
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BALANCED LEARNING FOR DOMAIN ADAPTIVE
SEMANTIC SEGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised domain adaptation (UDA) for semantic segmentation aims to transfer
knowledge from a labeled source domain to an unlabeled target domain, improving
model performance on the target dataset without additional annotations. Despite the
effectiveness of self-training techniques in UDA, they struggle to learn each class
in a balanced manner due to inherent class imbalance and distribution shift in both
data and label space between domains. To address this issue, we propose Balanced
Learning for Domain Adaptation (BLDA), a novel approach to directly assess and
alleviate class bias without requiring prior knowledge about the distribution shift
between domains. First, we identify over-predicted and under-predicted classes
by analyzing the distribution of predicted logits. Subsequently, we introduce a
post-hoc approach to align the positive and negative logits distributions across
different classes using anchor distributions and cumulative density functions. To
further consider the network’s need to generate unbiased pseudo-labels during
self-training, we couple Gaussian mixture models to estimate logits distributions
online and incorporate logits correction terms into the loss function. Moreover, we
leverage the resulting cumulative density as domain-shared structural knowledge
to connect the source and target domains. Extensive experiments on two standard
UDA semantic segmentation benchmarks demonstrate that BLDA consistently
improves performance, especially for under-predicted classes, when integrated into
existing methods. Our work highlights the importance of balanced learning in UDA
and effectively mitigates class bias in domain adaptive semantic segmentation.

1 INTRODUCTION

Semantic segmentation is a fundamental computer vision task that assigns a semantic label to each
pixel in an image, enabling comprehensive image understanding. Despite the remarkable progress in
recent research (Long et al., 2015a; Chen et al., 2017b; Cheng et al., 2021; 2022), the performance
of these methods often significantly drops when applied to new target datasets. This performance
degradation stems from the differences between the source and target domains, challenging the
generalization ability of these models. To address this issue, unsupervised domain adaptation (UDA)
techniques have been extensively studied. UDA aims to bridge the domain gap by transferring
knowledge from a labeled source domain to an unlabeled target domain, thereby improving the
model’s performance on the target dataset without requiring additional annotations.

In previous work, self-training techniques (Tranheden et al., 2021; Hoyer et al., 2022a) have been
naturally introduced into UDA tasks to fully utilize the large amount of unlabeled target domain data,
becoming a mainstream paradigm. This paradigm constructs a teacher network using a temporal
aggregation mechanism, treats its predictions on the target domain as pseudo-labels, and gradually
guides the student network’s learning. Despite achieving remarkable results, these methods struggle
to learn each class in a balanced manner. Generally, the inherent class imbalance in segmentation
datasets (Cordts et al., 2016) (Fig.1(a)) leads networks to produce biased predictions towards head
classes, often studied as the long-tail problem (Van Horn & Perona, 2017; Buda et al., 2018; Liu
et al., 2019). However, in UDA, data and label distribution shifts between the training and test
data complicate the class bias. The network’s bias towards classes does not entirely depend on
the differences in class sample distribution. As shown in Fig.1(b), when a network trained on the
source domain is tested on the target domain, the performance degradation varies greatly across
classes, distinguishing easy-to-transfer and hard-to-transfer classes. These factors jointly determine

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Demonstration of factors that cause class bias. (a) The inherent class imbalance problem
in segmentation datasets. (b) The differences in transfer difficulty across classes in cross-domain
settings. “Oracle’ represents the performance under full supervision, while “Src-only’ represents
training with the source domain and testing it on the target domain. (c) The differences in logits
distributions predicted for each class by the network, including "positive distribution" and "negative
distribution". (d) Bias assessment for different classes via Eq.4. The corresponding class IDs of (a),
(b), and (c) are mapped in descending order onto this figure.

the network’s different biases towards each class in target domain, resulting in over-prediction and
under-prediction. Furthermore, confirmation bias (Guo et al., 2017) causes self-training techniques to
exacerbate this phenomenon. Fig.2(a) shows the severe deterioration of classes like rider and bicycle
after self-training, widening the performance gap across classes. Therefore, achieving balanced
learning for each class in UDA is a challenging and worthwhile exploration.

Existing strategies to reduce model bias towards different classes can be broadly categorized into
re-weighting (Cui et al., 2019; Lin et al., 2017; Cao et al., 2019; Truong et al., 2023; Buda et al.,
2018) and re-sampling (Hoyer et al., 2022a; Araslanov & Roth, 2021; He et al., 2008; 2021; Guan
et al., 2022). To compare these methods, we take self-training as the baseline method in Fig.2
and implement re-weighting (Cui et al., 2019) and re-sampling (Hoyer et al., 2022a) techniques,
respectively. We observe the class bias through class-wise accuracy (Fig.2(a)) and the frequency of
pseudo-labels generated on the target domain during training (Fig.2(b)). Loss re-weighting aims to
assign different weights to classes, making the model pay more attention to tail classes. Although
intuitive, the update frequency of each class to the network still varies greatly, with some classes
remaining challenging to learn effectively, resulting in unstable performance in self-training. In
contrast, sample re-sampling proves more effective by directly adjusting the class sample distribution
during training, significantly enhancing the performance of tail classes. Despite their empirical
solid performance, these methods are heuristic and rely on the assumption that the test and training
data share the same distribution in both data and label space. However, in the UDA setting, these
assumptions are invalid because (1) the class distributions of the source and target domains differ, and
the target domain’s prior class distribution is unavailable; (2) the data distributions also differ, leading
to varying transfer difficulties across classes in cross-domain settings. This raises the question: How
to assess and alleviate class bias directly without requiring prior knowledge about the distribution
shift between the two domains?

In this work, we propose to assess the degree of class bias by analyzing the distribution of logits
predicted by the network (Sec.3.3.2). Fig.1(c) shows that the network exhibits differences in the
predicted logits distributions for different classes, directly leading to class bias. Fig.1(d) illustrates
that the ranking of class bias highly coincides with the ranking of logit distribution differences, i.e.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: In UDA, class bias can be expressed as over-predicted classes and under-predicted classes.
(a) Class-wise accuracy under different training settings. (b) Frequency of pseudo-labels generated
by the network for different classes during training.

over-predicted classes have larger logit values, while under-predicted classes have smaller logit values.
This assessment approach prompts us to propose BLDA, a method to achieve balanced learning for
domain adaptive semantic segmentation by balancing the logits distribution. First, we consider a post-
hoc approach to adjust the logits (Sec.3.3.3). We set shared anchor distributions for the positive and
negative logits distributions and align the class-wise logits distributions with the anchor distributions
based on the cumulative density function mapping. Furthermore, to generate unbiased pseudo-
labels for classes during self-training, we propose an online logit adjustment method (Sec.3.3.4).
This strategy couples Gaussian mixture models to estimate the logits distributions online during
training and incorporates logit correction terms into the loss function to replace the post-hoc method.
Moreover, we find that the resulting cumulative density can measure the discrimination difficulty of
different sample points in each class, which is a domain-shared structural knowledge that can be used
as an auxiliary loss to connect the two domains, further enhancing domain adaptation performance
(Sec.3.3.5). As shown in Fig.2, our method can be integrated into existing self-training-based UDA
paradigms and effectively balance the prediction bias across classes.

Our contributions can be summarized as follows: (1) We propose statistically analyzing the predicted
logits to directly assess the network’s bias towards classes. (2) We propose BLDA to estimate logit
correction terms online during UDA training to achieve balanced learning for each class. (3) We
demonstrate that BLDA can be easily integrated into existing UDA methods and consistently improves
performance on two standard UDA semantic segmentation benchmarks, significantly enhancing the
performance of under-predicted classes and confirming the effectiveness of our method.

2 RELATED WORK

2.1 DOMAIN ADAPTIVE SEMANTIC SEGMENTATION

Unsupervised domain adaptation (UDA) aims to transfer semantic knowledge learned from labeled
source domains to unlabeled target domains. Due to the ubiquity of domain gaps, UDA methods
have been widely studied in various computer vision tasks, such as image classification, object
detection, and semantic segmentation. UDA is crucial for semantic segmentation to avoid laborious
pixel-wise annotation in new target scenarios. Recent UDA approaches for semantic segmentation
can be categorized into two main paradigms: adversarial training-based methods (Toldo et al., 2020;
Tsai et al., 2018; Chen et al., 2018; Ganin & Lempitsky, 2015; Hong et al., 2018; Long et al., 2015b)
and self-training-based methods (Tranheden et al., 2021; Hoyer et al., 2022a; Araslanov & Roth,
2021; Zhang et al., 2021). Adversarial training-based methods learn domain-invariant representations

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

through a min-max optimization game, where a feature extractor is trained to confuse a domain
discriminator, aligning feature distributions across domains. Self-training-based methods, which
have come to dominate the field due to the domain-robustness of Transformers (Bhojanapalli et al.,
2021), generate pseudo labels for target images based on a teacher-student optimization framework.
The success of this paradigm relies on generating high-quality pseudo labels, with strategies such as
entropy minimization (Chen et al., 2019) and consistency regularization (Hoyer et al., 2023) being
developed for this purpose. However, due to the inherent class imbalance and distribution shift in
both data and label space between domains, networks often produce complicated class bias, which
is further exacerbated by confirmation bias in the self-training paradigm. Our method focuses on
balanced learning in UDA training.

2.2 CLASS-IMBALANCED LEARNING

Class imbalance is a common problem in semantic segmentation, where the number of samples per
class varies significantly. Existing methods address this issue through re-weighting or re-sampling
techniques. Re-weighting methods assign different weights to classes during training, giving higher
importance to under-represented classes (Cui et al., 2019; Lin et al., 2017; Cao et al., 2019). Re-
sampling techniques modify the class distribution in the training data by over-sampling minority
classes or under-sampling majority classes (He et al., 2008; 2021). In UDA for semantic segmentation,
some approaches have introduced these strategies to alleviate class bias (Hoyer et al., 2022a; Araslanov
& Roth, 2021; Li et al., 2022). However, these methods are still empirical and focus on the single-
domain setting, which follows the assumptions that the test data and training data share the same
distribution in both data space and label space, without considering the additional challenges posed
by domain shift in UDA. In this work, we aim to access class bias directly and achieve balanced
learning for each class with no prior knowledge about the distribution shift between domains.

3 METHOD

3.1 PROBLEM DEFINITION

In unsupervised domain adaptation for semantic segmentation, the network is simultaneously trained
on labeled source domain data and unlabeled target domain data. To be specific, the source domain
can be denoted as Ds = {(xS

i , y
S
i)}

NS
i=1, where xS

i ∈ XS represents an image with ySi ∈ YS as the
corresponding pixel-wise one-hot label covering C classes. The target domain can be denoted as
Dt = {(xT

i)}
NT
i=1, which shares the same label space but has no access to the target label YT .

3.2 REVISITING SELF-TRAINING IN UDA

Self-training-based pipelines for UDA segmentation consist of a supervised branch for the source
domain and an unsupervised branch for the target domain. For the supervised branch, loss Ls can
only be calculated on the source domain to train a neural network fθ:

Ls =
1

NS

NS∑
i=1

1

HW

H×W∑
j=1

ℓce(fθ(x
S
ij), y

S
ij), (1)

where ℓce denotes the cross-entropy loss. Unsupervised branch introduces teacher-student framework
to generate pseudo-labels ŷTij = argmax(gϕ(x

T
ij)) with the teacher model gϕ for target domain:

Lu =
1

NT

NT∑
i=1

1

HW

H×W∑
j=1

q(pij)ℓce(fθ(x
T
ij), ŷ

T
ij), (2)

where we define q(pij) as a quality estimate conditioned on confidence pij = max(gϕ(x
T
ij)) for

pseudo labels, which gradually strengthens with increasing accuracy of models and can be imple-
mented with threshold filtering or a weighting function. After each training step, the teacher model
gϕ is updated with the exponentially moving average of the weights of fθ. Then, the overall objective
function is a combination of supervised loss and unsupervised loss as L = Ls + Lu.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 BALANCED LEARNING FOR DOMAIN ADAPTIVE SEMANTIC SEGMENTATION

3.3.1 OVERVIEW

In this section, we first propose to assess the network’s prediction bias towards each class by
statistically analyzing the distribution of logits (Sec.3.3.2). Based on the above analysis, we define a
post-hoc method to balance the network’s predictions (Sec.3.3.3). Furthermore, we introduce online
logits adjustment tailored for the UDA training process (Sec.3.3.4). Finally, we introduce cumulative
density estimation as domain-shared knowledge to bridge the two domains (Sec.3.3.5).

3.3.2 ASSESSING PREDICTION BIAS FROM LOGITS DISTRIBUTION

Given a label space Y = [C] = {1, 2, ..., C}, the segmentation network can be seen as a scorer
fθ : xij → RC that assigns class-wise scores, also known as logits, to a pixel xij from image xi. To
investigate the distribution of logits obtained by the network for different classes, we can analyze it
from the perspective of the confusion matrix. The confusion matrix is a C × C matrix M , where
each element Mcl represents the number of pixels with ground truth label c predicted as class l. We
replace each element Mcl in the confusion matrix M with the corresponding set of logits, i.e., the
logits predicted for class l for all pixels with ground truth label c, to obtain the logits set matrixM.
We then useM to assess prediction bias.

Definition 1. Element in logits set matrix,Mcl.

Mcl = {fθ(xij)[l] | yij = c}, (3)

where fθ(xij)[l] represents the logit value predicted by the network for class l of pixel xij , and yij is
the ground truth label of pixel xij . In the resulting C×C matrixM, diagonal elementsMll represent
the "positive logits distribution" for class l, while off-diagonal elementsMcl (c ̸= l) represent the
"negative logits distribution" for class l with respect to class c.

Definition 2. Bias of the network towards class l, Bias(l).

Bias(l) =
1

C

∑
c∈[C]

P(argmax
c′∈[C]

fθ(x)[c
′] = l|y = c)− 1

C
, (4)

where P(argmaxc′∈[C] fθ(x)[c
′] = l|y = c) represents the probability that the network predicts a

sample from class c as class l. This definition measures the average difference between the probability
of predicting class l and the uniform probability 1/C across all classes. A positive bias indicates
over-prediction, while a negative bias indicates under-prediction for class l.

Let Pcl denote the distribution of Mcl. Assuming each distribution Pcl is independent, we can
estimate the P(l|c) by comparing the logit values:

P(argmax
y′∈[C]

fθ(x)[y
′] = l|c) ≈

∫ ∞

−∞
Pcl(z)

∏
y′ ̸=l

(∫ z

−∞
Pcy′(t)dt

)
dz. (5)

Combining Eq.4 and Eq.5, for an unbiased network, i.e., Bias(l) = 0 for all l ∈ [C], a sufficient
condition is that they have the same positive and negative distributions. This means the network’s
prediction performance is consistent across all classes. Fig.1(d) shows a direct correlation between
logit distribution differences and class bias, indicating that variations in logit distributions lead to
class bias in the network’s predictions.

3.3.3 POST-HOC CLASS BALANCING

Generally, the network tends to produce larger logits for over-predicted classes and smaller logits
for under-predicted classes, as shown in Fig.3 (a). Reweighting/resampling strategies can alleviate
this gap by making the network pay more attention to tail classes and reducing the emphasis on head
classes during training, as illustrated in Fig.3(b). However, as shown in Fig.1, class bias does not fully
correlate with the inherent class imbalance problem, especially in the UDA setting, where different
distribution shifts exist in both data and label space between domains. Furthermore, these methods
are empirical and lack generalization capability across various scenarios.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Illustration of proposed post-hoc class balancing. (a) The logits distributions of over-
predicted and under-predicted classes. (b) Reweighting/resampling strategies alleviate class imbalance
by adjusting the training emphasis on different classes. (c) Our post-hoc logits adjustment method
aligns the logits distributions of all classes with anchor distributions to achieve balanced prediction.

Based on the above analysis, to balance the network’s prediction capabilities across classes, we adjust
the network’s predictions in a post-hoc manner. Specifically, we define an anchor distribution Pp for
the positive logits distribution and an anchor distribution Pn for the negative logits distribution. We
then align all the logits distributions with corresponding anchor distributions, as shown in Fig.3 (c).
To preserve the relative ordering of logits, i.e., structural information within each distribution, we
align them in a point-wise way via the cumulative distribution function (CDF). Let Fcl(z), Fp(z) and
Fn(z) be the CDFs of Pcl, Pp and Pn, respectively. We align the logit value z from Pcl to Pp or Pn

as follows:

z′ =

{
F−1
p (Fcl(z)), if c = l

F−1
n (Fcl(z)), if c ̸= l

(6)

where z′ is the aligned value of z with respect to the anchor distribution. For brevity, we define
an offset for logit as ∆cl(z) = z′ − z. Considering the probability estimate that p(yij = c|xij) ∝
exp(fθ(xij)[c]), we can obtain revised prediction results for each pixel xij by:

ỹij = argmaxc∈[C]

exp(fθ(xij)[c] + τ∆cc(fθ(xij)[c]))

exp(fθ(xij)[c] + τ∆cc(fθ(xij)[c])) +
∑

c′ ̸=c exp(fθ(xij)[c′] + τ∆cc′(fθ(xij)[c′]))
,

(7)
where τ is a scaling factor (the derivation of Eq.7 is detailed in Appendix A). When τ = 1, the model
produces balanced predictions. However, to achieve optimal performance on specific evaluation
metrics (e.g., mIoU), we need to adjust the value of τ . We discuss the choice of τ in detail in the
experimental section. In this way, the network generates balanced predictions for different classes.

Discussion about anchor distribution. In our experiments, we use the global positive and negative
logits distributions on the source domain to estimate the anchor distribution for both source and target
domains. This choice is based on two key considerations: (1) The network tends to produce larger
logits for over-predicted classes and smaller logits for under-predicted classes. By using the global
logits distribution, we can effectively measure the average learning degree of the network across all
classes. Aligning each class-specific distribution with this global distribution can help neutralize the
class bias of the network, ensuring a more balanced learning process. (2) When estimating the logits
distributions for each class, there exist varying degrees of statistical errors. According to Bernstein
inequalities, estimating the global logits distribution can reduce estimation errors to a certain extent
and accelerate convergence rates. In our case, the global distribution, being more robust and stable,
serves as a reliable anchor distribution for subsequent alignment.

3.3.4 ONLINE LOGITS ADJUSTMENT FOR UDA

While the post-hoc logits adjustment method introduced in Sec.3.3.3 can effectively balance the
network predictions across different classes, it is performed after training the model. In the UDA
setting, it is significant to incorporate the logits balancing mechanism directly into the training process.
By doing so, the model can learn to make more balanced predictions while adapting to the target
domain through pseudo labels.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To achieve this, we propose an online logit adjustment method tailored for UDA training. The key to
this method lies in the online estimation of the logits distributions. We employ Gaussian Mixture
Models (GMMs) to model these distributions. Considering that the source and target domains have
inherently different logits distributions, we maintain two sets of GMMs separately, with each set
containing C ×C ×K Gaussian components, where C denotes the number of classes and K denotes
the number of Gaussian components per element inM. Formally, we define:

P s
cl =

K∑
k=1

πs
clkN (µs

clk, σ
s
clk), P t

cl =

K∑
k=1

πt
clkN (µt

clk, σ
t
clk), (8)

where P s
cl and P t

cl represent the estimated logits distributions for class l when the ground truth label
or pseudo label is c in the source and target domains, respectively. The parameters πs

clk, µs
clk, σs

clk
and πt

clk, µt
clk, σt

clk denote the mixing coefficient, mean, and standard deviation of the k-th Gaussian
component in the corresponding GMM. We update the GMM parameters during each training
iteration using the logits obtained from the current mini-batch via the Expectation-Maximization
(EM) algorithm (McLachlan & Krishnan, 2007). Since the network fθ gradually evolves during
training, we adopt a momentum-based EM update strategy. Specifically, we directly use the GMM
parameters ϕ̂cl estimated in the latest iteration as the initialization ϕ

(0)
cl for the current iteration.

After T EM loops, the current iteration is completed, and a momentum update is adapted with
ϕ
(T)
cl ← (1 − τ̃n)ϕ

(T)
cl + τ̃nϕ̂cl, where n represents the number of iterations that have not been

updated since the last parameter update for ϕcl. We also implement GMMs to estimate the anchor
distributions Pp and Pn using the source domain data’s global positive and negative logits. The
algorithm flow is detailed in Appendix D.

After estimating the logits distributions using GMMs, we compute the adjusted logits offset ∆S and
∆T for source and target domains, respectively. These offsets are then used to adjust the cross-entropy
loss for both domains:

L̃s = − 1

NS

NS∑
i=1

H×W∑
j=1

log
exp(fθ(x

S
ij)[y

S
ij]− τ∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij]))∑C

c=1 exp(fθ(x
S
ij)[c]− τ∆S

yS
ij ,c

(fθ(xS
ij)[c]))

,

L̃u = − 1

NT

NT∑
i=1

H×W∑
j=1

q(pij) log
exp(fθ(x

T
ij)[ŷ

T
ij]− τ∆T

ŷT
ij ,ŷ

T
ij
(fθ(x

T
ij)[ŷ

T
ij]))∑C

c=1 exp(fθ(x
T
ij)[c]− τ∆T

ŷT
ij ,c

(fθ(xT
ij)[c]))

.

(9)

In contrast to Eq.7, where the logits are adjusted post-hoc, Eq.9 directly incorporates the offset
into the learning process of the logits. This approach is equivalent to learning a scorer of the form
g(x)[y] = f(x)[y]− τ∆y(x). Consequently, we have argmaxf(x)[y] = g(x)[y] + τ∆y(x), which
can be seen as analogous to the post-hoc adjustment. By employing these adjusted losses, we achieve
a two-fold benefit. Firstly, the anchor distribution can serve as a reference distribution to balance
the learning progress between classes within both domains. Secondly, since the pseudo-label-based
loss in the target domain has a gradually increasing weight, using a shared anchor distribution allows
the logits distribution of the target domain to gradually align with that of the source domain, thus
establishing a connection between the two domains.

3.3.5 BRIDGING DOMAINS THROUGH CUMULATIVE DENSITY ESTIMATION

Furthermore, for each sample pixel, we can query the corresponding positive cumulative distribution
value Fcc based on its label c, which ranges from 0 to 1. The positive distribution measures the
discriminative ability of a class, and we find that this cumulative distribution value indicates the
difficulty of the sample pixel belonging to that class. This structural knowledge depends only on the
context of the pixel and is not affected by the image style, making it domain-invariant. To further
bridge the two domains, we add an extra regression head to the network to predict this value as an
additional auxiliary task.

Specifically, for each sample point xS
ij in the source domain, we can query the corresponding positive

cumulative distribution value based on its true label ySij : dSij = FyS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij]), where FyS

ij ,y
S
ij

is the positive cumulative distribution function for class ySij . Similarly, for each sample point xT
ij in

the target domain, we can query the corresponding positive cumulative distribution value based on its

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: UDA segmentation performance on GTA.→CS. using the mIoU (%) evaluation metric,
where the improvement is marked as bold. The results are acquired based on CNN-based model
(He et al., 2016; Chen et al., 2017a), denoted as C, and Transformer-based model (Xie et al., 2021),
denoted as T.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mIoU std
DACS (Tranheden et al., 2021) C 89.9 39.7 87.9 39.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.2 27.3 34.0 52.1 24.4

ProDA (Zhang et al., 2021) C 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 50.4 1.0 48.9 56.4 57.5 21.2
CPSL (Li et al., 2022) C 92.3 59.5 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.6 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8 20.3

TransDA (Chen et al., 2022) T 94.7 64.2 89.2 48.1 45.8 50.1 60.2 40.8 90.4 50.2 93.7 76.7 47.6 92.5 56.8 60.1 47.6 49.6 55.4 63.9 18.5
DAFormer (Hoyer et al., 2022a) T 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3 16.8

+BLDA T 95.4 78.3 88.3 54.0 55.2 55.7 60.3 65.2 89.2 47.3 91.1 71.4 44.8 91.6 74.3 83.4 73.2 59.3 67.1 70.7 15.5
HRDA (Hoyer et al., 2022b) T 96.5 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8 15.4

+BLDA T 96.4 77.6 90.7 63.3 57.9 62.1 66.5 72.5 91.3 52.2 94.4 76.9 57.3 93.5 86.2 87.7 79.9 66.8 68.9 75.6 13.8
MIC (Hoyer et al., 2023) T 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9 14.8

+BLDA T 97.1 82.6 91.6 64.7 61.0 64.9 68.0 74.8 91.2 56.6 92.4 80.0 54.7 95.7 87.3 88.8 82.6 64.2 72.0 77.1 13.5

Figure 4: Qualitative results. Note that the yellow boxes mark regions improved by BLDA.

pseudo label ŷTij : dTij = FŷT
ij ,ŷ

T
ij
(fθ(x

T
ij)[ŷ

T
ij]), where FŷT

ij ,ŷ
T
ij

is the positive cumulative distribution
function for the class corresponding to the pseudo label ŷTij . We then add an extra regression head hϕ

to the network to predict the cumulative distribution value for each sample point. The corresponding
regression losses for the source and target domains can be defined as:

LS
reg =

1

NS

NS∑
i=1

H×W∑
j=1

|hϕ(f̃θ(x
S
ij))− dSij |2,LT

reg =
1

NT

NT∑
i=1

H×W∑
j=1

q(pij)|hϕ(f̃θ(x
T
ij))− dTij |2, (10)

where | · |2 denotes the L2 loss, and f̃θ(xij) denote the features extracted by the network fθ. Finally,
the overall training objective can be expressed as L = L̃s + L̃u + λ(LS

reg + LT
reg), where λ is a

hyperparameter balancing the cumulative density estimation loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following standard UDA protocols, we evaluate our method on two widely used bench-
marks that involve transferring knowledge from a synthetic domain to a real domain in a street
scene setting. Specifically, we use GTAv/SYNTHIA (Ros et al., 2016; Richter et al., 2016) as the
labeled source domain and Cityscapes (Cordts et al., 2016) as the unlabeled target domain. GTAv
contains 24,966 synthetic images with a resolution of 1914 × 1052, while SYNTHIA consists of
9,400 synthetic images with a resolution of 1280× 960.

Implementation Details. Our method can be built with different self-training-based frameworks.
For thorough evaluation, we apply BLDA to three strong baseline methods, i.e., DAFormer (Hoyer
et al., 2022a) , HRDA (Hoyer et al., 2022b), and MIC (Hoyer et al., 2023), with MiT-B5 (Xie et al.,
2021) pretrained on ImageNet-1k (Deng et al., 2009) as the backbone. BLDA is implemented based
on MMSegmentation (Contributors, 2020). All experiments are trained for 40K iterations and a
batch size of 2, with one or two RTX-3090 (24 GB memory) GPUs, depending on the complexity
of used UDA frameworks. We train the network with an AdamW optimizer with learning rates of
6× 10−5 for the encoder and 6× 10−4 for the decoder, a weight decay of 0.01, and linear learning
rate warm-up for the first 1.5K iterations. The input images are rescaled and randomly cropped to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: UDA segmentation performance on SYN.→CS. using the mIoU (%) evaluation metric,
where the improvement is marked as bold. Note that the mIoUs on are calculated over 16 classes.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mIoU std
DACS (Tranheden et al., 2021) C 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 - 90.8 67.6 38.3 82.9 - 38.9 - 28.5 47.6 48.3 27.5

ProDA (Zhang et al., 2021) C 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 - 84.4 74.2 24.3 88.2 - 51.1 - 40.5 45.6 55.5 25.6
CPSL (Li et al., 2022) C 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 - 88.5 79.0 32.0 90.6 - 49.4 - 50.8 59.8 57.9 25.5

TransDA (Chen et al., 2022) T 90.4 54.8 86.4 31.1 1.7 53.8 61.1 37.1 90.3 - 93.0 71.2 25.3 92.3 - 66.0 - 44.4 49.8 59.3 26.5
DAFormer (Hoyer et al., 2022a) T 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 - 89.8 73.2 48.2 87.2 - 53.2 - 53.9 61.7 60.9 22.1

+BLDA T 80.7 44.9 85.6 45.1 9.6 54.3 60.2 58.7 87.7 - 92.3 75.7 51.1 87.3 - 62.7 - 59.9 65.8 64.0 20.6
HRDA (Hoyer et al., 2022b) T 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 - 92.9 79.4 52.8 89.0 - 64.7 - 63.9 64.9 65.8 21.4

+BLDA T 83.9 54.9 87.5 53.1 11.5 63.2 69.4 64.4 87.2 - 93.1 79.1 54.7 88.3 - 69.1 - 64.2 65.7 67.9 19.3
MIC (Hoyer et al., 2023) T 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 - 94.6 81.0 58.9 90.1 - 61.9 - 67.1 64.3 67.3 21.0

+BLDA T 86.1 61.2 89.8 47.2 10.2 62.6 70.3 67.1 90.0 - 94.4 81.4 56.4 90.5 - 67.2 - 64.8 66.3 69.1 20.4

Figure 5: Study of the different evalution
metrics with respect to scaling factor τ .

Table 3: BLDA ablation study of different
components built with DAFormer.

None Post-hoc OLAS OLA CDE mIoU mAcc
✓ 68.3 77.8

✓ 69.2 80.3
✓ 68.9 79.5

✓ 70.2 81.8
✓ ✓ 70.7 82.0

512× 512 following the same data augmentation in DAFormer (Hoyer et al., 2022a), and the EMA
coefficient for updating the teacher net is set to be 0.999. We set temperature coefficient τ = 0.1 and
loss weight λ = 0.2 respectively. For more details, please refer to the Appendix.

4.2 COMPARISON WITH EXISTING METHODS

Comparative Evaluation. We compare BLDA to existing state-of-the-art UDA approaches on
the GTA.→CS. and SYN.→CS. benchmarks. In addition to the widely adopted mean intersection-
over-union (mIoU) metric, we also report the mean accuracy (mAcc) metric, which is equivalent to
measuring the balanced error (Menon et al., 2020), i.e., the average of each class’s error rate, and is
more suitable to be used to assess the balance among classes. We discuss these two metrics in detail
in Appendix C. Additionally, we calculate the standard deviation of IoU and Acc for each class to
reflect the balanced degree of performance across classes.

Evaluation Results. Tab.1-2 shows BLDA consistently improves the performance of all baseline
methods on two benchmarks by a large margin, ranging from 1.2% to 3.1%. Furthermore, significant
improvements are obtained for under-predicted classes, such as sidewalk, fence, pole, light, and sign,
which demonstrates that BLDA can mitigate the class bias with decreased standard deviation and thus
bring the performance gains. In Table 4, the same phenomenon is observed, and the improvement in
mAcc is more significant, ranging from 2.9% to 4.2%.

4.3 ABLATION STUDY

We conduct a series of ablation studies on the GTA.→CS. benchmark built with DAFormer (Hoyer
et al., 2022a). Please refer to the Appendix for further analysis, where we provide a deeper study of
parameter settings and more visualization results.

Influence of scaling factor. As illustrated in Fig. 5, we explore the influence of different τ values on
evaluation metrics. The mAcc metric gradually increases as τ grows, reaching its peak performance
when τ = 1. Interestingly, the mIoU metric does not demonstrate a perfectly positive correlation with
the rise in mAcc. This discrepancy arises from the fact that the mIoU calculation is heavily impacted
by the imbalanced distribution of the test set, whereas mAcc serves as a class-balanced metric. We
comprehensively explain this phenomenon in Appendix C. Our method, which models class-balanced
learning, effectively boosts mAcc. However, to achieve improvements in mIoU, selecting a smaller
scaling factor τ is necessary.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: UDA segmentation performance on GTA.→CS. using the mAcc (%) evaluation metric,
where the improvement is marked as bold.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mAcc std
DAFormer (Hoyer et al., 2022a) T 99.1 74.8 95.2 61.0 53.1 59.8 70.7 68.6 96.0 63.4 98.7 84.2 69.9 95.5 88.9 84.1 74.0 70.0 69.7 77.8 14.2

+BLDA T 98.3 86.7 93.4 70.9 61.9 66.0 74.0 78.9 95.4 59.0 98.6 85.7 73.1 95.3 89.8 89.3 85.4 77.2 78.6 82.0 11.9
HRDA (Hoyer et al., 2022b) T 99.1 85.6 96.0 72.5 56.3 69.4 83.9 79.6 96.1 59.1 98.5 89.8 60.7 96.2 91.3 89.4 80.2 77.0 80.9 82.2 13.2

+BLDA T 99.2 87.2 95.0 64.9 68.2 72.7 88.3 79.5 95.7 65.7 98.9 87.9 79.6 95.5 93.8 92.5 87.0 83.1 81.2 85.1 10.7
MIC (Hoyer et al., 2023) T 99.5 87.1 96.0 73.2 65.3 68.5 81.0 74.8 96.8 58.9 98.8 85.7 81.3 96.7 91.4 91.0 78.1 79.0 77.5 83.2 11.6

+BLDA T 98.9 90.7 95.4 74.6 70.9 73.5 88.9 82.8 96.4 64.8 98.8 89.0 80.8 96.3 93.8 92.8 88.2 86.5 78.8 86.3 9.8

B
u

il
d

in
g

V
eg

et
a

ti
o

n

BicycleTraffic Sign

Figure 6: Comparison of Logits Distribution. We choose {building (2), vegetation (8)} as over-
predicted classes, and {traffic sign (7), bicycle (18)} as under-predicted classes for visualization.
Note that the anchor distribution is counted separately at baseline and in our method.

Effectiveness of Components. In Tab.10, we delve into the various components of BLDA. By solely
applying the post-hoc method to adjust the predictions, we observe a minor performance improvement
of 0.9%. When introducing online logit adjustment exclusively during source domain image training
(OLAS), the improvement is comparatively modest at 0.6%. However, by simultaneously performing
adjustments in both domains (OLA), we witness a significant performance boost of 1.9%, suggesting
that this strategy effectively captures the disparity in learning degrees between the domains. Lastly, the
extra supervison from cumulative distribution estimation (CDE) further models the shared structural
information across the domains (shown in Fig.4), producing additional performance gains.

Qualitative Results. Fig.4 presents the qualitative results. We observe that for under-predicted
classes, such as sidewalk and pole, the baseline method struggles to recognize them accurately.
While the post-hoc method can slightly improve the performance, our proposed BLDA approach
significantly enhances the ability to predict these classes.

Comparison of Logits Distribution. In Fig.6, we visualize the positive distribution and negative
distribution corresponding to the over-predicted classes { building (2), vegetation (8)} and under-
predicted classes { traffic sign (7), bicycle (18) } on the Cityscapes Val. set. In the baseline method,
the positive and negative logits of classes building and vegetation are larger than anchor distribution,
while this phenomenon is reversed in classes traffic light and bicycle, which leads to class bias. Our
method reduces this distribution difference by aligning with the anchor distribution and achieves
class-balanced learning.

5 CONCLUSION

In this work, we present Balanced Learning for Domain Adaptation (BLDA), a novel approach to ad-
dress class bias in unsupervised domain adaptation (UDA) for semantic segmentation. BLDA analyzes
logits distributions to assess prediction bias and introduces an online logits adjustment mechanism to
balance class learning in both source and target domains. Our method effectively mitigates class bias,
promotes balanced learning, and enhances generalization to the target domain. Experimental results
demonstrate consistent performance improvements on standard UDA benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Nikita Araslanov and Stefan Roth. Self-supervised augmentation consistency for adapting semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15384–15394, 2021.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and
Andreas Veit. Understanding robustness of transformers for image classification. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 10231–10241, 2021.

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural networks, 106:249–259, 2018.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848,
2017a.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017b.

Minghao Chen, Hongyang Xue, and Deng Cai. Domain adaptation for semantic segmentation with
maximum squares loss. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 2090–2099, 2019.

Runfa Chen, Yu Rong, Shangmin Guo, Jiaqi Han, Fuchun Sun, Tingyang Xu, and Wenbing Huang.
Smoothing matters: Momentum transformer for domain adaptive semantic segmentation. arXiv
preprint arXiv:2203.07988, 2022.

Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality oriented adaptation for semantic segmentation
of urban scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7892–7901, 2018.

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need for
semantic segmentation. Advances in Neural Information Processing Systems, 34:17864–17875,
2021.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1290–1299, 2022.

Peng Chu, Xiao Bian, Shaopeng Liu, and Haibin Ling. Feature space augmentation for long-tailed
data. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXIX 16, pp. 694–710. Springer, 2020.

MMSegmentation Contributors. Mmsegmentation: Openmmlab semantic segmentation toolbox and
benchmark, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 9268–9277, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Dayan Guan, Jiaxing Huang, Aoran Xiao, and Shijian Lu. Unbiased subclass regularization for
semi-supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9968–9978, 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on knowledge
and data engineering, 21(9):1263–1284, 2009.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks
(IEEE world congress on computational intelligence), pp. 1322–1328. Ieee, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Ruifei He, Jihan Yang, and Xiaojuan Qi. Re-distributing biased pseudo labels for semi-supervised
semantic segmentation: A baseline investigation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6930–6940, 2021.

Weixiang Hong, Zhenzhen Wang, Ming Yang, and Junsong Yuan. Conditional generative adversarial
network for structured domain adaptation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1335–1344, 2018.

Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer: Improving network architectures and
training strategies for domain-adaptive semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9924–9935, 2022a.

Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Hrda: Context-aware high-resolution domain-adaptive
semantic segmentation. In European Conference on Computer Vision, pp. 372–391. Springer,
2022b.

Lukas Hoyer, Dengxin Dai, Haoran Wang, and Luc Van Gool. Mic: Masked image consistency for
context-enhanced domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11721–11732, 2023.

Xinyue Huo, Lingxi Xie, Wengang Zhou, Houqiang Li, and Qi Tian. Focus on your target: A
dual teacher-student framework for domain-adaptive semantic segmentation. arXiv preprint
arXiv:2303.09083, 2023.

Ying Jin, Ximei Wang, Mingsheng Long, and Jianmin Wang. Minimum class confusion for versatile
domain adaptation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXI 16, pp. 464–480. Springer, 2020.

Jaehyung Kim, Jongheon Jeong, and Jinwoo Shin. M2m: Imbalanced classification via major-to-
minor translation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13896–13905, 2020.

Ruihuang Li, Shuai Li, Chenhang He, Yabin Zhang, Xu Jia, and Lei Zhang. Class-balanced pixel-
level self-labeling for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11593–11603, 2022.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988,
2017.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-scale
long-tailed recognition in an open world. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2537–2546, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015a.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In International conference on machine learning, pp. 97–105. PMLR,
2015b.

Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions. John Wiley
& Sons, 2007.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314, 2020.

Duo Peng, Ping Hu, Qiuhong Ke, and Jun Liu. Diffusion-based image translation with label guidance
for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 808–820, 2023.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda:
The visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, Arihant Jain, and Venkatesh Babu Radhakrish-
nan. A closer look at smoothness in domain adversarial training. In International conference on
machine learning, pp. 18378–18399. PMLR, 2022.

Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth
from computer games. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 102–118. Springer, 2016.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3234–3243,
2016.

Fengyi Shen, Akhil Gurram, Ziyuan Liu, He Wang, and Alois Knoll. Diga: Distil to generalize
and then adapt for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15866–15877, 2023.

Marco Toldo, Umberto Michieli, Gianluca Agresti, and Pietro Zanuttigh. Unsupervised domain
adaptation for mobile semantic segmentation based on cycle consistency and feature alignment.
Image and Vision Computing, 95:103889, 2020.

Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and Lennart Svensson. Dacs: Domain adaptation
via cross-domain mixed sampling. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1379–1389, 2021.

Thanh-Dat Truong, Ngan Le, Bhiksha Raj, Jackson Cothren, and Khoa Luu. Fredom: Fairness
domain adaptation approach to semantic scene understanding. In IEEE/CVF Computer Vision and
Pattern Recognition (CVPR), 2023.

Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and Manmohan
Chandraker. Learning to adapt structured output space for semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 7472–7481, 2018.

Grant Van Horn and Pietro Perona. The devil is in the tails: Fine-grained classification in the wild.
arXiv preprint arXiv:1709.01450, 2017.

Kaihong Wang, Donghyun Kim, Rogerio Feris, and Margrit Betke. Cdac: Cross-domain attention
consistency in transformer for domain adaptive semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 11519–11529, 2023.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
Simple and efficient design for semantic segmentation with transformers. Advances in Neural
Information Processing Systems, 34:12077–12090, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang Wen. Prototypical pseudo label
denoising and target structure learning for domain adaptive semantic segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12414–12424, 2021.

Dong Zhao, Shuang Wang, Qi Zang, Dou Quan, Xiutiao Ye, Rui Yang, and Licheng Jiao. Learning
pseudo-relations for cross-domain semantic segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 19191–19203, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DERIVATION OF EQ.7

Considering probabilities estimate that p(yij = c|xij) ∝ exp(fθ(xij)[c]), the discriminant probabil-
ity for pixel xij can be presented as:

p(yij = c|xij) =
exp(fθ(xij)[c]∑
c′ exp(fθ(xij)[c′])

. (11)

Given offset for logits as ∆cl(z) = z′ − z and the label c for pixel xij , we can obtain revised
class-conditional discriminant probability for each pixel xij by:

p̃(yij = c|xij , c) =
exp(fθ(xij)[c] + ∆cc(fθ(xij)[c]))∑

c′ exp(fθ(xij)[c′] + ∆cc′(fθ(xij)[c′]))
. (12)

Then, following Bayes rule, the revised posterior is derived as:

p̃(yij = c|xij) =
p(c)p̃(yij = c|xij , c)∑
c′ p(c

′)p̃(yij = c|xij , c′)
. (13)

So we can obtain revised prediciton results for each pixel xij by:
ỹij = argmaxc∈[C]p(c)p̃(yij = c|xij , c). (14)

Since the class probabilities p(c) are typically set as a uniform prior, i.e., p(c) = 1
c , Eq.14 can be

rewritten as:
ỹij = argmaxc∈[C]p(yij = c|xij , c)

= argmaxc∈[C]

exp(fθ(xij)[c] + ∆cc(fθ(xij)[c]))

exp(fθ(xij)[c] + ∆cc(fθ(xij)[c])) +
∑

c′ ̸=c exp(fθ(xij)[c′] + ∆cc′(fθ(xij)[c′]))
.

(15)
For Eq.6, we add a scaling factor τ to be adjusted for specific evaluation metrics.

B DISCUSSION ABOUT EQ.9

For a deeper understanding of the loss function in Eq.9, we can rewrite it as:

L̃s =
1

NS

NS∑
i=1

H×W∑
j=1

log

1 +
∑
c ̸=yS

ij

exp
(
∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij])

)
exp

(
∆S

yS
ij ,c

(fθ(xS
ij)[c])

)


τ

exp
(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij]

) ,

(16)
which can be interpreted as a standard cross-entropy loss with an adaptive margin. Specifically,
if the class ySij is an over-predicted class, it is reasonable to assume that for most other classes c,
∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij]) < ∆S

yS
ij ,c

(fθ(x
S
ij)[c]). This implies that:exp
(
∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij])

)
exp

(
∆S

yS
ij ,c

(fθ(xS
ij)[c])

)


τ

< 1 (17)

In the loss function Eq.16, this ratio is used to scale the term exp
(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij]
)
.

When ySij is an over-predicted class, the ratio is less than 1, which reduces the weight of the
term exp

(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij]
)
. Consequently, for over-predicted classes, the loss function

imposes a smaller penalty for misclassification. Conversely, if ySij is an under-predicted class, it can
be assumed that for most other classes c, ∆S

yS
ij ,y

S
ij
(fθ(x

S
ij)[y

S
ij]) > ∆S

yS
ij ,c

(fθ(x
S
ij)[c]). This leads

to a ratio greater than 1, which increases the weight of the term exp
(
fθ(x

S
ij)[c]− fθ(x

S
ij)[y

S
ij]
)
,

thereby imposing a larger penalty for misclassification of under-predicted classes. In summary, by
introducing the margin-based ratio term, the loss function Eq.16 adaptively adjusts the strength of the
penalty based on the difficulty of the classes. This approach helps to mitigate the class bias problem
and enhances the model’s performance on under-predicted classes, leading to a more balanced and
accurate classification. Moreover, since the logit offset term ∆ is updated online during the training
process, it aligns well with the self-training paradigm in UDA.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C DISCUSSION ABOUT EVALUATION METRICS

In this section, we investigate the impact of class imbalance on the evaluation metrics mIoU and
mAcc in the context of semantic segmentation. We consider a multi-class problem with C classes,
where the number of samples in the i-th class is denoted as Ni. Let Pij represent the probability of
classifying a sample from the i-th class as the j-th class in the confusion matrix. For the purpose
of this analysis, we assume that the probabilities Pii and Pkk are balanced across all classes, i.e.,
Pii = Pkk = p,∀i, k ∈ 1, 2, ..., C, and focus solely on the effect of class imbalance in terms of
sample numbers. Under this assumption, the calculation formula for mAcc can be written as:

mAcc =
1

C

C∑
i=1

Ni · Pii∑C
j=1 Ni · Pij

=
1

C

C∑
i=1

p∑C
j=1 Pij

(18)

As evident from the equation above, the sample numbers Ni cancel out in the calculation of mAcc,
making it independent of the class imbalance in terms of sample numbers. Therefore, mAcc remains
unaffected by class imbalance under the given assumptions. On the other hand, the calculation
formula for mIoU is given by:

mIoU =
1

C

C∑
i=1

Ni · Pii∑C
j=1 Ni · Pij +

∑C
j=1 Nj · Pji −Ni · Pii

(19)

In contrast to mAcc, the sample numbers Ni do not cancel out in the calculation of mIoU. Con-
sequently, when the classes are imbalanced, i.e., the sample numbers Ni vary significantly across
classes, the IoU of classes with larger sample numbers will dominate the overall mIoU result. To
illustrate the impact of class imbalance on mIoU, let us consider a case where class k is a head class
with a significantly larger sample number Nk compared to a tail class i with sample number Ni. The
performance of class i will be greatly affected by class k through the term Nk ·Pki in the denominator
of mIoU. For class i to have a fair contribution to mIoU, the probability Pki needs to be very small.
This implies that a balanced classifier may not be optimal for maximizing mIoU under class imbal-
ance. Therefore, our proposed method implements a scaling factor τ to modulate the contributions of
introduced logits offset. In contrast, mAcc is inherently unaffected by class imbalance, as the sample
numbers Ni cancel out in its calculation formula. This means that a balanced classifier is indeed
optimal for maximizing mAcc, and our method, which aims to balance the contributions of different
classes, aligns well with this objective and can achieve consistent improvements.

D IMPLEMENTATION DETAILS OF ONLINE LOGITS DISTRIBUTION
ESTIMATION

In this section, we provide the pseudo label to explain implementation details of online logits
distribution estimation, as shown in Alg.1. For computational efficiency, in each iteration, we sample
Nsample logits for each element in MS

cl and MT
cl , where Nsample is the minimum sample number of

classes in the minibatch (shoule be greater than or equal to Nmin, where we set it as 100). This way,
we obtain C × C ×Nsample logits, and then update the C × C GMMs simultaneously in a parallel
manner. Since not all classes may be updated in each iteration, we maintain a variable n for each
GMM that is not updated, to record the number of iterations since its last update. This n is used to
adjust the momentum factor using τ̃ in the EMA update, in order to match the update speed of the
network.

In the algorithm, the cumulative distribution functions (CDFs) F s
cl, F

t
cl, Fp, and Fn are computed

using the estimated Gaussian mixture models (GMMs). These CDFs describe the cumulative
probability distribution of the corresponding GMMs. For the source and target domain GMMs P s

cl

and P t
cl, their CDFs can be represented as: F s

cl(z) =
∑K

k=1 π
s
cl,k ·Φ(

z−µs
cl,k

σs
cl,k

) F t
cl(z) =

∑K
k=1 π

t
cl,k ·

Φ(
z−µt

cl,k

σt
cl,k

), where Φ(·) is the CDF of the standard normal distribution, and πs
cl,k, µs

cl,k, and σs
cl,k are

the weight, mean, and standard deviation of the k-th component of the source domain GMM P s
cl,

respectively. πt
cl,k, µt

cl,k, and σt
cl,k are the corresponding parameters for the target domain GMM

P t
cl. Similarly, the CDFs for the anchor GMMs Pp and Pn are: Fp(z) =

∑K
k=1 πp,k · Φ(z−µp,k

σp,k
)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Online Logits Adjustment for UDA

Input: Source domain Ds = (xS
i , y

S
i)

NS

i=1, target domain Dt = (xT
i)

NT

i=1, number of classes C,
number of Gaussian components K, momentum factor τ̃ , scaling factor τ , minimum number of
elements Nmin, number of EM Loop T .

Output: Model parameters θ.
1: Initialize model parameters θ, source GMMs P s

cl, target GMMs P t
cl, anchor GMMs Pp and Pn

for all c, l ∈ [C].
2: while not converged do
3: Sample a mini-batch of source data (xS

i , y
S
i)

BS

i=1 and target data (xT
i)

BT

i=1.
4: Compute logits fθ(xS

ij) and fθ(x
T
ij) for source and target samples.

5: Compute pseudo-labels for target samples: ŷTij = argmaxc∈[C]fθ(x
T
ij [c]).

6: Compute matrices MS
cl and MT

cl based on the source labels and target pseudo-labels:
7: MS

cl = {fθ(xS
ij)[l] | ySij = c}

8: MT
cl = {fθ(xT

ij)[l] | ŷTij = c}
9: Update source GMMs P s

cl, target GMMs P t
cl, anchor GMMs Pp and Pn using the momentum-

based EM algorithm:
10: for c, l ∈ [C] do
11: if |MS

cl| > Nmin then
12: Initialize ϕ

s,(0)
cl ← ϕ̂s

cl from the latest iteration.
13: for t = 1, . . . , T do
14: Update ϕcls,(t) using the EM algorithm with current logits.
15: end for
16: ϕ̂cls ← (1 − τ̃n)ϕ

s,(T)
cl + τ̃nϕ̂cls, where n is the number of iterations since the last

update.
17: end if
18: if |MS

cl| > Nmin then
19: Initialize ϕ

t,(0)
cl ← ϕ̂t

cl from the latest iteration.
20: for t = 1, . . . , T do
21: Update ϕclt,(t) using the EM algorithm with current logits.
22: end for
23: ϕ̂t

cl ← (1− τ̃n)ϕ
t,(T)
cl + τ̃nϕ̂t

cl, where n is the number of iterations since the last update.
24: end if
25: end for
26: Update anchor GMMs Pp and Pn using the global positive and negative logits from the source

domain:
27: Initialize ϕ

(0)
p ← ϕ̂p, ϕ(0)

n ← ϕ̂n from the latest iteration.
28: for t = 1, . . . , T do
29: Update ϕ

(t)
p , ϕ(t)

n using the EM algorithm with current global logits.
30: end for
31: ϕ̂p ← (1− τ̃)ϕ

(T)
p + τ̃ ϕ̂p

32: ϕ̂n ← (1− τ̃)ϕ
(T)
n + τ̃ ϕ̂n

33: Compute cumulative distributions F s
cl, F

t
cl, Fp, Fn using the estimated GMMs.

34: Compute logits offsets for source domain: ∆S
cl(z) =

{
F−1
p (Fcls(z))− z, if c = l

F−1
n (Fcls(z))− z, if c ̸= l

35: Compute logits offsets for target domain: ∆T
cl(z) =

{
F−1
p (F t

cl(z))− z, if c = l

F−1
n (F t

cl(z))− z, if c ̸= l

36: Compute the adjusted losses L̃s and L̃u using Eq. equation 8 with ∆S
cl and ∆T

cl.
37: Update model parameters θ by minimizing L̃s + L̃u using an optimizer (e.g., SGD or Adam).
38: end while
39: return Model parameters θ.

Fn(z) =
∑K

k=1 πn,k · Φ(z−µn,k

σn,k
). The inverse function of a CDF, denoted as F−1(·), represents the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Parameter
study of K.

K mIou (%)
1 70.2
3 70.5
5 70.7
10 70.6

Table 6: Parameter
study of τ̃ .

τ̃ mIou (%)
0 68.6

0.9 70.0
0.99 70.7

0.999 70.3

Table 7: Parameter
study of T .

T mIou (%)
1 70.4
3 70.7
5 70.7
10 70.5

Table 8: Parameter
study of λ.

λ mIou (%)
0.05 70.3
0.2 70.7
0.5 70.4
1 69.9

value of the variable corresponding to a given cumulative probability. For a given logit value z, by
computing F−1

p (F s
cl(z)) and F−1

n (F s
cl(z)), we obtain the corresponding logit values of the positive

anchor distribution Pp and the negative anchor distribution Pn at the cumulative probability F s
cl(z).

Then, the difference between these values and the original logit value z is used as the logits offset
∆S

cl(z) for the source domain. Similarly, by computing F−1
p (F t

cl(z)) and F−1
n (F t

cl(z)), we obtain the
logits offset ∆T

cl(z) for the target domain. To efficiently compute the CDF and its inverse function,
we use the Abramowitz-Stegun formula to approximate the CDF in the form of a polynomial and
employ interpolation methods to estimate the inverse function.

E INFLUENCE OF PARAMETERS SETTING

In this section, we further study the influence of parameters setting introduced in BLDA, i.e., number
of Gaussian components K, momentum factor τ̃ , number of EM Loop T for GMM estimation and λ
for cumulative density estimation loss. All experiments are conducted with DAFormer (Hoyer et al.,
2022a) on GTA→CS.

Number of Gaussian Components K. As shown in Tab.5, we find that BLDA can work well even
when K = 1, since the logit distribution is naturally close to Gaussian. The model achieves the best
performance when K = 5. A larger K allows for more flexibility in modeling the logits distributions
but may also introduce noise. We choose K = 5 as a balance between model capacity and robustness.

Momentum Factor τ̃ . The momentum factor τ̃ controls the speed of updating the GMM parameters.
When τ̃ = 0, performance becomes erratic because the logits from the current iteration alone are
not sufficient to model the distribution of all logits. A larger τ̃ leads to slower updates, retaining
the previously estimated distribution and making the estimation more stable but less adaptive. As
presented in Tab.6, setting τ̃ to 0.99 yields the best performance, suggesting that a relatively stable
estimation of the logits distributions is beneficial for the adaptation process.

Number of EM Loop T . The number of EM loops T determines the number of iterations used to
update the GMM parameters in each training step. Tab.7 shows that the model is not sensitive to the
choice of T , since the convergence rate of GMM is faster than the rate of network update, and it can
be estimated well even when T = 1. We choose T = 3 for stable performance while considering
computational efficiency.

Cumulative Density Estimation Loss Weight λ. The weight λ balances the cumulative density
estimation loss with the segmentation loss. A higher λ enforces stronger domain alignment through
the cumulative density functions. As shown in Tab.8, λ = 0.2 provides the best performance gain.
An overly large λ may distract the model from learning the primary segmentation task, leading to
performance degradation.

F EXTENDED EXPERIMENT ON IMAGE CLASSIFICATION

To demonstrate the generality of BLDA, we implement BLDA based on MIC (Hoyer et al., 2023)
with ResNet-101 on the VisDA-2017 (Peng et al., 2017) UDA classification benchmark in Tab.9,
and our method still achieves improvements. In the classification task, the dataset does not have
severe class distribution differences like segmentation. However, as we point out in Fig.1, the transfer
difficulty differences between domains still lead to severe class bias in this task, and our method can
effectively alleviate this and achieve more balanced predictions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Image classification accuracy in % on VisDA-2017 for UDA, where the improvement is
marked as bold.

Method Plane Bcycl Bus Car Horse Knife Mcyle Persn Plant Sktb Train Truck Mean
MCC (Jin et al., 2020) 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

SDAT (Rangwani et al., 2022) 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
MIC (Hoyer et al., 2023) 96.7 88.5 84.2 74.3 96.0 96.3 90.2 81.2 94.3 95.4 88.9 56.6 86.9

+BLDA 96.2 90.3 82.8 81.2 95.7 96.7 93.4 86.5 95.7 94.3 91.0 65.7 89.1

G VISUALIZATION OF ESTIMATED GMMS

In this section, we visualize the learned GMMs for target domain, i.e., MT
cl for all c, l ∈ [C]. Fig.

7 presents the Estimated GMMs built with DAFormer, and Fig. 8 presents the estimated GMMs
with introducing BLDA. We find that the estimated GMMs can accurately model logits distribution
and our method reduces the difference in logits distribution across classes, thus achieving balanced
learning.

Figure 7: Estimated GMMs on target domain built with DAFormer.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Estimated GMMs on target domain built with BLDA.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H MORE VISUALIZATION RESULTS OF LOGITS DISTRIBUTION

In this section, we provide more visualization results to compare logits distribution built with our
method. As shown in Fig.9, for over-predicted classes, the network predicts larger positive logits and
negative logits (column 1, 3) , while for under-predicted classes, the network predicts smaller logits
(column 2, 4). This difference in logits distribution leads to the class prediction bias. Our method
reduces this difference through aligning with the anchor distribution and achieves class-balanced
learning.

B
u

il
d

in
g

V
eg

et
a

ti
o
n

TrainTraffic Light

C
a

r
S

k
y

Bicycle

S
k

y
C

a
r

Traffic Sign

Figure 9: Comparison of Logits Distribution. We choose {building (2), vegetation (8), car (13) ,sky
(10)} as over-predicted classes, and {train (16), bicycle (18), traffic light (6), traffic sign (7) } as
under-predicted classes for visualization. Note that the anchor distribution is counted separately at
baseline and our method.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

I MORE QUALITATIVE RESULTS

In this section, we provide more qualitative results between our method and other competitors
on GTA→CS. As shown in Fig.10, when previous methods fail to recognize the classes that are
under-predicted and suffer severe performance decline in UDA (e.g. sidewalk, pole, fence, terrain,
bike,sign), BLDA shows significant improvement on them, thereby demonstrating the effectiveness
of our method.

Image DAFormer DAFormer+BLDA MIC MIC+BLDA Ground Truth

Figure 10: More qualitative comparison with DAFormer and MIC. The yellow boxes mark regions
improved by BLDA.

J LIMITATION AND SOCIETY IMPACT

Our method analyzes the class bias in domain adaptive semantic segmentation through logits dis-
tribution statistics and propose a method to implement online logits adjustment tailored for the
UDA training process, which can be easily built with exiting methods and demonstrate consistent
improvements. Although BLDA achieves remarkable performance, we balance the class under the
assumption that each logits distribution inM is independent, without considering correlation between
classes. How to model this correlation and mitigate the class bias further is still to be resolved. Within

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

this paper, we present an approach for domain adaptive semantic segmentation, a pivotal research
area in the realm of computer vision, with no apparent negative societal implications known thus far.

K EXTENDED EXPERIMENTS

Table 10: UDA segmentation performance on SYN.→CS. using the mAcc (%) evaluation metric,
where the improvement is marked as bold.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mAcc std
DAFormer(Hoyer et al., 2022a) T 89.8 90.2 96.2 33.8 8.3 51.9 63.1 57.8 95.1 - 98.4 86.3 63.6 96.7 - 83.4 - 55.4 61.4 70.7 25.1

+BLDA T 87.3 95.6 94.9 38.8 14.1 57.5 70.1 63.3 97.8 - 98.9 90.0 68.0 97.7 - 95.7 - 63.8 67.5 75.1 23.6
HRDA (Hoyer et al., 2022b) T 90.3 85.2 96.0 69.4 8.0 70.6 81.2 69.6 94.7 - 99.1 88.0 68.9 97.4 - 93.8 - 71.3 74.0 78.6 21.2

+BLDA T 89.4 94.5 95.4 75.5 24.5 78.2 85.8 74.7 97.6 - 98.8 88.9 71.6 97.4 - 96.9 - 72.6 76.2 82.4 17.9
MIC (Hoyer et al., 2023) T 89.9 87.4 96.2 71.3 8.4 66.7 81.5 69.7 95.6 - 98.5 89.1 73.0 97.3 - 93.5 - 78.2 71.5 79.2 21.2

+BLDA T 89.4 97.2 96.0 73.4 17.9 72.1 87.6 75.8 97.4 - 98.3 91.5 72.5 97.7 - 96.2 - 79.3 75.6 82.4 19.4

Table 11: UDA segmentation performance on GTA.→CS. using the mIoU (%) evaluation metric,
where the improvement is marked as bold. The results are acquired based on CNN-based model
(He et al., 2016; Chen et al., 2017a), denoted as C, and Transformer-based model (Xie et al., 2021),
denoted as T. ∗ denotes the reproduced result.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mIoU std
DACS∗ (Tranheden et al., 2021) C 93.0 52.0 87.8 29.4 38.3 37.7 45.0 53.3 87.9 46.3 90.2 67.8 38.0 89.0 51.1 51.1 0.0 10.7 19.4 52.1 27.1

+BLDA C 92.9 67.5 87.1 36.3 39.3 41.2 50.7 58.5 87.3 45.5 87.7 69.1 40.4 88.3 45.3 53.5 1.2 10.8 36.3 54.7 25.6
DAFormer∗ (Hoyer et al., 2022a) C 95.7 69.9 87.2 35.6 36.7 37.0 49.4 52.8 87.3 44.1 87.9 69.0 42.2 86.5 40.0 51.7 0.2 41.1 54.0 56.2 24.0

+BLDA C 95.6 73.6 86.7 41.0 40.2 43.3 51.1 62.4 86.2 43.7 87.4 68.3 39.2 86.6 43.6 45.6 1.0 49.4 59.4 58.1 23.2
CDAC∗ (Wang et al., 2023) T 96.1 72.8 90.5 55.2 48.0 51.8 57.1 61.8 90.8 50.4 91.9 73.2 46.9 93.6 80.9 78.6 58.2 56.9 64.5 69.2 16.7

+BLDA T 96.6 78.1 90.0 57.9 52.5 55.1 58.7 64.5 90.1 50.8 90.9 73.3 47.5 93.2 75.1 80.0 65.3 60.7 68.9 71.0 15.4

Table 12: UDA segmentation performance on GTA.→CS. using the mAcc(%) evaluation metric,
where the improvement is marked as bold. The results are acquired based on CNN-based model
(He et al., 2016; Chen et al., 2017a), denoted as C, and Transformer-based model (Xie et al., 2021),
denoted as T. ∗ denotes the reproduced result.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mAcc std
DACS∗ (Tranheden et al., 2021) C 97.9 58.9 94.9 40.7 49.4 46.1 51.7 57.2 94.5 66.9 98.6 82.0 62.2 93.3 82.9 79.0 0.0 74.4 20.0 65.8 26.5

+BLDA C 97.1 80.5 93.4 54.1 39.2 50.5 64.6 67.4 93.7 71.5 99.0 83.4 58.8 95.0 73.0 76.2 1.0 73.5 39.2 69.0 24.2
DAFormer∗ (Hoyer et al., 2022a) C 98.4 78.3 93.6 43.2 45.4 45.0 61.5 59.5 93.8 65.3 98.0 80.1 69.2 92.2 77.0 85.3 0.2 69.7 60.8 69.3 23.8

+BLDA C 97.0 84.8 93.0 55.1 56.1 55.4 71.0 74.5 93.2 73.7 97.7 84.8 77.2 92.0 80.1 85.5 1.1 77.3 73.0 74.9 21.6
CDAC∗ (Wang et al., 2023) T 99.1 78.0 94.6 69.3 52.9 61.2 71.7 68.7 95.8 59.3 99.0 85.0 70.2 96.0 88.3 85.5 71.1 75.4 74.7 78.7 13.8

+BLDA T 98.1 82.5 94.0 74.8 66.7 68.0 76.8 74.1 95.5 67.9 98.3 87.1 72.9 95.6 90.8 88.8 71.8 80.8 82.9 82.5 11.5

Table 13: Performance comparison on GTA.→CS. grouped by over-prediction and under-prediction
classes. The results are acquired based on CNN-based model (He et al., 2016; Chen et al., 2017a),
denoted as C, and Transformer-based model (Xie et al., 2021), denoted as T.

Metrics IoU: mean/std Acc: mean/std
Methods Arch. over-prediction under-prediction over-prediction under-prediction

DACS (Tranheden et al., 2021) C 68.7/28.9 37.0/13.1 80.3/29.2 52.3/14.5
+BLDA C 68.0/28.6 42.7/14.3 79.1/29.0 59.9/13.4

DAFormer (Hoyer et al., 2022a) C 67.3/29.6 46.3/10.0 79.8/29.0 59.8/11.2
+BLDA C 66.8/29.3 50.3/10.9 80.5/28.6 69.8/10.0

CDAC (Wang et al., 2023) T 83.8/11.6 56.5/7.6 90.4/8.5 68.1/7.6
+BLDA T 83.8/10.1 59.5/8.7 91.1/7.8 74.7/5.7

DAFormer (Hoyer et al., 2022a) T 83.3/10.3 54.7/7.3 90.6/8.0 66.1/6.2
+BLDA T 84.2/8.5 57.8/9.4 92.3/4.7 72.6/8.0

HRDA (Hoyer et al., 2022b) T 87.8/6.8 61.0/8.0 93.0/5.6 72.5/10.1
+BLDA T 88.6/6.2 64.5/7.2 93.9/4.0 77.0/8.2

MIC (Hoyer et al., 2023) T 89.5/5.9 63.6/8.0 92.7/6.6 74.7/8.0
+BLDA T 89.6/5.3 66.4/8.0 94.4/3.6 79.2/7.9

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 14: Computational resource requirements comparison

Methods GPU Memory (MB) Time per iter (s) Total Time (h)
DAFormer (Hoyer et al., 2022a) 9,807 1.32 14.5 (40K iters)

+BLDA 12,655 1.59 17.7 (40K iters)
DACS (Tranheden et al., 2021) 11,078 0.52 35.5 (250K iters)

+BLDA 14,354 0.81 56.1 (250K iters)
CDAC (Wang et al., 2023) 35,443 1.66 18.7 (40K iters)

+BLDA 35,443 1.95 22.3 (40K iters)

Table 15: Comparison with other class-imbalanced methods on GTA.→CS. using the mIoU (%)
evaluation metric, where baseline is based on DAFormer with uniform class sampling.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mIoU std
baseline T 95.2 67.4 89.0 43.7 47.5 46.7 55.7 55.0 89.3 47.2 90.7 71.4 44.5 92.3 76.1 78.5 62.1 55.4 64.1 66.9 17.6

[1] (Lin et al., 2017) T 87.6 40.1 87.9 49.2 41.2 45.7 52.1 50.9 89.2 45.0 90.7 70.8 41.1 89.9 56.6 70.5 60.3 54.6 59.5 62.3 18.1
[2] (Cui et al., 2019) T 96.0 70.6 89.6 53.8 48.3 50.2 53.3 60.8 89.7 49.4 90.9 70.2 42.6 91.7 65.7 77.8 60.1 54.4 65.2 67.4 16.8

[3] (Hoyer et al., 2022a) T 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3 16.8
[4] (Menon et al., 2020) T 94.7 66.9 89.2 53.2 47.0 49.0 51.2 56.0 89.6 50.1 87.2 69.0 41.9 92.0 71.8 75.7 62.3 50.4 64.0 66.4 16.9

+BLDA T 94.5 72.1 88.4 48.3 51.6 52.9 59.5 64.5 88.1 51.5 90.5 72.4 47.6 94.0 75.9 80.8 65.6 53.7 67.7 69.5 15.9

Table 16: Comparison with other class-imbalanced methods on GTA.→CS. using the mAcc (%)
evaluation metric, where baseline is based on DAFormer with uniform class sampling.

Method Arch. R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mAcc std
baseline T 98.3 75.4 94.9 53.8 57.8 53.6 70.2 59.7 96.2 57.6 99.1 83.5 67.6 95.5 87.1 84.3 73.8 74.5 77.5 76.9 15.3

[1] (Lin et al., 2017) T 91.7 63.3 94.6 66.4 50.2 54.4 63.9 55.1 95.6 66.9 98.6 84.9 58.5 92.6 84.4 81.9 70.0 68.8 68.2 74.2 15.2
[2] (Cui et al., 2019) T 98.8 77.7 94.1 71.4 56.8 63.7 77.2 71.2 95.3 63.5 99.0 84.1 72.0 94.6 90.1 89.2 68.5 76.4 80.2 80.2 12.6

[3] (Hoyer et al., 2022a) T 99.1 74.8 95.2 61.0 53.1 59.8 70.7 68.6 96.0 63.4 98.7 84.2 69.9 95.5 88.9 84.1 74.0 70.0 69.7 77.8 14.2
[4] (Menon et al., 2020) T 97.9 79.9 95.0 64.4 64.7 66.6 74.3 72.6 96.5 66.1 99.7 87.9 72.5 96.3 90.5 91.3 85.7 74.3 72.4 81.5 12.2

+BLDA T 97.5 79.4 93.4 65.5 68.0 63.9 77.2 75.5 94.9 68.1 99.0 85.2 71.4 95.2 89.2 87.6 80.8 77.0 83.6 81.7 10.9

Table 17: The JS divergence between the Pcl and corresponding anchor distribution Pp and Pn,
where the results on Pn is averaged over the C − 1 negative components.

Method Anchor R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mean std
baseline Pp 0.412 0.289 0.381 0.286 0.293 0.137 0.325 0.142 0.429 0.273 0.596 0.130 0.217 0.300 0.225 0.164 0.190 0.145 0.180 0.270 0.119
+BLDA Pp 0.367 0.246 0.261 0.153 0.212 0.221 0.146 0.234 0.281 0.173 0.310 0.244 0.070 0.273 0.284 0.181 0.125 0.207 0.125 0.217 0.072
baseline Pn 0.517 0.327 0.315 0.394 0.305 0.280 0.422 0.288 0.412 0.404 0.433 0.278 0.396 0.279 0.387 0.382 0.401 0.430 0.394 0.371 0.064
+BLDA Pn 0.231 0.165 0.153 0.135 0.209 0.118 0.224 0.119 0.248 0.246 0.240 0.186 0.158 0.170 0.199 0.208 0.176 0.162 0.136 0.183 0.041

Table 18: Ablation on different selection criteria for anchor distributions on GTA.→CS. using the
mIoU (%) evaluation metric. OLA denotes online logits adjustment.

Anchor Strategy R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mIoU std
DAFormer (Hoyer et al., 2022a) - 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3 16.8

target (global) post-hoc 95.7 77.0 87.8 61.0 53.7 54.3 56.1 61.2 87.2 50.2 90.4 74.4 43.4 90.9 73.3 82.5 56.6 54.8 68.3 69.4 15.8
source (building) post-hoc 95.8 77.1 90.0 59.8 54.5 51.6 56.6 59.8 86.2 48.2 90.6 75.4 43.7 90.4 72.0 79.5 58.9 53.7 69.2 69.1 16.0

source (fence) post-hoc 95.6 77.5 88.0 58.4 55.0 51.2 56.9 57.7 88.7 48.3 90.5 75.2 43.8 90.1 71.7 80.6 61.1 53.9 65.5 68.9 16.0
source (global) post-hoc 95.7 77.1 88.6 60.5 55.3 48.5 57.3 60.9 89.5 47.2 91.0 72.9 43.7 91.3 73.7 80.8 61.1 55.3 63.8 69.2 16.2

source (building) OLA 95.5 77.9 88.5 60.4 59.1 53.3 57.9 60.4 88.3 49.2 90.3 76.1 43.6 90.3 76.4 85.7 56.2 57.9 68.8 70.3 15.8
source (fence) OLA 95.6 81.2 88.2 57.9 57.0 51.6 54.2 60.2 87.9 50.2 90.3 76.3 44.3 90.0 75.0 82.4 57.7 56.0 70.6 69.8 16.0
source (global) OLA 95.4 78.3 88.3 54.0 55.2 55.7 60.3 65.2 89.2 47.3 91.1 71.4 44.8 91.6 74.3 83.4 73.2 59.3 67.1 70.7 15.5

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 19: Ablation on different selection criteria for anchor distributions on GTA.→CS. using the
mAcc (%) evaluation metric. OLA denotes online logits adjustment.

Anchor Strategy R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

L
ig

ht

Si
gn

V
eg

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or

B
ik

e

mAcc std
DAFormer (Hoyer et al., 2022a) - 99.1 74.8 95.2 61.0 53.1 59.8 70.7 68.6 96.0 63.4 98.7 84.2 69.9 95.5 88.9 84.1 74.0 70.0 69.7 77.8 14.2

target (global) post-hoc 98.7 85.6 92.2 65.9 67.4 67.3 75.1 68.6 90.8 66.8 95.5 91.8 67.3 93.1 92.7 95.7 62.0 84.5 80.2 81.1 12.4
source (building) post-hoc 98.7 89.6 92.2 73.5 67.5 66.3 76.5 67.0 90.8 63.8 95.5 90.7 68.3 93.1 92.6 95.6 60.3 79.9 80.9 81.2 12.5

source (fence) post-hoc 98.5 85.3 91.3 74.1 66.7 66.2 82.3 68.4 90.5 63.4 95.5 88.9 62.1 92.5 91.9 94.9 63.8 83.5 79.2 81.0 12.2
source (ours) post-hoc 98.6 90.0 91.6 71.0 66.5 64.1 78.5 68.2 91.2 65.1 96.4 91.9 64.8 92.7 92.5 95.1 67.6 82.2 77.4 81.3 12.4

source (building) OLA 98.6 84.7 92.6 71.4 66.2 68.8 76.6 71.0 91.2 67.3 95.8 94.6 69.7 93.5 93.2 96.3 59.7 79.5 80.2 81.6 12.2
source (fence) OLA 98.6 84.8 92.2 71.6 64.1 66.9 78.3 68.2 90.9 68.2 95.6 92.9 65.4 93.3 93.0 95.9 60.4 82.3 84.8 81.4 12.6
source (ours) OLA 98.3 86.7 93.4 70.9 61.9 66.0 74.0 78.9 95.4 59.0 98.6 85.7 73.1 95.3 89.8 89.3 85.4 77.2 78.6 82.0 11.9

L EXTENDED DISCUSSION

L.1 DOMAIN ADAPTIVE SEMANTIC SEGMENTATION

Unsupervised domain adaptation (UDA) transfers semantic knowledge learned from labeled source
domains to unlabeled target domains. Due to the ubiquity of domain gaps, UDA methods have been
widely studied in various computer vision tasks, such as image classification, object detection, and
semantic segmentation. UDA is crucial for semantic segmentation to avoid laborious pixel-wise
annotation in new target scenarios.

Recent UDA approaches for semantic segmentation fall into two main paradigms: adversarial training-
based methods (Toldo et al., 2020; Tsai et al., 2018; Chen et al., 2018; Ganin & Lempitsky, 2015;
Hong et al., 2018; Long et al., 2015b) and self-training-based methods (Tranheden et al., 2021; Hoyer
et al., 2022a; Araslanov & Roth, 2021; Zhang et al., 2021). Adversarial training-based methods learn
domain-invariant representations through a min-max optimization game, where a feature extractor
is trained to confuse a domain discriminator, aligning feature distributions across domains. Self-
training-based methods, which have become dominant in the field due to the domain-robustness of
Transformers (Bhojanapalli et al., 2021), generate pseudo labels for target images based on a teacher-
student optimization framework. The success of this paradigm depends on generating high-quality
pseudo labels, with strategies such as entropy minimization (Chen et al., 2019) and consistency
regularization (Hoyer et al., 2023) being developed for this purpose.

Recently, several approaches have been proposed to tackle the challenges in UDA for semantic
segmentation: DTS (Huo et al., 2023) employs a Dual Teacher-Student Framework, promoting
the self-training paradigm to fully adapt models to the target domain by exploring different mix
strategies. CDAC (Wang et al., 2023) introduces consistency constraints in attention to enhance
the model’s cross-domain performance. RTea (Zhao et al., 2023) defines proxy tasks based on
structural information and incorporates them into the self-training paradigm as additional supervision
signals. Peng et al. (2023) apply Diffusion-based image translation techniques to directly mitigate the
distribution differences between the target and source domains. DiGA (Shen et al., 2023) integrates
distillation strategies and self-training through multi-stage training.

However, due to the inherent class imbalance and distribution shift in both data and label space
between domains, networks often exhibit complex class biases, which are further amplified by the
confirmation bias inherent in the self-training paradigm. Our method aims to achieve balanced
learning in UDA training to mitigate these issues and improve the overall performance of domain
adaptation for semantic segmentation.

L.2 CLASS-IMBALANCED LEARNING

Class imbalance is a prevalent issue in semantic segmentation, where the number of samples per
class varies significantly. Existing methods tackle this problem through re-weighting or re-sampling
techniques. Re-weighting methods assign different weights to classes during training, giving higher
importance to under-represented classes (Cui et al., 2019; Lin et al., 2017; Cao et al., 2019; Liu et al.,
2019). Re-sampling techniques modify the class distribution in the training data by over-sampling
minority classes or under-sampling majority classes (He et al., 2008; 2021; He & Garcia, 2009; Kim
et al., 2020; Chu et al., 2020).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Recent works have proposed various approaches to address class imbalance in different tasks. For
object detection, Lin et al. (2017) propose a re-weighting method that assigns weights to samples
based on their confidence, with harder samples receiving higher weights. In classification, Cui
et al. (2019) define an effective number of samples for each class to weight different classes, while
Menon et al. (2020) introduce a logit adjustment method that incorporates correction terms in logits,
determined by prior knowledge of class distribution. For segmentation, Hoyer et al. (2022a) present
a re-sampling technique that samples based on prior knowledge of class distribution, with more
sampling for rare classes. Truong et al. (2023) considers class-imbalance as fairness problem and
propose to model the context of structural dependency to tackle it.

In UDA for semantic segmentation, some approaches have introduced these strategies to alleviate
class bias (Hoyer et al., 2022a; Araslanov & Roth, 2021; Li et al., 2022). However, these methods are
still empirical and focus on the single-domain setting, which assumes that the test data and training
data share the same distribution in both data space and label space, without considering the additional
challenges posed by domain shift in UDA.

In contrast to these methods, our approach aims to directly address class bias and achieve balanced
learning for each class without relying on prior knowledge about the distribution shift between
domains. We evaluate class bias through logit sets in the form of a confusion matrix and explicitly
balance components in the matrix using anchor distributions and cumulative density functions,
implemented in an online self-training paradigm. Our method does not depend on prior knowledge of
class distribution and instead directly models class bias based on the actual logit distribution, making
it more adaptable to the challenges posed by domain shift in UDA.

M CORE CODE

We provide our core code in BLDA to demonstrate our implementation.

26

https://anonymous.4open.science/r/ICLR-submission-9695

	Introduction
	Related Work
	Domain Adaptive Semantic Segmentation
	Class-Imbalanced Learning

	Method
	Problem Definition
	Revisiting Self-training in UDA
	Balanced Learning for Domain Adaptive Semantic Segmentation
	Overview
	Assessing Prediction Bias from Logits Distribution
	Post-Hoc Class Balancing
	Online Logits Adjustment for UDA
	Bridging Domains through Cumulative Density Estimation

	Experiments
	Experimental Setup
	Comparison with Existing Methods
	Ablation Study

	Conclusion
	Derivation of Eq.7
	Discussion about Eq.9
	Discussion about Evaluation Metrics
	Implementation Details of Online Logits Distribution Estimation
	Influence of Parameters Setting
	 Extended Experiment on Image Classification
	Visualization of Estimated GMMs
	More Visualization Results of Logits Distribution
	More Qualitative Results
	Limitation and Society Impact
	Extended Experiments
	Extended discussion
	Domain Adaptive Semantic Segmentation
	Class-Imbalanced Learning

	Core Code

