FMC: FORMALIZATION OF NATURAL LANGUAGE MATHEMATICAL COMPETITION PROBLEMS

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

031

033

034

035

037

038

040

041

042 043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Efficient and accurate autoformalization methods, which leverage large-scale datasets of extensive natural language mathematical problems to construct formal language datasets, are key to advancing formal mathematical reasoning. In this paper, we propose an autoformalization pipeline based on large language models with error feedback for syntactic verification and problem decomposition for semantic alignment check, achieving a fully automatic and training-free formalization approach. Using this pipeline, we curate an Olympiad-level dataset aligning natural language problems with Lean formalizations. The dataset contains 3,214 natural language mathematical problems and 6,994 corresponding Lean statements, indicating a one-to-many relationship where a single problem may map to multiple formal representations. This dataset is well-suited as a benchmark for automated theorem provers. Additionally, we investigate the formalization and reasoning capabilities of various LLMs and empirically demonstrate that problem decomposition, few-shot learning and error feedback are key components to enhance the autoformalization process. Experiments of three automated theorem provers on the FMC dataset also highlight its challenging nature and its value as a benchmark for formal reasoning tasks.

1 Introduction

Large language models (LLMs), due to their strong textual reasoning capabilities, have been widely applied to mathematical problem reasoning. Initially developed for reasoning within natural language, LLMs face challenges such as the scarcity of complex mathematical data and the occurrence of hallucinations. To address these issues, formal languages have been introduced into LLM mathematical reasoning.

A formal language is a logical system in which statements and derivations can be verified through an interactive theorem prover, thereby mitigating the hallucination problem. However, formal reasoning introduces a new challenge—an even greater scarcity of data. To address this challenge, research on formal mathematical reasoning has primarily followed two directions: *automated theorem proving* and *autoformalization*, with the latter often serving as a source of training data for the former. This work focuses on the autoformalization of mathematical problems presented in natural language.

We propose an enhanced autoformalization pipeline with error feedback and problem decomposition. Building on the standard stages of *formal translation – syntax verification – semantic alignment check*, our pipeline improves accuracy using training-free general LLMs. Verification errors are collected and fed back to the formalization model, enabling self-correction. In addition, we propose a novel semantic alignment checking method, in which natural language problems are first decomposed into *data types*, *conditions*, and *proof goals*, and then compared with their formal counterparts.

Using this pipeline, we construct a dataset of aligned natural language—Lean pairs, focusing specifically on mathematical problems of Olympiad difficulty. The original natural language problems are sourced from the website IMOmath, which curates problems from various national and international Olympiad competitions. After preprocessing, the problems are passed through our formalization pipeline, yielding a dataset of 3,214 natural language problems aligned with 6,994 formal statements.

In evaluating the pipeline, we adopt *syntactic validity* and *semantic consistency* as key metrics. Our method achieves a syntactic validity of 93.39% and semantic consistency of 66.99%. Compared to a related recent work StepFun-Formalizer (Wu et al., 2025), our dataset is based on significantly more challenging problems and outperforms it's autoformalization pipeline, which achieved 40.5% semantic consistency.

The contributions are summarized as follows:

- 1. We propose an enhanced autoformalization pipeline using LLMs with error feedback and problem decomposition, enabling a fully automated, training-free formalization process.
- Using this pipeline, we construct a dataset of 3,214 aligned natural language—Lean pairs, with problems sourced from national and international mathematics Olympiads. The semantic consistency of the formalization pipeline achieves 66.99%, surpassing StepFun-Formalizer.
- 3. We investigate the formalization and semantic alignment checking capabilities of different general-purpose LLMs and find that DeepSeek-R1 remains at the forefront. Experimental results further demonstrate that problem decomposition, few-shot learning and error feedback enhance autoformalization performance.

2 Related Work

2.1 Large Language Models

Large Language Models (LLMs) represent a significant paradigm shift in the evolution of natural language processing. Typically built upon the Transformer architecture and equipped with tens or hundreds of billions of parameters, LLMs are trained on massive textual corpora. Representative models include PaLM(Chowdhery et al., 2023), GPT-4(OpenAI, 2024), DeepSeek-V3(DeepSeek-AI, 2025b) and Claude 3.7(Anthropic, 2025). Their unprecedented scale in both model size and training data enables capabilities distinct from smaller models—capabilities often referred to as emergent abilities(Wei et al., 2022) These include in-context learning, instruction following, and step-by-step reasoning(Zhao et al., 2025), allowing LLMs to handle complex tasks across diverse domains, including reasoning tasks.

Among various reasoning tasks, mathematical reasoning has attracted particular attention. Previous research (Yang et al., 2024) has shown that using LLMs for mathematical reasoning generally involves three stages: pretraining, fine-tuning with structured data, and invoking external tools. However, reasoning within the scope of natural language using LLMs still faces significant challenges, such as the scarcity of high-difficulty data and the problem of hallucination.

As a result, some researchers have turned to formal languages for mathematical reasoning. Although data for formal languages are even more limited, their verifiability ensures the correctness and reliability of reasoning. Formal mathematical reasoning has thus become a research focus within the broader field of AI reasoning.

2.2 FORMAL LANGUAGES

Formal languages express mathematics within formal systems. They impose strict syntactic rules, and operations such as verification must adhere to logically sound inference rules (Yang et al., 2024).

Currently, formal math languages such as Isabelle (1986) (Paulson, 1988), Coq (1989) (Paulin-Mohring, 1993), and Lean (2015) (de Moura et al., 2015) have attracted significant attention from researchers. This study uses Lean (Moura & Ullrich, 2021), a modern open-source theorem prover developed by Microsoft Research and CMU. Lean combines interactive and automated theorem proving, and supports reasoning in both mathematics and complex systems in computer engineering.

Mathlib is commonly used in formalizing mathematical theorems in Lean. It is a community-driven project aimed at building a unified library of formalized mathematics for the Lean prover. Mathlib4, the updated version for Lean 4, includes many important mathematical objects, preformalized theorems, and automation strategies. Some of its metaprograms enable non-trivial proof automation.

2.3 AUTOMFORMALIZATION

Autoformalization, translating natural language mathematics into formal statements, is a key research direction in formal mathematical reasoning. Early studies(Wu et al., 2022) indicate that general-purpose LLMs possess a degree of formalization ability, and training with formal proof data significantly improves the performance of automated theorem provers. At present, the cutting-edge theorem provers include DeepSeek-Prover-V2(Ren et al., 2025), Kimina-Prover(Wang et al., 2025), Seed-Prover(Chen et al., 2025) and Goedel-Prover-V2(Lin et al., 2025).

This work investigates how to construct a high-quality, aligned dataset of natural language and formal language pairs via autoformalization, to serve as a benchmark for evaluating theorem provers.

Constructing a Lean-based dataset via autoformalization involves two primary steps: sourcing the original data and conducting formalization. Data sources can be broadly classified into three categories: manual curation, natural language datasets, and automatic synthesis. Manual curation refers to the direct authoring of Lean theorems and proofs by mathematical experts. Natural language datasets such as the MATH dataset(Hendrycks et al., 2021), GSM8K(Cobbe et al., 2021), and AQuA-RAT(Ling et al., 2017) contain mathematical problems in natural language, which can be formalized into formal language datasets. Automatic synthesis involves the computational generation of new mathematical problems based on existing concepts and theorems. Representative works include MUSTARD(Huang et al., 2024) and STP_Lean(Dong & Ma, 2025). As for formalization methods, they can be roughly divided into two types: manual annotation, as demonstrated by works such as PutnamBench(Tsoukalas et al., 2024), miniF2F(Zheng et al., 2021), and ProofNet(Azerbayev et al., 2023); and autoformalization, which is now predominantly powered by large language models.

Our analysis of existing datasets reveals the following key observations: (1) Datasets containing competition-level problems are usually manually annotated and remain relatively small in scale. (2) Extracting natural language problems from the web and autoformalizing them is still the dominant dataset construction strategy. However, the difficulty levels of these problems frequently exhibit considerable variability. (3) Data synthesis allows for large-scale dataset generation, but data difficulty can still be improved.

This study aims to construct high-quality datasets with minimal training costs. Manual annotation is labor-intensive and prohibitively expensive, while typical data synthesis requires substantial computational resources. Therefore, we adopt an approach based on autoformalization of natural language mathematical problems. For data selection, we focus on Olympaid-level mathematical problems to ensure sufficient difficulty and quality in the resulting dataset.

3 AUTOFORMALIZATION PIPELINE DESIGN

This paper proposes an autoformalization pipeline that translates mathematical problems from natural language into Lean language with error feedback and problem decomposition. The entire pipeline is shown in Figure 1. Each natural language mathematical problem is first translated into Lean language using a few-shot prompting approach and then formally verified by Lean REPL, i.e., Lean's syntax check. Those that pass the syntax verification are then compared with their decomposed original problems for semantic alignment check. Statements that pass both the syntax verification and semantic alignment check are regarded as successfully formalized. In cases where a statement fails syntax verification, the corresponding error information is incorporated into a revised prompt and fed back to the translation model, enabling iterative prompt refinement driven by error feedback. And in cases where a statement fails semantic alignment check, it will be sent back to pass through the formalization pipeline again.

3.1 Translation

Within this autoformalization pipeline, the model is required to translate natural language mathematical problems into formal language in two distinct scenarios: the first involves direct translation guided by few-shot prompting, while the second leverages compiling error feedback incorporated into the prompt following a failed attempt. When one fails a semantic alignment check, it will be considered a failed formalization statement and be passed through the whole pipeline.

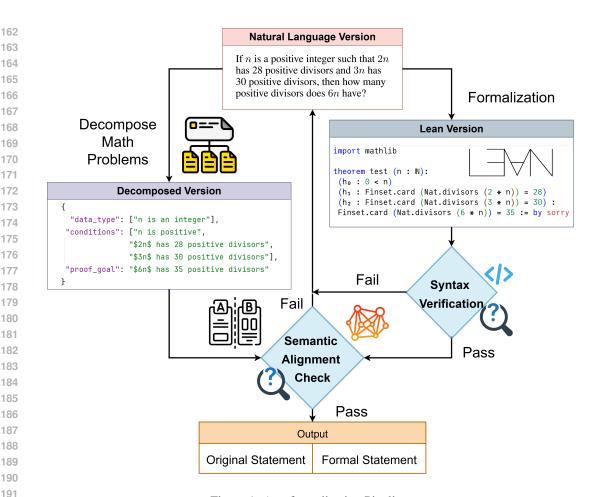


Figure 1: Autoformalization Pipeline.

The first case occurs during the initial translation of a mathematical problem and is based on few-shot learning. In this study, each translation prompt includes two fixed examples—one from algebra and one from number theory—both correctly aligned in natural language and Lean. Since problems in these two fields are common in math Olympiad contests, using such examples helps improve translation accuracy.

Since formalization tasks require syntactic correctness while still benefiting from some diversity to improve translation success, this pipeline sets the temperature to 1.0 during formalization and samples each input five times.

The second case arises when a theorem fails syntax verification. In such instances, the associated error information is incorporated into the prompt and fed back to the translation model. The model then attempts to retranslate the theorem, leveraging the in-context learning capabilities of LLMs to produce a valid formal representation. Experimental results demonstrate that incorporating compiling error feedback improves formalization accuracy, as detailed in the experimental section.

Surprisingly, we empirically find that semantic errors is not conducive to formalization accuracy, as demonstrated in the experiment described later. So the semantic misaligned theorem is considered failed formalization and passed through the whole pipeline again. This approach is roughly equivalent to increasing the sampling number, but it reduces cost by re-translating only those theorems that fail the initial semantic alignment.

Additionally, since Lean focuses on theorem proving and cannot resolve open problems lacking explicit solutions within the statements, it is necessary to address missing solutions and proofs. For absent solutions, we depend on the model's reasoning capabilities, expecting it to generate them

during the formalization process. For missing proofs, the placeholder ":= by sorry" is employed, enabling Lean to detect the omission and signal the missing proof without triggering errors.

After comparing formalization capabilities of several frontier language models, Deepseek-R1 ranks first. Experiments are presented in the Section 5.1. Accordingly, we adopt Deepseek-R1 (DeepSeek-AI, 2025a) as our translation model. As one of the state-of-the-art large language models, Deepseek-R1 possesses strong reasoning and in-context learning abilities, demonstrating promising performance in formalization.

3.2 SYNTAX VERIFICATION

Each translated formal theorem must undergo syntax verification to ensure its syntactic correctness. In this study, the formal verifier from DeepSeek-Prover(Xin et al., 2024) is used to submit the Lean statement to Lean 4 REPL for validation and parsing the returned results. Specifically, syntax verification is performed by invoking Lean 4's interactive Read-Eval-Print Loop (REPL) via a Python subprocess. The formal theorem, including Mathlib import statements, is passed through standard input in JSON format, while the output records any compilation or type errors. This approach confirms the syntactic correctness of the formal theorem and provides error messages for failed compilations, facilitating iterative prompt refinement based on error feedback.

3.3 SEMANTIC ALIGNMENT

Even when statements formalized by LLMs pass Lean's syntax checks, they sometimes differ semantically from the original theorems—such as missing conditions, incorrect assumptions, or erroneous goals. These discrepancies clearly indicate incorrect formalization. Therefore, semantic verification is necessary to ensure that the formalized theorems correspond to the same mathematical problems described in the original statements.

Inspired by work KELPS(Zhang et al., 2025), we have the LLM simulate the human thinking process in semantic alignment checks. It first decomposes the natural language problem into three parts: *data types*, *conditions*, and *proof goals*, and then compares whether the semantics of the decomposed problem are consistent with the formal statement. The reason why natural language problems instead of formal statements are decomposed is that the expression of natural language mathematical problems is usually more ambiguous and complex so that there may be implicit conditions and unclear proof objectives. In contrast, the conditions and goals in Lean are more distinct. Decomposition splits semantic alignment into two distinct tasks – understanding and comparison, and enables LLMs to focus on one task at one time. Empirical results show that decomposing natural language problems enhances formalization quality, surpassing both direct semantic alignment checks and comparisons with back-translated problems. Experiments are shown in Section 5.2.

Notably, during the process of decomposing math problems, we also adopt a few-shot approach to help the model better understand the distinctions among data type, conditions, and proof goal, while ensuring a unified output format. In addition, the prompt explicitly instructs the model to compute an answer for problems without one and use it as the proof goal, thereby completing the formulation of the theorem.

Similarly, this automated pipeline employs Deepseek-R1(DeepSeek-AI, 2025a) as the consistency checking model. Notably, due to Deepseek-R1's strong reasoning capabilities, it often produces extensive analytical output. To facilitate the extraction of relevant information, the prompt explicitly restricts the output format.

4 Dataset Construction

4.1 DATA COLLECTION

To enhance dataset difficulty and ensure quality, all mathematical problems in this dataset are all official Olympiad problems on the IMOmath website(IMOmath, 2025). It covers 11 international competitions including the International Mathematical Olympiad (IMO), as well as 42 national and regional Olympiad contests. The dataset spans the years 1959 to 2011 and covers six continents. By selecting these sources as the original natural language data, the dataset guarantees the integrity, cor-

270 271

Table 1: Result of formalization

275 276

278 279

277

280 281 282

283

288 289 290

> 291 292 293

> 294

301 302 303

304

300

309

310

315

316

317

318 319

320

321

322

323

CLASS	NUMBER	RATIO
Total	4798	100%
Syntax verification	4481	93.39%
Pass at one go	4287	89.35%
Pass with error feedback	194	4.04%
Consistency check	3214	66.99%
Pass at one go	2426	50.56%
Pass with error feedback	788	16.42%

rectness, and challenge of the mathematical theorems. The resulting aligned natural language-Lean dataset will facilitate the evaluation of automated theorem provers' capabilities.

To collect problems, this study employed web crawling techniques to download PDF files from relevant websites, and used Optical Character Recognition (OCR) to extract problem statements from the PDFs. In this work, we used Mathpix (Huang et al., 2023) as the OCR tool to convert PDF content into markdown files. Finally, we used regular expressions to extract the problem texts from the markdown files and organized them into JSON format. After preprocessing, we obtained a total of 6,980 natural language mathematical problems.

4.2 Data Preprocessing

To further improve the quality of the formalized data, this study conducted additional filtering on the extracted 6,980 natural language mathematical problems. Preliminary experiments revealed that sometimes geometric problems can pass both the syntax verification and consistency checks in the autoformalization pipeline, but are still wrong formalization examples. This indicates that LLMs have limited understanding of geometric problems. Although some prior work has attempted autoformalization of Euclidean geometry problems(Murphy et al., 2024), even with improvements, the accuracy remains around 20%. Most geometric dataset construction relies heavily on manual annotation, and such method is evidently unsuitable for building high-quality datasets. Therefore, this study temporarily excludes geometry problems for better dataset quality and reduce the burden for prohibitively expensive expert annotation.

The dataset also contains some mathematical problems where a single problem includes multiple subproblems. Although the Lean system can handle multi-goal problems, for simplicity, multiple subproblems under the same problem number are split. Specifically, the original problem is divided into subproblems of the form "shared conditions + subgoal 1," "shared conditions + subgoal 2," and so forth.

The tasks of filtering out geometry problems and splitting subgoals are also performed by the Deepseek-R1 model. After these processes, a total of 4,798 natural language mathematical problems were retained.

4.3 Dataset Construction and Evaluation

The 4,798 natural language mathematical problems were processed through the autoformalization pipeline in this study. After multiple sampling rounds and error feedback iterations, 4, 481 formalized statements passed syntax verification, achieving a pass rate of 93.39%. Subsequently, after semantic alignment check, a natural language-Lean aligned dataset comprising 3,922 entries was constructed, corresponding to a formalization accuracy of 81.74%.

Among the 4,481 statements that passed syntax verification, 4,287 were verified on the first attempt, while 194 were corrected and passed after error feedback, improving the syntax verification pass rate by 4.04%. Of the 3,214 entries that passed semantic alignment check, 2,426 passed initially, and 788 were corrected and passed after second round translation, increasing the consistency check pass rate by 16.42%. Detailed data are presented in Table 1. These results demonstrate that automated error feedback is highly effective in improving formalization accuracy.

Table 2: Model performance comparison. The number of tokens and the time are both average values.

MODEL	SYNTAX VERIFICATION			ALIGNMENT CHECK		
	TOKEN NUMBER	TIME(S)	PASS RATE	TOKEN NUMBER	TIME(S)	PASS RATE
Deepseek-R1	10783.79	338.16	58%	3357.41	94.74	43%
GPT-4o-mini	1508.33	17.00	34%	737.20	3.97	11%
Claude 3.7 Sonnet	1721.87	43.28	31%	881.16	25.10	27%

5 EXPERIMENTS

5.1 AUTOFORMALIZATION CAPABILITY OF DIFFERENT LLMS

This paper compares the formalization capabilities of Deepseek-R1, GPT-40-mini, and Claude 3.7 Sonnet. The selection of these three models primarily considers their strengths in reasoning and their high efficiency. They are respectively applied as the formalization model and semantic alignment check model within the autoformalization pipeline. Experiments were conducted on a random sample of 100 original problems (including geometry problems) and follows the pipeline in Lean Workbook(Ying et al., 2024). The results, shown in Table 2, indicate that at the cost of higher resource use and time, Deepseek-R1 significantly outperforms the other two models in formalization capability, achieving a final formalization accuracy of 43%. Although the theorems formalized by GPT-40-mini and Claude 3.7 Sonnet exhibit comparable pass rates in syntax verification, the final number of theorems passing consistency check is substantially higher for Claude 3.7 Sonnet than for GPT-40-mini.

Table 3: Pass rates of different formalization models.

	DEEPSEEK-R1	GPT-40-MINI	CLAUDE 3.7 SONNET
Formalization pass rate	58% 43%	34%	31%
Consistency check pass rate	43%	10%	22%

To further investigate the formalization capabilities of the three models, experiments were conducted with the same semantic alignment check model (Deepseek-R1). The experimental results are presented in Table 3.

It is observed that when using the same alignment checking model, Deepseek-R1 achieves significantly higher syntax verification and semantic alignment check pass rates. This indicates that Deepseek-R1 is better at ensuring both syntactic and semantic correctness during formalization. Although GPT-40-mini's syntax verification pass rate is slightly higher than that of Claude 3.7 Sonnet, its semantic alignment check pass rate is notably lower. This suggests that while GPT-40-mini adheres to Lean's syntax rules, it struggles to accurately capture the original mathematical problem's intent.

5.2 EFFECT OF DIFFERENT SEMANTIC ALIGNMENT CHECKING METHODS AND LLMS

To efficiently verify the semantic consistency between formal statements and their corresponding natural language math problems at scale, we employ LLMs for semantic checking. Two approaches are explored. The first follows the Lean Workbook(Ying et al., 2024) Natural Language Inference (NLI) methodology: formal statements are back-translated into natural language, after which LLMs are used to check consistency between the back-translation and the original problem. The second approach, inspired by KELPS(Zhang et al., 2025), decomposes the original natural language problem into three components—data type, conditions, and proof goal—and then asks the model to judge whether the decomposition remains faithful to the original problem. We also evaluate the capabilities of three specific models: Deepseek-R1, GPT-40-mini, and Claude 3.7 Sonnet. We manually inspected a set of randomly selected samples and annotated whether their formal statements were semantically aligned with the original problems. We then compared the judgments made by the large language model with the expert annotations, considering a judgment correct if it agreed with

the annotation and incorrect otherwise. Accuracy, precision, recall, and F1 score are adopted as evaluation metrics, and experiments are conducted on a randomly selected subset of problems.

Table 4: Evaluation metrics for semantic consistency checks using two methods: natural language inference (NLI) and problem decomposition. All evaluation data are derived from the formalizations generated by Deepseek-R1.

MODEL NAME	ACCURACY	PRECISION	RECALL	F1 SCORE
Deepseek-R1 (NLI)	69.0%	66.0%	95.0%	78.0%
GPT-4o-mini (NLI)	69.0%	71.0%	77.0%	74.0%
Claude-3-7 (NLI)	62.0%	59.0%	100.0%	75.0%
Deepseek-R1 (Decomp.)	82.0%	80.0%	91.0%	85.0%
GPT-4o-mini (Decomp.)	64.0%	72.0%	59.0%	65.0%
Claude-3-7 (Decomp.)	72.0%	70.0%	86.0%	78.0%

The results show that, under the "back-translation - semantic alignment checking" method, Claude 3.7 Sonnet tends to give affirmative judgments, frequently classifying mathematically inconsistent natural language—Lean pairs as correct. This leads to very high recall. In contrast, GPT-40-mini applies stricter criteria for consistency, achieving higher precision by producing more reliable positive predictions. Deepseek-R1 strikes the best balance between precision and recall, yielding the strongest overall performance. Under the "problem decomposition - semantic alignment checking" method, Deepseek-R1 clearly outperforms the other two models across all four metrics. This suggests that for decomposition tasks—which demand stronger reasoning ability—Deepseek-R1 holds a significant advantage. Overall, the "problem decomposition – semantic alignment checking" approach with Deepseek-R1 proves most effective, aligning closely with human judgment. Consequently, this method is adopted in our work for semantic consistency verification.

5.3 EFFECT OF FEW-SHOT LEARNING

In this experiment, few-shot learning was applied both to formalization and semantic consistency checking. Specifically, two example translations were provided when converting mathematical problems from natural language into Lean, and decomposition examples were also included in subsequent problem decomposition tasks. Experimental results in Table 5 indicate that few-shot learning improves both the syntax accuracy of formalizations and their semantic consistency. For instance, few-shot learning increased the syntax verification pass rate from 79.0% to 89.5%, and the semantic alignment pass rate from 29.3% to 30.0%. This demonstrates that few-shot learning is more effective at enhancing the syntactic correctness of formalizations, likely because the provided Lean code examples help the model generate compilable code. In contrast, improving semantic consistency relies more on the model's reasoning capabilities, which explains the relatively smaller gains in this aspect.

Table 5: The effect of few-shot learning on formalization accuracy.

METRIC	WITHOUT FEW-SHOT	WITH FEW-SHOT
Syntax verification pass rate	79.0%	89.5%
Semantic alignment pass rate	29.3%	30.0%

5.4 EFFECT OF ERROR FEEDBACK

The error feedback experiments were conducted separately on syntax errors and semantic errors. Syntax errors were derived from failed syntax verification results. By including the syntax error together with the original problem in the prompt for re-translation, the syntax verification pass rate increased to 66.7%, compared to 60.0% when re-translating the original problem alone. Considering that the initial syntax verification pass rate was already high (approximately 90%), the failed cases are likely to correspond to ill-defined problems, making this improvement satisfactory.

In contrast, the effect of error feedback on semantic errors was less promising. Semantic errors were obtained from failed semantic alignment checks. Similarly, including the semantic error with

434

435 436 437

438

439 440

441 442

443

444 445

446 447

456 457

458 459 460

461 462 463

> 464 465 466

467 468 469

474

479 480 481

483

482

484

485

the original problem in the prompt for re-translation resulted in a pass rate of 26.7%, which is lower than both re-translating the original problem alone (29.3%) and using few-shot examples (30%). This suggests that incorporating information from semantic errors may introduce noise into the formalization process. Statements with semantic errors may benefit more from diversity in formalizations rather than modifications based solely on the initial incorrect version. Experiment data is shown in Table 6

Table 6: The effect of error feedback on formalization accuracy.

ERROR TYPE	No error feedback	WITH ERROR FEEDBACK	FEW-SHOT EXAMPLES
Syntax error	60.0%	66.7%	30.0%
Semantic error	29.3%	26.7%	

5.5 TESTING AS A BENCHMARK FOR AUTOMATED THEOREM PROVERS

To assess the relative difficulty of formal mathematical datasets, we benchmark three state-of-theart provers—Kimina-Prover, Goedel-Prover, and DeepSeek-Prover-V1.5-RL—on our newly constructed FMC dataset. Each prover was run 32 times on 2,000 randomly sampled problems from the 6,994 formal statements, with consistent hyperparameters to ensure statistical reliability. As shown in Table 7, MiniF2F yields relatively high pass rates (e.g., 63.1% for Kimina-Prover), while performance drops sharply on our dataset: 17.6% for Kimina-Prover, 18.3% for Goedel-Prover, and 8.6% for DeepSeek-Prover-V1.5-RL. The difficulty of our dataset is comparable to ProofNet and FormalMATH, with DeepSeek-Prover-V1.5-RL performing even worse on FMC than on Formal-MATH. These results confirm that our dataset provides a substantial challenge and clearly differentiates prover performance on moderately complex formal reasoning tasks, underscoring its value as a benchmark.

Table 7: Test results of different automated theorem provers. Each verification task was evaluated over 32 runs on 2,000 randomly sampled formal problems.

DATASET	KIMINA-PROVER	GOEDEL-PROVER	DEEPSEEK-PROVER-V1.5-RL
) (' 'EOE	60.169	55.69	50.00
MiniF2F	63.1%	57.6%	50.0%
ProofNet	-	15.2%	16.0%
FormalMATH	16.5%	13.5%	10.2%
FMC	17.6%	18.3%	8.6%

CONCLUSION

This paper reviews existing natural language-Lean aligned mathematical problem datasets, noting that competition-level datasets are typically small, while automatically constructed ones often lack guaranteed difficulty. To address this gap, we introduce an autoformalization pipeline with error feedback and problem decomposition, which iteratively optimizes prompts based on generated feedback. The pipeline relies entirely on off-the-shelf general-purpose large language models, showcasing their reasoning and formalization capabilities while reducing deployment costs.

Using this pipeline, we built a natural language—Lean dataset containing 3,214 natural language problems and 6,994 formalized Lean statements at Olympiad-level difficulty, achieving a semantic accuracy of 66.99%. Ablation studies further demonstrate the advantages of Deepseek-R1 over GPT-4o-mini and Claude 3.7 Sonnet, as well as the positive impact of problem decomposition, fewshot learning, and error feedback. Finally, evaluations with three state-of-the-art theorem provers highlight the dataset's challenging nature and value as a benchmark for formal reasoning.

USE OF LARGE LANGUAGE MODELS

In addition to the experiments mentioned in the article, large language models were also used in aiding and polishing writing of this paper.

REFERENCES

- Anthropic. Claude 3.7 Sonnet: Hybrid Reasoning Model for Complex Task Automation. Technical Report, 2 2025. URL https://www.anthropic.com/news/claude-3-7-sonnet.
- Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev, and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics, 2023.
- Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun, Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu, Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan, Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL https://arxiv.org/abs/2507.23726.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sashank Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: scaling language modeling with pathways. *J. Mach. Learn. Res.*, 24(1), January 2023. ISSN 1532-4435.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem prover (system description). In *2015 Conference on Automated Deduction*, pp. 378–388. Springer, Cham, July 2015.
- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025a. URL https://arxiv.org/abs/2501.12948.
- DeepSeek-AI. Deepseek-v3 technical report, 2025b. URL https://arxiv.org/abs/2412.19437.
- Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and proving, 2025. URL https://arxiv.org/abs/2502.00212.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
- Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. *ArXiv*, abs/2310.01798, 2023. URL https://api.semanticscholar.org/CorpusID: 263609132.
- Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo Li, Linqi Song, and Xiaodan Liang. MUSTARD: Mastering uniform synthesis of theorem and proof data. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=8xliOUg9EW.

- IMOmath. Problems from olympiads. https://imomath.com/index.cgi?page=
 problemsFromOlympiads, 2025. Accessed: 2025-03-14.
 - Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis and self-correction, 2025. URL https://arxiv.org/abs/2508.03613.
 - Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale generation: Learning to solve and explain algebraic word problems. *ACL*, 2017.
 - Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. Fimo: A challenge formal dataset for automated theorem proving, 2023. URL https://arxiv.org/abs/2309.04295.
 - Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi, Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong Zhi, Jia Li, and Zhengying Liu. Combibench: Benchmarking Ilm capability for combinatorial mathematics, 2025. URL https://arxiv.org/abs/2505.03171.
 - Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In André Platzer and Geoff Sutcliffe (eds.), *Automated Deduction CADE 28*, pp. 625–635, Cham, 2021. Springer International Publishing. ISBN 978-3-030-79876-5.
 - Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autoformalizing Euclidean geometry. In *International Conference on Machine Learning (ICML)*, 2024.
 - OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
 - Christine Paulin-Mohring. Inductive definitions in the system coq rules and properties. In *International Conference on Typed Lambda Calculus and Applications*, 1993. URL https://api.semanticscholar.org/CorpusID:27548688.
 - Lawrence C. Paulson. Experience with Isabelle: A generic theorem prover. Technical Report UCAM-CL-TR-143, University of Cambridge, Computer Laboratory, August 1988. URL https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-143.pdf.
 - Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL https://arxiv.org/abs/2504.21801.
 - George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the putnam mathematical competition, 2024. URL https://arxiv.org/abs/2407.11214.
 - Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey, Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu, Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani, Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning models with reinforcement learning, 2025. URL https://arxiv.org/abs/2504.11354.
 - Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022. URL https://arxiv.org/abs/2206.07682.

- Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Christian Szegedy. Autoformalization with large language models, 2022. URL https://arxiv.org/abs/2205.12615.
- Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong Du, Jie Yan, and Xing Hu. Stepfun-formalizer: Unlocking the autoformalization potential of llms through knowledge-reasoning fusion, 2025. URL https://arxiv.org/abs/2508.04440.
- Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for reinforcement learning and monte-carlo tree search. 2024. URL https://arxiv.org/abs/2408.08152.
- Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn Song. Formal mathematical reasoning: A new frontier in ai, 2024. URL https://arxiv.org/abs/2412.16075.
- Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale lean problem set formalized from natural language math problems. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL https://openreview.net/forum?id=Vcw3vzjHDb.
- Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang, Zheng Yuan, Huajian Xin, Wenhao Huang, Yandong Wen, Ge Zhang, and Weiyang Liu. Formalmath: Benchmarking formal mathematical reasoning of large language models, 2025. URL https://arxiv.org/abs/2505.02735.
- Jiyao Zhang, Chengli Zhong, Hui Xu, Li Qige, Jiajia Tian, and Yi Zhou. KELPS: A framework for verified multi-language autoformalization via semantic-syntactic alignment. In 2nd AI for Math Workshop @ ICML 2025, 2025. URL https://openreview.net/forum?id=U640PVSSOR.
- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large language models, 2025. URL https://arxiv.org/abs/2303.18223.
- Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021.

A APPENDIX: CASE STUDY

In the process of translating mathematical problems into formal statements acceptable to theorem provers, we have identified three main challenges: semantic gaps in problem representation, goal definition issues, and missing conditions. This section analyzes these challenges through concrete case studies.

A.1 SEMANTIC GAPS IN PROBLEM REPRESENTATION

Semantic gaps occur when formalized statements fail to accurately capture the mathematical essence of original problems. These issues are particularly prominent in combinatorial mathematics and recursive structure problems.

Original problem: n children sit in a circle. A teacher distributes candies clockwise starting from one child: gives to first, skips one, gives to next, skips two,

gives to next, and so on (increasing skips). Find n such that eventually every child receives at least one candy.

Formalized output:

```
theorem candy_distribution (n : \mathbb{N}) : \exists m : \mathbb{N}, \forall i : Fin n, \exists k : \mathbb{N}, k < m \land (k * (k + 3) / 2) % n = i := by sorry
```

Analysis: The formalization exhibits three fundamental discrepancies. Primarily, there exists a critical mismatch in the core mathematical expression: the adopted quadratic form (k(k+3)/2) fails to correspond with the actual skipping pattern, where triangular numbers k(k+1)/2 would be the correct characterization of the candy distribution rule. More critically, the conclusion remains incomplete as the formalization merely proves the existence of qualifying n without characterizing its essential property (specifically that n should be a power of two, $n=2^k$), thereby depriving the result of practical applicability.

Original problem: Given triangle with sides a, b, c, construct new triangle with sides s - a, s - b, s - c where s is semiperimeter. Repeat until construction impossible. Find initial triangles allowing infinite iteration.

Formalized output:

```
theorem indefinite_semiperimeter_triangle (a b c : \mathbb{R} ) : 

(\forall s : \mathbb{R}, s = (a + b + c) / 2 \rightarrow 

\exists a' b' c' : \mathbb{R}, 

a' = s - a \land b' = s - b \land c' = s - c \land 

a' + b' > c' \land b' + c' > a' \land c' + a' > b' \land 

\forall n : \mathbb{N}, 

\exists a'' b'' c'' : \mathbb{R}, 

a'' = (a' + b' + c') / 2 - a' \land 

b'' = (a' + b' + c') / 2 - b' \land 

c'' = (a' + b' + c') / 2 - c' \land 

a'' + b'' > c'' \land 

b'' + c'' > a'' \land 

c'' + a'' > b'') \rightarrow 

a = b \land b = c := by sorry
```

Analysis: The formalization contains three critical flaws in recursive construction. Primarily, it demonstrates insufficient recursion depth by explicitly building only two iteration levels (from (a,b,c) to (a',b',c') to (a'',b'',c'')), failing to establish a genuine infinite recursion structure. Secondly, there exists structural discontinuity between iteration levels - the inputs of the second iteration (a',b',c') lack proper mathematical connection to the outputs of the first iteration (a,b,c), creating an open-loop system that breaks recursive coherence.

A.2 GOAL DEFINITION ISSUES

Solving-oriented problems ("Find" type) often suffer from missing or misplaced goals, especially when requiring specific values or function expressions.

```
Original problem: Find all functions f:\mathbb{R}\to\mathbb{R} satisfying: (i) f(x+y)\in[f(x)+f(y),f(x)+f(y)+1] (ii) x\in[0,1)\Rightarrow f(0)\geq f(x) (iii) f(1)=1\wedge -f(-1)=1
```

```
Formalized output: 

theorem translated_theorem:
\exists \ f: \mathbb{R} \to \mathbb{R},
(\forall \ x \ y: \mathbb{R}, \ f \ x + f \ y + 1 \ge f \ (x + y) \ \land \ f \ (x + y)
\ge f \ x + f \ y) \ \land
(\forall \ x: \mathbb{R}, \ 0 \le x \land x < 1 \to f \ 0 \ge f \ x)
\land \ f \ 1 = 1 \ \land \ -f \ (-1) = 1 := by \ sorry
```

Analysis: The primary issue is goal misalignment: while the original problem demands "finding all satisfying functions", the formalized version merely proves the existence of such functions and omits the concrete solution set, representing a substantial deviation from the original requirement.

Original problem: Let $\{f(n)\}$ be strictly increasing sequence of positive integers where the *n*-th missing positive integer is f(f(n)) + 1. Find f(240).

Formalized output:

Analysis: The formalization exhibits two fundamental flaws. Firstly, it fails to properly characterize the "n-th missing positive integer" - while it expresses the relationship m=f(f(n))+1 using existential quantification, it lacks the necessary cardinality constraints to ensure this indeed represents the n-th (rather than any arbitrary) missing number. More critically, the formalized conclusion's assertion that f(240)=38808 is incorrect, revealing a serious validation failure.

A.3 MISSING CONDITIONS

Omission of critical conditions during formalization can lead to incorrect conclusions, particularly dangerous in number theory problems.

```
Original problem: Let k \geq 14, p_k the largest prime strictly less than k (given p_k \geq 3k/4). Let n be composite. Prove: (a) If n = 2p_k, then n \nmid (n-k)! (b) If n > 2p_k, then n \mid (n-k)!

Formalized output:

theorem part_a (k : \mathbb{N}) (hk : k \geq 14) (p_k : \mathbb{N}) (hp_k : Nat.Prime p_k) (h : p_k < k) (h_1 : p_k \geq 3*k/4) (n : \mathbb{N}) (hn : \neg Nat.Prime n) (hn_eq : n = 2 * p_k) : \neg n \mid (n - k) . factorial := by sorry
```

Analysis: The formalization exhibits several critical limitations. Most notably, it fails to explicitly specify that p_k must be the largest prime strictly less than k. While the theorem states that p_k is prime and satisfies $p_k < k$, the absence of the maximality condition introduces a fundamental flaw—the conclusion may become invalid if multiple primes satisfy $p_k < k$.

B APPENDIX: COMPARISON WITH OTHER DATASETS

To validate the reliability of our dataset, we selected some mathematical problems which overlap with FMC from FIMOLiu et al. (2023), CombiBenchLiu et al. (2025), and FormalMATHYu et al. (2025), and compared their formalization accuracy and stylistic differences. All three datasets adopt Lean as their formal language.

B.1 FIMO

The FIMOLiu et al. (2023) dataset contains problems drawn from the International Mathematical Olympiad (IMO) Shortlisted Problems. Below is an example that appears in both FMC and FIMO.

```
Original problem: Prove that
                   \frac{x^2}{(x-1)^2} + \frac{y^2}{(y-1)^2} + \frac{z^2}{(z-1)^2} \ge 1
for all real numbers x, y, z, each different from 1, and satisfying xyz = 1.
FMC:
theorem test
   (x y z : \mathbb{R})
   (h_0 : x \neq 1)
   (h_1 : y \neq 1)
   (h_2 : z \neq 1)
   (h_3 : x * y * z = 1) :
  x^2 / (x - 1)^2 + y^2 / (y - 1)^2 + z^2 / (z - 1)^2
    1) ^2 \ge 1 := by sorry
FIMO:
theorem fimo_2008_algebra_p2_1
   (x y z : \mathbb{R})
   (h_0 : x \neq 1 \land y \neq 1 \land z \neq 1)
   (h_1 : x * y * z = 1) :
  x^2 / (x - 1)^2 + y^2 / (y - 1)^2 + z^2 / (z - 1)^2
    1) ^2 \ge 1 :=
begin
  sorry
end
```

This problem involves simple conditions and a clear goal so that both formal statements accurately capture the intended meaning with only minor differences. Specifically, FMC lists the assumptions $x \neq 1, y \neq 1$ and $z \neq 1$ separately, while FIMO combines them into a single conjunctive premise. From a formal reasoning perspective, FMC's formulation facilitates usage of assumptions, whereas FIMO's version offers improved readability. Additionally, the two statements' placeholder styles differ: by sorry versus begin...sorry...end, reflecting style discrepancy between Lean versions.

B.2 FORMALMATH

The FormalMATHYu et al. (2025) dataset spans a wide range of topics, from high school Olympiad problems to undergraduate-level theorems. Below are two examples found in both FMC and FormalMATH.

• Case 1

```
Original problem: Find all functions f: \mathbb{R} \to \mathbb{R} such that for all real numbers x,y, f(f(x)+y)=f(x^2-y)+4yf(x).

FMC:

theorem test
(f: \mathbb{R} \to \mathbb{R})
(h_0: \forall \times y, \ f \ (f \ x + y) = f \ (x \ ^2 - y) + 4 * y * f * x) :
f=0 \ \lor f= \text{fun} \ x \Rightarrow x \ ^2 := \text{by sorry}

FormalMATH:

theorem olymid_ref_base_11031 (f: \mathbb{R} \to \mathbb{R}):
(\forall \times y, \ f \ (f \ x + y) = f \ (x \ ^2 - y) + 4 * y * f * x) \leftrightarrow
\forall \times, \ f \ x = 0 \ \lor f \ x = x \ ^2 := \text{by}
```

Similar to the FIMO example, both formalizations are largely consistent and accurate with respect to the natural language description.

• Case 2

Original problem: Show that for any integer $n \geq 2$ the sum of the fractions $\frac{1}{ab}$, where a and b are relatively prime positive integers such that $a < b \leq n$ and a+b>n, equals $\frac{1}{2}$. (Integers a and b are called relatively prime if the greatest common divisor of a and b is 1.)

FMC:

```
theorem test  \begin{array}{l} (n: \ \mathbb{N}) \\ (h_0: 2 \leq n): \\ \text{Finset.sum (Finset.filter (\ab.1 + ab.2 > n \land ab.1 < ab.2 \land ab.2 \leq n \land ab.1 + ab.2 > n \land at.gcd ab.1 ab.2 = 1) (Finset.product (Finset.Icc 1 n) (Finset.Icc 1 n))) (\ab.1 * ab.2 : \mathbb{Q})) = 1 / 2 := by sorry \\ \hline \textbf{FormalMATH:} \\ \end{array}
```

```
theorem olymid_ref_base_11032 {n : \mathbb{N}} (hn : 2 \le n) : \Sigma' a : \mathbb{N}, \Sigma' b : \mathbb{N}, (if (a < b \wedge b \le n \wedge Nat.Coprime a b \wedge a + b > n) then (1 / ((a * b) : \mathbb{Q})) else 0) = 1 / 2 := by
```

From a mathematical perspective, both versions express the same content rigorously. The key difference lies in stylistic preference: FMC uses Finset to denote finite sets in Lean, aligning with Lean's programming idioms, while FormalMATH opts for summation notation and if...then logic, which more closely resembles traditional mathematical expressions and improves human readability.

B.3 COMBIBENCH

The CombiBenchLiu et al. (2025) dataset contains 100 carefully selected combinatorial problems formalized by mathematical experts, including all combinatorial IMO problems since 2000. Below is an overlapping example found in both FMC and CombiBench.

Original problem: A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one, and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn. How many ways are there to put the cards in the three boxes so that the trick works? (Two ways are considered different if at least one card is put into a different box.)

FMC:

```
theorem test:
let cards: Finset \mathbb{N} := Finset.range 100
let boxes: Finset (Finset \mathbb{N}) := {\emptyset, \emptyset, \emptyset} --

Placeholder for actual box definitions

Finset.card (Finset.filter (fun b: Finset \mathbb{N} =>

Finset.Nonempty b) boxes) = 3 \wedge
(\forall b<sub>1</sub> b<sub>2</sub>: Finset \mathbb{N}, b<sub>1</sub> \in boxes \rightarrow b<sub>2</sub> \in boxes \rightarrow b<sub>1</sub>

\neq b<sub>2</sub> \rightarrow \forall x y: \mathbb{N}, x \in b<sub>1</sub> \rightarrow y \in b<sub>2</sub> \rightarrow
\forall b<sub>3</sub> b<sub>4</sub>: Finset \mathbb{N}, b<sub>3</sub> \in boxes \rightarrow b<sub>4</sub> \in boxes \rightarrow b<sub>3</sub> \neq

b<sub>4</sub> \rightarrow \forall z w: \mathbb{N}, z \in b<sub>3</sub> \rightarrow w \in b<sub>4</sub> \rightarrow

x + y \neq z + w) := by sorry
```

CombiBench:

```
abbrev Cards := Finset.Icc 1 100
abbrev Boxes := Fin 3
abbrev Trick := \mathbb{N} \to Boxes
def trick_works (f : Cards → Boxes) (t : Trick) :
    Prop :=
  \forall c<sub>1</sub> c<sub>2</sub> : Cards,
  -- given the sum of two cards from box 0 and box 1
    then the trick gives the result of box 2
  (f c_1 = 0 \rightarrow f c_2 = 1 \rightarrow t (c_1.1 + c_2.1) = 2) \land
  -- given the sum of two cards from box 0 and box 2
    then the trick gives the result of box 1
  (f c_1 = 0 \rightarrow f c_2 = 2 \rightarrow t (c_1.1 + c_2.1) = 1) \land
  -- given the sum of two cards from box 1 and box 2
    then the trick gives the result of box 0
  (f c_1 = 1 \rightarrow f c_2 = 2 \rightarrow t (c_1.1 + c_2.1) = 0)
theorem imo_2000_p4 (good_allocations : Finset
    (Cards \rightarrow Boxes))
     (h : \forall f, f ∈ good_allocations \leftrightarrow
    Function. Surjective f \land \exists (t : Trick),
    trick works f t) :
    good_allocations.card = imo_2000_p4_solution :=
    by sorry
```

In this case, the formal statement in FMC does not precisely align with the original natural language description. The problem specifies that, given the sum of two cards drawn from two different boxes, the magician can uniquely identify the box from which no card was drawn. This implies that the set of such pairwise sums for each pair of boxes must be disjoint, effectively serving as a signature for the third box.

However, the FMC version fails to explicitly ensure that (b_1,b_2) and (b_3,b_4) refer to two distinct pairs of boxes, violating the original problem constraints. Moreover, the formal statement does not specify the desired conclusion (i.e., the number of valid configurations), resulting in a missing goal. The approach also relies on explicit enumeration rather than set-based abstractions, making the expression unnecessarily verbose.

In contrast, the CombiBench version resolves these issues by introducing explicit box indices and counting mechanisms, leading to a clearer and more faithful formalization. This comparison suggests that, for combinatorial problems, LLM-generated formalizations still fall short, and statements formalized by mathematical experts retain a significant advantage.

C APPENDIX: PROMPTS

C.1 FORMAL TRANSLATION PROMPTS

There are two different stages of formal translation, the first goes with few-shot prompting and the second goes with error feedback. Following is the prompt for translation with few-shot learning.

A math theorem in natural language will be provided and please translate it into a Lean4 theorem. Please only return the translation (Lean4 code) and no analysis, no mathlib4 import, no comments, no proof, no reasoning. Use ":= by sorry" as a placeholder for proof. Here are some examples for it: {few_shot}. Following the examples above, translate the next problem into Lean4: {problem}

Following is the prompt for translation with error feedback.

A math theorem in natural language will be provided and please translate it into a Lean4 theorem. Please only return the translation (Lean4 code) and no analysis, no mathlib4 import, no comments, no proof, no reasoning. Use ":= by sorry" as a placeholder for proof. Here is the theorem in natural language: {problem}. Before your translation, note that this problem has been mistranslated as the following. Concrete errors have been listed and please avoid similar mistakes when translating it again. Mistranslation: {failed_info}

C.2 PROBLEM DECOMPOSITION PROMPTS

Following is the prompt for problem decomposition.

You are a mathematical semantic analysis assistant. Your task is to analyze a natural language math problem and decompose it into data types, conditions (assumptions), and the proof goal.

Note: If the natural language problem does not explicitly provide the proof goal, calculate the result first and include it as the proof goal.

Return the output strictly in JSON format, without any extra text or explanations. Here are some examples for reference: $\{NL_shot\}$ Now, this is the natural language math problem: $\{NL\}$

```
Please decompose it and return in the following JSON format only: {"data_type": ["type1","type2"], "conditions": ["condition1","condition2"], "proof_goal": "Here is the goal"}
```

C.3 SEMANTIC ALIGNMENT CHECK PROMPTS

Following is the prompt for semantic alignment check.

You are a mathematical semantic alignment assistant. You will be given:

- 1. A natural language problem, already decomposed into: {"data_type": [...], "conditions": [...], "proof_goal": "..."}
- 2. A Lean4 problem in its original code.

Your task is to compare the natural language problem decomposition and the Lean4 problem in terms of data_type, conditions and proof_goal, and decide whether they are same or different in their mathematical essence.

Any mismatch in these three area counts result in a "different problem." Note:

Differences in variable names or implicit conditions derived from the given information do not indicate a different problem. Judge based on mathematical equivalence, not superficial differences.

Return strictly in JSON format: {"Same": true/false, "Analysis": "Briefly explain."}

Now please compare natural language: {NL} and Lean4: {problem_lean}, and decide whether they are same or different in their mathematical essence.

D APPENDIX: FAILURE OF GEOMETRIC PROBLEMS

Figure 2 presents an incorrect formalization example. The original problem, described in natural language, involves a mathematical proposition about the internal angle bisectors of a triangle, where m_a, m_b, m_c denote the lengths of the three angle bisectors, and M_a, M_b, M_c represent their extended lengths intersecting the circumcircle. The objective is to prove an inequality along with the conditions for equality. In the Lean formulation, although the angles $\angle A$, $\angle B$ and $\angle C$ are constrained between 0 and π , and all six segment lengths are specified to be positive, with accurate quantitative relationships given for l_a, l_b, l_c relative to the six known segments and the final goal stated, the essential triangle constraint is missing. For example, the condition that the interior angles of $\triangle ABC$ sum to 180° is absent, and constraints involving angle bisectors, the circumcircle, and their intersections—although implicit in the original problem—are not imposed. The LLM neglects these implicit constraints during formalization. Additionally, the Lean statement lacks the goal of proving the conditions under which the equality holds.

Natural Language

In a triangle $\triangle ABC$, let m_a, m_b, m_c be the lengths of the internal angle bisectors, M_a, M_b, M_c the lengths of these bisectors extended to the circumcircle, and $l_a = \frac{m_a}{M_a}$, $l_b = \frac{m_b}{M_b}$, $l_c = \frac{m_c}{M_c}$.

Prove that $\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \ge 3$ with equality if and only if $\triangle ABC$ is equilateral.

Lean

```
theorem angle_bisector_inequality
  (A B C : R)
  (hA : 0 < A) (hB : 0 < B) (hC : 0 < C)
  (hA_lt_pi : A < Real.pi) (hB_lt_pi : B < Real.pi) (hC_lt_pi : C < Real.pi)
  (m_a m_b m_c M_a M_b M_c : R)
  (hm_a : 0 < m_a) (hm_b : 0 < m_b) (hm_c : 0 < m_c)
  (hM_a : 0 < M_a) (hM_b : 0 < M_b) (hM_c : 0 < M_c)
  (l_a l_b l_c : R)
  (hl_a : l_a = m_a / M_a) (hl_b : l_b = m_b / M_b) (hl_c : l_c = m_c / M_c) :
  (l_a / (Real.sin A)^2) + (l_b / (Real.sin B)^2) + (l_c / (Real.sin C)^2) ≥ 3 := by sorry</pre>
```

Figure 2: A failed formalization example in geometry.