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ABSTRACT

Early few-shot classification work advocates for episodic training, i.e. training over
learning episodes each posing a few-shot classification task. However, the role of
this training regime remains poorly understood, and its usefulness is still debated.
Standard classification training methods (“pre-training”) followed by episodic fine-
tuning have recently achieved strong results. This work aims to understand the role
of this episodic fine-tuning phase through an exploration of the effect of the “shot”
setting (number of examples per class) that is used during fine-tuning. We discover
that fine-tuning on episodes of a particular shot can specialize the pre-trained model
to solving episodes of that shot at the expense of performance on other shots, in
agreement with a trade-off recently observed in the context of end-to-end episodic
training. To amend this, we propose a shot-conditional form of episodic fine-tuning,
inspired from recent work that trains a single model on a distribution of losses.
Our investigation shows that this improves overall performance, without suffering
disproportionately on any shot. We also examine the usefulness of this approach on
the large-scale Meta-Dataset benchmark where test episodes exhibit varying shots
and imbalanced classes. We find that our flexible model improves performance in
that challenging environment.

1 INTRODUCTION

Few-shot classification is the problem of learning a classifier using only a few examples. Specifically,
the aim is to utilize a training dataset towards obtaining a flexible model that has the ability to ‘quickly’
learn about new classes from few examples. Success is evaluated on a number of fest episodes, each
posing a classification task between previously-unseen zest classes. In each such episode, we are
given a few examples, or “shots”, of each new class that can be used to adapt this model to the task at
hand, and the objective is to correctly classify a held-out set of examples of the new classes.

A simple approach to this problem is to learn a classifier over the training classes, parameterized as
a neural network feature extractor followed by a classification layer. While the classification layer
is not useful at test time due to the class shift, the embedding weights that are learned during this
“pre-training” phase evidently constitute a strong representation that can be used to tackle test tasks
when paired with a simple “inference algorithm” (e.g. nearest-neighbour, logistic regression) to make
predictions for each example in the test episode given the episode’s small training set. Alternatively,
early influential works on few-shot classification (Vinyals et al.,[2016) advocate for episodic training,
a regime where the training objective is expressed in terms of performance on a number of training
episodes of the same structure as the test episodes, but with the classes sampled from the training set.
It was hypothesized that this episodic approach captures a more appropriate inductive bias for the
problem of few-shot classification and would thus lead to better generalization.

However, there is an ongoing debate about whether episodic training is in fact required for obtaining
the best few-shot classification performance. Notably, recent work (Chen et al., 2019; Dhillon et al.,
2020) proposed strong “pre-training” baselines that leverage common best practices for supervised
training (e.g. normalization schemes, data augmentation) to obtain a powerful representation that
works well for this task. Interestingly, other recent work combines the pre-training of a single classifier
with episodic fine-tuning by removing the classification head and continuing to train the embedding
network using the episodic inference algorithm that will be applied at test time (Triantafillou et al.,
2020; (Chen et al.,2020). The success of this hybrid approach suggests that perhaps the two regimes
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have complementary strengths, but the role of this episodic fine-tuning is poorly understood: what is
the nature of the modification it induces into the pre-trained solution? Under which conditions is it
required in order to achieve the best performance?

As a step towards answering those questions, we investigate the effect of the shot used during
episodic fine-tuning on the resulting model’s performance on test tasks of a range of shots. We are
particularly interested in understanding whether the shot of the training episodes constitutes a source
of information that the model can leverage to improve its few-shot classification performance on
episodes of that shot at test time. Our analysis reveals that indeed a particular functionality that
this fine-tuning phase may serve is to specialize a pre-trained model to solving tasks of a particular
shot; accomplished by performing the fine-tuning on episodes of that shot. However, perhaps
unsurprisingly, we find that specializing to a given shot comes at the expense of hurting performance
for other shots, in agreement with (Cao et al.,[2020)’s theoretical finding in the context of Prototypical
Networks (Snell et al.| |2017) where inferior performance was reported when the shot at training time
did not match the shot at test time.

Given those trade-offs, how can our newfound understanding of episodic fine-tuning as shot-
specialization help us in practice? It is unrealistic to assume that we will always have the same
number of labeled examples for every new class we hope to learn at test time, so we are interested in
approaches that operate well on tasks of a range of shots. However, it is impractical to fine-tune a
separate episodic model for every shot, and intuitively that seems wasteful as we expect that tasks
of similar shots should require similar models. Motivated by this, we propose to train a single
shot-conditional model for specializing the pre-trained solution to a wide spectrum of shots without
suffering trade-offs. This leads to a compact but flexible model that can be conditioned to be made
appropriate for the shot appearing in each test episode.

In what follows we provide some background on few-shot classification and episodic models and
then introduce our proposed shot-conditioning approach and related work. We then present our
experimental analysis on the effect of the shot chosen for episodic fine-tuning, and we observe that
our shot-conditional training approach is beneficial for obtaining a general flexible model that does
not suffer the trade-offs inherent in naively specializing to any particular shot. Finally, we experiment
with our proposed shot-conditional approach in the large-scale Meta-Dataset benchmark for few-shot
classification, and demonstrate its effectiveness in that challenging environment.

2 BACKGROUND

Problem definition Few-shot classification aims to classify test examples of unseen classes from
a small labeled training set. The standard evaluation procedure involves sampling classification
episodes by picking N classes at random from a test set of classes C*** and sampling two disjoint
sets of examples from the N chosen classes: a support set (or training set) of k labeled examples
per class, and a qguery set (or test set) of unlabeled examples, forming N-way, k-shot episodes. The
model is allowed to use the support set, in addition to knowledge acquired while training on a disjoint
set of classes C"*", to make a prediction for examples in the query set, and is evaluated on its query
set accuracy averaged over multiple test episodes.

Episodic training Early few-shot classification approaches (Vinyals et al., 2016)) operate under
the assumption that obtaining a model capable of few-shot classification requires training it on
(mini-batches of) learning episodes, instead of (mini-batches of) individual examples as in standard
supervised learning. These learning episodes are sampled in the same way as described above for
test episodes, but with classes sampled from C'%" this time. In other words, the model is trained to
minimize a loss of the form:

1 * *
ESﬁQNPgﬁn @ Z —logpe(y* | 2%, S) ()
(z*.y*)eQ

where S and Q are support and query sets sampled from the distribution Ptl:«[é];n of N-way, k-shot
training episodes induced by C#7%"*, and 0 represents the model’s parameters. This training regime
is often characterized as meta-learning or learning to learn, i.e. learning over many episodes how

to learn within an episode (from few labeled examples). Episodic models differ by their “inference
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Figure 1: SCONE conditions the feature extractor fy on an episode’s shot distribution.

algorithm”, i.e. the manner in which py(y* | z*, S) is computed to classify query examples based on
the support set.

Prototypical Networks Prototypical Networks (Snell et al.l[2017) is a simple but effective episodic
model which constructs a prototype ¢, for each class c in an episode as

1
0= 15 > folw), )
where f is an embedding function parametrized by 6 and S, represents the set of support examples
belonging to class ¢, and classifies a given query example as

exp(—||z* — ¢¢||3) . 3)
> exp(—[|z* — ¢o3)

ply" =c| 2", S) =

3  SHOT CONDITIONAL EPISODIC (SCONE ) TRAINING

In this section we introduce Shot CONditional Episodic (SCONE ) training for the purpose of
specializing a strong pre-trained model to solving few-shot classification tasks of a range of different
shots, without suffering disproportionately for any shot.

Training objective Training episodically involves minimizing the objective shown in Equation [I]
We first sample an episode from Pﬁ’ﬁn and compute a prediction py(y* | =*,S) for each query
example z*. We then compute the cross-entropy loss on the query set using those predictions and
perform a parameter update by backpropagating its gradient with respect to 6 infto the inference
algorithm. In this work we concern ourselves with models that use an embedding function fy to
obtain a representation for the support and query examples of each episode on top of which the
inference algorithm is applied. In Prototypical Networks, for instance, fy contains a/l of the model’s

learnable parameters.

SCONE trains on episodes of varying shots and conditions the model on each episode’s shot

distribution. by minimizing
1 * *
N N L 1al Y —logpa(y 2,8 |, 4)
(z*,y*)€Q

where Py is the distribution over shots at training time and 6, depends on an episode’s sampled shots.
In the Appendix, we include an algorithm box outlining SCONE fine-tuning.
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Conditioning mechanism Rather than learning a separate set of model parameters for each shot
setting, we modulate a subset of its parameters using FILM (Perez et al.,|2018), a simple conditioning
mechanism which performs an affine feature-wise transformation of its input « based on conditioning
information k& (in our case, the episode’s number of shots):

FiLM(z) = v(k) © = + B(k). (5)

The dependency of « and 3 on k is handled by maintaining distinct values for each shot setting and
selecting the appropriate v and 5 based on an episode’s shot. Equivalently, we can think of our
approach as a compact representation of many shot-specific feature extractors which share all but
their FiLM layer parameters.

More concretely, we maintain a set of FILM parameters for each shot in the [1, MAX-SHOT] range
(where MAX-SHOT is a hyperparameter) and let all shots settings greater than or equal to MAX-
SHOT share the same FiLM parametrization. As is often the case in practice, instead of inserting
FiLM layers in the network’s architecture, we modulate the scaling and shifting parameter values of
existing batch normalization layers (Dumoulin et al.}2017; [De Vries et al.,|2017). When performing
episodic fine-tuning, we initialize all sets of FiLM parameters to those learned during pre-training
(i.e. the learned batch normalization scaling and shifting coefficients). These different sets of FiLM
parameters are then free to deviate from each other as a result of fine-tuning. We found it beneficial to
penalize the L2-norm of [ (regularizing the offset towards 0) and the L2 norm of v — 1 (regularizing
the scaling towards 1). For this purpose, we introduce a hyperparameter that controls the strength of
this FiLM weight decay.

Handling class-imbalanced episodes SCONE can also be used on imbalanced episodes, where
different classes have different shots. In that case, instead of selecting a single set of FILM parameters,
we compute the FILM parameters for an episode as the convex combination of the FiLM parameters
associated with all shots found in the episode, where the weights of that combination are determined
based on the frequency with which each shot appears in the episode.

Concretely, the episode’s “shot distribution” s (a vector of length MAX-SHOT) is obtained by averaging
the one-hot representations of the shots of the classes appearing in an episode. In the special case of a
class-balanced episode, the resulting average will be exactly a one-hot vector. This shot distribution
is then used for the purpose of selecting the episode’s FiLM parameters. This can be thought of as an
embedding lookup s”' F in a matrix F of FiILM parameters using a shot distribution s.

Smoothing the shot distribution We expect similar shot values to require similar FILM parameters,
which we incorporate as an inductive bias by smoothing the shot distribution. We outline our SMOOTH-
SHOT procedure in the Appendix in Algorithm 1, which receives the shot s of a class (an integer),
and a smoothing hyperparameter m (a float in [0, 1]) and returns the smoothed shot for that class,
which is a vector of length MAX-SHOT. Essentially, the result of smoothing is that the returned vector
representation of s is not strictly one-hot with only the position corresponding to the observed shot s
being ‘on’. Instead, some entries surrounding that position are also non-zero. Specifically, the entries
that are directly adjacent to s receive the value m, the entries two spots away from s the value m?,
and so on, with entries further away from s receiving exponentially-decaying values.

4 RELATED WORK

Few-shot classification A plethora of models have been recently proposed for few-shot classifi-
cation, and we refer the reader to (Hospedales et al., [2020) for a broad survey. Before episodic
training was introduced, few-shot classifiers often relied on metric learning (Koch et al., 2015}
Triantafillou et al.,[2017)). This theme persisted in early episodic models like Matching Networks
(Vinyals et al.| 2016) and Prototypical Networks (Snell et al., [2017)) where classification is made
via nearest-neighbour comparisons in the embedding space. Matching Networks apply a soft k-NN
algorithm where the label of a query example is predicted to be the weighted average of the (one-hot)
support labels with the weights determined by the similarity of that query to each support example.

Gradient-based episodic models are another popular family of approaches following the influential
MAML paper (Finn et al.;|2017). To create a classifier for each given episode, this approach fine-tunes
the embedding weights along with a linear classifier head using gradient descent on the support set.
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Intuitively, this results in learning an embedding space that serves as a useful starting point from
which a few steps of gradient descent suffice to adapt the model to each episode’s classification task.
Proto-MAML (Triantafillou et al., 2020) is a simple extension that initializes the linear classifier for
each episode from the prototypes of the classes appearing in that episode.

Recently, the field has shifted towards studying few-shot classification in more realistic environments
like tiered-ImageNet (Ren et al., [2018)) and Meta-Dataset (Triantafillou et al., [2020), which has
encouraged research into newly-introduced challenges, such as accounting for multiple diverse
datasets. Along these lines, Requeima et al.| (2019); [Bateni et al.| (2019) proposed novel task
conditioning approaches, |Saikia et al.|(2020)) introduced an improved hyperparameter tuning approach,
and Dvornik et al.|(2020) proposed a method for selecting an appropriate set of features for each test
episode out of a universal feature representation.

Understanding episodic learning Our work inscribes itself in a recent line of work attempting
to understand the differences between episodic and non-episodic learning. |Goldblum et al.| (2020)
attempts to understand episodic learning from the perspective of how classes cluster in feature-space
(for models that learn a final classification layer on top of a feature extractor) as well as from the
perspective of local minima clusters (for gradient-based meta-learners). Huang et al.| (2020)); \Chao
et al.|(2020) draw parallels between learning episodes and supervised learning examples, Bronskill
et al.| (2020) discusses batch normalization in episodic learning, drawing parallels from its use in
non-episodic learning and (Chen et al.| (2020) contrasts episodic and non-episodic learning in their
ability to generalize to new examples of previously seen classes or new examples of unseen classes.
Finally, Cao et al.|(2020) theoretically investigates the role of the shot in Prototypical Networks to
explain the observed performance drop when there is a mismatch between the shots at training and
test time. Instead, we empirically study the effect of the shot chosen during episodic fine-tuning of a
pre-trained solution, in a larger-scale and more diverse environment.

Feature-wise conditioning Feature-wise transformations such as FiLM (Perez et al.| |2018) are
used as a conditioning mechanism in a variety of problem settings; see Dumoulin et al.|(2018) for a
survey on the topic. (Shu et al.,[2019) devise a loss re-weighting scheme that conditions on the loss
at each time-step, which is a scalar, thus bearing similarity to our approach when conditioning on a
scalar shot setting. In few-shot classification, (Sun et al.,|2019) use feature-wise transformations as a
means of transfer to new tasks. (Oreshkin et al., [2018; Requeima et al., [2019; Bateni et al., 2019)) use
FiLLM to condition metric learners’ backbones on the support set, while (Dvornik et al., 2020) uses
it as a way to represent many pre-trained classifiers using a shared parametrization. FiLM has also
been used successfully for class-incremental learning [Liu et al.|(2020) and semi-supervised few-shot
learning (Li et al.,|2019). Notably, TADAM (Oreshkin et al.| 2018), CNAPs (Requeima et al., 2019)
and Simple-CNAPs (Bateni et al., 2019) also use task conditioning, but they use the mean of the
support set for this and thus the ‘shot’ information is discarded. The purpose of our conditioning
mechanism is instead to make the backbone shot-aware. The idea of shot-conditional learners is
inspired by recent work that investigates loss-conditional training using feature-wise transformations
(Dosovitskiy & Djolonga, |2020; |Babaeizadeh & Ghiasi, [2020).

5 EXPERIMENTS

5.1 EXPLORING THE ROLE OF ‘SHOTS‘ DURING EPISODIC FINE-TUNING

In this subsection, we examine the effect of the ‘shot’ that is used during the episodic fine-tuning
phase, and in particular how it impacts the resulting model’s ability to solve test episodes of different
shots. We consider either using a fixed shot k throughout the fine-tuning phase, or fine-tuning on
episodes of a distribution of shots. In the latter case, we explore both standard fine-tuning as well as
SCONE fine-tuning that equips the model with the shot-conditioning mechanism described in the
previous section. We also compare against EST (Cao et al.| [2020).

Experimental setup We ran this round of experiments on ImageNet using the class splits proposed
in Meta-Dataset. First, we pre-trained a standard classifier on the set of training classes of ImageNet.
We then removed the topmost classification layer, leaving us with a pre-trained backbone that
we used as the initialization for the subsequent episodic fine-tuning round. We ran the following
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Figure 2: Test accuracy on three different evaluation shots. Fine-tuning exclusively on a particular
shot leads to the best test accuracy on that shot but poor accuracy on different shots. Fine-tuning on
arange of shots is a reasonable general solution, but its performance can be improved when using
SCONE , thanks to its conditioning mechanism that offers a compact form of shot specialization.

Accuracy
Accuracy
Accuracy

variants of episodic fine-tuning: exclusively on 1-shot episodes (‘Fine-tune on 1-shot’), exclusively
on 5-shot episodes (‘Fine-tune on 5-shot’), on episodes whose shot is drawn uniformly from the
range [1, 40] (‘Fine-tune on all shots’), and on episodes with that same shot distribution but using
SCONE (‘SCONE Fine-tune on all shots’), which additionally equips the backbone with the shot
conditioning mechanism described in the previous section. We also consider ‘Fine-tune on best
k-shot’, an additional baseline that fine-tunes exclusively on the shot & that is found to work best
on average on the validation set (on the range of shots 1 — 40). For this, we trained models for
k=1,5,10, 15,20, 30,40 and found the best to be k£ = 15.

As mentioned in the previous section, when applying SCONE training, we penalize the L2 norm of
FiLM parameters. For a fair comparison with the other models, we applied the same regularization to
the batch normalization parameters of all models during the episodic fine-tuning phase, and we found
this to be generally helpful. We tuned the strength of this regularization separately for each model
and picked the variant that worked best on the validation set, which we report in the Appendix. We
set the SCONE ’s MAX-SHOT hyperparameter to be 40 for this experiment.

We also compare to EST (Cao et al.,|2020) which is a theoretically-grounded method for building
shot resiliency in Gaussian classifiers. This involves applying a linear transformation on top of the
learned embeddings that aims to strike a good balance between maximizing the inter-class variance
and minimizing the intra-class variance. In practice, that trade-off is controlled via a hyperparameter
p. We applied EST on top of the embeddings of ‘Fine-tune on all shots’ and we tuned p and the
hyperparameter d controlling the projection dimensionality very extensively. The values that we found
worked best (selected on the validation set of ImageNet on the range of shots 1-40) are substantially
different than those used in the original EST paper: d = 480 and p = 5e — 8 (versus the original
d =120 and p = 1e — 3). We believe that this discrepancy may be due to our deeper backbones and
larger range of shots. The EST configuration that worked best for us yields a minimal reduction in
the embedding dimensionality, and primarily favours maximizing the inter-class variance, with the
term that minimizes the intra-class variance having minimal effect.

In all cases, we fix the ‘way’ to 5. We use Prototypical Networks as the episodic model and we
perform early stopping and model selection on the validation set of classes, where the validation
performance of a variant is computed on episodes of the same (distribution of) shot(s) that it is trained
on. All models are tested on a held-out test set of classes that is not seen during pre-training nor
episodic fine-tuning, on 5-way episodes of different shot settings.

Findings We observe from Figure[2)that fine-tuning on a fixed shot yields the best results on test
episodes of that shot. For example, 1-shot accuracies show that ‘Fine-tune on 1-shot’ surpasses the
performance of all other variants on 1-shot test episodes, with the analogous findings in 1-shot and
5-shot accuracies for 5-shot and 40-shot, respectively. Therefore, a particular functionality that the
episodic fine-tuning phase may serve is to specialize the pre-trained model for performing well on
tasks of a particular shot. However, as illustrated in all sub-plots of Figure 2] this shot specialization
comes at the cost of severely reduced performance on tasks of very different shots. For instance, the
model that is specialized for 40-shot tasks (‘Fine-tune on 40-shot’) performs very poorly on 1-shot
test tasks and vice-versa. We also note that the ‘Fine-tune on best k-shot” model does not suffice to
perform well in all settings either, since & = 15 there, it performs really poorly on 1-shot for instance.

In practice, it may be desirable to perform well on more than a single shot setting at test time, without
having to fine-tune multiple separate shot-specialized models. A reasonable approach to that is
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Prototypical Networks (ImageNet only)

Dataset Standard L2 BN EST Best k-shot SCONE w/o S SCONE

ILSVRC-2012 50.90 £ 1.12% 51.81 + 1.06% 52.17 £+ 1.09% 52.36 + 1.08% 52.98% + 1.09% 52.51 £ 1.11%
Omniglot 63.12 £ 1.37% 63.14 £+ 1.32% 66.07 + 1.29% 65.94 + 1.33% 64.71% + 1.32% 65.60 + 1.34%
Aircraft 54.30 £ 0.97% 53.26 £ 0.97% 55.64 £ 0.88% 56.03 £ 0.95% 55.38% + 0.96% 55.38 £+ 0.96%
Birds 68.22 £+ 0.97% 69.21 + 1.01% 67.17 £ 1.02% 68.63 + 1.11% 68.98% + 1.04% 69.70 £+ 1.01%
DTD 66.62 £ 0.90% 68.33 + 0.81% 68.20 £+ 0.77% 69.61 + 0.80% 68.68% + 0.78% 69.58 + 0.77%
Quickdraw 59.79 + 0.98% 59.17 £ 0.96% 60.05 + 0.97% 60.68 + 0.97% 60.00% + 1.00% 60.81 £+ 0.95%
Fungi 36.77 £ 1.07% 38.96 + 1.10% 39.50 + 1.12% 37.96 + 1.08% 39.19% + 1.15% 39.66 + 1.12%

VGG Flower 86.61 £ 0.87% 87.70 £ 0.77% 88.55 £ 0.65% 87.45 £ 0.86% 86.98% =+ 0.80% 88.03 + 0.73%
Traffic Signs 48.64 + 1.06% 46.54 + 1.03% 48.41 £ 1.07% 50.26 £+ 1.16% 47.61% £+ 1.05% 48.24 + 1.09%

MSCOCO 43.02 £ 1.09%  43.11 £1.05% 4345+ 1.05% 4320 £1.18%  43.43% £ 1.08% 4425+ 1.11%
Average 57.80 % 58.12 % 58.92% 59.21% 58.79% 59.38%
Average ranks 4.90 4.10 3.25 3.05 3.00 2.70

Table 1: Prototypical Networks fine-tuned on ImageNet (‘Standard’) with the addition of L2 regular-
ization on the batch normalization weights (‘L2 BN”), EST (Cao et al.,|2020), the ‘Fine-tune on best
k-shot’ baseline (‘Best k-shot’) and SCONE , including the ablation that omits the shot smoothing
(‘SCONE w/o S’). The reported numbers are query set accuracies averaged over 600 test episodes
and 95% confidence intervals. We also show the average ranks (lower is better). We report details in
the Appendix on rank computation and statistical testing.

episodically fine-tuning on a range of shots, to obtain a general model. Indeed, Figure 2] shows that
‘Fine-tune on all shots’ does not perform too poorly on any shot but, perhaps unsurprisingly, in any
given setting, it falls short of the performance of the corresponding shot-specialized model.

Finally, we observe that SCONE fine-tuning outperforms its shot-unaware counterpart in all settings
(‘SCONE Fine-tune on all shots’ vs ‘Fine-tune on all shots”). This constitutes evidence that SCONE
fine-tuning indeed leads to a more flexible model that can adapt to the shot of each episode via its
conditioning mechanism, without suffering the trade-offs inherent in naively specializing a model
exclusively to any particular shot. We can view a SCONE model as a very compact way of
representing multiple shot-specialized models, where the information required for that specialization
resides in the light-weight FILM parameters. SCONE also outperforms the EST approach in this
setting which also strives for shot resiliency, but does so by encouraging invariance to the shot setting
rather than shot awareness as in SCONE .

5.2 LARGE-SCALE EXPERIMENTS ON META-DATASET

In what follows, we apply SCONE to the diverse and challenging Meta-Dataset benchmark for
few-shot classification (Triantafillou et al.l2020)). Meta-Dataset is comprised of ten distinct image
datasets, including natural images, handwritten characters and sketches. It also defines a generative
process for episodes that varies the way and shot across episodes, and within a particular episode
varies the shot for different classes, introducing imbalance. The range of shots induced by this
episode generator is also larger than what we considered in the previous section. It is a long-tailed
distribution under which small and medium shots are more likely but it is possible to also encounter
very large shots (e.g. >400), though this would happen very infrequently. We include histograms of
the shot distributions of Meta-Dataset’s training, validation and test episodes in the Appendix. These
experiments aim to investigate whether SCONE is effective on this broader shot distribution and
imbalanced episodes.

Prototypical Network on ImageNet For our first set of experiments on Meta-Dataset, we explore
different strategies of episodic fine-tuning of the pre-trained classifier’s embedding weights using
Prototypical Networks. For this, we use Meta-Dataset’s sampling algorithm to draw training episodes
of varying shots and ways from ImageNet. We compare standard episodic fine-tuning (‘Standard’)
to SCONE episodic fine-tuning (‘SCONE *). Since SCONE uses L2-regularization on the sets of
FiLM parameters, for a fair comparison we include a variant of standard episodic fine-tuning with
L2-regularization on the batch normalization parameters (‘L2 BN’). We also include an ablation of our
method that does not use any smoothing of the shot distribution. Finally, we compare to EST as well
where we computed the EST transformation on the ‘L2 BN’ instead of the ‘Standard’ Prototypical
Network variant, since that worked best. We tuned EST’s hyperparameters very extensively, as
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Dataset

Meta-Baseline (All datasets)

Classifier-Baseline

Control

SCONE

ILSVRC-2012

53.44 £ 0.82%

49.83 1 0.80%

53.69 + 0.83%

Omniglot 81.66 £ 0.73% 89.28 £ 0.51%  90.01 + 0.49%
Aircraft 70.65 £ 0.62% 81.60 £ 0.49% 78.27 £+ 0.54%
Birds 76.99 £ 0.64% 78.75 £ 0.59%  79.62 £ 0.58%
DTD 71.28 £ 0.56% 7047 £0.58%  71.89 £ 0.59%
Quickdraw 64.09 £ 0.67% 7279 £ 0.59%  71.95 £ 0.56%
Fungi 50.23 £ 0.81% 5528 £0.73%  57.04 £ 0.74%
VGG Flower 89.14 + 0.44% 90.13 £ 0.43%  91.09 + 0.39%
Traffic Signs 89.14 £ 0.44% 90.13 £0.43%  91.09 £ 0.39%
MSCOCO 53.92 + 0.78% 4785+ 0.81%  52.94 + 0.82%
Average 68.03% 70.63% 71.68%
Average ranks 2.55 2 1.45

Table 2: Our reproduction of the Classifier-Baseline (Chen et al., 2020) trained on all datasets, and
two variants that freeze those weights and episodically fine-tune using Meta-Baseline (Chen et al.|
2020) to optimize either only the batch norm parameters (‘Control’), or only SCONE ’s parameters
(‘SCONE ). In all cases, the reported numbers are query set accuracies averaged over 1K test
episodes and 95% confidence intervals. We also show the average ranks (lower is better).

described in Section 5.1, this time model-selecting on the validation sets of all datasets of Meta-
Dataset. The values that worked best in this case are d = 480 and p = 5e — 9. As noted in Section
5.1, these are substantially different than those used in the original EST paper, likely due to our deeper
backbones and significantly broader range of shots explored. Finally, we ran the same ‘Fine-tune on
best k-shot’ baseline described in Section 5.1. In this case we found that the best k£ was 20.

We evaluate these models on the held-out set of ImageNet classes as well as the remaining 9 datasets.
We set SCONE ’s MAX-SHOT to 200. We tune the learning rate and decay schedule separately for
each variant and we perform model selection of SCONE ’s hyperparameters using the validation
set. All additional details are reported in the Appendix, and we plan to open source our code upon
publication.

Meta-Baseline on all datasets Next, we experiment with the recent Meta-Baseline model (Chen
et al., [2020). Meta-Baseline also consists of a pre-training phase (‘Classifier-Baseline’) followed
by an episodic fine-tuning phase (‘Meta-Baseline’). Classifier-Baseline refers to simply training a
classifier on the set of training classes. This variant is evaluated on few-shot episodes by discarding
the ultimate classification layer and utilizing a cosine similarity-based nearest-centroid inference
algorithm on the learned embeddings. Meta-Baseline then fine-tunes Classifier-Baseline’s pre-trained
embeddings on the episodic objective of the aforementioned nearest-centroid algorithm.

When training on all datasets of Meta-Dataset, they obtained

strong results using their Classifier-Baseline which is in this 4 200
case trained in a multi-task setup with separate output heads for S 175
the different datasets. They found that episodically fine-tuning 64 .

that solution on all datasets did not help in general (it improved o 10
performance on some datasets but hurt performance on a larger 5.-’.'.'.;"- heo 125
number of datasets). o af;'o b é’ Q:o‘ t.o 1oo§
Inspired by that finding, we experimented with a SCONE " b%(%:%:%ng; - 7
training phase on top of Classifier-Baseline’s strong pre-trained oOg%a‘g;%o 50
solution where we froze the embedding weights to that powerful 54 o3 & 25
representation and we optimized only the set of SCONE ’s %%

FiLM parameters for shot conditioning. We performed this 0oH B ®

fine-tuning on training episodes from all datasets, using Meta-
Baseline’s nearest centroid method as the episodic model. As a
control experiment, we performed the same episodic fine-tuning
but without shot-conditioning, where we optimized only the
batch normalization parameters, keeping the remainder of the
embedding weights frozen (‘Control’). This control can be thought of as a special case of SCONE
where MAX-SHOT is set to 1.

Figure 3: UMAP projection of the
learned FiLM parameters for each
“shot” setting, color-coded by shots.
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Figure 4: The shot distribution s produced according to our smoothing procedure for a hypothetical
4-way episode where the shots for the four classes are: 1, 10, 23, and 103.

Findings The results of this investigation are shown in Table|l|and Table 2| (as well as their more
heavily-annotated counterparts in the Appendix, Tablesd|and 3] that show the per-row rank computa-
tion). Following (Triantafillou et al.||2020)), we run a test of statistical significance described in the
Appendix to determine when to bold an entry. Table|l|shows that SCONE fine-tuning outperforms
standard episodic fine-tuning in the context of Prototypical Networks. Interestingly, penalizing the
L2-norm of batch normalization parameters during episodic fine-tuning is beneficial even when not
using SCONE , but it does not reach the performance obtained by our shot-conditioning. The ablation
of SCONE that does not use any smoothing of the shot distribution is also competitive, but performs
worse than full SCONE . We also observe that EST is competitive in this setting, only slightly worse
than SCONE , though we note that SCONE is a more general approach that is not tied to Gaussian
classifiers. Similarly, in the context of Meta-Baseline, Table 2] shows that episodically fine-tuning
the batch normalization parameters of the otherwise-frozen embedding is helpful (‘Control’), but
using SCONE to learn a separate set of FILM parameters for each shot yields additional gains in this
setting too. Overall, despite the simplicity of SCONE , these results demonstrate its effectiveness on
different shot distributions, and in different backbones.

FiLM parameter visualization Finally, as a sanity check, we perform a UMAP projec-
tion (MclInnes et al.l 2018) of the learned FiLM parameters for each shot setting (Figure 3). As
expected, similar shot settings tend to learn similar sets of FILM parameters, which is reflective of
the fact that they rely on similar features for classification.

Example smoothed shot distribution To gain an intuition on the effect of our smoothing pro-
cedure, we illustrate in Figure [] the result of smoothing an example shot distribution using
m = 1 — le — 06, which is the value of the smoothing hyperparameter that we used for our
Prototypical Network experiments on Meta-Dataset. For this, we consider a hypothetical 4-way
episode where the shots for the four classes are: 1, 10, 23, and 103. We observe that the largest peak
is in the range of small values, due to the first three shots of the episode, with the fourth shot causing
a second peak around the value 103. As a reminder, this shot distribution defines the weights of
the convex combination of FILM parameters that will be used for the episode. In practice therefore,
we are activating ‘blocks’ of FiLM parameters that are relevant for each episode, instead of strictly
activating only the FILM parameters of the observed shots.

6 CONCLUSION

In summary, we present an analysis aiming to understand the role of episodic fine-tuning on top of a
pre-trained model for few-shot classification. We discover that this fine-tuning phase can be used
to specialize the pre-trained model to episodes of a given shot, leading to strong performance on
test episodes of that shot at the expense of inferior performance on other shots. To eliminate that
trade-off, we propose a shot-conditional episodic training approach that trains a model on episodes of
a range of shots and can be conditioned at test time to modify its behavior appropriately depending
on the shot of the given test episode. Our experimental analysis suggests that our proposed shot-
conditioning mechanism is beneficial both in smaller-scale experiments, as well as in the large-scale
and diverse Meta-Dataset benchmark, in the context of two different episodic models. Future work
could explore how to incorporate shot-awareness in other few-shot classification models. In addition
to the architectural modification of FiLM conditioning on the shot distribution, are there algorithmic
adjustments that can yield additional performance gains, such as a mechanism of determining the
number of inner-loop updates to perform for gradient-based meta-learners based on the number of
available shots?
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A APPENDIX

SCONE ’S TRAINING ALGORITHM IN MORE DETAIL

For clarity, we provide pseudocode for SCONE ’s training algorithm including our procedure for
shot smoothing in Algorithm|I} We will also release our code upon publication for reproducibility.
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Algorithm 1 SCONE training

Input: Distributions of training episodes Pj,.qin, pre-trained embedding weights 6, pre-trained batch
norm weights v and 3, embedding function f, learning rate € (a float), smoothing co-efficient m (a
float in the range [0, 1]) and maximum supported shot MAX-SHOT (an int).

Output: Finetuned embedding weights " and FILM parameters F = {+', 3'}.

procedure SMOOTH-SHOT(s, m, MAX-SHOT)
if s > MAX-SHOT then
§ <~ MAX-SHOT
end if
s+ s—1
§ < ONE-HOT(s, DEPTH=MAX-SHOT)
for 0 < j < MAX-SHOT do
l+s—j75—1

! < ONE-HOT(!, DEPTH=MAX-SHOT) * m

r<s+75+1

7 <~ ONE-HOT(7, DEPTH=MAX-SHOT) * m

S 5+1+r
m < m?
end for
end procedure

> Cap s to the max supported shot

> So that s is in the range [0, MAX-SHOT — 1]

> Init the smoothed shot

> The index j slots to the left of s
> Outputs the zero vector if [ < 0
> The index j slots to the right of s
> Outputs the zero vector if r < 0

> Adjust the next iteration’s smoothing

0+ 6 > Init the embedding weights from the pre-trained embeddings
for 1 < k < MAX-SHOT do > Init the FiLM params from the pre-trained batch norm params

V(k) <
p(k) B
end for
while validation accuracy is improving do

Sample a training episode with support set S and query set Q

Let k1, . .. kxy be the shots of the episode’s classes.

$ < ZEROS(MAX-SHOT)
for each class 7 do

$; < ONE-HOT(k;, DEPTH = MAX-SHOT)

$; ¢ SMOOTH-SHOT(s;, m, MAX-SHOT)

> Init the (unnormalized) shot distribution

> Smooth the one-hot shot of class %

S s+ s;
end for
§4— 5+ SUM(s) > Normalize to get the episode’s shot distribution
vl Ty > Select the FILM params for the episode
Bl sT3

Let ST = {f(=; 9/,’}/;,[3;),y}($7y)65
Let QH = {f(if, alv’yfsvﬁg)a y}(m,y)eg
L+ 7|91H‘ 2 (heyyeon —logp(y™ | h*,SH)

oL

9/ < 6/ — Ew

/ — I _ 6%

Y Y By

oL

BB = 687,8’
end while

> The embedded support set
> The embedded query set
> Compute the episode’s loss

> Update the model via gradient descent

12
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Figure 5: Additional evaluation shot settings to complement those in Figure@lin the main paper. We
refer the reader to Section 5.1 for a detailed description of these plots.
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Figure 6: Break down of the performance in Tablein different evaluation shot ranges. We find that
while the ‘Best k-shot’ baseline performs well for large shots (the third subplot), it performs poorly
on low shots (first two subplots).

Hypothesis testing We follow the same procedure as in (Triantafillou et al., 2020) to compute
ranks for different methods that in turn determine which entries to bold in our tables. Specifically,
we perform a 95% confidence interval statistical test on the difference between the mean accuracies
of pairs of entries of each row. If for two entries we are not able to reject the null hypothesis that
the difference between their means is 0, they will receive the same rank. For example, if model A
and model B are tied for the first place according to that test, they will each receive the rank 1.5 (the
average of the ranks 1 and 2). If we are able to reject that hypothesis, however, the entry with the
larger mean accuracy will receive a higher rank than the other. In each row, we bold the entries that
are tied for the highest rank. For convenience, in the last section of the Appendix, we show a more
heavily-annotated copy of each table in the paper to make the rank computation procedure more
transparent.

ADDITIONAL RESULTS

First, we provide in Figure [5]additional plots to cover more evaluation shot settings than those shown
in Figure 2]in the main paper. The setup for this is exactly the same as for Figure[2]

Next, since we observe that the ‘Best k-shot” baseline performs well in Table[T} which reflects average
performance across episodes of varying shots, we further break down its performance different ranges
of shots in Figure |6} We find that while indeed ‘Best k-shot’ performs well for large shots, it actually
performs poorly for low shots. This finding strengthens our case against this baseline: not only is it
computationally expensive, requiring training multiple different models to pick the one that performs
best, but is also is not as consistent as SCONE in its performance on different shot ranges.

Finally, to place our results into context, we display the results of Meta-Baseline with SCONE
alongside the performance of recent work, controlling for model capacity, in Table[3] The approaches
we compare against are: Classifier-Baseline (Chen et al, [2020), SUR-pf (Dvornik et al., [2020),
TaskNorm (Bronskill et al,[2020) and Simple CNAPs (Bateni et al.}[2020). In particular, we report
the performance of the parametric family of SUR (‘SUR-pf”) instead of full SUR (which has 8x
more parameters), in order to make apples-to-apples comparisons with the remaining approaches.
We find that the Meta-Baseline method, when combined with SCONE, achieves state-of-the-art on
Meta-Dataset in this context, according to the average rank metric.
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Dataset Classifier-Baseline ~ Meta-Baseline SCONE SUR-pf TaskNorm Simple CNAPs
ILSVRC-2012 53.44 £ 0.82% 53.69 & 0.83% 56.40 = 1.20%  50.60 £1.10%  58.60 = 1.10%
Omniglot 81.66 & 0.73% 90.01 £ 0.49% 88.50 £ 0.80%  90.70 £ 0.60%  91.70 £ 0.60%
Aircraft 70.65 + 0.62% 78.27 + 0.54% 79.50 +0.80%  83.80 £ 0.60%  82.40 £ 0.70%
Birds 76.99 + 0.64% 79.62 + 0.58% 7640 £ 0.90%  74.60 +0.80%  74.90 £ 0.80%
DTD 71.28 £+ 0.56% 71.89 &+ 0.59% 73.10 £0.70%  62.10 £0.70%  67.80 & 0.80%
Quickdraw 64.09 & 0.67% 71.95 £ 0.56% 7570 £ 0.70%  74.80 £0.70%  77.70 = 0.70%
Fungi 50.23 4+ 0.81% 57.04 + 0.74% 4820 £0.90%  48.70 £ 1.00%  46.90 & 1.00%
VGG Flower 89.14 £ 0.44% 91.09 + 0.39% 90.60 + 0.50%  89.60 + 0.60%  90.70 £ 0.50%
Traffic Signs 89.14 £ 0.44% 70.33 + 0.56% 65.10 £ 0.80%  67.00 £ 0.70%  73.50 & 0.70%
MSCOCO 53.92 +0.78% 52.94 + 0.82% 52.10 £ 1.00% 4340+ 1.00%  46.20 £ 1.10%
Average 68.03% 71.68% 70.56% 68.53% 71.04%
Average 3.45 2.40 2.85 3.75 2.55

Table 3: Comparison of our best SCONE model to recent state-of-the-art approaches on Meta-Dataset
(for the setting of training on the training sets of all datasets).

EXPERIMENTAL DETAILS

We plan to open source our code upon publication, including all experimental details. In the meantime,
we outline these details below for completeness.

Architecture We use ResNet-18 as the feature extractor for all of our experiments, following the
implementation in (Triantafillou et al., 2020). For the SCONE variants, we add FiLM to all of the
batch normalization layers throughout the network.

Image processing For all experiments, we use Meta-Dataset’s input pipeline to obtain images, and
we follow the image processing performed in (Chen et al.,[2020) which yields images of size 128 x
128. We apply standard data augmentation consisting of horizontal flipping and random cropping
followed by standardization using a commonly-used mean and standard deviation as in (Chen et al.|
2020). For episodic models, data augmentation is applied in both the support and query sets. No data
augmentation is used at validation nor test time.

Optimization We use ADAM with exponential learning rate decay and weight decay of 1le — 8 to
optimize all models in this work. We tune the initial learning rate, the decay rate, and the number of
updates between each learning rate decay separately for each model presented in the paper. The initial
learning rate values we considered are 0.0005 and 0.001, with a decay factor of 0.8 or 0.9 applied
every 1000, 2000, 3000 steps. We ran a variant for every combination of those values. We also tune
the weight decay applied to the FiLM parameters (for SCONE variants) or the batch normalization
parameters (for non-SCONE variants). We tried the values: 1le — 8, 1le — 6, le — 4.

SCONE hyperparameters For the SCONE variants, aside from the above hyperparameters, we
additionally tune the smoothing parameter m described in the main paper that is used for training and
for evaluation. We did not tune the MAX-SHOT hyperparameter mentioned in the main paper as we
found that our initial choices worked reasonably. Specifically, we set it to 40 for the smaller-scale
experiments where the maximum shot was 40, and to 200 for the large-scale experiments. The
latter choice was performed heuristically since shots much larger than 200 are unlikely under the
shot distribution induced by Meta-Dataset’s episode generator. For more information on that shot
distribution, we refer the reader to the next section.

SCONE smoothing hyperparameter We tuned the value of this hyperparameter that will be
used both at training and at evaluation. At training time, we considered values in the range
0,0.2,0.4,0.6, 0.9 for Prototypical Network experiments, and we picked the variant that worked best
according to the validation performance that was computed without smoothing. Once the model was
trained and all of the remaining hyperparamters were tuned, we performed a final validation round to
tune the evaluation-time smoothing that will be used in the chosen model. We found it beneficial to
use larger values here, picking the value of 1 — 1e — 06 for example for the Prototypical Network on
ImageNet. In the Meta-Baseline codebase, we trained with larger values of smoothing (the best we
found was 1 — le — 10) and didn’t find it beneficial to additionally smooth at evaluation time.
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Prototypical Networks (ImageNet only)

Dataset Standard L2 BN EST Best k-shot SCONE w/o S SCONE
ILSVRC-2012 50.90 £ 1.12%(6) 51.81 £ 1.06%(3) 52.17 £ 1.09%(3) 52.36 + 1.08%(3) 52.98% =+ 1.09%(3) 52.51 £+ 1.11%(3)
Omniglot 63.12 £ 1.37%(5.5) 63.14 + 1.32%(5.5) 66.07 + 1.29%(2.5) 6594 £ 1.33%(2.5) 64.71% + 1.32%(2.5)  65.60 + 1.34%(2.5)
Aircraft 54.30 £ 0.97%(5.5) 53.26 £ 0.97%(5.5) 55.64 + 0.88%(2.5)  56.03 + 0.95%(2.5) 55.38% =+ 0.96%(2.5)  55.38 & 0.96%(2.5)
Birds 68.22 £ 0.97%(5.5) 69.21 £ 1.01%(2.5) 67.17 £ 1.02%(5.5) 68.63 + 1.11%(2.5)  68.98% =+ 1.04%(2.5)  69.70 £ 1.01%(2.5)
DTD 66.62 £ 0.90%(6) 68.33 + 0.81%(4.5) 68.20 £ 0.77%(4.5) 69.61 + 0.80%(2) 68.68% + 0.78%(2) 69.58 + 0.77%(2)
Quickdraw 59.79 + 0.98%(3) 59.17 £ 0.96%(6) 60.05 £+ 0.97%(3) 60.68 £ 0.97%(3) 60.00% + 1.00%(3) 60.81 £ 0.95%(3)
Fungi 36.77 & 1.07%(5.5) 38.96 + 1.10%(2.5)  39.50 + 1.12%(2.5) 37.96 £ 1.08%(5.5) 39.19% + 1.15%(2.5)  39.66 + 1.12%(2.5)
VGG Flower 86.61 + 0.87%(5) 87.70 £ 0.77%(2) 88.55 £+ 0.65%(2) 87.45 + 0.86%(5) 86.98% =+ 0.80%(5) 88.03 £ 0.73%(2)
Traffic Signs 48.64 £ 1.06%(3.5) 46.54 £ 1.03%(6) 48.41 £ 1.07%(3.5) 50.26 + 1.16%(1) 47.61% + 1.05%(3.5) 48.24 £ 1.09%(3.5)
MSCOCO 43.02 + 1.09%(3.5)  43.11 £ 1.05%(3.5) 4345 £ 1.05%(3.5)  43.20 + 1.18%(3.5)  43.43% + 1.08%(3.5)  44.25 + 1.11%(3.5)
Average 57.80 % 58.12 % 58.92% 59.21% 58.79% 59.38%
Average ranks 4.90 4.10 3.25 3.05 3.00 2.70

Table 4: The same table as Table|l{additionally annotated with per-row ranks.

Model selection For each experiment, we perform early stopping according to the performance
on the validation set. For the models that train on a single shot k in the smaller-scale experiments,
the validation performance that we monitor for early stopping is the average query set accuracy on
k-shot 5-way episodes drawn from the validation set. For the models in the small-scale experiments
that train on a distribution of shots, we use the average validation performance over 5-way episodes
whose shot is sampled according to the same distribution used for training the respective model. For
the larger-scale Meta-Dataset experiments, we draw validation episodes only from the validation
set of ImageNet for the experiments that train on ImageNet only, or from the validation sets of all
datasets for the experiments that train on all datasets. In both cases, the validation episodes are
drawn using Meta-Dataset’s episode generator that yields episodes of variable ways and variable
shots with class imbalance. In all cases, the average validation performance is computed over 600
validation episodes and is monitored every 2K training updates. We apply exponential smoothing to
the resulting validation "curve" (using the default value of 0.6 in TensorBoard). Then, we choose the
update step at which the highest peak of that curve is found and we use the checkpoint corresponding
to that update step for testing.

DISTRIBUTION OF SHOTS IN META-DATASET EPISODES

For reference, Figure [/| displays histograms of the number of shots produced by Meta-Dataset’s
episode sampling algorithm. These are computed by sampling 600 episodes per dataset for each of
the training, validation and test splits of Meta-Dataset.

TABLES WITH MORE DETAILED RANKS

In this section, we include a copy of the same tables appearing previously in the paper, but additionally
annotated with per-row ranks, to make the rank computation method more transparent. These tables
are Table ] Table[5]and Table [6}
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Figure 7: Histogram of shots appearing in episodes generated using Meta-Dataset’s sampling algo-

rithm for the different splits.

Meta-Baseline (All datasets)

Dataset Classifier-Baseline

Control

SCONE

ILSVRC-2012  53.44 £ 0.82% (1.5)

49.83 £ 0.80% (3)

53.69 &+ 0.83% (1.5)

Omniglot 81.66 & 0.73% (3) 89.28 + 0.51% (1.5)  90.01 £ 0.49% (1.5)
Aircraft 70.65 £ 0.62% (3) 81.60 £ 0.49% (1) 78.27 £ 0.54% (2)
Birds 76.99 + 0.64% (3) 78.75 £ 0.59% (1.5)  79.62 + 0.58% (1.5)
DTD 71.28 £+ 0.56% (1.5) 70.47 £ 0.58% (3) 71.89 £ 0.59% (1.5)
Quickdraw 64.09 £ 0.67% (3) 7279 £ 0.59% (1.5)  71.95 £ 0.56% (1.5)
Fungi 50.23 £+ 0.81% (3) 55.28 + 0.73% (2) 57.04 + 0.74% (1)
VGG Flower 89.14 £ 0.44% (3) 90.13 4 0.43% (2) 91.09 £ 0.39% (1)
Traffic Signs 68.87 + 0.61% (3) 70.37 +0.56% (1.5)  70.33 £ 0.56% (1.5)
MSCOCO 53.92 4+ 0.78% (1.5) 47.85 £ 0.81% (3) 52.94 1+ 0.82% (1.5)
Average 68.03% 70.63% 71.68%
Average rank 2.55 2 145

Table 5: The same table as TableIZIadditionally annotated with per-row ranks.
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Dataset Classifier-Baseline Meta-Baseline SCONE SUR-pf TaskNorm Simple CNAPs
ILSVRC-2012  53.44 + 0.82%(3.5) 53.69 £ 0.83%(3.5) 56.40 £ 1.20%(2) 50.60 £ 1.10%(5) 58.60 £+ 1.10%(1)
Omniglot 81.66 £ 0.73%(5) 90.01 £ 0.49%(2.5) 88.50 &£ 0.80%(4) 90.70 £ 0.60%(2.5) 91.70 £ 0.60%(1)
Aiircraft 70.65 £ 0.62%(5) 78.27 £ 0.54%(4) 79.50 £ 0.80%(3) 83.80 £ 0.60% (1) 82.40 £ 0.70%(2)
Birds 76.99 £ 0.64%(2.5) 79.62 £ 0.58%(1) 76.40 £ 0.90%(2.5)  74.60 = 0.80%(4.5)  74.90 £ 0.80%(4.5)
DTD 71.28 £ 0.56%(2.5) 71.89 £ 0.59%(2.5) 73.10 £ 0.70%(1) 62.10 £ 0.70%(5) 67.80 £ 0.80%(4)
Quickdraw 64.09 £ 0.67%(5) 71.95 £ 0.56%(4) 75.70 £ 0.70%(2.5)  74.80 £ 0.70%(2.5) 77.70 £ 0.70%(1)
Fungi 50.23 £ 0.81%(2) 57.04 £ 0.74% (1) 48.20 £ 0.90%(3.5)  48.70 & 1.00%(3.5) 46.90 £ 1.00%(5)
VGG Flower 89.14 £ 0.44%(4.5) 91.09 £ 0.39%(2) 90.60 £ 0.50%(2) 89.60 £ 0.60%(4.5) 90.70 £ 0.50%(2)
Traffic Signs 89.14 £ 0.44%(3) 70.33 £ 0.56%(2) 65.10 £ 0.80%(5) 67.00 £ 0.70%(4) 73.50 £ 0.70%(1)
MSCOCO 53.92 £ 0.78%(1.5) 52.94 £ 0.82%(1.5) 52.10 £ 1.00%(3) 43.40 £ 1.00%(5) 46.20 &= 1.10%(4)
Average 68.03% 71.68% 70.56% 68.53% 71.04%
Average 345 2.40 2.85 3.75 2.55
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Table 6: The same table as Table|3[additionally annotated with per-row ranks.
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