±1.38 77.90 ±0.64 79.92
Target Dataset 78.05 ±1.44 76.22 ±1.06 78.67 ±2.02 71.54 ±0.50 91.67 ±0.32 89.67 ±0.23 71.05 ±2.61 77.10 ±0.36 79.25
Remaining Datasets 77.60 ±1.07 75.73 ±1.63 78.94 ±0.89 71.47 ±0.22 91.72 ±0.18 89.70 ±0.22 72.28 ±1.83 77.44 ±0.27 79.36

I.2 Pre-training Tasks

Table 21 presents complete results of model performance across different pre-training tasks, serving
as a complement to Table 4. The observations align fully with those in Table 4, demonstrating that all
reconstruction tasks enhance model performance compared to models without pre-training. Optimal
performance is achieved when three tasks are jointly optimized.

I.3 Strategies for Enhancing Tree Vocabulary

Table 22 presents the ablation study on strategies for enhancing the quality of tree vocabulary, as
described in Section 3.1. As previously stated, both the comprehension and expressiveness of the tree
vocabulary are critical properties for its effectiveness, achieved through augmentation (aug.) and an
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Table 21: Complete results of the ablation study on pre-training tasks.
Node Classification Link Classification Graph Classification

Variant Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

n/a 77.89 ±2.04 76.11 ±1.37 70.98 ±4.15 65.11 ±1.41 91.13 ±0.32 3.46 ±2.95 71.67 ±2.71 75.99 ±0.56 66.54

w. Lsem 78.20 ±1.72 75.96 ±1.53 79.16 ±0.91 71.68 ±0.16 91.47 ±0.31 89.31 ±0.22 72.63 ±1.81 77.35 ±0.10 79.47
w. Lfeat 77.10 ±1.68 75.85 ±1.49 79.29 ±0.58 71.16 ±0.32 91.44 ±0.52 89.39 ±0.15 71.55 ±1.82 77.29 ±0.18 79.13
w. Ltopo 76.42 ±1.49 75.82 ±1.24 77.95 ±0.63 71.81 ±0.34 91.08 ±0.54 89.48 ±0.09 72.02 ±1.62 77.11 ±0.26 78.96

All Tasks 78.62 ±1.21 77.19 ±1.99 79.39 ±0.42 71.93 ±0.12 91.91 ±0.34 89.72 ±0.20 72.67 ±1.38 77.90 ±0.64 79.92

orthogonal regularizer (ortho. reg.), respectively. We note that removing any component results in a
degradation in model performance.

Table 22: Complete results of the ablation study on strategies for enhancing tree vocabulary.
Node Classification Link Classification Graph Classification

Variant Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

All Components 78.62 ±1.21 77.19 ±1.99 79.39 ±0.42 71.93 ±0.12 91.91 ±0.34 89.72 ±0.20 72.67 ±1.38 77.90 ±0.64 79.92
w/o Aug. 77.44 ±1.35 76.00 ±1.80 78.76 ±0.73 71.50 ±0.34 91.11 ±0.38 89.07 ±0.21 71.54 ±2.89 77.50 ±0.15 79.12
w/o Ortho. Reg. 77.64 ±1.91 76.94 ±2.01 78.81 ±0.78 71.44 ±0.43 91.23 ±0.43 89.29 ±0.22 70.84 ±2.91 77.04 ±0.31 79.15

I.4 Fine-tuning Tasks

We analyze the impact of different computation tree classification tasks for fine-tuning. The complete
results are presented in Table 23, which complements Table 4. Specifically, GFT employs both a
linear classifier and a prototype classifier to utilize information from various levels of the tree. The
prototype classifier excels in node-level tasks, while the linear classifier performs better in the other
two tasks. However, combining these two methods yields the best performance.

Table 23: Complete results of the ablation study on fine-tuning tasks.
Node Classification Link Classification Graph Classification

Variant Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

w. fproto 78.53 ±1.21 77.13 ±1.40 79.36 ±0.54 71.53 ±0.41 76.76 ±1.01 0.65 ±0.00 56.21 ±4.24 63.56 ±1.06 62.97
w. flin 76.52 ±3.50 76.82 ±1.96 78.35 ±1.07 70.36 ±0.57 90.05 ±2.34 87.93 ±1.60 69.06 ±4.98 75.36 ±2.86 78.06

All Tasks 78.62 ±1.21 77.19 ±1.99 79.39 ±0.42 71.93 ±0.12 91.91 ±0.34 89.72 ±0.20 72.67 ±1.38 77.90 ±0.64 79.92

Table 24: Complete results of the ablation study on tree vocabulary.
Node Classification Link Classification Graph Classification

Variant Cora PubMed Wiki-CS Arxiv WN18RR FB15K237 HIV PCBA Avg.

# Tokens = 128 78.62 ±1.21 77.19 ±1.99 79.39 ±0.42 71.93 ±0.12 91.91 ±0.34 89.72 ±0.20 72.67 ±1.38 77.90 ±0.64 79.92
# Tokens = 256 78.24 ±1.65 77.26 ±1.93 79.31 ±0.70 72.02 ±0.28 91.90 ±0.32 89.82 ±0.21 72.22 ±1.80 78.11 ±0.26 79.86
# Tokens = 512 78.86 ±1.22 77.17 ±1.20 79.54 ±0.52 72.19 ±0.20 91.75 ±0.27 89.96 ±0.15 72.36 ±0.92 78.06 ±0.38 79.99

w/o. Vocab. 78.27 ±1.32 76.43 ±2.59 78.06 ±0.38 70.82 ±0.08 81.52 ±0.15 91.87 ±0.05 56.12 ±7.44 82.21 ±0.13 76.91

I.5 Tree Vocabulary

Table 24 presents a detailed analysis of model performance with different numbers of tokens and
without utilizing the tree vocabulary, complementing Table 6. Although increasing the number of
codes can enhance performance to a certain extent, it is not necessarily effective in all scenarios.
Specifically, in only four out of eight scenarios, the maximum number of codes (512 tokens) yields the
best results. This observation is consistent with our theoretical analysis, suggesting that more codes
may increase the upper bound of generalization error, potentially due to overfitting risks. Furthermore,
this phenomenon might also be attributed to the limited diversity of datasets; the eight utilized datasets
originate from only four domains (citation, web link, knowledge graphs, and molecules). For these
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domains, a smaller number of codes may suffice. We hypothesize expanding the number of domains
might necessitate more codes; we intend to explore in future work. Regarding the variant that does
not use vocabulary, we bypass vocabulary training during pre-training, and directly append a linear
classifier behind the GNN for classification during fine-tuning. The results indicate that using the
vocabulary significantly enhances model performance, particularly in link- and graph-level tasks,
aligning with our theoretical considerations regarding the generalizability of tree tokens.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly introduce the contribution of the paper in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

36



Justification: We provide proofs for each theorem in the paper and clearly present the
assumptions. We also discuss how such assumptions can be satisfied. See Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code in the supplementary and also comprehensively discuss
the experimental setup in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the anonymized code in the supplementary.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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Guidelines:
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• The assumptions made should be given (e.g., Normally distributed errors).
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Answer: [Yes]
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11. Safeguards
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Answer: [NA]
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the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: It does not available for our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
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