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ABSTRACT

Using early exits provide a straightforward way to implement
models that can adapt on-the-fly to the available computa-
tional resources. However, early exits in many cases suffer
from significant limitations, which often prohibit their practi-
cal application, especially when placed on convolutional lay-
ers with narrow receptive fields. In this work, we propose a
method capable of overcoming these limitations by a) using
a Bag-of-Features (BoF)-based pooling approach, that allows
for keeping more information regarding the distribution of the
extracted feature vectors, while also maintaining more spatial
information and b) employing a simple, yet effective, hier-
archical approach for designing the exits, allowing for effi-
ciently re-using the information that was already extracted by
the previous layers. It is experimentally demonstrated that the
proposed approach leads to significant performance improve-
ments, allowing early exits to be a more practical tool that can
be used in many real-world embedded applications.

Index Terms— Early Exits, Adaptive Inference, Bag-of-
Features, Lightweight Deep Learning

1. INTRODUCTION

Recent advances in Deep Learning (DL) have led to a num-
ber of spectacular applications, ranging from autonomous
cars [1] to intelligent buildings [2]. However, DL models
are especially complex, often requiring expensive, powerful
and energy-intensive hardware in order to successfully de-
ploy them, significantly increasing the cost, reducing their
flexibility and, as a result, slowing down the adoption of
DL in many applications where these requirements cannot
be easily met. These limitations are well understood in the
relevant literature and many methods have been developed
to partially overcome them, e.g., model compression and
quantization [3], knowledge distillation [4], etc.

However, the vast majority of existing approaches aim to
just learn a static, yet faster and more lightweight, DL model
ignoring the fact that in many applications there is the need to
dynamically adapt the inference process to the available com-
putational resources. For example, consider a real-time secu-

rity application where the persons that appear in a frame must
be recognized. The time needed for the recognition process
is proportional to the number of people depicted in the frame.
Existing models are unable to dynamically adapt to the avail-
able workload, e.g., by providing faster (and possibly less
accurate) predictions when the workload is high and slower
(and possibly more accurate) predictions when the workload
is low.

The most promising candidate for tackling this task is
models with adaptive computational graphs [5, 6, 7], which
provide a straightforward way to adapt on-the-fly to the avail-
able resources by choosing a different path on the model’s
computational graph. Other approaches [6, 7] achieve this by
adding a number of early exits at various levels of the network
and, as a result, are capable of providing estimations regard-
ing the final output of the network at various points of the
feed-forward process. However, using early exits does not
always lead to acceptable performance [6], since they often
employ an aggressive subsampling approach, e.g., global av-
erage pooling [8], ignoring both the spatial information and
the distribution of the extracted feature vectors. On the other
hand, the densely connected structure used in [7] requires a
significant number of structural changes in the architecture
of a network and cannot be easily used with existing neural
networks. Furthermore, the approach proposed in [6] com-
pletely ignores the representations extracted by the previous
exit layers, throwing away readily available information that
can be potentially used to further increase the performance of
the subsequent exit layers. It is also worth noting that early
exits have been used in past for reducing training issues re-
lated to vanishing gradients [9].

The main contribution of this work is to propose a method
capable of overcoming the aforementioned limitations. First,
instead of using global average pooling for extracting a com-
pact representation for the early exits [8], we propose using
a Bag-of-Features (BoF)-based formulation [10, 11], that al-
lows for a) keeping more information regarding the distribu-
tion of the extracted feature vectors and b) introducing more
spatial information into the extracted representation by using
a spatial segmentation scheme. The latter is especially impor-
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tant for earlier exits, where the receptive field of the convo-
lutional layers is usually smaller. Furthermore, we propose
a simple, yet effective, hierarchical approach for designing
the exits, allowing for efficiently re-using the information that
was already extracted by earlier layers (which is ignored by
existing formulations [6]). Note that the proposed method can
work with any neural network architecture and requires no
model-specific changes to the base network. We experimen-
tally demonstrate using four different datasets and network
architectures that the proposed approach can lead to signifi-
cant performance improvements, transforming early exits into
a practical tool that can be used in many real-world embedded
applications.

2. PROPOSED METHOD

Let f(x) denote a pretrained neural network, where x ∈
RW×H×C is a given image, while W , H and C denote the
width, height and number of channels of the corresponding
input image. Also, let yi = fC(x, i) ∈ RWi×Hi×Ci denote
the output of the i-th convolutional layer of the network,
where Wi and Hi are the width and height of the i-th fea-
ture map extracted from the network, while Ci denotes the
number of filters in the i-th convolutional layer.

Using early exits in neural networks provide a way to es-
timate the final output of the network at various points of
their computational graph, without having to feed-forward the
whole network [6]. This allows the network to a) dynamically
adapt to the available computational resources, as well as to
possibly stop the inference process earlier, if we are confi-
dent enough of the output of the network. However, the size
of the intermediate feature maps can be enormous. To this
end, global average pooling can be used to extract a compact
representation out of the intermediate feature maps of a net-
work [8]: savgi = 1

WiHi

∑Wi

k=1

∑Hi

l=1[yi]kl ∈ RCi , where the
notation [yi]kl is used to refer to the feature vector extracted
from the location (k, l) of the i-th feature map. Then, this rep-
resentation is fed to a fully connected layer, which is directly
trained to predict the category of the input sample, allowing
for estimating the final classification decision at various inter-
mediate points of the network.

In this paper, we propose using a BoF-based aggregation
approach for extracting the representation that is fed to the
employed fully connected layer instead of simply performing
global average pooling and possibly discarding valuable in-
formation [10, 12]. To this end, first a set of prototype vectors
(also known as codewords) vij ∈ RCi are employed to model
the distribution of the feature vectors extracted from the i-th
layer. The set of these vectors Vi = {vi1,vi2, . . . ,viNK

},
where NK is the number of codewords used, is called dic-
tionary or codebook. A different codebook is used for each
exit layer. Then, the probability of observing each feature
vector [yi]kl, extracted from the i-layer of the network, for a
given image x can be estimated using Kernel Density Estima-

tion [13] as:

p([yi]kl|x) =
NK∑
j=1

[si]jK([yi]kl,vij) ∈ R, (1)

where K(·) is a kernel function and si ∈ RNK are image-
specific parameters that separately adjust the density estima-
tion. Then, the parameters can be calculated using a maxi-
mum likelihood estimator [13]:

si = argmax
s

Wi∑
k=1

Hi∑
l=1

log

NK∑
j=1

[s]jK([yi]kl,vij)

 ∈ RNK .

(2)
As shown in [13], the image specific parameters can be

trivially estimated, giving rise to the well known soft-BoF
formations [12, 14]. Therefore, the representation extracted
from the i-th layer of the network is calculated as:

si =
1

WiHi

Wi∑
k=1

Hi∑
l=1

uikl ∈ RNK , (3)

where [uikl]j =
K([yi]kl,vij)∑NK

m=1 K([yi]kl,vim)
∈ [0, 1]. The histogram

vector si essentially provides a compact summary that de-
scribes the semantic content of an image at various levels of
granularity, maintaining more information regarding the ac-
tual distribution of the vectors [yi]kl than the average repre-
sentation (savgi ).

In this work, the BoF model is implemented using a nor-
malized RBF layer, followed by a recurrent accumulation
layer, as proposed in [10], while a hyperbolic (sigmoid) ker-
nel is used to compute the similarity between each feature
vector and the codewords [15]:

K([yi]kl,v) =
1

2

(
tanh(α[yi]

T
klv + β) + 1

)
(4)

where tanh(x) = ex−e−x

ex+e−x , while α and β are the kernel pa-
rameters (typically set to α = 1 and β = 0). The kernel is
also scaled to 0 . . . 1 to ensure that it is compatible with the
employed quantization process.

Furthermore, the quantization process can be repeated at
various spatial levels, similarly to many spatial pyramid ag-
gregation schemes [16], giving rise to the Spatial BoF [10],
allowing for keeping more spatial information. This is es-
pecially important for the representations extracted from the
earlier layers, due the significantly smaller effective receptive
field of the earlier convolutional layers.

Apart from modeling the distribution of the features ex-
tracted from the exit layers using the BoF model, we also
propose building an incremental hierarchical representation
that builds upon the representations from the previous exit
layers instead of relying only on the representation extracted
from the current layer. Therefore, the final representation sh
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extracted from the i-th layer is calculated as:

shi =

{
si if i = 1

si _ shi−1 if i > 1
, (5)

where the notation a_ b is used to denote the concatenation
of vectors a and b. Note that the impact on the computational
complexity of the model is minimal, given that the representa-
tion extracted from the previous layers can be readily cached
and re-used in the subsequent calculations. Therefore, this
approach provides a straightforward way to exploit the pre-
vious computations, that were already performed, to further
increase the prediction accuracy of the exit layers, as also ex-
perimentally demonstrated in Section 3.

3. EXPERIMENTAL EVALUATION

The proposed method is evaluated using four different net-
work architectures, ranging from an extremely lightweight
two-layer Convolutional Neural Network (CNN) to a state-
of-the-art lightweight MobileNet [17], as well as a wide range
of datasets: a) the MNIST image classification dataset [18], b)
the Fashion MNIST fashion product classification dataset [19],
c) the CIFAR-10 object recognition dataset [20], as well as the
more challenging d) FER-2013 facial expression dataset [21].

The following network architectures were evaluated: a)
CNN-1, which is composed of: 3× 3 convolution with 32 fil-
ters, 2 × 2 max pooling, 3 × 3 convolution with 64 filters,
2 × 2 max pooling, fully connected layer with 1024 neu-
rons, dropout p = 0.5, and a final fully connected classifi-
cation layer, b) CNN-2, which follows the same architecture
as CNN-1, but uses twice the number of filters in the first
two convolutional layers, c) CNN-3, which is composed of:
3 × 3 convolution with 16 filters, 3 × 3 convolution with 32
filters, 2 × 2 max pooling, 3 × 3 convolution with 64 filters,
3 × 3 convolution with 128 filters, 2 × 2 max pooling, fully
connected layer with 1024 neurons, dropout p = 0.5, and a
final fully connected classification layer, and d) a MobileNet
with the first convolutional layer appropriately tuned for each
dataset. All the networks were trained using the categorical
cross-entropy loss, while the ReLU activation function was
used for all the layers. The Adam algorithm was used for the
optimization [22], while the number of epochs and learning
rates (η) are reported for each network in Table 1.

Two exit layers were used for all the conducted experi-
ments. Each network was first trained using each dataset (re-
ferred to as “Base Network” in Table 1) and then the weights
were fixed, and two exit layers were added and trained for
the same number of iterations. All the exit layers were si-
multaneously trained by combining the corresponding losses.
The first exit layer was placed after the 1st convolutional layer
for the CNN-1 and CNN-2, after the 2nd convolutional layer
for the CNN-3 and after the 5th convolutional layer for the
MobileNet. The second exit layer was placed after the 2nd

convolutional layer for the CNN-1 and CNN-2, after the 4th
convolutional layer for the CNN-3 and after the 7th convo-
lutional layer for the MobileNet. The second exit layer was
trained either by directly using the representation extracted
from that layer or using the hierarchical representation that
exploits the information extracted from the first exit layer (de-
noted by “Hierarchical” in Table 1). A separate fully con-
nected layer was used for each hierarchical exit.

Apart from directly evaluating the performance of each
network (“Base Network”), we also evaluated a) a standard
feature aggregation method proposed for early exits (global
average pooling, denoted by “Global Pooling” in Table 1) [8],
b) the BoF representation (the number of codewords for each
of the two exit layers reported in parentheses) and c) two vari-
ants of the Spatial BoF pooling (segmentation into 4 spatial
regions [10]) with different number of codewords (again re-
ported in parentheses). Note that altering the number of code-
words allows the proposed method to better adapt to the needs
of each application. The total multiply-accumulate operations
(Million MAC, MMAC) is also reported for each network up
to the corresponding exit.

Several interesting conclusions can be drawn from the re-
sults reported in Table 1. First, using the proposed BoF-based
pooling for the first exit layer reduced the classification er-
ror in all the cases, without significantly affecting the number
of MMAC operations needed. For example, for a MobileNet
trained on the CIFAR-10 data the error drops from 24% to al-
most 10%, while the MMAC operations increase by less than
1.5%. The same is also true for the rest of datasets. The
ability of the proposed method to a) tune the length of the
extracted representation to the needs of the applications, as
well as b) better model the spatial information contained in
the extracted feature vectors allows for increasing the accu-
racy even more. For example, for the MNIST dataset, the
error using the standard Global Pooling drops from 51% to
less than 5%, while only slightly increasing the MMAC oper-
ations. Also, note that using spatial segmentation in the first
exit layer is especially important, since the receptive field of
the first convolutional layers is relatively narrow.

The proposed method also outperforms the plain average
pooling approach when used in the second exit of the net-
work. Note that the improvements obtained using spatial seg-
mentation on the second exit are smaller, since the extracted
feature map already captures significant part of the spatial in-
formation contained in the original image due its larger re-
ceptive field. Nonetheless, the proposed Spatial BoF always
achieves the best classification performance. Finally, com-
bining the representation extracted from both exit layers, i.e.,
using the proposed hierarchical representation scheme, im-
proves the performance for the BoF model. For example,
for the MNIST dataset this allows for reducing the classifica-
tion error from 2.93% to just 1.57%, while for the CIFAR-10
dataset it even slightly outperforms the original pre-trained
network (8.28% vs. 8.40%). This is even more impressive
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Table 1. Evaluation Results
Exit - 1 Exit - 2 Hierarchical

Aggregation Method Error Million MAC Error Million MAC Error Million MAC
MNIST Dataset

Base Network (CNN-1, 50 epochs, η = 0.001) 0.70% 4.10
Global Pooling 51.09% 0.21 5.89% 2.45 5.82% 2.46
BoF (16, 16) 14.97% 0.31 5.70% 2.48 3.98% 2.57
Spatial BoF (8, 8) 4.79% 0.26 3.18% 2.47 1.73% 2.51
Spatial BoF (64, 32) 2.59% 0.58 2.93% 2.51 1.57% 2.87

Fashion MNIST Dataset
Base Network (CNN-2, 50 epochs, η = 0.001) 8.09% 12.66
Global Pooling 32.08% 0.43 17.30% 9.37 16.49% 9.37
BoF (16, 16) 17.55% 0.61 14.74% 9.42 13.00% 9.60
Spatial BoF (8, 8) 15.56% 0.52 14.51% 9.40 11.91% 9.48
Spatial BoF (64, 32) 13.44% 0.61 12.69% 9.42 10.67% 9.60

CIFAR-10 Dataset (CNN-3)
Base Network (CNN-3, 50 epochs, η = 0.001, 50 epochs, η = 0.0001) 14.01% 17.38
Global Pooling 56.27% 4.04 20.05% 14.09 19.74% 14.09
BoF (64, 64) 37.22% 4.46 22.02% 14.30 20.67% 14.71
Spatial BoF (32, 32) 33.40% 4.25 20.30% 14.19 19.23% 14.41
Spatial BoF (64, 64) 29.73% 4.46 19.69% 14.30 18.79% 14.72

CIFAR-10 Dataset (MobileNet v.2)
Base Network (MobileNet v.2, 50 epochs, η = 0.001, 50 epochs, η = 0.0001) 8.40% 94.60
Global Pooling 24.51% 44.34 12.81% 64.15 12.27% 64.15
BoF (128, 128) 10.64% 44.88 8.61% 64.95 8.47% 65.48
Spatial BoF (64, 64) 10.55% 44.61 8.70% 64.55 8.57% 64.83
Spatial - BoF (256, 256) 9.85% 45.42 8.36% 65.75 8.28% 66.85

FER-2103 Dataset
Base Network (MobileNet v.2, 50 epochs, η = 0.001, 50 epochs, η = 0.0001) 37.11% 211.52
Global Pooling 57.43% 98.45 51.85% 143.01 51.16% 143.02
BoF (128, 128) 46.98% 99.64 43.44% 144.80 42.32% 146.00
Spatial BoF (64, 64) 42.41% 98.75 41.29% 143.46 40.79% 143.77
Spatial BoF (256, 256) 44.47% 100.85 40.99% 146.60 39.57% 149.03

Table 2. Performance evaluation using Raspberry PI 3 Model
B+ (first exist, CNN-1, averaged over 50 runs)

Approach FPS Speedup Class. Efficiency
Base Network 45.00 - -
Average Pooling 192.12 4.27 2.09
Spatial BoF (8, 8) 140.92 3.13 2.98
Spatial BoF (64, 32) 131.94 2.93 2.88

given than the hierarchical exit requires 66.85 MMAC oper-
ations instead of 94.60 MMAC (that are required for the full
forward pass).

Finally, we also report the number of images processed
per second (FPS) using a CPU-based embedded platform, a
Raspberry PI 3 Model B+ (clocked at 1.4GHz), using the
PyTorch library. The performance evaluation results (FPS,
speed up over using the final output of the network, along
with a classification efficiency metric (speedup multiplied by
accuracy)) are reported in Table 2. Note that even though

a non-optimized implementation was employed for the pro-
posed BoF method, it was indeed capable of providing a sig-
nificant speedup, demonstrating its potential for practical em-
bedded applications.

4. CONCLUSIONS

A method capable of improving the performance of convolu-
tional neural networks that employ early exits was proposed
in this paper. The proposed method employs a BoF-based for-
mulation to keep more information regarding the distribution
of the extracted feature vectors. At the same time, it also uses
a simple, yet effective, hierarchical approach to provide a way
for efficiently re-using the information that was already ex-
tracted by the previous layers. It was experimentally demon-
strated that the proposed method can indeed increase the ac-
curacy of early exits, maintaining their ability to readily adapt
to the available computational resources.
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