Under review as a conference paper at ICLR 2026

FMC: FORMALIZATION OF NATURAL LANGUAGE
MATHEMATICAL COMPETITION PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient and accurate autoformalization methods, which leverage large-scale
datasets of extensive natural language mathematical problems to construct formal
language datasets, are key to advancing formal mathematical reasoning. In this
paper, we propose an autoformalization pipeline based on large language models
with error feedback for syntactic verification and problem decomposition for se-
mantic alignment check, achieving a fully automatic and training-free formaliza-
tion approach. Using this pipeline, we curate an Olympiad-level dataset aligning
natural language problems with Lean formalizations. The dataset contains 3,214
natural language mathematical problems and 6,994 corresponding Lean state-
ments, indicating a one-to-many relationship where a single problem may map
to multiple formal representations. This dataset is well-suited as a benchmark for
automated theorem provers. Additionally, we investigate the formalization and
reasoning capabilities of various LLMs and empirically demonstrate that prob-
lem decomposition, few-shot learning and error feedback are key components to
enhance the autoformalization process. Experiments of three automated theorem
provers on the FMC dataset also highlight its challenging nature and its value as a
benchmark for formal reasoning tasks.

1 INTRODUCTION

Large language models (LLMs), due to their strong textual reasoning capabilities, have been widely
applied to mathematical problem reasoning. Initially developed for reasoning within natural lan-
guage, LLMs face challenges such as the scarcity of complex mathematical data and the occurrence
of hallucinations. To address these issues, formal languages have been introduced into LLM mathe-
matical reasoning.

A formal language is a logical system in which statements and derivations can be verified through
an interactive theorem prover, thereby mitigating the hallucination problem. However, formal rea-
soning introduces a new challenge—an even greater scarcity of data. To address this challenge,
research on formal mathematical reasoning has primarily followed two directions: automated theo-
rem proving and autoformalization, with the latter often serving as a source of training data for the
former. This work focuses on the autoformalization of mathematical problems presented in natural
language.

We propose an enhanced autoformalization pipeline with error feedback and problem decomposi-
tion. Building on the standard stages of formal translation — syntax verification — semantic alignment
check, our pipeline improves accuracy using training-free general LLMs. Verification errors are col-
lected and fed back to the formalization model, enabling self-correction. In addition, we propose
a novel semantic alignment checking method, in which natural language problems are first decom-
posed into data types, conditions, and proof goals, and then compared with their formal counterparts.

Using this pipeline, we construct a dataset of aligned natural language—Lean pairs, focusing specif-
ically on mathematical problems of Olympiad difficulty. The original natural language problems
are sourced from the website IMOmath, which curates problems from various national and inter-
national Olympiad competitions. After preprocessing, the problems are passed through our formal-
ization pipeline, yielding a dataset of 3,214 natural language problems aligned with 6,994 formal
statements.

Under review as a conference paper at ICLR 2026

In evaluating the pipeline, we adopt syntactic validity and semantic consistency as key metrics. Our
method achieves a syntactic validity of 93.39% and semantic consistency of 66.99%. Compared to a
related recent work StepFun-Formalizer (Wuetal.|2025), our dataset is based on significantly
more challenging problems and outperforms it’s autoformalization pipeline, which achieved 40.5%
semantic consistency.

The contributions are summarized as follows:

1. We propose an enhanced autoformalization pipeline using LLMs with error feedback and
problem decomposition, enabling a fully automated, training-free formalization process.

2. Using this pipeline, we construct a dataset of 3,214 aligned natural language—Lean pairs,
with problems sourced from national and international mathematics Olympiads. The se-
mantic consistency of the formalization pipeline achieves 66.99%, surpassing StepFun-
Formalizer.

3. We investigate the formalization and semantic alignment checking capabilities of different
general-purpose LLMs and find that DeepSeek—R1 remains at the forefront. Experimen-
tal results further demonstrate that problem decomposition, few-shot learning and error
feedback enhance autoformalization performance.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS

Large Language Models (LLMs) represent a significant paradigm shift in the evolution of natural
language processing. Typically built upon the Transformer architecture and equipped with tens or
hundreds of billions of parameters, LLMs are trained on massive textual corpora. Representative
models include PaLM(Chowdhery et al.| [2023)), GPT-4(OpenAll, 2024), DeepSeek-V3(DeepSeek-
Al [2025b) and Claude 3.7(Anthropicl 2025). Their unprecedented scale in both model size and
training data enables capabilities distinct from smaller models—capabilities often referred to as
emergent abilities(Wei et al., 2022) These include in-context learning, instruction following, and
step-by-step reasoning(Zhao et al., 2025)), allowing LLMs to handle complex tasks across diverse
domains, including reasoning tasks.

Among various reasoning tasks, mathematical reasoning has attracted particular attention. Previous
research (Yang et al.| [2024) has shown that using LLMs for mathematical reasoning generally in-
volves three stages: pretraining, fine-tuning with structured data, and invoking external tools. How-
ever, reasoning within the scope of natural language using LLMs still faces significant challenges,
such as the scarcity of high-difficulty data and the problem of hallucination.

As aresult, some researchers have turned to formal languages for mathematical reasoning. Although
data for formal languages are even more limited, their verifiability ensures the correctness and re-
liability of reasoning. Formal mathematical reasoning has thus become a research focus within the
broader field of Al reasoning.

2.2 FORMAL LANGUAGES

Formal languages express mathematics within formal systems. They impose strict syntactic rules,
and operations such as verification must adhere to logically sound inference rules(Yang et al.,[2024).

Currently, formal math languages such as Isabelle (1986) (Paulson, [1988), Coq (1989) (Paulin-
Mohring, [1993), and Lean (2015) (de Moura et al., 2015) have attracted significant attention from
researchers. This study uses Lean (Moura & Ullrich| |2021)), a modern open-source theorem prover
developed by Microsoft Research and CMU. Lean combines interactive and automated theorem
proving, and supports reasoning in both mathematics and complex systems in computer engineering.

Mathlib is commonly used in formalizing mathematical theorems in Lean. It is a community-
driven project aimed at building a unified library of formalized mathematics for the Lean prover.
Mathlib4, the updated version for Lean 4, includes many important mathematical objects, pre-
formalized theorems, and automation strategies. Some of its metaprograms enable non-trivial proof
automation.

Under review as a conference paper at ICLR 2026

2.3 AUTOMFORMALIZATION

Autoformalization, translating natural language mathematics into formal statements, is a key re-
search direction in formal mathematical reasoning. Early studies(Wu et al.| [2022) indicate that
general-purpose LLMs possess a degree of formalization ability, and training with formal proof data
significantly improves the performance of automated theorem provers. At present, the cutting-edge
theorem provers include DeepSeek-Prover-V2(Ren et al.,[2025)), Kimina-Prover(Wang et al.l|2025),
Seed-Prover(Chen et al., |2025) and Goedel-Prover-V2(Lin et al., 2025).

This work investigates how to construct a high-quality, aligned dataset of natural language and
formal language pairs via autoformalization, to serve as a benchmark for evaluating theorem provers.

Constructing a Lean-based dataset via autoformalization involves two primary steps: sourcing the
original data and conducting formalization. Data sources can be broadly classified into three cat-
egories: manual curation, natural language datasets, and automatic synthesis. Manual curation
refers to the direct authoring of Lean theorems and proofs by mathematical experts. Natural lan-
guage datasets such as the MATH dataset(Hendrycks et al., [2021)), GSM8K(Cobbe et al., |2021)),
and AQuA-RAT(Ling et al.| [2017) contain mathematical problems in natural language, which can
be formalized into formal language datasets. Automatic synthesis involves the computational gen-
eration of new mathematical problems based on existing concepts and theorems. Representative
works include MUSTARD(Huang et al.l [2024) and STP_Lean(Dong & Ma, 2025). As for for-
malization methods, they can be roughly divided into two types: manual annotation, as demon-
strated by works such as PutnamBench(Tsoukalas et al.l [2024), miniF2F(Zheng et al., 2021}, and
ProofNet(Azerbayev et al.l [2023); and autoformalization, which is now predominantly powered by
large language models.

Our analysis of existing datasets reveals the following key observations: (1) Datasets containing
competition-level problems are usually manually annotated and remain relatively small in scale. (2)
Extracting natural language problems from the web and autoformalizing them is still the dominant
dataset construction strategy. However, the difficulty levels of these problems frequently exhibit con-
siderable variability. (3) Data synthesis allows for large-scale dataset generation, but data difficulty
can still be improved.

This study aims to construct high-quality datasets with minimal training costs. Manual annotation is
labor-intensive and prohibitively expensive, while typical data synthesis requires substantial compu-
tational resources. Therefore, we adopt an approach based on autoformalization of natural language
mathematical problems. For data selection, we focus on Olympaid-level mathematical problems to
ensure sufficient difficulty and quality in the resulting dataset.

3 AUTOFORMALIZATION PIPELINE DESIGN

This paper proposes an autoformalization pipeline that translates mathematical problems from natu-
ral language into Lean language with error feedback and problem decomposition. The entire pipeline
is shown in Figure[I} Each natural language mathematical problem is first translated into Lean lan-
guage using a few-shot prompting approach and then formally verified by Lean REPL, i.e., Lean’s
syntax check. Those that pass the syntax verification are then compared with their decomposed
original problems for semantic alignment check. Statements that pass both the syntax verification
and semantic alignment check are regarded as successfully formalized. In cases where a statement
fails syntax verification, the corresponding error information is incorporated into a revised prompt
and fed back to the translation model, enabling iterative prompt refinement driven by error feedback.
And in cases where a statement fails semantic alignment check, it will be sent back to pass through
the formalization pipeline again.

3.1 TRANSLATION

Within this autoformalization pipeline, the model is required to translate natural language mathe-
matical problems into formal language in two distinct scenarios: the first involves direct translation
guided by few-shot prompting, while the second leverages compiling error feedback incorporated
into the prompt following a failed attempt. When one fails a semantic alignment check, it will be
considered a failed formalization statement and be passed through the whole pipeline.

Under review as a conference paper at ICLR 2026

Natural Language Version

If n is a positive integer such that 2n

has 28 positive divisors and 3n has
30 positive divisors, then how many
positive divisors does 67 have? Formalization
A) 4
Decompose Lean Version
Math A :
import mathlib
Problems \—:I\V/N
theorem test (n : N):
A 4 (he : 0 < n)
Decomposed Version (h1 : Finset.card (Nat.divisors (2 % n)) = 28)
{ (h2 : Finset.card (Nat.divisors (3 % n)) = 30) :
) . Finset.card (Nat.divisors (6 % n)) = 35 := by sorry
"data_type": ["n is an integer"],

"conditions": ["n is positive", l
"$2n$ has 28 positive divisors",
"$3n$ has 30 positive divisors"],
"proof_goal": "$6n$ has 35 positive divisors"

r Fail Syntax
Ahi{B), Fail Verification; -,
Efim &B :
=0 Semantic |
——><_ Alignment Pass
(72 Check

y Pass
Output

Original Statement | Formal Statement

Figure 1: Autoformalization Pipeline.

The first case occurs during the initial translation of a mathematical problem and is based on few-
shot learning. In this study, each translation prompt includes two fixed examples—one from algebra
and one from number theory—both correctly aligned in natural language and Lean. Since problems
in these two fields are common in math Olympiad contests, using such examples helps improve
translation accuracy.

Since formalization tasks require syntactic correctness while still benefiting from some diversity
to improve translation success, this pipeline sets the temperature to 1.0 during formalization and
samples each input five times.

The second case arises when a theorem fails syntax verification. In such instances, the associated
error information is incorporated into the prompt and fed back to the translation model. The model
then attempts to retranslate the theorem, leveraging the in-context learning capabilities of LLMs to
produce a valid formal representation. Experimental results demonstrate that incorporating compil-
ing error feedback improves formalization accuracy, as detailed in the experimental section.

Surprisingly, we empirically find that semantic errors is not conducive to formalization accuracy, as
demonstrated in the experiment described later. So the semantic misaligned theorem is considered
failed formalization and passed through the whole pipeline again. This approach is roughly equiv-
alent to increasing the sampling number, but it reduces cost by re-translating only those theorems
that fail the initial semantic alignment.

Additionally, since Lean focuses on theorem proving and cannot resolve open problems lacking
explicit solutions within the statements, it is necessary to address missing solutions and proofs. For
absent solutions, we depend on the model’s reasoning capabilities, expecting it to generate them

Under review as a conference paper at ICLR 2026

during the formalization process. For missing proofs, the placeholder “:= by sorry” is employed,
enabling Lean to detect the omission and signal the missing proof without triggering errors.

After comparing formalization capabilities of several frontier language models, Deepseek-R1 ranks
first. Experiments are presented in the Section[5.1] Accordingly, we adopt Deepseek-R1 (DeepSeek-
AlL2025a) as our translation model. As one of the state-of-the-art large language models, Deepseek-
R1 possesses strong reasoning and in-context learning abilities, demonstrating promising perfor-
mance in formalization.

3.2 SYNTAX VERIFICATION

Each translated formal theorem must undergo syntax verification to ensure its syntactic correct-
ness. In this study, the formal verifier from DeepSeek-Prover(Xin et al 2024)) is used to submit
the Lean statement to Lean 4 REPL for validation and parsing the returned results. Specifically,
syntax verification is performed by invoking Lean 4’s interactive Read-Eval-Print Loop (REPL) via
a Python subprocess. The formal theorem, including Mathlib import statements, is passed through
standard input in JSON format, while the output records any compilation or type errors. This ap-
proach confirms the syntactic correctness of the formal theorem and provides error messages for
failed compilations, facilitating iterative prompt refinement based on error feedback.

3.3 SEMANTIC ALIGNMENT

Even when statements formalized by LLMs pass Lean’s syntax checks, they sometimes differ se-
mantically from the original theorems—such as missing conditions, incorrect assumptions, or er-
roneous goals. These discrepancies clearly indicate incorrect formalization. Therefore, semantic
verification is necessary to ensure that the formalized theorems correspond to the same mathemati-
cal problems described in the original statements.

Inspired by work KELPS(Zhang et al.l [2025)), we have the LLM simulate the human thinking pro-
cess in semantic alignment checks. It first decomposes the natural language problem into three
parts: data types, conditions, and proof goals, and then compares whether the semantics of the
decomposed problem are consistent with the formal statement. The reason why natural language
problems instead of formal statements are decomposed is that the expression of natural language
mathematical problems is usually more ambiguous and complex so that there may be implicit con-
ditions and unclear proof objectives. In contrast, the conditions and goals in Lean are more distinct.
Decomposition splits semantic alignment into two distinct tasks — understanding and comparison,
and enables LLMs to focus on one task at one time. Empirical results show that decomposing nat-
ural language problems enhances formalization quality, surpassing both direct semantic alignment
checks and comparisons with back-translated problems. Experiments are shown in Section[5.2]

Notably, during the process of decomposing math problems, we also adopt a few-shot approach to
help the model better understand the distinctions among data type, conditions, and proof goal, while
ensuring a unified output format. In addition, the prompt explicitly instructs the model to compute
an answer for problems without one and use it as the proof goal, thereby completing the formulation
of the theorem.

Similarly, this automated pipeline employs Deepseek-R1(DeepSeek-All 2025a)) as the consistency
checking model. Notably, due to Deepseek-R1’s strong reasoning capabilities, it often produces
extensive analytical output. To facilitate the extraction of relevant information, the prompt explicitly
restricts the output format.

4 DATASET CONSTRUCTION

4.1 DATA COLLECTION

To enhance dataset difficulty and ensure quality, all mathematical problems in this dataset are all
official Olympiad problems on the IMOmath website(IMOmath, [2025). It covers 11 international
competitions including the International Mathematical Olympiad (IMO), as well as 42 national and
regional Olympiad contests. The dataset spans the years 1959 to 2011 and covers six continents. By
selecting these sources as the original natural language data, the dataset guarantees the integrity, cor-

Under review as a conference paper at ICLR 2026

Table 1: Result of formalization

CLASS NUMBER RATIO

Total 4798 100%
Syntax verification 4481 93.39%
Pass at one go 4287 89.35%
Pass with error feedback 194 4.04%
Consistency check 3214 66.99%
Pass at one go 2426 50.56%
Pass with error feedback 788 16.42%

rectness, and challenge of the mathematical theorems. The resulting aligned natural language—Lean
dataset will facilitate the evaluation of automated theorem provers’ capabilities.

To collect problems, this study employed web crawling techniques to download PDF files from
relevant websites, and used Optical Character Recognition (OCR) to extract problem statements
from the PDFs. In this work, we used Mathpix (Huang et al.| 2023) as the OCR tool to convert PDF
content into markdown files. Finally, we used regular expressions to extract the problem texts from
the markdown files and organized them into JSON format. After preprocessing, we obtained a total
of 6,980 natural language mathematical problems.

4.2 DATA PREPROCESSING

To further improve the quality of the formalized data, this study conducted additional filtering on
the extracted 6,980 natural language mathematical problems. Preliminary experiments revealed
that sometimes geometric problems can pass both the syntax verification and consistency checks
in the autoformalization pipeline, but are still wrong formalization examples. This indicates that
LLMs have limited understanding of geometric problems. Although some prior work has attempted
autoformalization of Euclidean geometry problems(Murphy et al.[2024), even with improvements,
the accuracy remains around 20%. Most geometric dataset construction relies heavily on manual
annotation, and such method is evidently unsuitable for building high-quality datasets. Therefore,
this study temporarily excludes geometry problemsfor better dataset quality and reduce the burden
for prohibitively expensive expert annotation.

The dataset also contains some mathematical problems where a single problem includes multiple
subproblems.Although the Lean system can handle multi-goal problems, for simplicity, multiple
subproblems under the same problem number are split. Specifically, the original problem is divided
into subproblems of the form “shared conditions + subgoal 1,” “shared conditions + subgoal 2,” and
so forth.

The tasks of filtering out geometry problems and splitting subgoals are also performed by the
Deepseek-R1 model. After these processes, a total of 4, 798 natural language mathematical prob-
lems were retained.

4.3 DATASET CONSTRUCTION AND EVALUATION

The 4, 798 natural language mathematical problems were processed through the autoformalization
pipeline in this study. After multiple sampling rounds and error feedback iterations, 4,481 formal-
ized statements passed syntax verification, achieving a pass rate of 93.39%. Subsequently, after
semantic alignment check, a natural language-Lean aligned dataset comprising 3, 922 entries was
constructed, corresponding to a formalization accuracy of 81.74%.

Among the 4,481 statements that passed syntax verification, 4,287 were verified on the first attempt,
while 194 were corrected and passed after error feedback, improving the syntax verification pass rate
by 4.04%. Of the 3,214 entries that passed semantic alignment check, 2,426 passed initially, and
788 were corrected and passed after second round translation, increasing the consistency check pass
rate by 16.42%. Detailed data are presented in Table [I] These results demonstrate that automated
error feedback is highly effective in improving formalization accuracy.

Under review as a conference paper at ICLR 2026

Table 2: Model performance comparison. The number of tokens and the time are both average
values.

MODEL SYNTAX VERIFICATION ALIGNMENT CHECK

TOKEN NUMBER TIME(S) PASS RATE TOKEN NUMBER TIME(S) PASS RATE
Deepseek-R1 10783.79 338.16 58% 3357.41 94.74 43%
GPT-40-mini 1508.33 17.00 34% 737.20 3.97 11%
Claude 3.7 Sonnet 1721.87 43.28 31% 881.16 25.10 27%

5 EXPERIMENTS

5.1 AUTOFORMALIZATION CAPABILITY OF DIFFERENT LLMS

This paper compares the formalization capabilities of Deepseek-R1, GPT-40-mini, and Claude 3.7
Sonnet. The selection of these three models primarily considers their strengths in reasoning and
their high efficiency. They are respectively applied as the formalization model and semantic align-
ment check model within the autoformalization pipeline. Experiments were conducted on a random
sample of 100 original problems (including geometry problems) and follows the pipeline in Lean
Workbook(Ying et al [2024). The results, shown in Table E], indicate that at the cost of higher re-
source use and time, Deepseek-R1 significantly outperforms the other two models in formalization
capability, achieving a final formalization accuracy of 43%. Although the theorems formalized by
GPT-40-mini and Claude 3.7 Sonnet exhibit comparable pass rates in syntax verification, the final
number of theorems passing consistency check is substantially higher for Claude 3.7 Sonnet than
for GPT-40-mini.

Table 3: Pass rates of different formalization models.
DEEPSEEK-R1 GPT-40-MINI CLAUDE 3.7 SONNET

Formalization pass rate 58% 34% 31%
Consistency check pass rate 43% 10% 22%

To further investigate the formalization capabilities of the three models, experiments were conducted
with the same semantic alignment check model (Deepseek-R1). The experimental results are pre-
sented in Table

It is observed that when using the same alignment checking model, Deepseek-R1 achieves sig-
nificantly higher syntax verification and semantic alignment check pass rates. This indicates that
Deepseek-R1 is better at ensuring both syntactic and semantic correctness during formalization. Al-
though GPT-40-mini’s syntax verification pass rate is slightly higher than that of Claude 3.7 Sonnet,
its semantic alignment check pass rate is notably lower. This suggests that while GPT-40-mini ad-
heres to Lean’s syntax rules, it struggles to accurately capture the original mathematical problem’s
1ntent.

5.2 EFFECT OF DIFFERENT SEMANTIC ALIGNMENT CHECKING METHODS AND LLMS

To efficiently verify the semantic consistency between formal statements and their corresponding
natural language math problems at scale, we employ LLMs for semantic checking. Two approaches
are explored. The first follows the Lean Workbook(Ying et al., 2024) Natural Language Inference
(NLI) methodology: formal statements are back-translated into natural language, after which LLMs
are used to check consistency between the back-translation and the original problem. The second ap-
proach, inspired by KELPS(Zhang et al., 2025)), decomposes the original natural language problem
into three components—data type, conditions, and proof goal—and then asks the model to judge
whether the decomposition remains faithful to the original problem. We also evaluate the capabil-
ities of three specific models: Deepseek-R1, GPT-40-mini, and Claude 3.7 Sonnet. We manually
inspected a set of randomly selected samples and annotated whether their formal statements were
semantically aligned with the original problems. We then compared the judgments made by the
large language model with the expert annotations, considering a judgment correct if it agreed with

Under review as a conference paper at ICLR 2026

the annotation and incorrect otherwise. Accuracy, precision, recall, and F1 score are adopted as
evaluation metrics, and experiments are conducted on a randomly selected subset of problems.

Table 4: Evaluation metrics for semantic consistency checks using two methods: natural language
inference (NLI) and problem decomposition. All evaluation data are derived from the formalizations
generated by Deepseek-R1.

MODEL NAME ACCURACY PRECISION RECALL F1 SCORE
Deepseek-R1 (NLI) 69.0% 66.0% 95.0% 78.0%
GPT-40-mini (NLI) 69.0% 71.0% 77.0% 74.0%
Claude-3-7 (NLI) 62.0% 59.0% 100.0% 75.0%
Deepseek-R1 (Decomp.) 82.0% 80.0% 91.0% 85.0%
GPT-40-mini (Decomp.) 64.0% 72.0% 59.0% 65.0%
Claude-3-7 (Decomp.) 72.0% 70.0% 86.0% 78.0%

The results show that, under the “back-translation - semantic alignment checking” method, Claude
3.7 Sonnet tends to give affirmative judgments, frequently classifying mathematically inconsistent
natural language—Lean pairs as correct. This leads to very high recall. In contrast, GPT-40-mini
applies stricter criteria for consistency, achieving higher precision by producing more reliable pos-
itive predictions. Deepseek-R1 strikes the best balance between precision and recall, yielding the
strongest overall performance. Under the “problem decomposition - semantic alignment checking”
method, Deepseek-R1 clearly outperforms the other two models across all four metrics. This sug-
gests that for decomposition tasks—which demand stronger reasoning ability—Deepseek-R1 holds
a significant advantage. Overall, the “problem decomposition — semantic alignment checking” ap-
proach with Deepseek-R1 proves most effective, aligning closely with human judgment. Conse-
quently, this method is adopted in our work for semantic consistency verification.

5.3 EFFECT OF FEW-SHOT LEARNING

In this experiment, few-shot learning was applied both to formalization and semantic consistency
checking. Specifically, two example translations were provided when converting mathematical prob-
lems from natural language into Lean, and decomposition examples were also included in subse-
quent problem decomposition tasks. Experimental results in Table [5]indicate that few-shot learning
improves both the syntax accuracy of formalizations and their semantic consistency. For instance,
few-shot learning increased the syntax verification pass rate from 79.0% to 89.5%, and the semantic
alignment pass rate from 29.3% to 30.0%. This demonstrates that few-shot learning is more effec-
tive at enhancing the syntactic correctness of formalizations, likely because the provided Lean code
examples help the model generate compilable code. In contrast, improving semantic consistency
relies more on the model’s reasoning capabilities, which explains the relatively smaller gains in this
aspect.

Table 5: The effect of few-shot learning on formalization accuracy.

METRIC WITHOUT FEW-SHOT ~ WITH FEW-SHOT
Syntax verification pass rate 79.0% 89.5%
Semantic alignment pass rate 29.3% 30.0%

5.4 EFFECT OF ERROR FEEDBACK

The error feedback experiments were conducted separately on syntax errors and semantic errors.
Syntax errors were derived from failed syntax verification results. By including the syntax error
together with the original problem in the prompt for re-translation, the syntax verification pass rate
increased to 66.7%, compared to 60.0% when re-translating the original problem alone. Considering
that the initial syntax verification pass rate was already high (approximately 90%), the failed cases
are likely to correspond to ill-defined problems, making this improvement satisfactory.

In contrast, the effect of error feedback on semantic errors was less promising. Semantic errors
were obtained from failed semantic alignment checks. Similarly, including the semantic error with

Under review as a conference paper at ICLR 2026

the original problem in the prompt for re-translation resulted in a pass rate of 26.7%, which is
lower than both re-translating the original problem alone (29.3%) and using few-shot examples
(30%). This suggests that incorporating information from semantic errors may introduce noise into
the formalization process. Statements with semantic errors may benefit more from diversity in
formalizations rather than modifications based solely on the initial incorrect version. Experiment
data is shown in Table

Table 6: The effect of error feedback on formalization accuracy.
ERROR TYPE ~ NO ERROR FEEDBACK WITH ERROR FEEDBACK FEW-SHOT EXAMPLES

Syntax error 60.0% 66.7% -
Semantic error 29.3% 26.7% 30.0%

5.5 TESTING AS A BENCHMARK FOR AUTOMATED THEOREM PROVERS

To assess the relative difficulty of formal mathematical datasets, we benchmark three state-of-the-
art provers—Kimina-Prover, Goedel-Prover, and DeepSeek-Prover-V1.5-RL—on our newly con-
structed FMC dataset. Each prover was run 32 times on 2,000 randomly sampled problems from
the 6,994 formal statements, with consistent hyperparameters to ensure statistical reliability. As
shown in Table |7} MiniF2F yields relatively high pass rates (e.g., 63.1% for Kimina-Prover), while
performance drops sharply on our dataset: 17.6% for Kimina-Prover, 18.3% for Goedel-Prover, and
8.6% for DeepSeek-Prover-V1.5-RL. The difficulty of our dataset is comparable to ProofNet and
FormalMATH, with DeepSeek-Prover-V1.5-RL performing even worse on FMC than on Formal-
MATH. These results confirm that our dataset provides a substantial challenge and clearly differen-
tiates prover performance on moderately complex formal reasoning tasks, underscoring its value as
a benchmark.

Table 7: Test results of different automated theorem provers. Each verification task was evaluated
over 32 runs on 2, 000 randomly sampled formal problems.

DATASET KIMINA-PROVER GOEDEL-PROVER DEEPSEEK-PROVER-V1.5-RL
MiniF2F 63.1% 57.6% 50.0%
ProofNet - 15.2% 16.0%
FormalMATH 16.5% 13.5% 10.2%
FMC 17.6% 18.3% 8.6%

6 CONCLUSION

This paper reviews existing natural language—Lean aligned mathematical problem datasets, not-
ing that competition-level datasets are typically small, while automatically constructed ones often
lack guaranteed difficulty. To address this gap, we introduce an autoformalization pipeline with
error feedback and problem decomposition, which iteratively optimizes prompts based on gener-
ated feedback. The pipeline relies entirely on off-the-shelf general-purpose large language models,
showecasing their reasoning and formalization capabilities while reducing deployment costs.

Using this pipeline, we built a natural language—Lean dataset containing 3,214 natural language
problems and 6, 994 formalized Lean statements at Olympiad-level difficulty, achieving a semantic
accuracy of 66.99%. Ablation studies further demonstrate the advantages of Deepseek-R1 over
GPT-40-mini and Claude 3.7 Sonnet, as well as the positive impact of problem decomposition, few-
shot learning, and error feedback. Finally, evaluations with three state-of-the-art theorem provers
highlight the dataset’s challenging nature and value as a benchmark for formal reasoning.

USE OF LARGE LANGUAGE MODELS

In addition to the experiments mentioned in the article, large language models were also used in
aiding and polishing writing of this paper.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.7 Sonnet: Hybrid Reasoning Model for Complex Task Automation. Technical
Report, 2 2025. URL https://www.anthropic.com/news/claude-3-7-sonnetl

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level math-
ematics, 2023.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Han-
wen Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL
https://arxiv.org/abs/2507.23726.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sashank Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Bar-
ret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: scaling language modeling with pathways.
J. Mach. Learn. Res., 24(1), January 2023. ISSN 1532-4435.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In 2015 Conference on Automated Deduction, pp.
378-388. Springer, Cham, July 2015.

DeepSeek-Al Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,
2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-Al. Deepseek-v3 technical report, 2025b. URL https://arxiv.org/abs/2412.
19437

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving, 2025. URL https://arxiv.org/abs/2502.00212,

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. ArXiv,
abs/2310.01798, 2023. URL https://api.semanticscholar.org/CorpusID:
263609132

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Lingi Song, and Xiaodan Liang. MUSTARD: Mastering uniform synthesis of theorem and
proof data. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=8x110Ug9EW.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2507.23726
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2502.00212
https://api.semanticscholar.org/CorpusID:263609132
https://api.semanticscholar.org/CorpusID:263609132
https://openreview.net/forum?id=8xliOUg9EW

Under review as a conference paper at ICLR 2026

IMOmath. Problems from olympiads. |https://imomath.com/index.cgi?page=
problemsFromOlympiads, 2025. Accessed: 2025-03-14.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling
formal theorem proving with scaffolded data synthesis and self-correction, 2025. URL https:
//arxiv.org/abs/2508.03613.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. ACL, 2017.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. Fimo: A challenge for-
mal dataset for automated theorem proving, 2023. URL https://arxiv.org/abs/2309.
04295

Jungqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong Zhi, Jia Li,
and Zhengying Liu. Combibench: Benchmarking Ilm capability for combinatorial mathematics,
2025. URL https://arxiv.org/abs/2505.03171.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In André Platzer and Geoff Sutcliffe (eds.), Automated Deduction — CADE 28, pp. 625-635,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-79876-5.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Aut-
oformalizing Euclidean geometry. In International Conference on Machine Learning (ICML),
2024.

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774l

Christine Paulin-Mohring. Inductive definitions in the system coq - rules and properties. In In-
ternational Conference on Typed Lambda Calculus and Applications, 1993. URL https:
//api.semanticscholar.org/CorpusID:27548688.

Lawrence C. Paulson. Experience with Isabelle : A generic theorem prover. Technical Re-
port UCAM-CL-TR-143, University of Cambridge, Computer Laboratory, August 1988. URL
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-143.pdf.

Z. 7. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,
Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing for-
mal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL
https://arxiv.org/abs/2504.21801.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition, 2024. URL https://arxiv.org/abs/2407.11214.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqgi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu,
Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani,
Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding
Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying
Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning models with reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2504.11354,

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

11

https://imomath.com/index.cgi?page=problemsFromOlympiads
https://imomath.com/index.cgi?page=problemsFromOlympiads
https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2505.03171
https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:27548688
https://api.semanticscholar.org/CorpusID:27548688
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-143.pdf
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2407.11214
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2206.07682

Under review as a conference paper at ICLR 2026

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models, 2022. URL https:
//arxiv.org/abs/2205.12615.

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong
Du, Jie Yan, and Xing Hu. Stepfun-formalizer: Unlocking the autoformalization potential of
Ilms through knowledge-reasoning fusion, 2025. URL https://arxiv.org/abs/2508.
04440.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wau, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search. 2024. URL https://arxiv.org/abs/
2408.08152.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai, 2024. URL https://arxiv.
org/abs/2412.16075.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jlayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. In The Thirty-
eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?id=Vcw3vz jHDb.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, Yandong Wen, Ge Zhang, and Weiyang Liu. For-
malmath: Benchmarking formal mathematical reasoning of large language models, 2025. URL
https://arxiv.org/abs/2505.02735!.

Jiyao Zhang, Chengli Zhong, Hui Xu, Li Qige, Jiajia Tian, and Yi Zhou. KELPS: A frame-
work for verified multi-language autoformalization via semantic-syntactic alignment. In 2nd Al
for Math Workshop @ ICML 2025, 2025. URL https://openreview.net/forum?id=
U640PVSSOR.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2025. URL https://arxiv.org/abs/
2303.18223.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

A APPENDIX: CASE STUDY

In the process of translating mathematical problems into formal statements acceptable to theorem
provers, we have identified three main challenges: semantic gaps in problem representation, goal
definition issues, and missing conditions. This section analyzes these challenges through concrete
case studies.

A.1 SEMANTIC GAPS IN PROBLEM REPRESENTATION

Semantic gaps occur when formalized statements fail to accurately capture the mathematical essence
of original problems. These issues are particularly prominent in combinatorial mathematics and
recursive structure problems.

Original problem: n children sit in a circle. A teacher distributes candies clock-
wise starting from one child: gives to first, skips one, gives to next, skips two,

12

https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2508.04440
https://arxiv.org/abs/2508.04440
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://openreview.net/forum?id=Vcw3vzjHDb
https://arxiv.org/abs/2505.02735
https://openreview.net/forum?id=U640PVSSoR
https://openreview.net/forum?id=U640PVSSoR
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Under review as a conference paper at ICLR 2026

gives to next, and so on (increasing skips). Find n such that eventually every
child receives at least one candy.

Formalized output:
theorem candy_distribution (n : N)
dm : N, Vi : Finn, 3k : N,
n

k<mA (k x (k+3) /2 % =1 := by sorry

Analysis: The formalization exhibits three fundamental discrepancies. Primarily, there exists a
critical mismatch in the core mathematical expression: the adopted quadratic form (k(k + 3)/2)
fails to correspond with the actual skipping pattern, where triangular numbers % (k + 1)/2 would be
the correct characterization of the candy distribution rule. More critically, the conclusion remains
incomplete as the formalization merely proves the existence of qualifying n without characterizing
its essential property (specifically that n should be a power of two, n = 2F), thereby depriving the
result of practical applicability.

Original problem: Given triangle with sides a, b, ¢, construct new triangle with
sides s — a,s — b, s — ¢ where s is semiperimeter. Repeat until construction
impossible. Find initial triangles allowing infinite iteration.

Formalized output:

theorem indefinite_semiperimeter_triangle (a b c : R
)
(Vs : R, s=(a+b+c) /2 —

da’” b’ ¢’ : R,

a’ = s -aANb’" =s -bAc" =s -cA

a’ + b/ >c’”" Nb" + ¢’ >a” ANc'" + a’” > b A

Vn:N,

da’’ b’ ¢’ : R,
a’’ = (a”" + b +c’)y /2 - a A
b’’ (a’ + b + ¢’y / 2 - b A
c’'' = (a’” + b +c')y /2 -c" A
a’’ + b’’’ > c'’ A
bII + CI’ > aII /\
CII + al/ > bll) *>
a=Db ANDb=c := Dby sorry

Analysis: The formalization contains three critical flaws in recursive construction. Primarily, it
demonstrates insufficient recursion depth by explicitly building only two iteration levels (from
(a,b,c) to (a’, ',) to (a”,b", ")), failing to establish a genuine infinite recursion structure. Sec-
ondly, there exists structural discontinuity between iteration levels - the inputs of the second iteration
(a’, V', ') lack proper mathematical connection to the outputs of the first iteration (a, b, ¢), creating
an open-loop system that breaks recursive coherence.

A.2 GOAL DEFINITION ISSUES

Solving-oriented problems ("Find” type) often suffer from missing or misplaced goals, especially
when requiring specific values or function expressions.

Original problem: Find all functions f : R — R satisfying: (i) f(z + y) €

[f(z) + f(y), f(2) + f(y) + 1] (D) = € [0,1) = f(0) > f(z) (i) f(1)
IA=f(-1)=1

13

Under review as a conference paper at ICLR 2026

Formalized output:

theorem translated_theorem
4 f : R —- R,

Vxy R £fx+fy+12>f(x+y) Af (x+vy)
> f x + fy) A

(Vx : R, 0 < x x <1 — f0>1f x)

ANEf1l=1AN-f (1) =1 := by sorry

Analysis: The primary issue is goal misalignment: while the original problem demands "finding
all satisfying functions”, the formalized version merely proves the existence of such functions and
omits the concrete solution set, representing a substantial deviation from the original requirement.

Original problem: Let {f(n)} be strictly increasing sequence of positive inte-
gers where the n-th missing positive integer is f(f(n)) + 1. Find f(240).

Formalized output:

theorem test
(f : N = N)
(ho V n, 0 < £ n)
(hy : Vnm n<m— fn<fm
(ho Vn, dm, m=f (fn) + 1 AVk<m (31i, £
i=%k) - 34i<k, £f1i=k) :
f 240 = 38808 := by sorry

Analysis: The formalization exhibits two fundamental flaws. Firstly, it fails to properly characterize
the ’n-th missing positive integer” - while it expresses the relationship m = f(f(n)) + 1 using ex-
istential quantification, it lacks the necessary cardinality constraints to ensure this indeed represents
the n-th (rather than any arbitrary) missing number. More critically, the formalized conclusion’s
assertion that f(240) = 38808 is incorrect, revealing a serious validation failure.

A.3 MISSING CONDITIONS

Omission of critical conditions during formalization can lead to incorrect conclusions, particularly
dangerous in number theory problems.

Original problem: Let & > 14, p;, the largest prime strictly less than k (given
pr > 3k/4). Let n be composite. Prove: (a) If n = 2py, then n 1 (n — k)! (b) If
n > 2py, thenn | (n — k)!

Formalized output:

theorem part_a (k : N) (hk : k > 14)
(p_k : N) (hp_k : Nat.Prime p_k)
(h : p k < k) (h; : p_k > 3xk/4)

(n : N) (hn : —-Nat.Prime n)
(hn_eq : n = 2 % p_k)
-n | (n - k).factorial := by sorry

Analysis: The formalization exhibits several critical limitations. Most notably, it fails to explicitly
specify that p; must be the largest prime strictly less than k. While the theorem states that py
is prime and satisfies p, < k, the absence of the maximality condition introduces a fundamental
flaw—the conclusion may become invalid if multiple primes satisfy py < k.

14

Under review as a conference paper at ICLR 2026

B APPENDIX: COMPARISON WITH OTHER DATASETS

To validate the reliability of our dataset, we selected some mathematical problems which overlap
with FMC from FIMQOLi1u et al.| (2023)), CombiBenchLiu et al.| (2025)), and FormalMATHYu et al.
(2025)), and compared their formalization accuracy and stylistic differences. All three datasets adopt
Lean as their formal language.

B.1 FIMO

The FIMOLiu et al.| (2023) dataset contains problems drawn from the International Mathematical
Olympiad (IMO) Shortlisted Problems. Below is an example that appears in both FMC and FIMO.

Original problem: Prove that
22 Y2 52
>1
@—17 " y-17 (e-1p -

for all real numbers z, y, z, each different from 1, and satisfying xyz = 1.

FMC:
theorem test
(x v z : R)
(hg : x # 1)
(hy : y # 1)
(hy : z # 1)
(hg : x » y * z = 1) :
X2/ (x-1)"24+y°2/ (y-1)2+2z2"2 /) (z -
1)"2 > 1 := by sorry
FIMO:
theorem fimo_2008_algebra_p2_1
(x v z : R
(hg : x #1 ANy #1 ANz # 1)
(hy : x xy » z =1) :
X2/ (x=-1)"2+vy"2/ (y —-1)2+ 2z2"2/ (z -
1)"2 > 1 :=
begin
sorry
end

This problem involves simple conditions and a clear goal so that both formal statements accurately
capture the intended meaning with only minor differences. Specifically, FMC lists the assumptions
x # 1,y # 1 and z # 1 separately, while FIMO combines them into a single conjunctive premise.
From a formal reasoning perspective, FMC’s formulation facilitates usage of assumptions, whereas
FIMO’s version offers improved readability. Additionally, the two statements’ placeholder styles
differ: by sorry versus begin...sorry...end, reflecting style discrepancy between Lean
versions.

B.2 FORMALMATH

The FormalMATHYu et al.| (2025) dataset spans a wide range of topics, from high school Olympiad
problems to undergraduate-level theorems. Below are two examples found in both FMC and For-
malMATH.

e Case 1l

15

Under review as a conference paper at ICLR 2026

Original problem: Find all functions f : R — R such that for all real numbers

z,Y,
f(f@) +y) = f(@® —y) + 4y f(x).
FMC:
theorem test
(f : R - R)
(hg : Vxvy, £ (fx+y)=°Ff(x"2-y) +4 %y *
f x)
f=0V f=fun x => x " 2 := by sorry
FormalMATH:
theorem olymid_ref_base_11031 (f : R — R)
Vxy, £ (fx+y)=1%f (x "~ 2-vy) +4 vy * T x)
<
Vx, £fx=0VIEfx=x"2:=hby

Similar to the FIMO example, both formalizations are largely consistent and accurate with respect
to the natural language description.

e Case 2

Original problem: Show that for any integer n > 2 the sum of the fractions ﬁ,
where a and b are relatively prime positive integers such that a < b < n and
a + b > n, equals % (Integers a and b are called relatively prime if the greatest
common divisor of a and b is 1.)

FMC:

theorem test
(n : N)
(hg : 2 < n)

Finset.sum (Finset.filter (\lambda ab : N x N =>
ab.l < ab.2 AN ab.2 < n A ab.1 + ab.2 > n A
Nat.gcd ab.1l ab.2 = 1) (Finset.product
(Finset.Icc 1 n) (Finset.Icc 1 n))) (\lambda ab =
>1 / (ab.1 * ab.2 : Q) =1/ 2

by sorry

FormalMATH:

theorem olymid_ref_base_11032 {n : N} (hn : 2 < n)
¥ a : N, ¥ b : N,
(1f (a < b AN b <
then (1 / ((a =*
1/ 2 := by

n A Nat.Coprime a b A a + b > n)
b) : Q)) else 0) =

From a mathematical perspective, both versions express the same content rigorously. The key dif-
ference lies in stylistic preference: FMC uses Finset to denote finite sets in Lean, aligning with
Lean’s programming idioms, while FormalMATH opts for summation notation and i f. . .then

logic, which more closely resembles traditional mathematical expressions and improves human
readability.

16

Under review as a conference paper at ICLR 2026

B.3 COMBIBENCH

The CombiBenchLiu et al.| (2025) dataset contains 100 carefully selected combinatorial problems
formalized by mathematical experts, including all combinatorial IMO problems since 2000. Below
is an overlapping example found in both FMC and CombiBench.

Original problem: A magician has one hundred cards numbered 1 to 100 . He
puts them into three boxes, a red one, a white one, and a blue one, so that each
box contains at least one card. A member of the audience draws two cards from
two different boxes and announces the sum of numbers on those cards. Given this
information, the magician locates the box from which no card has been drawn.
How many ways are there to put the cards in the three boxes so that the trick
works? (Two ways are considered different if at least one card is put into a
different box.)

FMC:
theorem test
let cards : Finset N := Finset.range 100
let boxes : Finset (Finset N) := {0, 0, 0} —-

Placeholder for actual box definitions

Finset.card (Finset.filter (fun b : Finset N =>
Finset.Nonempty b) boxes) = 3 A

(V by by : Finset N, b; € boxes — by € boxes — b
% by > Vxy : N, x €bg >y € by —

V by by : Finset N, by € boxes — by € boxes — by #
by > Vzw:N, z €bg > w € by —

x +y # z + w) := by sorry
CombiBench:
abbrev Cards := Finset.Icc 1 100
abbrev Boxes := Fin 3
abbrev Trick := N — Boxes

def trick_works (f : Cards — Boxes) (t : Trick)

Prop :=

V ¢c; cg : Cards,

—-— given the sum of two cards from box 0 and box 1
then the trick gives the result of box 2

(fct =0 = fcg=1—1%t (c1.1 + c9.1) =2) A

—-— given the sum of two cards from box 0 and box 2
then the trick gives the result of box 1

(fct =0 — fcg =2 —t (c1.1 + co.1) =1) A

—-— given the sum of two cards from box 1 and box 2
then the trick gives the result of box 0

(fcit =1 = fcg =2 —=t (cp.1 + co.1) = 0)

theorem imo_2000_p4 (good_allocations : Finset

(Cards — Boxes))

(h : V £, £ € good_allocations
Function.Surjective £ A 3 (t : Trick),
trick_works f t)
good_allocations.card = imo_2000_p4_solution :=
by sorry

17

Under review as a conference paper at ICLR 2026

In this case, the formal statement in FMC does not precisely align with the original natural language
description. The problem specifies that, given the sum of two cards drawn from two different boxes,
the magician can uniquely identify the box from which no card was drawn. This implies that the set
of such pairwise sums for each pair of boxes must be disjoint, effectively serving as a signature for
the third box.

However, the FMC version fails to explicitly ensure that (b, bs) and (b3, by) refer to two distinct
pairs of boxes, violating the original problem constraints. Moreover, the formal statement does
not specify the desired conclusion (i.e., the number of valid configurations), resulting in a missing
goal. The approach also relies on explicit enumeration rather than set-based abstractions, making
the expression unnecessarily verbose.

In contrast, the CombiBench version resolves these issues by introducing explicit box indices and
counting mechanisms, leading to a clearer and more faithful formalization. This comparison sug-
gests that, for combinatorial problems, LLM-generated formalizations still fall short, and statements
formalized by mathematical experts retain a significant advantage.

C APPENDIX: PROMPTS

C.1 FORMAL TRANSLATION PROMPTS

There are two different stages of formal translation, the first goes with few-shot prompting and the
second goes with error feedback. Following is the prompt for translation with few-shot learning.

A math theorem in natural language will be provided and please translate it into a
Lean4 theorem. Please only return the translation (Lean4 code) and no analysis,
no mathlib4 import, no comments, no proof, no reasoning. Use := by sorry” as
a placeholder for proof. Here are some examples for it: {few_shot}. Following
the examples above, translate the next problem into Lean4: {problem}

Following is the prompt for translation with error feedback.

A math theorem in natural language will be provided and please translate it into a
Lean4 theorem. Please only return the translation (Lean4 code) and no analysis,
no mathlib4 import, no comments, no proof, no reasoning. Use ”:= by sorry”
as a placeholder for proof. Here is the theorem in natural language: {problem}.
Before your translation, note that this problem has been mistranslated as the fol-
lowing. Concrete errors have been listed and please avoid similar mistakes when
translating it again. Mistranslation: {failed_info}

C.2 PROBLEM DECOMPOSITION PROMPTS

Following is the prompt for problem decomposition.

You are a mathematical semantic analysis assistant. Your task is to analyze a
natural language math problem and decompose it into data types, conditions (as-
sumptions), and the proof goal.

Note: If the natural language problem does not explicitly provide the proof goal,
calculate the result first and include it as the proof goal.

Return the output strictly in JSON format, without any extra text or explana-
tions. Here are some examples for reference: {NL_shot} Now, this is the natural
language math problem: {NL}

18

Under review as a conference paper at ICLR 2026

Please decompose it and return in the following JSON format only:

{"data_type": ["typel", "type2"], "conditions":
["conditionl", "condition2"], "proof_goal": "Here 1is
the goal"}

C.3 SEMANTIC ALIGNMENT CHECK PROMPTS

Following is the prompt for semantic alignment check.

You are a mathematical semantic alignment assistant. You will be given:

1. A natural language problem, already decomposed into: {’data_type”:
[...], “conditions™: [...], ”proof_goal”: ”..””}

2. A Lean4 problem in its original code.

Your task is to compare the natural language problem decomposition and the
Lean4 problem in terms of data_type, conditions and proof_goal, and decide
whether they are same or different in their mathematical essence.

Any mismatch in these three area counts result in a “different problem.” Note:
Differences in variable names or implicit conditions derived from the given in-
formation do not indicate a different problem. Judge based on mathematical

equivalence, not superficial differences.

Return strictly in JSON format: {’Same”: true/false, ”Analysis”: Briefly ex-
plain.”}

Now please compare natural language: {NL} and Lean4: {problem_lean}, and
decide whether they are same or different in their mathematical essence.

D APPENDIX: FAILURE OF GEOMETRIC PROBLEMS

Figure [2] presents an incorrect formalization example. The original problem, described in natural
language, involves a mathematical proposition about the internal angle bisectors of a triangle, where
Meq, My, M denote the lengths of the three angle bisectors, and M, M;, M. represent their ex-
tended lengths intersecting the circumcircle. The objective is to prove an inequality along with the
conditions for equality. In the Lean formulation, although the angles /A , /B and ZC' are con-
strained between 0 and 7, and all six segment lengths are specified to be positive, with accurate
quantitative relationships given for I, Iy, [relative to the six known segments and the final goal
stated, the essential triangle constraint is missing. For example, the condition that the interior angles
of AABC sum to 180° is absent, and constraints involving angle bisectors, the circumcircle, and
their intersections—although implicit in the original problem—are not imposed. The LLM neglects
these implicit constraints during formalization. Additionally, the Lean statement lacks the goal of
proving the conditions under which the equality holds.

19

Under review as a conference paper at ICLR 2026

Natural Language

In a triangle AABC, let m,,my,m, be the lengths of the internal angle bisectors, M, M,,, M, the
lengths of these bisectors extended to the circumcircle,and /, = ﬂ, I, = ﬂ, .= &.

Ma Mb M('
la lh lc

Prove that — — —
sin“"A sin"B sin“C

> 3 with equality if and only if AABC is equilateral.

Lean

theorem angle_bisector_inequality
(ABC: R)
(hA : @ <A) (hB : @ <B) (hC : @< C)
(hA_lt_pi : A < Real.pi) (hB_lt_pi : B < Real.pi) (hC_lt_pi : C < Real.pi)
(m_ambmcMaMbMc:R)
(hm_a : @ < m_a) (hm_b : © < m_b) (hm_c : © < m_c)
(hM_a : @ < M_a) (hM_b : © < M b) (hM_c : © < M_c)
(lLalblc:R)
(hl_a : 1.a=ma/Ma) (hlb:1b=mb/Mb) (hlc:1lc=mc/Mc):
(1_a / (Real.sin A)72) + (1_b / (Real.sin B)*2) + (1l_c / (Real.sin C)"*2) 2 3 :=
by sorry

Figure 2: A failed formalization example in geometry.

20

	Introduction
	Related Work
	Large Language Models
	Formal Languages
	Automformalization

	Autoformalization Pipeline Design
	Translation
	Syntax Verification
	Semantic Alignment

	Dataset Construction
	Data Collection
	Data Preprocessing
	Dataset Construction and Evaluation

	Experiments
	Autoformalization Capability of Different LLMs
	Effect of different semantic alignment checking methods and LLMs
	Effect of Few-shot Learning
	Effect of Error Feedback
	Testing as a Benchmark for Automated Theorem Provers

	Conclusion
	Appendix: Case study
	Semantic Gaps in Problem Representation
	Goal Definition Issues
	Missing Conditions

	Appendix: Comparison with Other Datasets
	FIMO
	FormalMATH
	CombiBench

	Appendix: Prompts
	Formal Translation Prompts
	Problem Decomposition Prompts
	Semantic Alignment Check Prompts

	Appendix: Failure of Geometric Problems

