

000 LATENT-SPACE REINFORCEMENT LEARNING FOR IM- 001 AGE SEGMENTATION

002 **Anonymous authors**

003 Paper under double-blind review

004 ABSTRACT

005 Policy-gradient reinforcement learning is a theoretically grounded and empirically
006 effective algorithm for boosting the performance of LLMs and MLLMs, while its
007 adaptation to conventional vision tasks such as dense prediction remains marginal.
008 In response, this work introduces a latent-space reinforcement learning framework
009 designed for image segmentation with task-specific model architectures, aiming to
010 investigate whether the advantages conferred by reinforcement learning in LLMs
011 and MLLMs, including improved predictive performance, mitigation of forgetting
012 and enhanced generalization, can be effectively transferred to conventional dense
013 prediction tasks. The designed framework is instantiated with a latent-space policy
014 network for feature representation modulation, a stabilized advantage formulation
015 that underpins reliable policy updates, a segmentation-aligned reward formulation
016 that quantifies segmentation quality, and a hybrid loss to enhance training stability
017 and learning efficiency. The effectiveness of our proposed framework is validated
018 through integration with widely used semantic segmentation models and empirical
019 evaluation under cross-domain and continual learning settings. Across diverse and
020 challenging benchmarks, the proposed framework delivers consistent performance
021 gains, demonstrating its practical efficacy and highlighting its potential for broader
022 application in future research.

023 1 INTRODUCTION

024 Policy-gradient reinforcement learning emerges as a powerful optimization paradigm that augments
025 the expressiveness and generalization capacity of LLMs and MLLMs Ouyang et al. (2022); Liu et al.
026 (2024); Yang et al. (2025). Besides, it enables sophisticated reasoning capabilities Hou et al. (2025);
027 Yue et al. (2025a), improves factual reliability Roit et al. (2023); Tian et al. (2023); Jiao et al. (2025),
028 and enforces alignment with user intent, safety considerations, and ethical principles, to name a few
029 Achiam et al. (2017); Yuan et al. (2023); Dai et al. (2023); Tennant et al. (2024).

030 In contrast to its demonstrated impact on LLMs and their multimodal counterparts, the application of
031 policy-gradient reinforcement learning to conventional vision domains, such as image segmentation,
032 remains underexplored. To bridge this gap, this study aims to investigate the applicability of policy-
033 gradient reinforcement learning to semantic segmentation and evaluates whether this integration can
034 yield measurable benefits in predictive performance and generalization. Specifically, translating this
035 paradigm into the domain of dense visual prediction introduces several unique challenges,

- 036 • **Action Space Complexity.** In LLMs and MLLMs, policy-gradient reinforcement learning
037 typically operates over the token level, where each action corresponds to selecting a discrete
038 token from a finite vocabulary Achiam et al. (2023); Yang et al. (2025); Zhou et al. (2025).
039 By comparison, semantic segmentation requires the simultaneous prediction of dense,
040 per-pixel labels over high-resolution input images, which gives rise to a high-dimensional and
041 spatially correlated action space and thus significantly complicates policy optimization.
- 042 • **Pre-training Disparity.** Reinforcement learning in LLMs and MLLMs is typically applied
043 after large-scale supervised or self-supervised pre-training on trillions of tokens, generating
044 models that assign high probabilities to semantically meaningful token sequences and thus
045 provide well-initialized action distributions for subsequent policy optimization Dubey et al.
046 (2024); Liu et al. (2024); Yang et al. (2025). In contrast, segmentation models are typically

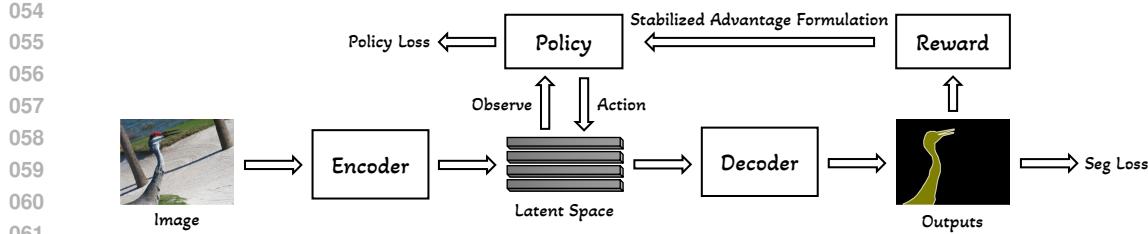


Figure 1: Illustration of latent-space reinforcement learning in semantic segmentation.

initialized from vision backbones pre-trained on either image-level classification tasks, *e.g.*, ResNet and ViT Long et al. (2015); Zheng et al. (2021), or self-supervised objectives such as masked image modeling He et al. (2022); Bao et al. (2021), over comparatively smaller-scale image datasets like ImageNet Deng et al. (2009). The mismatch between pre-training (image-level understanding) and fine-tuning (pixel-level decision-making), combined with the limited scale of vision pre-training data, results in poorly initialized action distributions for dense prediction tasks. This significantly impairs the stability of reinforcement learning and renders early-stage policy optimization particularly susceptible to divergence.

- **Reward Granularity and Sparsity.** Unlike LLMs and MLLMs, where rewards align with token-level generation, segmentation metrics like mIoU and Dice provide only image-level feedback. This coarse supervision hampers credit assignment across pixel-wise actions and leads to unstable policy updates.

Building upon the challenges outlined above, this work designs a latent-space reinforcement learning framework tailored for image segmentation. Operating in the latent space offers two key advantages: first, the spatial resolution of feature maps is considerably lower than that of the input image, which reduces the size of the action space and alleviates optimization complexity. Moreover, feature-level actions exhibit greater flexibility, as variations in feature representations can correspond to the same semantic class, whereas pixel-level actions are strictly tied to fixed label assignments.

Figure 1 illustrates the overall pipeline of the proposed algorithm. Given a segmentor comprising an encoder and decoder, we introduce a policy module that observes the latent-space features produced by the encoder and generates modulation signals to guide features adaptation prior to decoding. The segmentation outputs are then adopted to compute reward signals, which in turn drive policy updates via standard policy-gradient optimization Sutton et al. (1999). To further address the aforementioned challenges, we introduce several targeted design components within the proposed pipeline, including a task-aligned reward function to estimate prediction quality, a stabilized advantage formulation with temporal smoothing to reduce reward variance and ensure stable and effective policy updates, and a hybrid loss that combines policy-gradient objectives and supervised segmentation signals, similar in spirit to VAPO Yue et al. (2025b), to mitigate pre-training disparity and reward sparsity issues.

The principal contributions of this work can be articulated as follows,

- We present the first latent-space formulation of policy-gradient reinforcement learning for image segmentation, indicating that key benefits observed in LLMs and MLLMs, including improved performance, reduced forgetting, and enhanced generalization, can be effectively extended to conventional segmentation settings.
- To address the unique issues of applying reinforcement learning to dense visual prediction, we introduce a latent-space reinforcement learning framework comprising a policy network for modulating intermediate feature representations, a stabilized advantage formulation for robust policy updates, a task-aligned reward function for prediction quality estimation, and a hybrid loss that combines policy-gradient and supervised signals to alleviate pre-training mismatch and reward sparsity.
- We empirically validate the proposed algorithm across multiple segmentation architectures and standard benchmarks, indicate its effectiveness in continual learning and cross-domain settings, and conduct ablations to evaluate the role of each design choice.

We hope this study will inspire future research on integrating policy-gradient reinforcement learning into conventional vision tasks beyond semantic segmentation.

108

2 RELATED WORK

110 **Semantic Segmentation.** Semantic segmentation is the process of assigning a label to each pixel in
 111 a given image so that pixels with the same label share certain visual characteristics or are associated
 112 with the same semantic category. In the deep learning era, semantic segmentation is usually tackled
 113 through encoder-decoder architectures Long et al. (2015). Within this framework, a substantial body
 114 of influential studies continues to emerge and could be categorized according to their methodological
 115 focuses, including contextual information aggregation Zhao et al. (2017); Chen et al. (2017); Yuan
 116 et al. (2020); Jin et al. (2022; 2023), objective function optimization Seo et al. (2020); Jadon (2020);
 117 Zhao et al. (2020); Eelbode et al. (2020); Shirokikh et al. (2020), feature encoder enhancement Liu
 118 et al. (2021); Dosovitskiy et al. (2020); He et al. (2022); Xia et al. (2024), and segmentation decode
 119 flow reconfiguration Cheng et al. (2022); Zhang et al. (2021); Zhou et al. (2022).

120 In addition to methodological advances, semantic segmentation research continues to expand across
 121 diverse evaluation settings, *e.g.*, cross-domain semantic segmentation which focuses on performance
 122 under domain shifts between training and testing data Lv et al. (2020); Gong et al. (2023); Luo et al.
 123 (2024), continual semantic segmentation which aims to incrementally learn new classes or domains
 124 without catastrophic forgetting Douillard et al. (2021); Toldo et al. (2024); Zhang et al. (2024); Yin
 125 et al. (2025), few-shot and zero-shot segmentation which explore generalization to new classes with
 126 limited or no labeled examples Wang et al. (2019); Bucher et al. (2019); Ding et al. (2022); He et al.
 127 (2024), and semi-supervised or weakly supervised segmentation which reduce dependence on dense
 128 annotations by leveraging unlabeled or weakly labeled data Wei et al. (2016); Ouali et al. (2020).

129 Building upon established network architectures and diverse evaluation settings, this study explores
 130 the integration of policy-gradient reinforcement learning as a means to enhance model performance.

131 **Reinforcement Learning.** Reinforcement learning (RL) is a learning framework in which an agent
 132 learns to make sequential decisions by interacting with the environment and receiving reward-based
 133 feedback Kaelbling et al. (1996). Based on their underlying learning formulation, RL algorithms are
 134 typically categorized into three major classes: *value-based methods*, which estimate value functions
 135 to guide action selection Hester et al. (2018); Hou et al. (2017); Sun et al. (2022); Lobel et al. (2023),
 136 *policy-based methods*, which directly optimize a parameterized policy Schulman et al. (2015); Sutton
 137 et al. (1999); Schulman et al. (2017); Shao et al. (2024); Yu et al. (2025), *actor-critic paradigms*,
 138 which combine value estimation and policy learning to enable more stable and efficient optimization
 139 Grondman et al. (2012); Andrychowicz et al. (2021); Duan et al. (2021); Zanette et al. (2021); Ma
 140 et al. (2025). This study investigates the application of policy-based methods to conventional vision
 141 tasks, with a particular focus on semantic segmentation.

142 **RL for Semantic Segmentation.** Early efforts in this area adopt RL to frame semantic segmentation
 143 as a sequential decision-making process Casanova et al. (2020); Duan et al. (2022); Tian et al. (2022).
 144 For instance, RL-CoSeg Duan et al. (2022) formulates image co-segmentation as a Markov Decision
 145 Process and leverages an asynchronous advantage actor-critic strategy to iteratively optimize region
 146 boundaries across related images. Recent studies continue to expand RL applications to a variety of
 147 segmentation scenarios, including medical imaging Liu et al. (2025a), robotics Zhang et al. (2025),
 148 and reasoning-aware segmentation Liu et al. (2025b). Among prior efforts, PixelDRL-MG Liu et al.
 149 (2025a) proposes a pixel-level asynchronous actor-critic framework wherein each pixel is treated as
 150 an agent, and a shared policy network progressively refines outputs from coarse to fine.

151 In contrast to prior approaches, we investigate the integration of policy-gradient RL directly within
 152 conventional segmentation networks without relying on large foundation models. To the best of our
 153 knowledge, this is the first work to incorporate RL-based policy optimization into the latent space
 154 of semantic segmentation networks.

155

3 METHODOLOGY

158 In this section, we begin by presenting the semantic segmentation paradigm, which is built upon an
 159 encoder-decoder architecture forming the backbone of the proposed approach. We then elaborate on
 160 the incorporation of policy-gradient RL into the latent feature space, emphasizing its contribution to
 161 enhancing representational capacity and segmentation accuracy. At last, we describe the key designs
 162 of our framework, *e.g.*, the advantage formulation, reward design and hybrid loss.

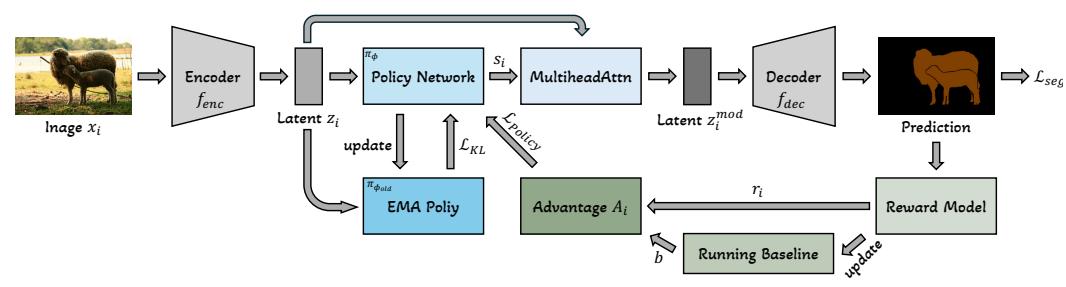


Figure 2: Overview of the introduced latent-space RL framework for semantic segmentation. Latent-space features z_i extracted by the encoder are modulated by a policy network π_ϕ through stochastic Gaussian sampling, and decoded into segmentation outputs. Rewards r_i and advantages A_i regulate policy optimization via a clipped objective with a KL penalty against an EMA-stabilized reference.

3.1 SEMANTIC SEGMENTATION PIPELINE

We begin by formalizing the task of semantic segmentation. Let $\mathcal{X} \subset \mathbb{R}^{H \times W \times 3}$ denote the space of input images and let $\mathcal{Y} \subset \{1, \dots, K\}^{H \times W}$ represent the space of pixel-wise segmentation masks in which K is the number of semantic categories. The goal is to learn a composite mapping,

$$f_{dec} \circ f_{enc} : \mathcal{X} \rightarrow \mathcal{Y}, \quad (1)$$

where:

- $f_{enc} : \mathcal{X} \rightarrow \mathcal{Z}$ is the **encoder**, mapping input images to latent-space features $\mathcal{Z} \subset \mathbb{R}^{h \times w \times d}$, where h and w denote spatial dimensions and d the feature channels.
- $f_{dec} : \mathcal{Z} \rightarrow \mathcal{Y}$ is the **decoder**, mapping latent features to pixel-wise segmentation masks.

Given a dataset $(x_i, y_i)_{i=1}^N$ consisting of input images x_i and their corresponding ground truth masks y_i , the segmentor is trained by minimizing a pixel-wise loss, typically the cross-entropy loss,

$$\mathcal{L}_{seg}(\theta) = -\frac{1}{N} \sum_{i=1}^N \sum_{p \in \Omega} \sum_{k=1}^K \mathbf{1}(y_i^p = k) \log P(f_{dec}(f_{enc}(x_i))^p = k), \quad (2)$$

where Ω denotes the set of pixel locations, y_i^p is the ground-truth label at location p and the function $\mathbf{1}(y_i^p = k)$ is an indicator that equals 1 if the ground-truth label at location p belongs to class k , and 0 otherwise. $f_{dec}(f_{enc}(x_i))^p$ is the predicted probability of class k at location p . The parameter set θ includes all learnable weights in f_{enc} and f_{dec} .

The intermediate representation $z_i = f_{enc}(x_i) \in \mathbb{R}^{h \times w \times d}$ encodes semantic information of the input image and defines the latent space. We next present the proposed RL algorithm that operates directly on this latent space $z_i \in \mathbb{R}^{h \times w \times d}$.

3.2 LATENT-SPACE REINFORCEMENT LEARNING

To move beyond canonical supervised learning formulations in semantic segmentation, we propose a latent-space RL framework that adaptively modulates intermediate feature representations through policy optimization, after which the modulated features are decoded into segmentation predictions.

MDP Formulation. We recast this problem in the language of Markov Decision Processes (MDPs). Unlike autoregressive language models Achiam et al. (2023); Liu et al. (2024), wherein RL operates over sequential token generation with long trajectories, semantic segmentation produces predictions simultaneously across all pixels of x_i . This eliminates temporal dependencies and renders semantic segmentation more naturally aligned with a *contextual bandit*, which can be viewed as a degenerate one-step MDP. Formally, the MDP is defined as $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \gamma)$, where:

- the state \mathcal{S} is the latent-space feature representations $z_i = f_{enc}(x_i)$,
- the action \mathcal{A} is the modulation signal s_i sampled from a Gaussian policy π_ϕ ,

- 216 • the transition \mathcal{P} is the deterministic decoding $f_{\text{dec}}(z_i, s_i)$,
- 217 • the reward \mathcal{R} is computed from task metrics, *e.g.*, mIoU and Dice,
- 218 • the discount factor is $\gamma = 1$, as each image forms a one-step decision.

220 This contextual-bandit view treats each image as an independent episode where the policy observes
 221 latent-space features, selects modulation actions, and receives immediate rewards.
 222

223 **Overview of the Latent-space RL Framework.** As illustrated in Figure 2, let z_i denote the latent-
 224 space representation extracted from an input image x_i using the encoder. Since z_i encodes high-level
 225 semantic patterns, it serves as the input to a latent-space policy network π_ϕ . This policy network π_ϕ
 226 treats each feature channel as a Gaussian distribution and provides a stochastic modulation signal s_i
 227 by sampling from $\mathcal{N}(\mu_i, \sigma_i^2)$, where μ_i and σ_i^2 are predicted from a compressed projection of z_i . To
 228 enable differentiable sampling, the reparameterization trick is applied. The sampled signal s_i is then
 229 adopted to modulate z_i through a lightweight cross-attention mechanism, producing policy-adaptive
 230 features for decoding into segmentation predictions.

231 To optimize π_ϕ , we leverage Proximal Policy Optimization (PPO) Schulman et al. (2017), replacing
 232 the standard advantage estimator with our introduced stabilized advantage formulation. Specifically,
 233 after computing the segmentation logits from the decoder f_{dec} , prediction quality is assessed utilizing
 234 task-specific metrics, *e.g.*, mIoU and Dice. These metrics are transformed into scalar rewards r_i for
 235 x_i . To stabilize updates of π_ϕ , a running baseline b is maintained, and the advantage is computed as,
 236

$$A_i = \text{clamp}(r_i - b, a_{\min}, a_{\max}), \quad (3)$$

237 where a_{\min} and a_{\max} are thresholds introduced to control gradient variance. The policy objective is
 238 defined as,

$$\mathcal{L}_{\text{Policy}} = -\mathbb{E} [\min(\rho_i A_i, \text{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) A_i)], \quad (4)$$

239 with $\rho_i = \exp(\log \pi_\phi(s_i) - \log \pi_{\phi_{\text{old}}}(s_i))$ representing the importance ratio between the current and
 240 EMA-stabilized reference policies. To constrain policy shift, a KL divergence penalty is imposed,
 241

$$\mathcal{L}_{\text{KL}} = \beta \cdot \text{KL}(\pi_{\phi_{\text{old}}} \parallel \pi_\phi). \quad (5)$$

242 The overall training objective integrates supervised segmentation with RL-based regularization,
 243

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{seg}} + \lambda_{\text{Policy}} \mathcal{L}_{\text{Policy}} + \lambda_{\text{KL}} \mathcal{L}_{\text{KL}}, \quad (6)$$

244 where \mathcal{L}_{seg} is the standard pixel-wise loss and $\lambda_{\text{Policy}}, \lambda_{\text{KL}}$ are balancing coefficients.
 245

246 Table 1: Comparison of hybrid training regimes for integrating reinforcement learning into semantic
 247 segmentation. Experiments are conducted using FCN on PASCAL VOC 2012. Results are reported
 248 as mean \pm std of mIoU (%) over five runs.
 249

Optimization Schedule	Mean \pm Std
Pre-training on ImageNet \rightarrow SFT on PASCAL VOC 2012 \rightarrow RL on PASCAL VOC 2012	68.5 ± 0.90
Pre-training on ImageNet \rightarrow only RL on PASCAL VOC 2012	6.4 ± 3.33
Pre-training on ImageNet \rightarrow joint SFT + RL on PASCAL VOC 2012	78.5 ± 0.43

250 **Discussion of Hybrid Objectives.** Eq. (6) facilitates RL to directly regulate latent-space modulation
 251 through task-level rewards, while maintaining the efficiency of supervised feature learning.
 252

253 In the literature on LLMs and MLLMs, hybrid training typically follows one of three paradigms,
 254

- 255 • pre-training followed by supervised fine-tuning (SFT) and then RL Achiam et al. (2023),
- 256 • pre-training followed directly by RL Liu et al. (2024),
- 257 • pre-training followed by alternating or joint SFT and RL Dey et al. (2021) as formulated in
 258 Eq. 6 (*i.e.*, pre-train on ImageNet and then joint SFT and RL on task-specific benchmarks).

259 We assess the applicability of these hybrid optimization paradigms to semantic segmentation through
 260 a series of preliminary experiments. As shown in Table 1, the joint SFT and RL strategy, instantiated
 261 in our designed formulation Eq. 6, obtains the highest performance, exhibiting both effectiveness and
 262 stability. In contrast, directly applying RL without prior SFT induces pronounced task misalignment,
 263 as the pre-trained model lacks sufficient adaptation to the segmentation objective. This misalignment
 264

270 results in a suboptimal initialization of the RL action space, culminating in severely degraded model
 271 performance. Besides, applying RL subsequent to SFT obtains only modest performance, likely due
 272 to over-fitting introduced during SFT, a phenomenon exacerbated by the limited size of segmentation
 273 datasets compared to those exploited in LLMs or MLLMs training. Once over-fitting occurs, RL has
 274 limited capacity to further improve the model.

275 In our preliminary experiments, similar observations hold when adopting backbones pre-trained with
 276 self-supervised objectives including masked image modeling He et al. (2022). This can be attributed
 277 to the misalignment between pre-training and semantic segmentation objectives, the smaller size of
 278 vision pre-training datasets and the random initialization of the decoder, which collectively limit the
 279 quality of action initialization for RL.

280 **Latent-Space Policy Network.** We design a latent-space policy network π_ϕ to generate a stochastic
 281 modulation signal s_i conditioned on latent-space features z_i . The core idea is to model each feature
 282 channel, which typically encodes a distinct semantic pattern, as a Gaussian distribution, from which
 283 a channel-specific modulation signal is sampled to guide decoding process adaptively. By modeling
 284 each channel as an independent Gaussian, the policy can selectively refine the semantic information
 285 of z_i such as object parts or textures prior to decoding.

286 To achieve this, π_ϕ first applies a sequence of L convolutional blocks to z_i ,

$$288 \text{ConvProj}_\phi(z_i) = \mathcal{B}_\phi^{(L)} \circ \dots \circ \mathcal{B}_\phi^{(2)} \circ \mathcal{B}_\phi^{(1)}(z_i), \quad (7)$$

289 followed by adaptive average pooling to a fixed spatial resolution, resulting in $z'_i \in \mathbb{R}^{P_h \times P_w \times d}$. The
 290 block $\mathcal{B}_\phi^{(\ell)}$ for $\ell = 1, \dots, L$ is defined as,

$$292 \mathcal{B}_\phi^{(\ell)}(z_i) = \text{ReLU}(\text{BN}^{(\ell)}(\text{Conv}^{(\ell)}(z_i))), \quad (8)$$

294 where ϕ denotes the learnable parameters. In our implementation, we use $L = 4$. The pooled feature
 295 z'_i is then flattened across spatial dimensions to obtain a channel-wise descriptor,

$$296 \bar{z}_i = \text{Flatten}(z'_i) \in \mathbb{R}^{(P_h \cdot P_w) \times d}. \quad (9)$$

297 From this descriptor, π_ϕ predicts the mean and log standard deviation for each feature channel,

$$299 \mu_i = \text{fc}_\mu(\bar{z}_i), \quad \log \sigma_i = 4 \cdot \tanh(\text{fc}_{\log \sigma}(\bar{z}_i)), \quad (10)$$

300 where both $\mu_i, \log \sigma_i \in \mathbb{R}^d$, and the scaling factor 4 is adopted to stabilize exploration. A modulation
 301 signal is then sampled leveraging the reparameterization trick which enables differentiable stochastic
 302 sampling, thereby supporting effective exploration and facilitating gradient-based credit assignment
 303 from reward signals,

$$304 s_i = \mu_i + \sigma_i \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1), \quad s_i \in \mathbb{R}^{h \times w \times d}. \quad (11)$$

306 The log-probability of the sampled modulation s_i is given by,

$$307 \log \pi_\phi(s_i) = \sum_{h,w,d} \log \mathcal{N}(s_i^{(h,w,d)} | \mu_{i,d}, \sigma_{i,d}^2), \quad (12)$$

309 and is used for computing the policy gradient during training.

311 **Attention-Based Modulation.** To inject s_i into the semantic feature space, we propose an attention-
 312 based modulation module that adaptively refines z_i conditioned on s_i . We begin by aligning s_i with
 313 z_i through a lightweight convolutional projection, ensuring dimensional and semantic compatibility,

$$314 s'_i = \mathcal{B}(s_i) = \text{ReLU}(\text{BN}(\text{Conv}(s_i))), \quad s'_i \in \mathbb{R}^{h \times w \times d}. \quad (13)$$

315 The transformed signal s'_i is then used to modulate z_i via a multi-head attention mechanism,

$$317 z_i^{\text{mod}} = \text{MultiheadAttention}(z_i - s'_i, z_i, z_i), \quad (14)$$

318 where z_i^{mod} is the resulting policy-adaptive representation that incorporates modulation signals into
 319 the semantic context. To improve training stability, we apply a learnable scaling factor α to z_i^{mod} and
 320 concatenate it with z_i before feeding into the decoder.

321 **Reward Design.** To effectively guide latent-space reinforcement learning in semantic segmentation,
 322 we adopt a composite reward function that integrates multiple task-relevant evaluation metrics.

323 Specifically, the reward comprises the following components,

- r^{IoU} : Measures region-level alignment adopting the Intersection-over-Union (IoU) between predicted and ground-truth masks.
- r^{Dice} : Focuses on foreground overlap, helping in class-imbalanced scenarios.
- r^{CE} : Inverse of cross-entropy loss, promoting pixel-wise accuracy.
- r^{Boundary} : Measures edge accuracy by comparing predicted and ground-truth boundaries.

The final reward signal used for policy optimization is defined as,

$$r = \lambda_{\text{IoU}} r^{\text{IoU}} + \lambda_{\text{Dice}} r^{\text{Dice}} + \lambda_{\text{CE}} r^{\text{CE}} + \lambda_{\text{Boundary}} r^{\text{Boundary}}, \quad (15)$$

where $\lambda_{\text{IoU}}, \lambda_{\text{Dice}}, \lambda_{\text{CE}}, \lambda_{\text{Boundary}}$ are weighting coefficients that balance the influence of each reward term. In our implementation, we use $\lambda_{\text{IoU}} = \lambda_{\text{Dice}} = \lambda_{\text{CE}} = \lambda_{\text{Boundary}} = 1$.

Advantage Formulation. To stabilize training and reduce variance in policy gradient estimates, we utilize a momentum-based baseline to compute the advantage function, which quantifies the relative quality of the action of the current policy.

Given the scalar reward r_i for each input x_i , we maintain an exponential moving average baseline b ,

$$b \leftarrow \tau b + (1 - \tau) \cdot \bar{r}, \quad (16)$$

where $\tau \in [0, 1]$ is the smoothing coefficient and \bar{r} is the mean reward across the current mini-batch. The advantage is then computed by subtracting the baseline,

$$A_i = r_i - b. \quad (17)$$

To further enhance training stability, we clip the advantage values within a bounded interval,

$$A_i \leftarrow \text{clamp}(A_i, a_{\min}, a_{\max}), \quad (18)$$

mitigating the influence of outlier gradients.

Historical Policy. To estimate the importance ratio ρ_i in Eq. (4), and the KL regularization term in Eq. (5), we maintain a historical policy network $\pi_{\phi_{\text{old}}}$ as a stable reference. This network is updated using an exponential moving average (EMA) of the current policy parameters,

$$\phi_{\text{old}} \leftarrow \eta \cdot \phi_{\text{old}} + (1 - \eta) \cdot \phi, \quad (19)$$

where $\eta \in [0, 1]$ controls the update momentum.

This EMA update gives rise to a stable reference policy for computing ρ_i and KL divergence, helping to reduce gradient variance and prevent policy collapse. Importantly, $\pi_{\phi_{\text{old}}}$ is used only for evaluation and excluded from gradient updates, ensuring temporal consistency during training.

4 EXPERIMENTS

This section presents a comprehensive experimental evaluation of the proposed algorithm. We begin by detailing the experimental setup such as benchmark datasets, baseline models and implementation specifics. We then report the primary results in comparison with competitive baselines, followed by systematic ablation studies to analyze the contribution of each design element in our framework.

4.1 EXPERIMENTAL SETUP

Benchmark Datasets. We evaluate on ADE20K Zhou et al. (2017), Cityscapes Cordts et al. (2016), and PASCAL VOC Long et al. (2015), three semantic segmentation benchmarks with varying scene types and annotation granularity. ADE20K includes 27,574 scene-centric images across 150 classes, Cityscapes provides 5,000 finely annotated urban street-scene samples, annotated with 30 semantic categories, commonly evaluated over a standard subset of 19 semantic labels. PASCAL VOC offers 21-class annotations, and we use its widely adopted augmented training set with 10,582 images.

Baseline Models. We compare our method with representative baselines under various settings. For supervised semantic segmentation, we adopt FCN Long et al. (2015), SETR Zheng et al. (2021) and Segformer Xie et al. (2021). In the continual semantic segmentation settings, we benchmark against

378 Table 2: Performance improvements of Latent-Space RL in supervised semantic segmentation tasks
 379 across diverse segmentation architectures. Parentheses indicate gains over baseline models.
 380

Method	Backbone	ADE20K (mIoU)	Cityscapes (mIoU)	PASCAL VOC (mIoU)
FCN	ResNet-50	37.0	75.2	67.8
FCN + Latent-Space RL	ResNet-50	44.1 (+7.1)	79.8 (+4.6)	78.5 (+10.7)
Segformer	MiT-B1	42.3	78.6	77.5
Segformer + Latent-Space RL	MiT-B1	43.4 (+1.1)	79.8 (+1.2)	78.7 (+1.2)
Segformer	MiT-B3	48.3	82.0	82.0
Segformer + Latent-Space RL	MiT-B3	49.8 (+1.5)	83.3 (+1.3)	83.5 (+1.5)
SETR-Naive	ViT-Large	48.4	78.4	84.5
SETR-Naive + Latent-Space RL	ViT-Large	49.5 (+1.1)	80.2 (+1.8)	85.5 (+1.0)

389 Table 3: Performance improvements of Latent-Space RL in continual semantic segmentation across
 390 varying settings on PASCAL VOC 2012 and ADE20K. Parentheses indicate gains over baselines.
 391

Dataset	Method	15-5 (2 steps)				15-1 (6 steps)				10-1 (11 steps)			
		0-15	16-20	all	0-15	16-20	all	0-10	11-20	all	0-10	11-20	all
VOC 2012	PLOP	76.2	49.6	69.9	66.9	19.7	55.7	46.4	15.3	31.6	42.3 (+10.7)	22.6	31.6
	PLOP + Latent-Space RL	78.2	59.2	73.7 (+3.8)	71.3	34.1	62.4 (+6.7)	60.3	22.6	31.6			
ADE20K	PLOP	100-50 (2 steps)				100-10 (6 steps)				100-5 (11 steps)			
	PLOP + Latent-Space RL	41.9	14.9	32.9	40.5	13.6	31.6	39.1	7.8	28.8	41.6	15.0	32.7 (+3.9)
	PLOP + Latent-Space RL	44.1	19.2	35.8 (+2.9)	42.2	17.5	34.0 (+2.4)	41.6	15.0	32.7 (+3.9)			

399 PLOP Douillard et al. (2021). For cross-domain evaluation, we use FCN as the base model to assess
 400 generalization across domains.
 401

402 **Reproducibility.** Our reinforcement learning framework is implemented in PyTorch and trained on
 403 $2 \times$ NVIDIA H200 GPUs (141 GB memory per card). Inference is conducted on a single H200 GPU.
 404 We will release the complete source code to facilitate reproducibility.

405 **Evaluation Metrics.** Following standard practice, we utilize mean Intersection over Union (mIoU)
 406 as the main evaluation metric. For continual semantic segmentation, we report three mIoU variants,
 407 *i.e.*, mIoU on the initial class set \mathcal{C}^0 , mIoU on the incremental class sets $\{\mathcal{C}^1, \dots, \mathcal{C}^T\}$ and mIoU on
 408 all learned classes $\{\mathcal{C}^0, \dots, \mathcal{C}^T\}$, following established protocols Douillard et al. (2021).

409 **Implementation Details.** For both supervised and cross-domain semantic segmentation, we adhere
 410 to the default training configurations provided by SSSegmentation Jin (2023), such as segmentation
 411 model initialization, optimization settings and data augmentation strategies. For continual semantic
 412 segmentation, we utilize the official implementation and protocols of PLOP Douillard et al. (2021).
 413 All experiments are repeated five times with different random seeds (*i.e.*, from zero to four), and the
 414 reported results correspond to the average performance across runs.
 415

4.2 MAIN RESULTS

417 To validate the effectiveness of the proposed latent-space RL framework for semantic segmentation,
 418 we conduct extensive experiments under three settings, including supervised semantic segmentation,
 419 continual learning and cross-domain generalization, using standard benchmarks and architectures.
 420

421 As shown in Table 2, integrating latent-space RL consistently improves performance across diverse
 422 architectures and datasets. For instance, FCN with latent-space RL achieves mIoU gains of 7.1% on
 423 ADE20K, 4.6% on Cityscapes and 10.7% on PASCAL VOC. These results suggest that RL in latent
 424 space enhances the representational capacity and segmentation quality of standard architectures.
 425

426 Table 3 reports results under incremental learning protocols on PASCAL VOC and ADE20K. Latent-
 427 space RL yields substantial improvements over PLOP, particularly in longer sequences such as 10-1
 428 and 100-5, where it reduces forgetting and preserves performance on earlier classes. This indicates
 429 that RL benefits observed in LLMs and MLLMs like improved memory retention can be effectively
 430 transferred to conventional vision tasks Rafailov et al. (2023); Dai et al. (2023).
 431

432 In Table 4, we evaluate cross-domain performance leveraging models trained on Cityscapes and LIP,
 433 where LIP Liang et al. (2018) is a single-person human parsing benchmark comprising 50K images
 434 with 19 semantic human part categories, and assess their generalization to three target domains with
 435

432 Table 4: mIoU improvements of Latent-Space RL in cross-domain semantic segmentation. Outputs
 433 are reported on Dark Zurich and Nighttime Driving using models trained on Cityscapes and on CIHP
 434 using models trained on LIP. Parentheses indicate mIoU gains over the FCN baseline.

436 Method	437 Urban Scene Parsing (Cityscapes train)		438 Human Parsing (LIP train)
	439 <i>Dark Zurich val</i>	439 <i>Nighttime Driving test</i>	
438 FCN	439 10.7	439 17.9	438 27.2
439 FCN + Latent-Space RL	439 15.9 (+5.2)	439 26.1 (+8.2)	439 29.0 (+1.8)

440 Table 5: Ablation studies on (a) reward function and (b) baseline design for advantage estimation in
 441 our latent-space RL framework on PASCAL VOC.

443 Reward Configuration	444 (a) Reward Function		444 (b) Baseline Design	
	445 PASCAL VOC (mIoU)	446 Baseline Formulation	447 PASCAL VOC (mIoU)	
445 FCN	446 67.8	446 FCN	447 67.8	
446 r^{IoU} only	447 77.1	447 $b = 0$	448 76.1 ± 0.95	
447 $r^{\text{IoU}} + r^{\text{Dice}}$	448 77.5	448 $b = \bar{r}$	449 77.0 ± 0.78	
448 $r^{\text{IoU}} + r^{\text{Dice}} + r^{\text{CE}}$	449 77.9	449 $b \leftarrow \tau b + (1-\tau)\bar{r}$	450 78.5 ± 0.43	
449 $r^{\text{IoU}} + r^{\text{Dice}} + r^{\text{CE}} + r^{\text{Boundary}}$				

450 distribution shifts. Dark Zurich and Nighttime Driving Wood (2020) represent low-light urban scene
 451 benchmarks that differ markedly from the daytime settings of Cityscapes, introducing domain shifts
 452 in illumination and appearance. CIHP Gong et al. (2018) is a multi-human parsing dataset, deviating
 453 substantially from the single-human focus of LIP. Our latent-space RL framework obtains consistent
 454 mIoU improvements across all target domains, *i.e.*, 1.8% on CIHP, 5.2% on Dark Zurich, and 8.2%
 455 on Nighttime Driving, highlighting its capacity to enhance cross-domain generalization.

456 These results demonstrate that key advantages of policy-gradient RL in LLMs and MLLMs such as
 457 improved predictive accuracy, mitigation of catastrophic forgetting and enhanced generalization can
 458 be effectively transferred to conventional vision tasks like semantic segmentation.

460 4.3 ABLATION STUDIES

462 **Reward Configuration.** Table 5 presents an ablation study examining the impact of different reward
 463 components in our latent-space RL framework. Beginning with the IoU-based reward term r^{IoU} , we
 464 progressively incorporate additional task-relevant rewards, *i.e.*, r^{Dice} , r^{CE} , and r^{Boundary} . Each added
 465 component contributes complementary supervision, leading to consistent improvements in mIoU.

466 **Baseline Design.** We investigate the impact of different baseline designs on the stability and efficacy
 467 of policy optimization within our framework. As summarized in Table 5, omitting a baseline ($b = 0$)
 468 yields suboptimal performance, as all rewards are treated as positive signals, leading to uncalibrated
 469 and potentially overconfident policy updates. Introducing the mini-batch mean baseline (*i.e.*, $b = \bar{r}$)
 470 partially mitigates this problem by normalizing advantage estimates within each batch. Nevertheless,
 471 given the typically small batch sizes adopted in semantic segmentation and the high variance in per-
 472 image prediction quality, this approach introduces considerable estimation noise, ultimately limiting
 473 its effectiveness. In contrast, the momentum-based strategy ($b \leftarrow \tau b + (1-\tau)\bar{r}$) temporally smooths
 474 reward estimates, thereby attenuating variance and promoting more stable learning dynamics.

475 5 CONCLUSION

477 This paper proposes the first latent-space policy-gradient RL framework for semantic segmentation,
 478 where a stochastic policy network modulates intermediate feature representations according to task-
 479 aligned rewards. The overall network is optimized with a hybrid loss that combines policy-gradient
 480 and supervised segmentation objectives. By operating in latent space and proposing the hybrid loss,
 481 our method addresses key challenges that emerge when applying RL to segmentation tasks including
 482 action space complexity, pre-trained disparity and reward sparsity. Extensive experiments conducted
 483 across supervised, continual, and cross-domain segmentation settings obtain consistent performance
 484 improvements, indicating that the key benefits of policy-gradient RL validated in LLMs and MLLMs
 485 can be effectively transferred to conventional vision tasks through latent-space integration.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
492 *International conference on machine learning*, pp. 22–31. PMLR, 2017.

493 Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
494 Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What
495 matters for on-policy deep actor-critic methods? a large-scale study. In *International conference*
496 *on learning representations*, 2021.

497 Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
498 *arXiv preprint arXiv:2106.08254*, 2021.

499 Maxime Bucher, Tuan-Hung Vu, Matthieu Cord, and Patrick Pérez. Zero-shot semantic segmenta-
500 tion. *Advances in Neural Information Processing Systems*, 32, 2019.

501 Arantxa Casanova, Pedro O Pinheiro, Negar Rostamzadeh, and Christopher J Pal. Reinforced active
502 learning for image segmentation. *arXiv preprint arXiv:2002.06583*, 2020.

503 Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
504 Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
505 fully connected crfs. *IEEE transactions on pattern analysis and machine intelligence*, 40(4):
506 834–848, 2017.

507 Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
508 attention mask transformer for universal image segmentation. In *Proceedings of the IEEE/CVF*
509 *conference on computer vision and pattern recognition*, pp. 1290–1299, 2022.

510 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
511 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
512 scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern*
513 *recognition*, pp. 3213–3223, 2016.

514 Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
515 Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. *arXiv preprint*
516 *arXiv:2310.12773*, 2023.

517 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
518 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
519 pp. 248–255. Ieee, 2009.

520 Sheelagh Dey, Sumedh Pendurkar, Guni Sharon, and Josiah P Hanna. A joint imitation-
521 reinforcement learning framework for reduced baseline regret. In *2021 IEEE/RSJ International*
522 *Conference on Intelligent Robots and Systems (IROS)*, pp. 3485–3491. IEEE, 2021.

523 Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. Decoupling zero-shot semantic segmentation.
524 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
525 11583–11592, 2022.

526 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
527 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
528 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
529 *arXiv:2010.11929*, 2020.

530 Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. Plop: Learning without for-
531 getting for continual semantic segmentation. In *Proceedings of the IEEE/CVF conference on*
532 *computer vision and pattern recognition*, pp. 4040–4050, 2021.

533 Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
534 soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. *IEEE*
535 *transactions on neural networks and learning systems*, 33(11):6584–6598, 2021.

540 Xin Duan, Xiabi Liu, Xiaopeng Gong, and Mengqiao Han. Rl-coseg: A novel image co-
 541 segmentation algorithm with deep reinforcement learning. *arXiv preprint arXiv:2204.05951*,
 542 2022.

543 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 544 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 545 *arXiv e-prints*, pp. arXiv–2407, 2024.

546 Tom Eelbode, Jeroen Bertels, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops,
 547 and Matthew B Blaschko. Optimization for medical image segmentation: theory and practice
 548 when evaluating with dice score or jaccard index. *IEEE transactions on medical imaging*, 39(11):
 549 3679–3690, 2020.

550 Ke Gong, Xiaodan Liang, Yicheng Li, Yimin Chen, Ming Yang, and Liang Lin. Instance-level hu-
 551 man parsing via part grouping network. In *Proceedings of the European conference on computer
 552 vision (ECCV)*, pp. 770–785, 2018.

553 Rui Gong, Martin Danelljan, Han Sun, Julio Delgado Mangas, and Luc Van Gool. Prompting diffu-
 554 sion representations for cross-domain semantic segmentation. *arXiv preprint arXiv:2307.02138*,
 555 2023.

556 Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
 557 reinforcement learning: Standard and natural policy gradients. *IEEE Transactions on Systems,
 558 Man, and Cybernetics, part C (applications and reviews)*, 42(6):1291–1307, 2012.

559 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 560 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
 561 vision and pattern recognition*, pp. 16000–16009, 2022.

562 Weizhao He, Yang Zhang, Wei Zhuo, Linlin Shen, Jiaqi Yang, Songhe Deng, and Liang Sun. Apseg:
 563 Auto-prompt network for cross-domain few-shot semantic segmentation. In *Proceedings of the
 564 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23762–23772, 2024.

565 Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
 566 John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
 567 *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

568 Yuenan Hou, Lifeng Liu, Qing Wei, Xudong Xu, and Chunlin Chen. A novel ddpg method with
 569 prioritized experience replay. In *2017 IEEE international conference on systems, man, and cy-
 570 571 bernetics (SMC)*, pp. 316–321. IEEE, 2017.

572 Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yux-
 573 iao Dong. Advancing language model reasoning through reinforcement learning and inference
 574 scaling. *arXiv preprint arXiv:2501.11651*, 2025.

575 Shruti Jadon. A survey of loss functions for semantic segmentation. In *2020 IEEE conference on
 576 computational intelligence in bioinformatics and computational biology (CIBCB)*, pp. 1–7. IEEE,
 577 2020.

578 Rui Jiao, Yue Zhang, and Jinku Li. Trustworthy reasoning: Evaluating and enhancing factual accu-
 579 racy in llm intermediate thought processes. *arXiv preprint arXiv:2507.22940*, 2025.

580 Zhenchao Jin. Sssegmentation: An open source supervised semantic segmentation toolbox based on
 581 pytorch. *arXiv preprint arXiv:2305.17091*, 2023.

582 Zhenchao Jin, Dongdong Yu, Zehuan Yuan, and Lequan Yu. Mcibi++: Soft mining contextual
 583 information beyond image for semantic segmentation. *IEEE Transactions on Pattern Analysis
 584 and Machine Intelligence*, 45(5):5988–6005, 2022.

585 Zhenchao Jin, Xiaowei Hu, Lingting Zhu, Luchuan Song, Li Yuan, and Lequan Yu. Idrnet:
 586 Intervention-driven relation network for semantic segmentation. *Advances in Neural Infor-
 587 mation Processing Systems*, 36:51606–51620, 2023.

594 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
 595 survey. *Journal of artificial intelligence research*, 4:237–285, 1996.
 596

597 Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin. Look into person: Joint body parsing
 598 & pose estimation network and a new benchmark. *IEEE transactions on pattern analysis and
 599 machine intelligence*, 41(4):871–885, 2018.

600 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 601 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 602 arXiv:2412.19437*, 2024.

603 Yunxin Liu, Di Yuan, Zhenghua Xu, Yuefu Zhan, Hongwei Zhang, Jun Lu, and Thomas
 604 Lukasiewicz. Pixel level deep reinforcement learning for accurate and robust medical image
 605 segmentation. *Scientific Reports*, 15(1):8213, 2025a.

606 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 607 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint
 608 arXiv:2503.06520*, 2025b.

609 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 610 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 611 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

612 Samuel Lobel, Sreehari Rammohan, Bowen He, Shangqun Yu, and George Konidaris. Q-functionals
 613 for value-based continuous control. In *Proceedings of the AAAI Conference on Artificial Intelli-
 614 gence*, volume 37, pp. 8932–8939, 2023.

615 Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
 616 segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 617 pp. 3431–3440, 2015.

618 Xin Luo, Wei Chen, Zhengfa Liang, Longqi Yang, Siwei Wang, and Chen Li. Crots: Cross-domain
 619 teacher–student learning for source-free domain adaptive semantic segmentation. *International
 620 Journal of Computer Vision*, 132(1):20–39, 2024.

621 Fengmao Lv, Tao Liang, Xiang Chen, and Guosheng Lin. Cross-domain semantic segmentation
 622 via domain-invariant interactive relation transfer. In *Proceedings of the IEEE/CVF conference on
 623 computer vision and pattern recognition*, pp. 4334–4343, 2020.

624 Xiaoteng Ma, Junyao Chen, Li Xia, Jun Yang, Qianchuan Zhao, and Zhengyuan Zhou. Dsac:
 625 Distributional soft actor-critic for risk-sensitive reinforcement learning. *Journal of Artificial In-
 626 telligence Research*, 83, 2025.

627 Yassine Ouali, Céline Hudelot, and Myriam Tami. Semi-supervised semantic segmentation with
 628 cross-consistency training. In *Proceedings of the IEEE/CVF conference on computer vision and
 629 pattern recognition*, pp. 12674–12684, 2020.

630 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 631 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 632 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 633 27730–27744, 2022.

634 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 635 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 636 in neural information processing systems*, 36:53728–53741, 2023.

637 Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi, Matthieu
 638 Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, et al. Factually consistent summarization
 639 via reinforcement learning with textual entailment feedback. *arXiv preprint arXiv:2306.00186*,
 640 2023.

641 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 642 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 643 2015.

644

648 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 649 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 650

651 Hyunseok Seo, Maxime Bassenne, and Lei Xing. Closing the gap between deep neural network
 652 modeling and biomedical decision-making metrics in segmentation via adaptive loss functions.
 653 *IEEE transactions on medical imaging*, 40(2):585–593, 2020.

654 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 655 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 656 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 657

658 Boris Shirokikh, Alexey Shevtsov, Anvar Kurmukov, Alexandra Dalechina, Egor Krivov, Valery
 659 Kostjuchenko, Andrey Golanov, and Mikhail Belyaev. Universal loss reweighting to balance
 660 lesion size inequality in 3d medical image segmentation. In *International Conference on Medical
 661 Image Computing and Computer-Assisted Intervention*, pp. 523–532. Springer, 2020.

662 Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting
 663 in value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via
 664 linear reward shaping. *Advances in neural information processing systems*, 35:37719–37734,
 665 2022.

666 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 667 ods for reinforcement learning with function approximation. *Advances in neural information
 668 processing systems*, 12, 1999.
 669

670 Elizaveta Tennant, Stephen Hailes, and Mirco Musolesi. Moral alignment for llm agents. *arXiv
 671 preprint arXiv:2410.01639*, 2024.

672 Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. Fine-tuning
 673 language models for factuality. In *The Twelfth International Conference on Learning Represen-
 674 tations*, 2023.

675 Zhiqiang Tian, Xiangyu Si, Yaoyue Zheng, Zhang Chen, and Xiaojian Li. Multi-step medical image
 676 segmentation based on reinforcement learning. *Journal of Ambient Intelligence and Humanized
 677 Computing*, 13(11):5011–5022, 2022.

678 Marco Toldo, Umberto Michieli, and Pietro Zanuttigh. Learning with style: Continual semantic
 679 segmentation across tasks and domains. *IEEE Transactions on Pattern Analysis and Machine
 680 Intelligence*, 46(11):7434–7450, 2024.
 681

682 Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, and Jiashi Feng. Panet: Few-shot image
 683 semantic segmentation with prototype alignment. In *proceedings of the IEEE/CVF international
 684 conference on computer vision*, pp. 9197–9206, 2019.
 685

686 Yunchao Wei, Xiaodan Liang, Yunpeng Chen, Xiaohui Shen, Ming-Ming Cheng, Jiashi Feng, Yao
 687 Zhao, and Shuicheng Yan. Stc: A simple to complex framework for weakly-supervised semantic
 688 segmentation. *IEEE transactions on pattern analysis and machine intelligence*, 39(11):2314–
 689 2320, 2016.

690 Joanne M Wood. Nighttime driving: visual, lighting and visibility challenges. *Ophthalmic and
 691 physiological optics*, 40(2):187–201, 2020.
 692

693 Chunlong Xia, Xinliang Wang, Feng Lv, Xin Hao, and Yifeng Shi. Vit-comer: Vision transformer
 694 with convolutional multi-scale feature interaction for dense predictions. In *Proceedings of the
 695 IEEE/CVF conference on computer vision and pattern recognition*, pp. 5493–5502, 2024.

696 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
 697 former: Simple and efficient design for semantic segmentation with transformers. *Advances in
 698 neural information processing systems*, 34:12077–12090, 2021.
 699

700 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 701 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
 soning through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.

702 Hongmei Yin, Tingliang Feng, Fan Lyu, Fanhua Shang, Hongying Liu, Wei Feng, and Liang Wan.
 703 Beyond background shift: Rethinking instance replay in continual semantic segmentation. In
 704 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 9839–9848, 2025.
 705

706 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 707 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 708 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

709 Hongyi Yuan, Zheng Yuan, Chuangqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank
 710 responses to align language models with human feedback. *Advances in Neural Information Pro-
 711 cessing Systems*, 36:10935–10950, 2023.

712 Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual representations for semantic seg-
 713 mentation. In *European conference on computer vision*, pp. 173–190. Springer, 2020.

714

715 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 716 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv
 717 preprint arXiv:2504.13837*, 2025a.

718 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
 719 Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
 720 advanced reasoning tasks. *arXiv preprint arXiv:2504.05118*, 2025b.

721

722 Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic meth-
 723 ods for offline reinforcement learning. *Advances in neural information processing systems*, 34:
 724 13626–13640, 2021.

725 Bowen Zhang, Liyang Liu, Minh Hieu Phan, Zhi Tian, Chunhua Shen, and Yifan Liu. Segvit v2:
 726 Exploring efficient and continual semantic segmentation with plain vision transformers. *Inter-
 727 national Journal of Computer Vision*, 132(4):1126–1147, 2024.

728

729 Ning Zhang, Yongjia Zhao, Minghao Yang, and Shuling Dai. Image segmentation-driven sim-to-real
 730 deep reinforcement learning framework for accurate peg-in-hole assembly. *Robotica*, pp. 1–20,
 731 2025.

732 Wenwei Zhang, Jiangmiao Pang, Kai Chen, and Chen Change Loy. K-net: Towards unified image
 733 segmentation. *Advances in Neural Information Processing Systems*, 34:10326–10338, 2021.

734

735 Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
 736 network. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 737 2881–2890, 2017.

738

739 Rongjian Zhao, Buyue Qian, Xianli Zhang, Yang Li, Rong Wei, Yang Liu, and Yinggang Pan.
 740 Rethinking dice loss for medical image segmentation. In *2020 IEEE international conference on
 741 data mining (ICDM)*, pp. 851–860. Ieee, 2020.

742

743 Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
 744 Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from
 745 a sequence-to-sequence perspective with transformers. In *Proceedings of the IEEE/CVF confer-
 746 ence on computer vision and pattern recognition*, pp. 6881–6890, 2021.

747

748 Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
 749 parsing through ade20k dataset. In *Proceedings of the IEEE conference on computer vision and
 750 pattern recognition*, pp. 633–641, 2017.

751

752 Guanghao Zhou, Panjia Qiu, Cen Chen, Jie Wang, Zheming Yang, Jian Xu, and Minghui Qiu.
 753 Reinforced mllm: A survey on rl-based reasoning in multimodal large language models. *arXiv
 754 preprint arXiv:2504.21277*, 2025.

755

Tianfei Zhou, Wenguan Wang, Ender Konukoglu, and Luc Van Gool. Rethinking semantic segmen-
 756 tation: A prototype view. In *Proceedings of the IEEE/CVF conference on computer vision and
 757 pattern recognition*, pp. 2582–2593, 2022.

756 A SUPPLEMENTARY ABLATION STUDIES
757758 Table 6: Ablation study on objective function configurations, where left denotes impact of individual
759 loss components on the overall training objective, and right conducts ablation study on the weighting
760 factors λ_{Policy} and λ_{KL} , illustrating their influence on segmentation performance.
761

762 Objective Function Configuration	763 mIoU (%)	764 λ_{Policy}	765 λ_{KL}	766 mIoU (%)
767 FCN	768 67.8	769 0.0	770 0.0	771 76.0
772 \mathcal{L}_{seg} only where Eq. (14) \rightarrow MultiheadAttention(z_i, z_i, z_i)	773 71.1 ± 0.39	774 0.1	775 0.1	776 77.8
777 $\mathcal{L}_{\text{seg}} + \mathcal{L}_{\text{Policy}}$	778 77.9 ± 0.55	779 0.1	780 1.0	781 76.8
782 $\mathcal{L}_{\text{seg}} + \mathcal{L}_{\text{Policy}} + \mathcal{L}_{\text{KL}}$	783 78.5 ± 0.43	784 0.1	785 10.0	786 73.2
787 –	788 –	789 1.0	790 0.1	791 77.2
792 –	793 –	794 1.0	795 1.0	796 78.5
797 –	798 –	799 1.0	800 10.0	801 76.9
802 –	803 –	804 10.0	805 0.1	806 77.0
807 –	808 –	809 10.0	810 1.0	811 77.4
812 –	813 –	814 10.0	815 10.0	816 77.9
817 –	818 –	819 100.0	820 100.0	821 63.2
822 –	823 –	824 1000.0	825 1000.0	826 4.9

775 **Objective Function Configuration.** Table 6 demonstrates a series of ablation experiments designed
776 to assess the individual contributions of each component in Eq. (6), which comprises three key terms,
777 *i.e.*, the supervised segmentation loss \mathcal{L}_{seg} , the KL divergence regularization loss \mathcal{L}_{KL} , and the policy
778 optimization loss $\mathcal{L}_{\text{Policy}}$. To elucidate the role of each component, we incrementally incorporate the
779 components and report the corresponding mIoU performance on the PASCAL VOC benchmark.780 As shown in Table 6, employing \mathcal{L}_{seg} alone yields a baseline mIoU of 71.1%. Augmenting \mathcal{L}_{seg} with
781 $\mathcal{L}_{\text{Policy}}$ improves mIoU to 77.9%, showing that RL signals provide valuable guidance for modulating
782 semantic features. The full formulation which further includes \mathcal{L}_{KL} to regularize deviations from an
783 EMA-smoothed policy, brings the highest mIoU of 78.5%, underscoring the stabilizing effect of KL
784 regularization in policy learning.785 Moreover, we analyze the sensitivity of model performance to the weighting coefficients λ_{Policy} and
786 λ_{KL} . As observed in Table 6, the optimal performance emerges when both coefficients are set to 1.0,
787 suggesting a well-calibrated trade-off between supervised learning and RL signals. In contrast, it is
788 observed that assigning disproportionately large weights exemplified by 1000 to either λ_{Policy} or λ_{KL}
789 leads to marked mIoU degradation even when the total gradient magnitude is carefully controlled to
790 remain comparable to that of the default configuration. This result suggests that LLMs and MLLMs,
791 owing to their large-scale pre-training, possess effective priors over token-level generation, which in
792 turn provide well-initialized action distributions for RL to operate effectively, even in the absence of
793 strong supervised guidance. In contrast, conventional segmentation networks are typically initialized
794 from weaker visual backbones, resulting in poorly calibrated action spaces and overly dominant RL
795 signals, despite maintaining comparable gradient magnitudes, will disrupt the optimization process,
796 overpower supervised signals, hinder stable learning and meaningful policy exploration.797 In conclusion, these ablation studies highlight the critical role of hybrid loss design in our framework
798 and demonstrate that carefully balancing RL objectives with supervised signals is essential for stable
799 training and effective policy optimization in dense prediction tasks.800
801
802
803
804
805
806
807
808
809

810
811
812
813
814 Table 7: Ablation studies examining the impact of different modulation strategies for incorporating
815 latent-space policy signals s_i into the decoding process. We compare four strategies: Concatenation,
816 Add, Multiplication and MultiheadAttention described in Eq. (14).
817
818
819
820

Modulation Methodology	PASCAL VOC (mIoU)
FCN	67.8
Add ($z_i^{\text{mod}} = z_i + s_i$)	68.9
Multiplication ($z_i^{\text{mod}} = z_i \odot (1 + \tanh(s_i))$)	71.8
Concatenation ($z_i^{\text{mod}} = \text{Concat}(z_i, s_i)$)	69.1
MultiheadAttention ($z_i^{\text{mod}} = \text{MultiheadAttention}(z_i - s_i', z_i, z_i)$)	78.5

821
822 **Modulation Mechanism.** To evaluate the effectiveness of our proposed attention-based modulation
823 mechanism, we conduct an ablation study comparing four distinct strategies for integrating the latent
824 policy signal s_i into the feature representation z_i during the decoding stage, including,

825 • **Add:** The modulation signal is reshaped to match z_i and added element-wise,
826

$$z_i^{\text{mod}} = z_i + s_i, \quad (20)$$

827 • **Multiplication:** The modulation signal is employed as a spatially-varying scaling factor,
828

$$z_i^{\text{mod}} = z_i \odot (1 + \tanh(s_i)), \quad (21)$$

829 where \odot denotes element-wise multiplication.

830 • **Concatenation:** The raw s_i is concatenated with z_i along the channel dimension,
831

$$z_i^{\text{mod}} = \text{Concat}(z_i, s_i), \quad (22)$$

832 • **MultiheadAttention:** It is described in Eq. (14).
833

834 The ablation results presented in Table 7 indicate that all modulation strategies confer improvements
835 over the baseline FCN. Among them, the attention-based modulation brings the highest 78.5% mean
836 IoU, thereby substantially surpassing the alternative approaches. This underscores the superiority of
837 context-aware modulation via attention mechanisms over simpler arithmetic-based modulation.

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 Table 8: Ablation study on the impact of constraining the log standard deviation $\log \sigma_i$ in Eq. (10).
865

866 Scaling Mechanism for $\log \sigma_i$	867 PASCAL VOC (mIoU)
868 FCN	869 67.8
870 Unbounded 871 $\log \sigma_i = 4 \cdot \tanh(\text{fc}_{\log \sigma}(\bar{z}_i))$ (ours)	872 43.5 ± 7.22 873 78.5 ± 0.43

872 **Design of Eq. (10).** To generate the latent-space modulation signal s_i , π_ϕ parameterizes a Gaussian
873 distribution per channel by predicting the mean μ_i and log-variance $\log \sigma_i$ from the latent feature z_i .
874 As shown in Eq. (10), a tanh activation followed by a scaling factor of 4 is applied to $\log \sigma_i$ thereby
875 constraining it within a bounded range, which curbs excessive stochasticity in the sampled signal s_i ,
876 promoting stable and efficient policy learning.

877 To assess the impact of above constraint, we compare against an unconstrained variant that generates
878 $\log \sigma_i$ directly. As shown in Table 8, the unbounded formulation results in unstable optimization and
879 a marked performance drop, whereas our bounded variant achieves substantially higher accuracy.

880 This experiment underscores the critical role of variance regularization in balancing exploration and
881 ensuring training stability in our latent-space RL framework.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917