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ABSTRACT

Unsupervised domain adaptation (UDA) for semantic segmentation aims to transfer
knowledge from a labeled source domain to an unlabeled target domain, improving
model performance on the target dataset without additional annotations. Despite the
effectiveness of self-training techniques in UDA, they struggle to learn each class
in a balanced manner due to inherent class imbalance and distribution shift in both
data and label space between domains. To address this issue, we propose Balanced
Learning for Domain Adaptation (BLDA), a novel approach to directly assess and
alleviate class bias without requiring prior knowledge about the distribution shift
between domains. First, we identify over-predicted and under-predicted classes
by analyzing the distribution of predicted logits. Subsequently, we introduce a
post-hoc approach to align the positive and negative logits distributions across
different classes using anchor distributions and cumulative density functions. To
further consider the network’s need to generate unbiased pseudo-labels during
self-training, we couple Gaussian mixture models to estimate logits distributions
online and incorporate logits correction terms into the loss function. Moreover, we
leverage the resulting cumulative density as domain-shared structural knowledge
to connect the source and target domains. Extensive experiments on two standard
UDA semantic segmentation benchmarks demonstrate that BLDA consistently
improves performance, especially for under-predicted classes, when integrated into
existing methods. Our work highlights the importance of balanced learning in UDA
and effectively mitigates class bias in domain adaptive semantic segmentation.

1 INTRODUCTION

Semantic segmentation is a fundamental computer vision task that assigns a semantic label to each
pixel in an image, enabling comprehensive image understanding. Despite the remarkable progress in
recent research (Long et al., 2015a; Chen et al., 2017b; Cheng et al., 2021; 2022), the performance
of these methods often significantly drops when applied to new target datasets. This performance
degradation stems from the differences between the source and target domains, challenging the
generalization ability of these models. To address this issue, unsupervised domain adaptation (UDA)
techniques have been extensively studied. UDA aims to bridge the domain gap by transferring
knowledge from a labeled source domain to an unlabeled target domain, thereby improving the
model’s performance on the target dataset without requiring additional annotations.

In previous work, self-training techniques (Tranheden et al., 2021; Hoyer et al., 2022a) have been
naturally introduced into UDA tasks to fully utilize the large amount of unlabeled target domain data,
becoming a mainstream paradigm. This paradigm constructs a teacher network using a temporal
aggregation mechanism, treats its predictions on the target domain as pseudo-labels, and gradually
guides the student network’s learning. Despite achieving remarkable results, these methods struggle
to learn each class in a balanced manner. Generally, the inherent class imbalance in segmentation
datasets (Cordts et al., 2016) (Fig.1(a)) leads networks to produce biased predictions towards head
classes, often studied as the long-tail problem (Van Horn & Perona, 2017; Buda et al., 2018; Liu
et al., 2019). However, in UDA, data and label distribution shifts between the training and test
data complicate the class bias. The network’s bias towards classes does not entirely depend on
the differences in class sample distribution. As shown in Fig.1(b), when a network trained on the
source domain is tested on the target domain, the performance degradation varies greatly across
classes, distinguishing easy-to-transfer and hard-to-transfer classes. These factors jointly determine
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Figure 1: Demonstration of factors that cause class bias. (a) The inherent class imbalance problem
in segmentation datasets. (b) The differences in transfer difficulty across classes in cross-domain
settings. “Oracle’ represents the performance under full supervision, while “Src-only’ represents
training with the source domain and testing it on the target domain. (c) The differences in logits
distributions predicted for each class by the network, including "positive distribution" and "negative
distribution". (d) Bias assessment for different classes via Eq.4. The corresponding class IDs of (a),
(b), and (c) are mapped in descending order onto this figure.

the network’s different biases towards each class in target domain, resulting in over-prediction and
under-prediction. Furthermore, confirmation bias (Guo et al., 2017) causes self-training techniques to
exacerbate this phenomenon. Fig.2(a) shows the severe deterioration of classes like rider and bicycle
after self-training, widening the performance gap across classes. Therefore, achieving balanced
learning for each class in UDA is a challenging and worthwhile exploration.

Existing strategies to reduce model bias towards different classes can be broadly categorized into
re-weighting (Cui et al., 2019; Lin et al., 2017; Cao et al., 2019; Truong et al., 2023; Buda et al.,
2018) and re-sampling (Hoyer et al., 2022a; Araslanov & Roth, 2021; He et al., 2008; 2021; Guan
et al., 2022). To compare these methods, we take self-training as the baseline method in Fig.2
and implement re-weighting (Cui et al., 2019) and re-sampling (Hoyer et al., 2022a) techniques,
respectively. We observe the class bias through class-wise accuracy (Fig.2(a)) and the frequency of
pseudo-labels generated on the target domain during training (Fig.2(b)). Loss re-weighting aims to
assign different weights to classes, making the model pay more attention to tail classes. Although
intuitive, the update frequency of each class to the network still varies greatly, with some classes
remaining challenging to learn effectively, resulting in unstable performance in self-training. In
contrast, sample re-sampling proves more effective by directly adjusting the class sample distribution
during training, significantly enhancing the performance of tail classes. Despite their empirical
solid performance, these methods are heuristic and rely on the assumption that the test and training
data share the same distribution in both data and label space. However, in the UDA setting, these
assumptions are invalid because (1) the class distributions of the source and target domains differ, and
the target domain’s prior class distribution is unavailable; (2) the data distributions also differ, leading
to varying transfer difficulties across classes in cross-domain settings. This raises the question: How
to assess and alleviate class bias directly without requiring prior knowledge about the distribution
shift between the two domains?

In this work, we propose to assess the degree of class bias by analyzing the distribution of logits
predicted by the network (Sec.3.3.2). Fig.1(c) shows that the network exhibits differences in the
predicted logits distributions for different classes, directly leading to class bias. Fig.1(d) illustrates
that the ranking of class bias highly coincides with the ranking of logit distribution differences, i.e.,
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Figure 2: In UDA, class bias can be expressed as over-predicted classes and under-predicted classes.
(a) Class-wise accuracy under different training settings. (b) Frequency of pseudo-labels generated
by the network for different classes during training.

over-predicted classes have larger logit values, while under-predicted classes have smaller logit values.
This assessment approach prompts us to propose BLDA, a method to achieve balanced learning for
domain adaptive semantic segmentation by balancing the logits distribution. First, we consider a post-
hoc approach to adjust the logits (Sec.3.3.3). We set shared anchor distributions for the positive and
negative logits distributions and align the class-wise logits distributions with the anchor distributions
based on the cumulative density function mapping. Furthermore, to generate unbiased pseudo-
labels for classes during self-training, we propose an online logit adjustment method (Sec.3.3.4).
This strategy couples Gaussian mixture models to estimate the logits distributions online during
training and incorporates logit correction terms into the loss function to replace the post-hoc method.
Moreover, we find that the resulting cumulative density can measure the discrimination difficulty of
different sample points in each class, which is a domain-shared structural knowledge that can be used
as an auxiliary loss to connect the two domains, further enhancing domain adaptation performance
(Sec.3.3.5). As shown in Fig.2, our method can be integrated into existing self-training-based UDA
paradigms and effectively balance the prediction bias across classes.

Our contributions can be summarized as follows: (1) We propose statistically analyzing the predicted
logits to directly assess the network’s bias towards classes. (2) We propose BLDA to estimate logit
correction terms online during UDA training to achieve balanced learning for each class. (3) We
demonstrate that BLDA can be easily integrated into existing UDA methods and consistently improves
performance on two standard UDA semantic segmentation benchmarks, significantly enhancing the
performance of under-predicted classes and confirming the effectiveness of our method.

2 RELATED WORK

2.1 DOMAIN ADAPTIVE SEMANTIC SEGMENTATION

Unsupervised domain adaptation (UDA) aims to transfer semantic knowledge learned from labeled
source domains to unlabeled target domains. Due to the ubiquity of domain gaps, UDA methods
have been widely studied in various computer vision tasks, such as image classification, object
detection, and semantic segmentation. UDA is crucial for semantic segmentation to avoid laborious
pixel-wise annotation in new target scenarios. Recent UDA approaches for semantic segmentation
can be categorized into two main paradigms: adversarial training-based methods (Toldo et al., 2020;
Tsai et al., 2018; Chen et al., 2018; Ganin & Lempitsky, 2015; Hong et al., 2018; Long et al., 2015b)
and self-training-based methods (Tranheden et al., 2021; Hoyer et al., 2022a; Araslanov & Roth,
2021; Zhang et al., 2021). Adversarial training-based methods learn domain-invariant representations
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through a min-max optimization game, where a feature extractor is trained to confuse a domain
discriminator, aligning feature distributions across domains. Self-training-based methods, which
have come to dominate the field due to the domain-robustness of Transformers (Bhojanapalli et al.,
2021), generate pseudo labels for target images based on a teacher-student optimization framework.
The success of this paradigm relies on generating high-quality pseudo labels, with strategies such as
entropy minimization (Chen et al., 2019) and consistency regularization (Hoyer et al., 2023) being
developed for this purpose. However, due to the inherent class imbalance and distribution shift in
both data and label space between domains, networks often produce complicated class bias, which
is further exacerbated by confirmation bias in the self-training paradigm. Our method focuses on
balanced learning in UDA training.

2.2 CLASS-IMBALANCED LEARNING

Class imbalance is a common problem in semantic segmentation, where the number of samples per
class varies significantly. Existing methods address this issue through re-weighting or re-sampling
techniques. Re-weighting methods assign different weights to classes during training, giving higher
importance to under-represented classes (Cui et al., 2019; Lin et al., 2017; Cao et al., 2019). Re-
sampling techniques modify the class distribution in the training data by over-sampling minority
classes or under-sampling majority classes (He et al., 2008; 2021). In UDA for semantic segmentation,
some approaches have introduced these strategies to alleviate class bias (Hoyer et al., 2022a; Araslanov
& Roth, 2021; Li et al., 2022). However, these methods are still empirical and focus on the single-
domain setting, which follows the assumptions that the test data and training data share the same
distribution in both data space and label space, without considering the additional challenges posed
by domain shift in UDA. In this work, we aim to access class bias directly and achieve balanced
learning for each class with no prior knowledge about the distribution shift between domains.

3 METHOD

3.1 PROBLEM DEFINITION

In unsupervised domain adaptation for semantic segmentation, the network is simultaneously trained
on labeled source domain data and unlabeled target domain data. To be specific, the source domain
can be denoted as Ds = {(xS

i , y
S
i )}

NS
i=1, where xS

i ∈ XS represents an image with ySi ∈ YS as the
corresponding pixel-wise one-hot label covering C classes. The target domain can be denoted as
Dt = {(xT

i )}
NT
i=1, which shares the same label space but has no access to the target label YT .

3.2 REVISITING SELF-TRAINING IN UDA

Self-training-based pipelines for UDA segmentation consist of a supervised branch for the source
domain and an unsupervised branch for the target domain. For the supervised branch, loss Ls can
only be calculated on the source domain to train a neural network fθ:

Ls =
1

NS

NS∑
i=1

1

HW

H×W∑
j=1

ℓce(fθ(x
S
ij), y

S
ij), (1)

where ℓce denotes the cross-entropy loss. Unsupervised branch introduces teacher-student framework
to generate pseudo-labels ŷTij = argmax(gϕ(x

T
ij)) with the teacher model gϕ for target domain:

Lu =
1

NT

NT∑
i=1

1

HW

H×W∑
j=1

q(pij)ℓce(fθ(x
T
ij), ŷ

T
ij), (2)

where we define q(pij) as a quality estimate conditioned on confidence pij = max(gϕ(x
T
ij)) for

pseudo labels, which gradually strengthens with increasing accuracy of models and can be imple-
mented with threshold filtering or a weighting function. After each training step, the teacher model
gϕ is updated with the exponentially moving average of the weights of fθ. Then, the overall objective
function is a combination of supervised loss and unsupervised loss as L = Ls + Lu.
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3.3 BALANCED LEARNING FOR DOMAIN ADAPTIVE SEMANTIC SEGMENTATION

3.3.1 OVERVIEW

In this section, we first propose to assess the network’s prediction bias towards each class by
statistically analyzing the distribution of logits (Sec.3.3.2). Based on the above analysis, we define a
post-hoc method to balance the network’s predictions (Sec.3.3.3). Furthermore, we introduce online
logits adjustment tailored for the UDA training process (Sec.3.3.4). Finally, we introduce cumulative
density estimation as domain-shared knowledge to bridge the two domains (Sec.3.3.5).

3.3.2 ASSESSING PREDICTION BIAS FROM LOGITS DISTRIBUTION

Given a label space Y = [C] = {1, 2, ..., C}, the segmentation network can be seen as a scorer
fθ : xij → RC that assigns class-wise scores, also known as logits, to a pixel xij from image xi. To
investigate the distribution of logits obtained by the network for different classes, we can analyze it
from the perspective of the confusion matrix. The confusion matrix is a C × C matrix M , where
each element Mcl represents the number of pixels with ground truth label c predicted as class l. We
replace each element Mcl in the confusion matrix M with the corresponding set of logits, i.e., the
logits predicted for class l for all pixels with ground truth label c, to obtain the logits set matrixM.
We then useM to assess prediction bias.

Definition 1. Element in logits set matrix,Mcl.

Mcl = {fθ(xij)[l] | yij = c}, (3)

where fθ(xij)[l] represents the logit value predicted by the network for class l of pixel xij , and yij is
the ground truth label of pixel xij . In the resulting C×C matrixM, diagonal elementsMll represent
the "positive logits distribution" for class l, while off-diagonal elementsMcl (c ̸= l) represent the
"negative logits distribution" for class l with respect to class c.

Definition 2. Bias of the network towards class l, Bias(l).

Bias(l) =
1

C

∑
c∈[C]

P(argmax
c′∈[C]

fθ(x)[c
′] = l|y = c)− 1

C
, (4)

where P(argmaxc′∈[C] fθ(x)[c
′] = l|y = c) represents the probability that the network predicts a

sample from class c as class l. This definition measures the average difference between the probability
of predicting class l and the uniform probability 1/C across all classes. A positive bias indicates
over-prediction, while a negative bias indicates under-prediction for class l.

Let Pcl denote the distribution of Mcl. Assuming each distribution Pcl is independent, we can
estimate the P(l|c) by comparing the logit values:

P(argmax
y′∈[C]

fθ(x)[y
′] = l|c) ≈

∫ ∞

−∞
Pcl(z)

∏
y′ ̸=l

(∫ z

−∞
Pcy′(t)dt

)
dz. (5)

Combining Eq.4 and Eq.5, for an unbiased network, i.e., Bias(l) = 0 for all l ∈ [C], a sufficient
condition is that they have the same positive and negative distributions. This means the network’s
prediction performance is consistent across all classes. Fig.1(d) shows a direct correlation between
logit distribution differences and class bias, indicating that variations in logit distributions lead to
class bias in the network’s predictions.

3.3.3 POST-HOC CLASS BALANCING

Generally, the network tends to produce larger logits for over-predicted classes and smaller logits
for under-predicted classes, as shown in Fig.3 (a). Reweighting/resampling strategies can alleviate
this gap by making the network pay more attention to tail classes and reducing the emphasis on head
classes during training, as illustrated in Fig.3(b). However, as shown in Fig.1, class bias does not fully
correlate with the inherent class imbalance problem, especially in the UDA setting, where different
distribution shifts exist in both data and label space between domains. Furthermore, these methods
are empirical and lack generalization capability across various scenarios.
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Figure 3: Illustration of proposed post-hoc class balancing. (a) The logits distributions of over-
predicted and under-predicted classes. (b) Reweighting/resampling strategies alleviate class imbalance
by adjusting the training emphasis on different classes. (c) Our post-hoc logits adjustment method
aligns the logits distributions of all classes with anchor distributions to achieve balanced prediction.

Based on the above analysis, to balance the network’s prediction capabilities across classes, we adjust
the network’s predictions in a post-hoc manner. Specifically, we define an anchor distribution Pp for
the positive logits distribution and an anchor distribution Pn for the negative logits distribution. We
then align all the logits distributions with corresponding anchor distributions, as shown in Fig.3 (c).
To preserve the relative ordering of logits, i.e., structural information within each distribution, we
align them in a point-wise way via the cumulative distribution function (CDF). Let Fcl(z), Fp(z) and
Fn(z) be the CDFs of Pcl, Pp and Pn, respectively. We align the logit value z from Pcl to Pp or Pn

as follows:

z′ =

{
F−1
p (Fcl(z)), if c = l

F−1
n (Fcl(z)), if c ̸= l

(6)

where z′ is the aligned value of z with respect to the anchor distribution. For brevity, we define
an offset for logit as ∆cl(z) = z′ − z. Considering the probability estimate that p(yij = c|xij) ∝
exp(fθ(xij)[c]), we can obtain revised prediction results for each pixel xij by:

ỹij = argmaxc∈[C]

exp(fθ(xij)[c] + τ∆cc(fθ(xij)[c]))

exp(fθ(xij)[c] + τ∆cc(fθ(xij)[c])) +
∑

c′ ̸=c exp(fθ(xij)[c′] + τ∆cc′(fθ(xij)[c′]))
,

(7)
where τ is a scaling factor (the derivation of Eq.7 is detailed in Appendix A). When τ = 1, the model
produces balanced predictions. However, to achieve optimal performance on specific evaluation
metrics (e.g., mIoU), we need to adjust the value of τ . We discuss the choice of τ in detail in the
experimental section. In this way, the network generates balanced predictions for different classes.

Discussion about anchor distribution. In our experiments, we use the global positive and negative
logits distributions on the source domain to estimate the anchor distribution for both source and target
domains. This choice is based on two key considerations: (1) The network tends to produce larger
logits for over-predicted classes and smaller logits for under-predicted classes. By using the global
logits distribution, we can effectively measure the average learning degree of the network across all
classes. Aligning each class-specific distribution with this global distribution can help neutralize the
class bias of the network, ensuring a more balanced learning process. (2) When estimating the logits
distributions for each class, there exist varying degrees of statistical errors. According to Bernstein
inequalities, estimating the global logits distribution can reduce estimation errors to a certain extent
and accelerate convergence rates. In our case, the global distribution, being more robust and stable,
serves as a reliable anchor distribution for subsequent alignment.

3.3.4 ONLINE LOGITS ADJUSTMENT FOR UDA

While the post-hoc logits adjustment method introduced in Sec.3.3.3 can effectively balance the
network predictions across different classes, it is performed after training the model. In the UDA
setting, it is significant to incorporate the logits balancing mechanism directly into the training process.
By doing so, the model can learn to make more balanced predictions while adapting to the target
domain through pseudo labels.
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To achieve this, we propose an online logit adjustment method tailored for UDA training. The key to
this method lies in the online estimation of the logits distributions. We employ Gaussian Mixture
Models (GMMs) to model these distributions. Considering that the source and target domains have
inherently different logits distributions, we maintain two sets of GMMs separately, with each set
containing C ×C ×K Gaussian components, where C denotes the number of classes and K denotes
the number of Gaussian components per element inM. Formally, we define:

P s
cl =

K∑
k=1

πs
clkN (µs

clk, σ
s
clk), P t

cl =

K∑
k=1

πt
clkN (µt

clk, σ
t
clk), (8)

where P s
cl and P t

cl represent the estimated logits distributions for class l when the ground truth label
or pseudo label is c in the source and target domains, respectively. The parameters πs

clk, µs
clk, σs

clk
and πt

clk, µt
clk, σt

clk denote the mixing coefficient, mean, and standard deviation of the k-th Gaussian
component in the corresponding GMM. We update the GMM parameters during each training
iteration using the logits obtained from the current mini-batch via the Expectation-Maximization
(EM) algorithm (McLachlan & Krishnan, 2007). Since the network fθ gradually evolves during
training, we adopt a momentum-based EM update strategy. Specifically, we directly use the GMM
parameters ϕ̂cl estimated in the latest iteration as the initialization ϕ

(0)
cl for the current iteration.

After T EM loops, the current iteration is completed, and a momentum update is adapted with
ϕ
(T )
cl ← (1 − τ̃n)ϕ

(T )
cl + τ̃nϕ̂cl, where n represents the number of iterations that have not been

updated since the last parameter update for ϕcl. We also implement GMMs to estimate the anchor
distributions Pp and Pn using the source domain data’s global positive and negative logits. The
algorithm flow is detailed in Appendix D.

After estimating the logits distributions using GMMs, we compute the adjusted logits offset ∆S and
∆T for source and target domains, respectively. These offsets are then used to adjust the cross-entropy
loss for both domains:

L̃s = − 1

NS

NS∑
i=1

H×W∑
j=1

log
exp(fθ(x

S
ij)[y

S
ij ]− τ∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij ]))∑C

c=1 exp(fθ(x
S
ij)[c]− τ∆S

yS
ij ,c

(fθ(xS
ij)[c]))

,

L̃u = − 1

NT

NT∑
i=1

H×W∑
j=1

q(pij) log
exp(fθ(x

T
ij)[ŷ

T
ij ]− τ∆T

ŷT
ij ,ŷ

T
ij
(fθ(x

T
ij)[ŷ

T
ij ]))∑C

c=1 exp(fθ(x
T
ij)[c]− τ∆T

ŷT
ij ,c

(fθ(xT
ij)[c]))

.

(9)

In contrast to Eq.7, where the logits are adjusted post-hoc, Eq.9 directly incorporates the offset
into the learning process of the logits. This approach is equivalent to learning a scorer of the form
g(x)[y] = f(x)[y]− τ∆y(x). Consequently, we have argmaxf(x)[y] = g(x)[y] + τ∆y(x), which
can be seen as analogous to the post-hoc adjustment. By employing these adjusted losses, we achieve
a two-fold benefit. Firstly, the anchor distribution can serve as a reference distribution to balance
the learning progress between classes within both domains. Secondly, since the pseudo-label-based
loss in the target domain has a gradually increasing weight, using a shared anchor distribution allows
the logits distribution of the target domain to gradually align with that of the source domain, thus
establishing a connection between the two domains.

3.3.5 BRIDGING DOMAINS THROUGH CUMULATIVE DENSITY ESTIMATION

Furthermore, for each sample pixel, we can query the corresponding positive cumulative distribution
value Fcc based on its label c, which ranges from 0 to 1. The positive distribution measures the
discriminative ability of a class, and we find that this cumulative distribution value indicates the
difficulty of the sample pixel belonging to that class. This structural knowledge depends only on the
context of the pixel and is not affected by the image style, making it domain-invariant. To further
bridge the two domains, we add an extra regression head to the network to predict this value as an
additional auxiliary task.

Specifically, for each sample point xS
ij in the source domain, we can query the corresponding positive

cumulative distribution value based on its true label ySij : dSij = FyS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij ]), where FyS

ij ,y
S
ij

is the positive cumulative distribution function for class ySij . Similarly, for each sample point xT
ij in

the target domain, we can query the corresponding positive cumulative distribution value based on its

7
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Table 1: UDA segmentation performance on GTA.→CS. using the mIoU (%) evaluation metric,
where the improvement is marked as bold. The results are acquired based on CNN-based model
(He et al., 2016; Chen et al., 2017a), denoted as C, and Transformer-based model (Xie et al., 2021),
denoted as T.
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mIoU std
DACS (Tranheden et al., 2021) C 89.9 39.7 87.9 39.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.2 27.3 34.0 52.1 24.4

ProDA (Zhang et al., 2021) C 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 50.4 1.0 48.9 56.4 57.5 21.2
CPSL (Li et al., 2022) C 92.3 59.5 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.6 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8 20.3

TransDA (Chen et al., 2022) T 94.7 64.2 89.2 48.1 45.8 50.1 60.2 40.8 90.4 50.2 93.7 76.7 47.6 92.5 56.8 60.1 47.6 49.6 55.4 63.9 18.5
DAFormer (Hoyer et al., 2022a) T 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3 16.8

+BLDA T 95.4 78.3 88.3 54.0 55.2 55.7 60.3 65.2 89.2 47.3 91.1 71.4 44.8 91.6 74.3 83.4 73.2 59.3 67.1 70.7 15.5
HRDA (Hoyer et al., 2022b) T 96.5 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8 15.4

+BLDA T 96.4 77.6 90.7 63.3 57.9 62.1 66.5 72.5 91.3 52.2 94.4 76.9 57.3 93.5 86.2 87.7 79.9 66.8 68.9 75.6 13.8
MIC (Hoyer et al., 2023) T 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9 14.8

+BLDA T 97.1 82.6 91.6 64.7 61.0 64.9 68.0 74.8 91.2 56.6 92.4 80.0 54.7 95.7 87.3 88.8 82.6 64.2 72.0 77.1 13.5

Figure 4: Qualitative results. Note that the yellow boxes mark regions improved by BLDA.

pseudo label ŷTij : dTij = FŷT
ij ,ŷ

T
ij
(fθ(x

T
ij)[ŷ

T
ij ]), where FŷT

ij ,ŷ
T
ij

is the positive cumulative distribution
function for the class corresponding to the pseudo label ŷTij . We then add an extra regression head hϕ

to the network to predict the cumulative distribution value for each sample point. The corresponding
regression losses for the source and target domains can be defined as:

LS
reg =

1

NS

NS∑
i=1

H×W∑
j=1

|hϕ(f̃θ(x
S
ij))− dSij |2,LT

reg =
1

NT

NT∑
i=1

H×W∑
j=1

q(pij)|hϕ(f̃θ(x
T
ij))− dTij |2, (10)

where | · |2 denotes the L2 loss, and f̃θ(xij) denote the features extracted by the network fθ. Finally,
the overall training objective can be expressed as L = L̃s + L̃u + λ(LS

reg + LT
reg), where λ is a

hyperparameter balancing the cumulative density estimation loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following standard UDA protocols, we evaluate our method on two widely used bench-
marks that involve transferring knowledge from a synthetic domain to a real domain in a street
scene setting. Specifically, we use GTAv/SYNTHIA (Ros et al., 2016; Richter et al., 2016) as the
labeled source domain and Cityscapes (Cordts et al., 2016) as the unlabeled target domain. GTAv
contains 24,966 synthetic images with a resolution of 1914 × 1052, while SYNTHIA consists of
9,400 synthetic images with a resolution of 1280× 960.

Implementation Details. Our method can be built with different self-training-based frameworks.
For thorough evaluation, we apply BLDA to three strong baseline methods, i.e., DAFormer (Hoyer
et al., 2022a) , HRDA (Hoyer et al., 2022b), and MIC (Hoyer et al., 2023), with MiT-B5 (Xie et al.,
2021) pretrained on ImageNet-1k (Deng et al., 2009) as the backbone. BLDA is implemented based
on MMSegmentation (Contributors, 2020). All experiments are trained for 40K iterations and a
batch size of 2, with one or two RTX-3090 (24 GB memory) GPUs, depending on the complexity
of used UDA frameworks. We train the network with an AdamW optimizer with learning rates of
6× 10−5 for the encoder and 6× 10−4 for the decoder, a weight decay of 0.01, and linear learning
rate warm-up for the first 1.5K iterations. The input images are rescaled and randomly cropped to
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Table 2: UDA segmentation performance on SYN.→CS. using the mIoU (%) evaluation metric,
where the improvement is marked as bold. Note that the mIoUs on are calculated over 16 classes.
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DACS (Tranheden et al., 2021) C 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 - 90.8 67.6 38.3 82.9 - 38.9 - 28.5 47.6 48.3 27.5

ProDA (Zhang et al., 2021) C 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 - 84.4 74.2 24.3 88.2 - 51.1 - 40.5 45.6 55.5 25.6
CPSL (Li et al., 2022) C 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 - 88.5 79.0 32.0 90.6 - 49.4 - 50.8 59.8 57.9 25.5

TransDA (Chen et al., 2022) T 90.4 54.8 86.4 31.1 1.7 53.8 61.1 37.1 90.3 - 93.0 71.2 25.3 92.3 - 66.0 - 44.4 49.8 59.3 26.5
DAFormer (Hoyer et al., 2022a) T 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 - 89.8 73.2 48.2 87.2 - 53.2 - 53.9 61.7 60.9 22.1

+BLDA T 80.7 44.9 85.6 45.1 9.6 54.3 60.2 58.7 87.7 - 92.3 75.7 51.1 87.3 - 62.7 - 59.9 65.8 64.0 20.6
HRDA (Hoyer et al., 2022b) T 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 - 92.9 79.4 52.8 89.0 - 64.7 - 63.9 64.9 65.8 21.4

+BLDA T 83.9 54.9 87.5 53.1 11.5 63.2 69.4 64.4 87.2 - 93.1 79.1 54.7 88.3 - 69.1 - 64.2 65.7 67.9 19.3
MIC (Hoyer et al., 2023) T 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 - 94.6 81.0 58.9 90.1 - 61.9 - 67.1 64.3 67.3 21.0

+BLDA T 86.1 61.2 89.8 47.2 10.2 62.6 70.3 67.1 90.0 - 94.4 81.4 56.4 90.5 - 67.2 - 64.8 66.3 69.1 20.4

Figure 5: Study of the different evalution
metrics with respect to scaling factor τ .

Table 3: BLDA ablation study of different
components built with DAFormer.

None Post-hoc OLAS OLA CDE mIoU mAcc
✓ 68.3 77.8

✓ 69.2 80.3
✓ 68.9 79.5

✓ 70.2 81.8
✓ ✓ 70.7 82.0

512× 512 following the same data augmentation in DAFormer (Hoyer et al., 2022a), and the EMA
coefficient for updating the teacher net is set to be 0.999. We set temperature coefficient τ = 0.1 and
loss weight λ = 0.2 respectively. For more details, please refer to the Appendix.

4.2 COMPARISON WITH EXISTING METHODS

Comparative Evaluation. We compare BLDA to existing state-of-the-art UDA approaches on
the GTA.→CS. and SYN.→CS. benchmarks. In addition to the widely adopted mean intersection-
over-union (mIoU) metric, we also report the mean accuracy (mAcc) metric, which is equivalent to
measuring the balanced error (Menon et al., 2020), i.e., the average of each class’s error rate, and is
more suitable to be used to assess the balance among classes. We discuss these two metrics in detail
in Appendix C. Additionally, we calculate the standard deviation of IoU and Acc for each class to
reflect the balanced degree of performance across classes.

Evaluation Results. Tab.1-2 shows BLDA consistently improves the performance of all baseline
methods on two benchmarks by a large margin, ranging from 1.2% to 3.1%. Furthermore, significant
improvements are obtained for under-predicted classes, such as sidewalk, fence, pole, light, and sign,
which demonstrates that BLDA can mitigate the class bias with decreased standard deviation and thus
bring the performance gains. In Table 4, the same phenomenon is observed, and the improvement in
mAcc is more significant, ranging from 2.9% to 4.2%.

4.3 ABLATION STUDY

We conduct a series of ablation studies on the GTA.→CS. benchmark built with DAFormer (Hoyer
et al., 2022a). Please refer to the Appendix for further analysis, where we provide a deeper study of
parameter settings and more visualization results.

Influence of scaling factor. As illustrated in Fig. 5, we explore the influence of different τ values on
evaluation metrics. The mAcc metric gradually increases as τ grows, reaching its peak performance
when τ = 1. Interestingly, the mIoU metric does not demonstrate a perfectly positive correlation with
the rise in mAcc. This discrepancy arises from the fact that the mIoU calculation is heavily impacted
by the imbalanced distribution of the test set, whereas mAcc serves as a class-balanced metric. We
comprehensively explain this phenomenon in Appendix C. Our method, which models class-balanced
learning, effectively boosts mAcc. However, to achieve improvements in mIoU, selecting a smaller
scaling factor τ is necessary.
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Table 4: UDA segmentation performance on GTA.→CS. using the mAcc (%) evaluation metric,
where the improvement is marked as bold.
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mAcc std
DAFormer (Hoyer et al., 2022a) T 99.1 74.8 95.2 61.0 53.1 59.8 70.7 68.6 96.0 63.4 98.7 84.2 69.9 95.5 88.9 84.1 74.0 70.0 69.7 77.8 14.2

+BLDA T 98.3 86.7 93.4 70.9 61.9 66.0 74.0 78.9 95.4 59.0 98.6 85.7 73.1 95.3 89.8 89.3 85.4 77.2 78.6 82.0 11.9
HRDA (Hoyer et al., 2022b) T 99.1 85.6 96.0 72.5 56.3 69.4 83.9 79.6 96.1 59.1 98.5 89.8 60.7 96.2 91.3 89.4 80.2 77.0 80.9 82.2 13.2

+BLDA T 99.2 87.2 95.0 64.9 68.2 72.7 88.3 79.5 95.7 65.7 98.9 87.9 79.6 95.5 93.8 92.5 87.0 83.1 81.2 85.1 10.7
MIC (Hoyer et al., 2023) T 99.5 87.1 96.0 73.2 65.3 68.5 81.0 74.8 96.8 58.9 98.8 85.7 81.3 96.7 91.4 91.0 78.1 79.0 77.5 83.2 11.6

+BLDA T 98.9 90.7 95.4 74.6 70.9 73.5 88.9 82.8 96.4 64.8 98.8 89.0 80.8 96.3 93.8 92.8 88.2 86.5 78.8 86.3 9.8
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BicycleTraffic Sign

Figure 6: Comparison of Logits Distribution. We choose {building (2), vegetation (8)} as over-
predicted classes, and {traffic sign (7), bicycle (18)} as under-predicted classes for visualization.
Note that the anchor distribution is counted separately at baseline and in our method.

Effectiveness of Components. In Tab.10, we delve into the various components of BLDA. By solely
applying the post-hoc method to adjust the predictions, we observe a minor performance improvement
of 0.9%. When introducing online logit adjustment exclusively during source domain image training
(OLAS), the improvement is comparatively modest at 0.6%. However, by simultaneously performing
adjustments in both domains (OLA), we witness a significant performance boost of 1.9%, suggesting
that this strategy effectively captures the disparity in learning degrees between the domains. Lastly, the
extra supervison from cumulative distribution estimation (CDE) further models the shared structural
information across the domains (shown in Fig.4), producing additional performance gains.

Qualitative Results. Fig.4 presents the qualitative results. We observe that for under-predicted
classes, such as sidewalk and pole, the baseline method struggles to recognize them accurately.
While the post-hoc method can slightly improve the performance, our proposed BLDA approach
significantly enhances the ability to predict these classes.

Comparison of Logits Distribution. In Fig.6, we visualize the positive distribution and negative
distribution corresponding to the over-predicted classes { building (2), vegetation (8)} and under-
predicted classes { traffic sign (7), bicycle (18) } on the Cityscapes Val. set. In the baseline method,
the positive and negative logits of classes building and vegetation are larger than anchor distribution,
while this phenomenon is reversed in classes traffic light and bicycle, which leads to class bias. Our
method reduces this distribution difference by aligning with the anchor distribution and achieves
class-balanced learning.

5 CONCLUSION

In this work, we present Balanced Learning for Domain Adaptation (BLDA), a novel approach to ad-
dress class bias in unsupervised domain adaptation (UDA) for semantic segmentation. BLDA analyzes
logits distributions to assess prediction bias and introduces an online logits adjustment mechanism to
balance class learning in both source and target domains. Our method effectively mitigates class bias,
promotes balanced learning, and enhances generalization to the target domain. Experimental results
demonstrate consistent performance improvements on standard UDA benchmarks.
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A DERIVATION OF EQ.7

Considering probabilities estimate that p(yij = c|xij) ∝ exp(fθ(xij)[c]), the discriminant probabil-
ity for pixel xij can be presented as:

p(yij = c|xij) =
exp(fθ(xij)[c]∑
c′ exp(fθ(xij)[c′])

. (11)

Given offset for logits as ∆cl(z) = z′ − z and the label c for pixel xij , we can obtain revised
class-conditional discriminant probability for each pixel xij by:

p̃(yij = c|xij , c) =
exp(fθ(xij)[c] + ∆cc(fθ(xij)[c]))∑

c′ exp(fθ(xij)[c′] + ∆cc′(fθ(xij)[c′]))
. (12)

Then, following Bayes rule, the revised posterior is derived as:

p̃(yij = c|xij) =
p(c)p̃(yij = c|xij , c)∑
c′ p(c

′)p̃(yij = c|xij , c′)
. (13)

So we can obtain revised prediciton results for each pixel xij by:
ỹij = argmaxc∈[C]p(c)p̃(yij = c|xij , c). (14)

Since the class probabilities p(c) are typically set as a uniform prior, i.e., p(c) = 1
c , Eq.14 can be

rewritten as:
ỹij = argmaxc∈[C]p(yij = c|xij , c)

= argmaxc∈[C]

exp(fθ(xij)[c] + ∆cc(fθ(xij)[c]))

exp(fθ(xij)[c] + ∆cc(fθ(xij)[c])) +
∑

c′ ̸=c exp(fθ(xij)[c′] + ∆cc′(fθ(xij)[c′]))
.

(15)
For Eq.6, we add a scaling factor τ to be adjusted for specific evaluation metrics.

B DISCUSSION ABOUT EQ.9

For a deeper understanding of the loss function in Eq.9, we can rewrite it as:

L̃s =
1

NS

NS∑
i=1

H×W∑
j=1

log

1 +
∑
c ̸=yS

ij

exp
(
∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij ])

)
exp

(
∆S

yS
ij ,c

(fθ(xS
ij)[c])

)


τ

exp
(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij ]

) ,

(16)
which can be interpreted as a standard cross-entropy loss with an adaptive margin. Specifically,
if the class ySij is an over-predicted class, it is reasonable to assume that for most other classes c,
∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij ]) < ∆S

yS
ij ,c

(fθ(x
S
ij)[c]). This implies that:exp
(
∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij ])

)
exp

(
∆S

yS
ij ,c

(fθ(xS
ij)[c])

)


τ

< 1 (17)

In the loss function Eq.16, this ratio is used to scale the term exp
(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij ]
)
.

When ySij is an over-predicted class, the ratio is less than 1, which reduces the weight of the
term exp

(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij ]
)
. Consequently, for over-predicted classes, the loss function

imposes a smaller penalty for misclassification. Conversely, if ySij is an under-predicted class, it can
be assumed that for most other classes c, ∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij ]) > ∆S

yS
ij ,c

(fθ(x
S
ij)[c]). This leads

to a ratio greater than 1, which increases the weight of the term exp
(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij ]
)
,

thereby imposing a larger penalty for misclassification of under-predicted classes. In summary, by
introducing the margin-based ratio term, the loss function Eq.16 adaptively adjusts the strength of the
penalty based on the difficulty of the classes. This approach helps to mitigate the class bias problem
and enhances the model’s performance on under-predicted classes, leading to a more balanced and
accurate classification. Moreover, since the logit offset term ∆ is updated online during the training
process, it aligns well with the self-training paradigm in UDA.
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C DISCUSSION ABOUT EVALUATION METRICS

In this section, we investigate the impact of class imbalance on the evaluation metrics mIoU and
mAcc in the context of semantic segmentation. We consider a multi-class problem with C classes,
where the number of samples in the i-th class is denoted as Ni. Let Pij represent the probability of
classifying a sample from the i-th class as the j-th class in the confusion matrix. For the purpose
of this analysis, we assume that the probabilities Pii and Pkk are balanced across all classes, i.e.,
Pii = Pkk = p,∀i, k ∈ 1, 2, ..., C, and focus solely on the effect of class imbalance in terms of
sample numbers. Under this assumption, the calculation formula for mAcc can be written as:

mAcc =
1

C

C∑
i=1

Ni · Pii∑C
j=1 Ni · Pij

=
1

C

C∑
i=1

p∑C
j=1 Pij

(18)

As evident from the equation above, the sample numbers Ni cancel out in the calculation of mAcc,
making it independent of the class imbalance in terms of sample numbers. Therefore, mAcc remains
unaffected by class imbalance under the given assumptions. On the other hand, the calculation
formula for mIoU is given by:

mIoU =
1

C

C∑
i=1

Ni · Pii∑C
j=1 Ni · Pij +

∑C
j=1 Nj · Pji −Ni · Pii

(19)

In contrast to mAcc, the sample numbers Ni do not cancel out in the calculation of mIoU. Con-
sequently, when the classes are imbalanced, i.e., the sample numbers Ni vary significantly across
classes, the IoU of classes with larger sample numbers will dominate the overall mIoU result. To
illustrate the impact of class imbalance on mIoU, let us consider a case where class k is a head class
with a significantly larger sample number Nk compared to a tail class i with sample number Ni. The
performance of class i will be greatly affected by class k through the term Nk ·Pki in the denominator
of mIoU. For class i to have a fair contribution to mIoU, the probability Pki needs to be very small.
This implies that a balanced classifier may not be optimal for maximizing mIoU under class imbal-
ance. Therefore, our proposed method implements a scaling factor τ to modulate the contributions of
introduced logits offset. In contrast, mAcc is inherently unaffected by class imbalance, as the sample
numbers Ni cancel out in its calculation formula. This means that a balanced classifier is indeed
optimal for maximizing mAcc, and our method, which aims to balance the contributions of different
classes, aligns well with this objective and can achieve consistent improvements.

D IMPLEMENTATION DETAILS OF ONLINE LOGITS DISTRIBUTION
ESTIMATION

In this section, we provide the pseudo label to explain implementation details of online logits
distribution estimation, as shown in Alg.1. For computational efficiency, in each iteration, we sample
Nsample logits for each element in MS

cl and MT
cl , where Nsample is the minimum sample number of

classes in the minibatch (shoule be greater than or equal to Nmin, where we set it as 100). This way,
we obtain C × C ×Nsample logits, and then update the C × C GMMs simultaneously in a parallel
manner. Since not all classes may be updated in each iteration, we maintain a variable n for each
GMM that is not updated, to record the number of iterations since its last update. This n is used to
adjust the momentum factor using τ̃ in the EMA update, in order to match the update speed of the
network.

In the algorithm, the cumulative distribution functions (CDFs) F s
cl, F

t
cl, Fp, and Fn are computed

using the estimated Gaussian mixture models (GMMs). These CDFs describe the cumulative
probability distribution of the corresponding GMMs. For the source and target domain GMMs P s

cl

and P t
cl, their CDFs can be represented as: F s

cl(z) =
∑K

k=1 π
s
cl,k ·Φ(

z−µs
cl,k

σs
cl,k

) F t
cl(z) =

∑K
k=1 π

t
cl,k ·

Φ(
z−µt

cl,k

σt
cl,k

), where Φ(·) is the CDF of the standard normal distribution, and πs
cl,k, µs

cl,k, and σs
cl,k are

the weight, mean, and standard deviation of the k-th component of the source domain GMM P s
cl,

respectively. πt
cl,k, µt

cl,k, and σt
cl,k are the corresponding parameters for the target domain GMM

P t
cl. Similarly, the CDFs for the anchor GMMs Pp and Pn are: Fp(z) =

∑K
k=1 πp,k · Φ( z−µp,k

σp,k
)
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Algorithm 1 Online Logits Adjustment for UDA

Input: Source domain Ds = (xS
i , y

S
i )

NS

i=1, target domain Dt = (xT
i )

NT

i=1, number of classes C,
number of Gaussian components K, momentum factor τ̃ , scaling factor τ , minimum number of
elements Nmin, number of EM Loop T .

Output: Model parameters θ.
1: Initialize model parameters θ, source GMMs P s

cl, target GMMs P t
cl, anchor GMMs Pp and Pn

for all c, l ∈ [C].
2: while not converged do
3: Sample a mini-batch of source data (xS

i , y
S
i )

BS

i=1 and target data (xT
i )

BT

i=1.
4: Compute logits fθ(xS

ij) and fθ(x
T
ij) for source and target samples.

5: Compute pseudo-labels for target samples: ŷTij = argmaxc∈[C]fθ(x
T
ij [c]).

6: Compute matrices MS
cl and MT

cl based on the source labels and target pseudo-labels:
7: MS

cl = {fθ(xS
ij)[l] | ySij = c}

8: MT
cl = {fθ(xT

ij)[l] | ŷTij = c}
9: Update source GMMs P s

cl, target GMMs P t
cl, anchor GMMs Pp and Pn using the momentum-

based EM algorithm:
10: for c, l ∈ [C] do
11: if |MS

cl| > Nmin then
12: Initialize ϕ

s,(0)
cl ← ϕ̂s

cl from the latest iteration.
13: for t = 1, . . . , T do
14: Update ϕcls,(t) using the EM algorithm with current logits.
15: end for
16: ϕ̂cls ← (1 − τ̃n)ϕ

s,(T )
cl + τ̃nϕ̂cls, where n is the number of iterations since the last

update.
17: end if
18: if |MS

cl| > Nmin then
19: Initialize ϕ

t,(0)
cl ← ϕ̂t

cl from the latest iteration.
20: for t = 1, . . . , T do
21: Update ϕclt,(t) using the EM algorithm with current logits.
22: end for
23: ϕ̂t

cl ← (1− τ̃n)ϕ
t,(T )
cl + τ̃nϕ̂t

cl, where n is the number of iterations since the last update.
24: end if
25: end for
26: Update anchor GMMs Pp and Pn using the global positive and negative logits from the source

domain:
27: Initialize ϕ

(0)
p ← ϕ̂p, ϕ(0)

n ← ϕ̂n from the latest iteration.
28: for t = 1, . . . , T do
29: Update ϕ

(t)
p , ϕ(t)

n using the EM algorithm with current global logits.
30: end for
31: ϕ̂p ← (1− τ̃ )ϕ

(T )
p + τ̃ ϕ̂p

32: ϕ̂n ← (1− τ̃ )ϕ
(T )
n + τ̃ ϕ̂n

33: Compute cumulative distributions F s
cl, F

t
cl, Fp, Fn using the estimated GMMs.

34: Compute logits offsets for source domain: ∆S
cl(z) =

{
F−1
p (Fcls(z))− z, if c = l

F−1
n (Fcls(z))− z, if c ̸= l

35: Compute logits offsets for target domain: ∆T
cl(z) =

{
F−1
p (F t

cl(z))− z, if c = l

F−1
n (F t

cl(z))− z, if c ̸= l

36: Compute the adjusted losses L̃s and L̃u using Eq. equation 8 with ∆S
cl and ∆T

cl.
37: Update model parameters θ by minimizing L̃s + L̃u using an optimizer (e.g., SGD or Adam).
38: end while
39: return Model parameters θ.

Fn(z) =
∑K

k=1 πn,k · Φ( z−µn,k

σn,k
). The inverse function of a CDF, denoted as F−1(·), represents the
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Table 5: Parameter
study of K.

K mIou (%)
1 70.2
3 70.5
5 70.7
10 70.6

Table 6: Parameter
study of τ̃ .

τ̃ mIou (%)
0 68.6

0.9 70.0
0.99 70.7

0.999 70.3

Table 7: Parameter
study of T .

T mIou (%)
1 70.4
3 70.7
5 70.7
10 70.5

Table 8: Parameter
study of λ.

λ mIou (%)
0.05 70.3
0.2 70.7
0.5 70.4
1 69.9

value of the variable corresponding to a given cumulative probability. For a given logit value z, by
computing F−1

p (F s
cl(z)) and F−1

n (F s
cl(z)), we obtain the corresponding logit values of the positive

anchor distribution Pp and the negative anchor distribution Pn at the cumulative probability F s
cl(z).

Then, the difference between these values and the original logit value z is used as the logits offset
∆S

cl(z) for the source domain. Similarly, by computing F−1
p (F t

cl(z)) and F−1
n (F t

cl(z)), we obtain the
logits offset ∆T

cl(z) for the target domain. To efficiently compute the CDF and its inverse function,
we use the Abramowitz-Stegun formula to approximate the CDF in the form of a polynomial and
employ interpolation methods to estimate the inverse function.

E INFLUENCE OF PARAMETERS SETTING

In this section, we further study the influence of parameters setting introduced in BLDA, i.e., number
of Gaussian components K, momentum factor τ̃ , number of EM Loop T for GMM estimation and λ
for cumulative density estimation loss. All experiments are conducted with DAFormer (Hoyer et al.,
2022a) on GTA→CS.

Number of Gaussian Components K. As shown in Tab.5, we find that BLDA can work well even
when K = 1, since the logit distribution is naturally close to Gaussian. The model achieves the best
performance when K = 5. A larger K allows for more flexibility in modeling the logits distributions
but may also introduce noise. We choose K = 5 as a balance between model capacity and robustness.

Momentum Factor τ̃ . The momentum factor τ̃ controls the speed of updating the GMM parameters.
When τ̃ = 0, performance becomes erratic because the logits from the current iteration alone are
not sufficient to model the distribution of all logits. A larger τ̃ leads to slower updates, retaining
the previously estimated distribution and making the estimation more stable but less adaptive. As
presented in Tab.6, setting τ̃ to 0.99 yields the best performance, suggesting that a relatively stable
estimation of the logits distributions is beneficial for the adaptation process.

Number of EM Loop T . The number of EM loops T determines the number of iterations used to
update the GMM parameters in each training step. Tab.7 shows that the model is not sensitive to the
choice of T , since the convergence rate of GMM is faster than the rate of network update, and it can
be estimated well even when T = 1. We choose T = 3 for stable performance while considering
computational efficiency.

Cumulative Density Estimation Loss Weight λ. The weight λ balances the cumulative density
estimation loss with the segmentation loss. A higher λ enforces stronger domain alignment through
the cumulative density functions. As shown in Tab.8, λ = 0.2 provides the best performance gain.
An overly large λ may distract the model from learning the primary segmentation task, leading to
performance degradation.

F EXTENDED EXPERIMENT ON IMAGE CLASSIFICATION

To demonstrate the generality of BLDA, we implement BLDA based on MIC (Hoyer et al., 2023)
with ResNet-101 on the VisDA-2017 (Peng et al., 2017) UDA classification benchmark in Tab.9,
and our method still achieves improvements. In the classification task, the dataset does not have
severe class distribution differences like segmentation. However, as we point out in Fig.1, the transfer
difficulty differences between domains still lead to severe class bias in this task, and our method can
effectively alleviate this and achieve more balanced predictions.
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Table 9: Image classification accuracy in % on VisDA-2017 for UDA, where the improvement is
marked as bold.

Method Plane Bcycl Bus Car Horse Knife Mcyle Persn Plant Sktb Train Truck Mean
MCC (Jin et al., 2020) 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

SDAT (Rangwani et al., 2022) 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
MIC (Hoyer et al., 2023) 96.7 88.5 84.2 74.3 96.0 96.3 90.2 81.2 94.3 95.4 88.9 56.6 86.9

+BLDA 96.2 90.3 82.8 81.2 95.7 96.7 93.4 86.5 95.7 94.3 91.0 65.7 89.1

G VISUALIZATION OF ESTIMATED GMMS

In this section, we visualize the learned GMMs for target domain, i.e., MT
cl for all c, l ∈ [C]. Fig.

7 presents the Estimated GMMs built with DAFormer, and Fig. 8 presents the estimated GMMs
with introducing BLDA. We find that the estimated GMMs can accurately model logits distribution
and our method reduces the difference in logits distribution across classes, thus achieving balanced
learning.

Figure 7: Estimated GMMs on target domain built with DAFormer.
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Figure 8: Estimated GMMs on target domain built with BLDA.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H MORE VISUALIZATION RESULTS OF LOGITS DISTRIBUTION

In this section, we provide more visualization results to compare logits distribution built with our
method. As shown in Fig.9, for over-predicted classes, the network predicts larger positive logits and
negative logits (column 1, 3) , while for under-predicted classes, the network predicts smaller logits
(column 2, 4). This difference in logits distribution leads to the class prediction bias. Our method
reduces this difference through aligning with the anchor distribution and achieves class-balanced
learning.
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Figure 9: Comparison of Logits Distribution. We choose {building (2), vegetation (8), car (13) ,sky
(10)} as over-predicted classes, and {train (16), bicycle (18), traffic light (6), traffic sign (7) } as
under-predicted classes for visualization. Note that the anchor distribution is counted separately at
baseline and our method.
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I MORE QUALITATIVE RESULTS

In this section, we provide more qualitative results between our method and other competitors
on GTA→CS. As shown in Fig.10, when previous methods fail to recognize the classes that are
under-predicted and suffer severe performance decline in UDA (e.g. sidewalk, pole, fence, terrain,
bike,sign), BLDA shows significant improvement on them, thereby demonstrating the effectiveness
of our method.

Image                   DAFormer          DAFormer+BLDA              MIC                 MIC+BLDA           Ground Truth

Figure 10: More qualitative comparison with DAFormer and MIC. The yellow boxes mark regions
improved by BLDA.

J LIMITATION AND SOCIETY IMPACT

Our method analyzes the class bias in domain adaptive semantic segmentation through logits dis-
tribution statistics and propose a method to implement online logits adjustment tailored for the
UDA training process, which can be easily built with exiting methods and demonstrate consistent
improvements. Although BLDA achieves remarkable performance, we balance the class under the
assumption that each logits distribution inM is independent, without considering correlation between
classes. How to model this correlation and mitigate the class bias further is still to be resolved. Within
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this paper, we present an approach for domain adaptive semantic segmentation, a pivotal research
area in the realm of computer vision, with no apparent negative societal implications known thus far.

K EXTENDED EXPERIMENTS

Table 10: UDA segmentation performance on SYN.→CS. using the mAcc (%) evaluation metric,
where the improvement is marked as bold.
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mAcc std
DAFormer(Hoyer et al., 2022a) T 89.8 90.2 96.2 33.8 8.3 51.9 63.1 57.8 95.1 - 98.4 86.3 63.6 96.7 - 83.4 - 55.4 61.4 70.7 25.1

+BLDA T 87.3 95.6 94.9 38.8 14.1 57.5 70.1 63.3 97.8 - 98.9 90.0 68.0 97.7 - 95.7 - 63.8 67.5 75.1 23.6
HRDA (Hoyer et al., 2022b) T 90.3 85.2 96.0 69.4 8.0 70.6 81.2 69.6 94.7 - 99.1 88.0 68.9 97.4 - 93.8 - 71.3 74.0 78.6 21.2

+BLDA T 89.4 94.5 95.4 75.5 24.5 78.2 85.8 74.7 97.6 - 98.8 88.9 71.6 97.4 - 96.9 - 72.6 76.2 82.4 17.9
MIC (Hoyer et al., 2023) T 89.9 87.4 96.2 71.3 8.4 66.7 81.5 69.7 95.6 - 98.5 89.1 73.0 97.3 - 93.5 - 78.2 71.5 79.2 21.2

+BLDA T 89.4 97.2 96.0 73.4 17.9 72.1 87.6 75.8 97.4 - 98.3 91.5 72.5 97.7 - 96.2 - 79.3 75.6 82.4 19.4

Table 11: UDA segmentation performance on GTA.→CS. using the mIoU (%) evaluation metric,
where the improvement is marked as bold. The results are acquired based on CNN-based model
(He et al., 2016; Chen et al., 2017a), denoted as C, and Transformer-based model (Xie et al., 2021),
denoted as T. ∗ denotes the reproduced result.
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mIoU std
DACS∗ (Tranheden et al., 2021) C 93.0 52.0 87.8 29.4 38.3 37.7 45.0 53.3 87.9 46.3 90.2 67.8 38.0 89.0 51.1 51.1 0.0 10.7 19.4 52.1 27.1

+BLDA C 92.9 67.5 87.1 36.3 39.3 41.2 50.7 58.5 87.3 45.5 87.7 69.1 40.4 88.3 45.3 53.5 1.2 10.8 36.3 54.7 25.6
DAFormer∗ (Hoyer et al., 2022a) C 95.7 69.9 87.2 35.6 36.7 37.0 49.4 52.8 87.3 44.1 87.9 69.0 42.2 86.5 40.0 51.7 0.2 41.1 54.0 56.2 24.0

+BLDA C 95.6 73.6 86.7 41.0 40.2 43.3 51.1 62.4 86.2 43.7 87.4 68.3 39.2 86.6 43.6 45.6 1.0 49.4 59.4 58.1 23.2
CDAC∗ (Wang et al., 2023) T 96.1 72.8 90.5 55.2 48.0 51.8 57.1 61.8 90.8 50.4 91.9 73.2 46.9 93.6 80.9 78.6 58.2 56.9 64.5 69.2 16.7

+BLDA T 96.6 78.1 90.0 57.9 52.5 55.1 58.7 64.5 90.1 50.8 90.9 73.3 47.5 93.2 75.1 80.0 65.3 60.7 68.9 71.0 15.4

Table 12: UDA segmentation performance on GTA.→CS. using the mAcc(%) evaluation metric,
where the improvement is marked as bold. The results are acquired based on CNN-based model
(He et al., 2016; Chen et al., 2017a), denoted as C, and Transformer-based model (Xie et al., 2021),
denoted as T. ∗ denotes the reproduced result.
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mAcc std
DACS∗ (Tranheden et al., 2021) C 97.9 58.9 94.9 40.7 49.4 46.1 51.7 57.2 94.5 66.9 98.6 82.0 62.2 93.3 82.9 79.0 0.0 74.4 20.0 65.8 26.5

+BLDA C 97.1 80.5 93.4 54.1 39.2 50.5 64.6 67.4 93.7 71.5 99.0 83.4 58.8 95.0 73.0 76.2 1.0 73.5 39.2 69.0 24.2
DAFormer∗ (Hoyer et al., 2022a) C 98.4 78.3 93.6 43.2 45.4 45.0 61.5 59.5 93.8 65.3 98.0 80.1 69.2 92.2 77.0 85.3 0.2 69.7 60.8 69.3 23.8

+BLDA C 97.0 84.8 93.0 55.1 56.1 55.4 71.0 74.5 93.2 73.7 97.7 84.8 77.2 92.0 80.1 85.5 1.1 77.3 73.0 74.9 21.6
CDAC∗ (Wang et al., 2023) T 99.1 78.0 94.6 69.3 52.9 61.2 71.7 68.7 95.8 59.3 99.0 85.0 70.2 96.0 88.3 85.5 71.1 75.4 74.7 78.7 13.8

+BLDA T 98.1 82.5 94.0 74.8 66.7 68.0 76.8 74.1 95.5 67.9 98.3 87.1 72.9 95.6 90.8 88.8 71.8 80.8 82.9 82.5 11.5

Table 13: Performance comparison on GTA.→CS. grouped by over-prediction and under-prediction
classes. The results are acquired based on CNN-based model (He et al., 2016; Chen et al., 2017a),
denoted as C, and Transformer-based model (Xie et al., 2021), denoted as T.

Metrics IoU: mean/std Acc: mean/std
Methods Arch. over-prediction under-prediction over-prediction under-prediction

DACS (Tranheden et al., 2021) C 68.7/28.9 37.0/13.1 80.3/29.2 52.3/14.5
+BLDA C 68.0/28.6 42.7/14.3 79.1/29.0 59.9/13.4

DAFormer (Hoyer et al., 2022a) C 67.3/29.6 46.3/10.0 79.8/29.0 59.8/11.2
+BLDA C 66.8/29.3 50.3/10.9 80.5/28.6 69.8/10.0

CDAC (Wang et al., 2023) T 83.8/11.6 56.5/7.6 90.4/8.5 68.1/7.6
+BLDA T 83.8/10.1 59.5/8.7 91.1/7.8 74.7/5.7

DAFormer (Hoyer et al., 2022a) T 83.3/10.3 54.7/7.3 90.6/8.0 66.1/6.2
+BLDA T 84.2/8.5 57.8/9.4 92.3/4.7 72.6/8.0

HRDA (Hoyer et al., 2022b) T 87.8/6.8 61.0/8.0 93.0/5.6 72.5/10.1
+BLDA T 88.6/6.2 64.5/7.2 93.9/4.0 77.0/8.2

MIC (Hoyer et al., 2023) T 89.5/5.9 63.6/8.0 92.7/6.6 74.7/8.0
+BLDA T 89.6/5.3 66.4/8.0 94.4/3.6 79.2/7.9
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Table 14: Computational resource requirements comparison

Methods GPU Memory (MB) Time per iter (s) Total Time (h)
DAFormer (Hoyer et al., 2022a) 9,807 1.32 14.5 (40K iters)

+BLDA 12,655 1.59 17.7 (40K iters)
DACS (Tranheden et al., 2021) 11,078 0.52 35.5 (250K iters)

+BLDA 14,354 0.81 56.1 (250K iters)
CDAC (Wang et al., 2023) 35,443 1.66 18.7 (40K iters)

+BLDA 35,443 1.95 22.3 (40K iters)

Table 15: Comparison with other class-imbalanced methods on GTA.→CS. using the mIoU (%)
evaluation metric, where baseline is based on DAFormer with uniform class sampling.
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mIoU std
baseline T 95.2 67.4 89.0 43.7 47.5 46.7 55.7 55.0 89.3 47.2 90.7 71.4 44.5 92.3 76.1 78.5 62.1 55.4 64.1 66.9 17.6

[1] (Lin et al., 2017) T 87.6 40.1 87.9 49.2 41.2 45.7 52.1 50.9 89.2 45.0 90.7 70.8 41.1 89.9 56.6 70.5 60.3 54.6 59.5 62.3 18.1
[2] (Cui et al., 2019) T 96.0 70.6 89.6 53.8 48.3 50.2 53.3 60.8 89.7 49.4 90.9 70.2 42.6 91.7 65.7 77.8 60.1 54.4 65.2 67.4 16.8

[3] (Hoyer et al., 2022a) T 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3 16.8
[4] (Menon et al., 2020) T 94.7 66.9 89.2 53.2 47.0 49.0 51.2 56.0 89.6 50.1 87.2 69.0 41.9 92.0 71.8 75.7 62.3 50.4 64.0 66.4 16.9

+BLDA T 94.5 72.1 88.4 48.3 51.6 52.9 59.5 64.5 88.1 51.5 90.5 72.4 47.6 94.0 75.9 80.8 65.6 53.7 67.7 69.5 15.9

Table 16: Comparison with other class-imbalanced methods on GTA.→CS. using the mAcc (%)
evaluation metric, where baseline is based on DAFormer with uniform class sampling.
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mAcc std
baseline T 98.3 75.4 94.9 53.8 57.8 53.6 70.2 59.7 96.2 57.6 99.1 83.5 67.6 95.5 87.1 84.3 73.8 74.5 77.5 76.9 15.3

[1] (Lin et al., 2017) T 91.7 63.3 94.6 66.4 50.2 54.4 63.9 55.1 95.6 66.9 98.6 84.9 58.5 92.6 84.4 81.9 70.0 68.8 68.2 74.2 15.2
[2] (Cui et al., 2019) T 98.8 77.7 94.1 71.4 56.8 63.7 77.2 71.2 95.3 63.5 99.0 84.1 72.0 94.6 90.1 89.2 68.5 76.4 80.2 80.2 12.6

[3] (Hoyer et al., 2022a) T 99.1 74.8 95.2 61.0 53.1 59.8 70.7 68.6 96.0 63.4 98.7 84.2 69.9 95.5 88.9 84.1 74.0 70.0 69.7 77.8 14.2
[4] (Menon et al., 2020) T 97.9 79.9 95.0 64.4 64.7 66.6 74.3 72.6 96.5 66.1 99.7 87.9 72.5 96.3 90.5 91.3 85.7 74.3 72.4 81.5 12.2

+BLDA T 97.5 79.4 93.4 65.5 68.0 63.9 77.2 75.5 94.9 68.1 99.0 85.2 71.4 95.2 89.2 87.6 80.8 77.0 83.6 81.7 10.9

Table 17: The JS divergence between the Pcl and corresponding anchor distribution Pp and Pn,
where the results on Pn is averaged over the C − 1 negative components.
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mean std
baseline Pp 0.412 0.289 0.381 0.286 0.293 0.137 0.325 0.142 0.429 0.273 0.596 0.130 0.217 0.300 0.225 0.164 0.190 0.145 0.180 0.270 0.119
+BLDA Pp 0.367 0.246 0.261 0.153 0.212 0.221 0.146 0.234 0.281 0.173 0.310 0.244 0.070 0.273 0.284 0.181 0.125 0.207 0.125 0.217 0.072
baseline Pn 0.517 0.327 0.315 0.394 0.305 0.280 0.422 0.288 0.412 0.404 0.433 0.278 0.396 0.279 0.387 0.382 0.401 0.430 0.394 0.371 0.064
+BLDA Pn 0.231 0.165 0.153 0.135 0.209 0.118 0.224 0.119 0.248 0.246 0.240 0.186 0.158 0.170 0.199 0.208 0.176 0.162 0.136 0.183 0.041

Table 18: Ablation on different selection criteria for anchor distributions on GTA.→CS. using the
mIoU (%) evaluation metric. OLA denotes online logits adjustment.
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mIoU std
DAFormer (Hoyer et al., 2022a) - 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3 16.8

target (global) post-hoc 95.7 77.0 87.8 61.0 53.7 54.3 56.1 61.2 87.2 50.2 90.4 74.4 43.4 90.9 73.3 82.5 56.6 54.8 68.3 69.4 15.8
source (building) post-hoc 95.8 77.1 90.0 59.8 54.5 51.6 56.6 59.8 86.2 48.2 90.6 75.4 43.7 90.4 72.0 79.5 58.9 53.7 69.2 69.1 16.0

source (fence) post-hoc 95.6 77.5 88.0 58.4 55.0 51.2 56.9 57.7 88.7 48.3 90.5 75.2 43.8 90.1 71.7 80.6 61.1 53.9 65.5 68.9 16.0
source (global) post-hoc 95.7 77.1 88.6 60.5 55.3 48.5 57.3 60.9 89.5 47.2 91.0 72.9 43.7 91.3 73.7 80.8 61.1 55.3 63.8 69.2 16.2

source (building) OLA 95.5 77.9 88.5 60.4 59.1 53.3 57.9 60.4 88.3 49.2 90.3 76.1 43.6 90.3 76.4 85.7 56.2 57.9 68.8 70.3 15.8
source (fence) OLA 95.6 81.2 88.2 57.9 57.0 51.6 54.2 60.2 87.9 50.2 90.3 76.3 44.3 90.0 75.0 82.4 57.7 56.0 70.6 69.8 16.0
source (global) OLA 95.4 78.3 88.3 54.0 55.2 55.7 60.3 65.2 89.2 47.3 91.1 71.4 44.8 91.6 74.3 83.4 73.2 59.3 67.1 70.7 15.5
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Table 19: Ablation on different selection criteria for anchor distributions on GTA.→CS. using the
mAcc (%) evaluation metric. OLA denotes online logits adjustment.
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mAcc std
DAFormer (Hoyer et al., 2022a) - 99.1 74.8 95.2 61.0 53.1 59.8 70.7 68.6 96.0 63.4 98.7 84.2 69.9 95.5 88.9 84.1 74.0 70.0 69.7 77.8 14.2

target (global) post-hoc 98.7 85.6 92.2 65.9 67.4 67.3 75.1 68.6 90.8 66.8 95.5 91.8 67.3 93.1 92.7 95.7 62.0 84.5 80.2 81.1 12.4
source (building) post-hoc 98.7 89.6 92.2 73.5 67.5 66.3 76.5 67.0 90.8 63.8 95.5 90.7 68.3 93.1 92.6 95.6 60.3 79.9 80.9 81.2 12.5

source (fence) post-hoc 98.5 85.3 91.3 74.1 66.7 66.2 82.3 68.4 90.5 63.4 95.5 88.9 62.1 92.5 91.9 94.9 63.8 83.5 79.2 81.0 12.2
source (ours) post-hoc 98.6 90.0 91.6 71.0 66.5 64.1 78.5 68.2 91.2 65.1 96.4 91.9 64.8 92.7 92.5 95.1 67.6 82.2 77.4 81.3 12.4

source (building) OLA 98.6 84.7 92.6 71.4 66.2 68.8 76.6 71.0 91.2 67.3 95.8 94.6 69.7 93.5 93.2 96.3 59.7 79.5 80.2 81.6 12.2
source (fence) OLA 98.6 84.8 92.2 71.6 64.1 66.9 78.3 68.2 90.9 68.2 95.6 92.9 65.4 93.3 93.0 95.9 60.4 82.3 84.8 81.4 12.6
source (ours) OLA 98.3 86.7 93.4 70.9 61.9 66.0 74.0 78.9 95.4 59.0 98.6 85.7 73.1 95.3 89.8 89.3 85.4 77.2 78.6 82.0 11.9

L EXTENDED DISCUSSION

L.1 DOMAIN ADAPTIVE SEMANTIC SEGMENTATION

Unsupervised domain adaptation (UDA) transfers semantic knowledge learned from labeled source
domains to unlabeled target domains. Due to the ubiquity of domain gaps, UDA methods have been
widely studied in various computer vision tasks, such as image classification, object detection, and
semantic segmentation. UDA is crucial for semantic segmentation to avoid laborious pixel-wise
annotation in new target scenarios.

Recent UDA approaches for semantic segmentation fall into two main paradigms: adversarial training-
based methods (Toldo et al., 2020; Tsai et al., 2018; Chen et al., 2018; Ganin & Lempitsky, 2015;
Hong et al., 2018; Long et al., 2015b) and self-training-based methods (Tranheden et al., 2021; Hoyer
et al., 2022a; Araslanov & Roth, 2021; Zhang et al., 2021). Adversarial training-based methods learn
domain-invariant representations through a min-max optimization game, where a feature extractor
is trained to confuse a domain discriminator, aligning feature distributions across domains. Self-
training-based methods, which have become dominant in the field due to the domain-robustness of
Transformers (Bhojanapalli et al., 2021), generate pseudo labels for target images based on a teacher-
student optimization framework. The success of this paradigm depends on generating high-quality
pseudo labels, with strategies such as entropy minimization (Chen et al., 2019) and consistency
regularization (Hoyer et al., 2023) being developed for this purpose.

Recently, several approaches have been proposed to tackle the challenges in UDA for semantic
segmentation: DTS (Huo et al., 2023) employs a Dual Teacher-Student Framework, promoting
the self-training paradigm to fully adapt models to the target domain by exploring different mix
strategies. CDAC (Wang et al., 2023) introduces consistency constraints in attention to enhance
the model’s cross-domain performance. RTea (Zhao et al., 2023) defines proxy tasks based on
structural information and incorporates them into the self-training paradigm as additional supervision
signals. Peng et al. (2023) apply Diffusion-based image translation techniques to directly mitigate the
distribution differences between the target and source domains. DiGA (Shen et al., 2023) integrates
distillation strategies and self-training through multi-stage training.

However, due to the inherent class imbalance and distribution shift in both data and label space
between domains, networks often exhibit complex class biases, which are further amplified by the
confirmation bias inherent in the self-training paradigm. Our method aims to achieve balanced
learning in UDA training to mitigate these issues and improve the overall performance of domain
adaptation for semantic segmentation.

L.2 CLASS-IMBALANCED LEARNING

Class imbalance is a prevalent issue in semantic segmentation, where the number of samples per
class varies significantly. Existing methods tackle this problem through re-weighting or re-sampling
techniques. Re-weighting methods assign different weights to classes during training, giving higher
importance to under-represented classes (Cui et al., 2019; Lin et al., 2017; Cao et al., 2019; Liu et al.,
2019). Re-sampling techniques modify the class distribution in the training data by over-sampling
minority classes or under-sampling majority classes (He et al., 2008; 2021; He & Garcia, 2009; Kim
et al., 2020; Chu et al., 2020).
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Recent works have proposed various approaches to address class imbalance in different tasks. For
object detection, Lin et al. (2017) propose a re-weighting method that assigns weights to samples
based on their confidence, with harder samples receiving higher weights. In classification, Cui
et al. (2019) define an effective number of samples for each class to weight different classes, while
Menon et al. (2020) introduce a logit adjustment method that incorporates correction terms in logits,
determined by prior knowledge of class distribution. For segmentation, Hoyer et al. (2022a) present
a re-sampling technique that samples based on prior knowledge of class distribution, with more
sampling for rare classes. Truong et al. (2023) considers class-imbalance as fairness problem and
propose to model the context of structural dependency to tackle it.

In UDA for semantic segmentation, some approaches have introduced these strategies to alleviate
class bias (Hoyer et al., 2022a; Araslanov & Roth, 2021; Li et al., 2022). However, these methods are
still empirical and focus on the single-domain setting, which assumes that the test data and training
data share the same distribution in both data space and label space, without considering the additional
challenges posed by domain shift in UDA.

In contrast to these methods, our approach aims to directly address class bias and achieve balanced
learning for each class without relying on prior knowledge about the distribution shift between
domains. We evaluate class bias through logit sets in the form of a confusion matrix and explicitly
balance components in the matrix using anchor distributions and cumulative density functions,
implemented in an online self-training paradigm. Our method does not depend on prior knowledge of
class distribution and instead directly models class bias based on the actual logit distribution, making
it more adaptable to the challenges posed by domain shift in UDA.

M CORE CODE

We provide our core code in BLDA to demonstrate our implementation.
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