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ABSTRACT

Semi-supervised learning has been successfully applied to few-shot learning
(FSL) due to its capability of leveraging the information of limited labeled data
and massive unlabeled data. However, in many realistic applications, the query
and support sets provided for FSL are potentially noisy or unreadable where the
noise exists in both corrupted labels and outliers. Motivated by that, we pro-
pose to employ a robust image-text multi-modal semi-supervised few-shot learn-
ing (RCFSL) based on Bayesian deep learning. By placing the uncertainty prior on
top of the parameters of infinite Gaussian mixture model for noisy input, multi-
modality information from image and text data are integrated into a robust het-
erogenous variational autoencoder. Subsequently, a robust divergence measure
is employed to further enhance the robustness, where a novel variational lower
bound is derived and optimized to infer the network parameters. Finally, a robust
semi-supervised generative adversarial network is employed to generate robust
features to compensate data sparsity in few shot learning and a joint optimization
is applied for training and inference. Our approach is more parameter-efficient,
scalable and adaptable compared to previous approaches. Superior performances
over the state-of-the-art approaches on multiple benchmark multi-modal dataset
are demonstrated given complicated noise for semi-supervised few-shot learning.

1 INTRODUCTION

Despite the impressive success of deep learning models, frequently it requires massive amount of
training data to fully demonstrate the potential of the model. In contrast, human is capable of learn-
ing new concepts given limited data. Consequently, few-shot learning gathers extensive research
interest due to the capabilities of learning new concepts from limited training data. Nevertheless,
the success of few-shot learning requires careful handling to robustness and generalization as it is
extremely susceptible to noisy labels, outliers as well as adversarial attack Lu et al. (2020a). For
instance, in order to automatically recognize several kinds of uncommon animals, only a few anno-
tated images for them are available due to their rarity. Moreover, the images could potentially be
corrupted due to an uncontrollable shooting environment or an instrumental malfunction. To miti-
gate this, one common approach to few shot learning is meta-learning Ren et al. (2018), where the
goal is to learn a classifier to distinguish between previously unseen classes, given labeled classes
and a larger pool of unseen examples, some of which may belong to the classes of interest, namely
semi-supervised few shot learning (SFSL).

Despite the impressive capabilities equipped the ability to leverage unlabeled examples for SFSL, the
challenge of lacking novel samples remains to be a bottleneck. Besides visual information, textual
data frequently contains rich information and more descriptive concepts for learning. Incorporating
image-text multi-modal learning into the framework by training on image-text pairs provides an ef-
ficient tool to inject the diversity to the generation process Pahde1 et al. (2021)Pahde1 et al. (2018).
The work in Pahde1 et al. (2018) provides a benchmark for multimodal few-shot learning relying on
a class-discriminative text conditional generative adversarial network. Later on, Pahde1 et al. (2021)
tackles the multimodal few shot learning problem by employing a cross-modal feature generation
network to infer the class membership of unseen samples with a simple nearest neighbor approach.
Despite of the success of these methods with clean features and perfect labels, the important case
that features and labels are contaminated due to out-of-distribution samples, adversarial attack and
human fatigue is rarely studied. In parallel, Bayesian deep learning (BDL) has served as a powerful
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Figure 1: The overall blockdiagram of the proposed robust cross-modal semi-supervised few shot
learning (RCFSL) framework to leverage both the advantage of robust GAN as a high quality gen-
erative model and a robust heterogenous semi-supervised VAE as a posterior distribution learner
on multi-modality data. Robust multimodal prototypes are then calculated from the robust embed-
ding using the last hidden layer in the discriminator of RCFSL, where three novel components are
highlighted in the orange bounding boxes.

tool in terms of transforming the problem of posterior inference of a BDL model into the optimiza-
tion of an objective function based on latent variables. Now the question then is: how to design a
Bayesian deep learning which counters the noisy labels and outliers jointly in the multimodal semi-
supervised few-shot learning. Accordingly, this paper tackles this challenging problem in robust
cross-modal few-shot learning by integrating a deep generative heterogenous model that general-
izes well to multi-modality (e.g. image-text modeling) in order to counter noisy labels and outliers.
Specifically, a robust heterogeneous variational auto-encoder is first proposed to encode the noisy
visual features and labels in order to jointly learn the information from both modalities by placing
the uncertainty prior on the top of the infinite Gaussian mixture models. Subsequently, a robust
variational lower bound based on β-divergence is derived to infer the network parameters. Finally,
a robust semi-supervised GAN is integrated with the heterogenous variational auto-encoder by col-
lapsing the generator and the decoder into one to further boost the learning capabilities. RCFSL is
built on top of Bayesian deep learning by fusing cross-modal information via the approximation of
the joint posterior distributions. In contrast to modality-alignment methods Xing et al. (2019a)Tsai
et al. (2017) for robust few-shot learning, the robustness of RCFSL is achieved by accurate model-
ing of the complicated joint distribution of multi-modality data and robust variational inference by
the derived lower bound. Distinct from the work in Xing et al. (2019b) calculating linear combina-
tions in the prototypical representation space, our fusion of multimodality features in the probability
distribution is completely data-driven, yielding more robust classification performance in few-shot
learning. Major contributions of this paper are: (1) RCFSL harnesses three levels of denoising to
ensure the robustness of cross-modal semi-supervised few-shot learning: Firstly, motivated by Hou
& Galata (2008), it places the uncertainty prior of the parameters of an infinite Gaussian mixture
distribution of image data to avoid mixture components collapsing onto a point or a hyperplane due
to outliers. (2) Subsequently, the robust β-divergence is employed to replace Kullback-Leibler di-
vergence used for data fitting to infer the network parameters and a novel evidence lower bound
for semi-supervised few shot learning is derived. (3) Noise-transition layers are applied to both the
heterogenous variational encoder and the robust discriminator in semi-supervised learning with an
end-to-end training. The performance of RCFSL is further boosted with robust feature generation
yielding 7% to 10% absolute accuracy improvement over STOA approaches.
Related Work Previous work in multimodal few shot learning frequently tends to first learn text
to image mapping to generate additional visual features and then calculate the joint prototype us-
ing a weighted average from two representations. Two recent approaches have attracted signif-
icant attention in the few-shot learning domain: Matching Networks Vinyals et al. (2016), and
Prototypical Networks Snell et al. (2017) where the sample set and the query set are embedded
with a neural network, and nearest neighbor classification is exploited relying on a metric in the
embedded space. In Oreshkin et al. (2018), metric scaling and metric task conditioning are uti-
lized to improve the performance of few-shot learning algorithms. Kim et al. (2018) and Finn
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et al. (2018) employ a probabilistic extension to model-agnostic meta-learning (MAML) framework
trained with variational approximation so that the model can generalize well to a new task with
a few fine-tuning updates. In Zhang et al. (2020), a bidirectional joint image-text modeling was
proposed and VHE-raster-scan-GAN was applied. RCFSL advances the work from Zhang et al.
(2020) by improving the robustness of the multi-modal heterogenous encoder and extend the so-
lution to semi-supervised few shot learning. In Tseng et al. (2020), feature-wise transformation
layers are utilized for augmenting the image features relying on affine transforms to simulate vari-
ous feature distributions under different domains for few-shot learning. Different from Tseng et al.
(2020), RCFSL augments the robust feature generation from BDL perspective relying on robust
semi-supervised GAN. Moreover, our method advances from other robust few shot learning such as
Rapnets Lu et al. (2020b) and Adversarial Query Goldblum et al. (2020) by providing mathmatically
rigoriously denoising schemes via uncertainty priors and robust divergence in variational inference.

Figure 2: The probabilistic graph model of the
proposed RCFSL framework, where x denotes the
observations of image data and t represents the
observations of embedded feature vectors for text,
ỹ and ŷ refer to noisy labels and corrected labels
respectively, z and a stand for the latent variable
and auxiliary variable for VAE respectively, serv-
ing as a bridge to fuse two modalities. Tk and Ck
represent the mean and the covariance for the k
Gaussian component of image data. λl represents
the parameter in the Poisson distribution for the
lth feature. Each observation pair (xi, ti) depends
on their cluster assignment and distribution pa-
rameters and each cluster assignment depends on
the stick-breaking procedure Beta((K − 1)α, χ).

2 OUR METHOD

Our approach is to focus on first constructing
a semi-supervised robust heterogeneous varia-
tional autoencoder leveraging a mixture model
to encode both image and text data in few
shot learning insensitive to both noisy labels
and outliers. Subsequently, a novel robust
variational lower bound is derived to facili-
tate the inference of network parameters rely-
ing on β-divergence for both labeled and un-
labeled data. Finally, a robust generative adver-
sairial network is integrated with denoising lay-
ers to strengthen the denoising performance to-
gehter with the end-to-end optimization to gen-
erate additional visual features to alleviate the
sparsity in the semi-supervised few shot learn-
ing. Let Ω denote image space, Υ denote text
space and C = {1, . . . , R} be the discrete la-
bel space. Further let xi ∈ Ω as the i-th input
image observation, ti ∈ Υ as its correspond-
ing textual description and yi ∈ C as its la-
bel. Denote Cbase as base classes where we
have both labeled and unlabeled samples and
denote Cnovel novel classes, which are under-
represented in the data. Inspired by the fact
that the student-t distribution is more robust to
the outliers than Gaussian distribution by con-
straining the shapes of the mixture components
from collapsing Hou & Galata (2008), we pro-
pose to place uncertainty priors (e.g. Gaussian
priors) on parameters of infinite Gaussian mixture models to characterize the influence of outliers
on image data and constrain the shape of the components to prevent them from collapsing.
The Heterogeneous Mixture Model:Variational autoencoder Diederik & Welling (2013) has been
recently proposed as a powerful solution for semi-supervised learning. To the best of our knowledge,
this is the first time that a robust heterogenous VAE model has been applied which naturally inte-
grates noisy images and text together which cohesively fuse continuous and discrete multi-modality
features. Variational inference are applied to fit the heterogenous model on both of image and text
features ΨI from base classes Cbase, where the embedding is obtained from the last dense layer
right before the softmax output in the discriminator. Once a good mapping ΨI based on heteroge-
nous image and text data is learnt, given a test sample, the class membership is given by assigning
the class label of the closest prototype to an unseen test sample. In particular, the heterogenous
features are first fed into the Dirichlet process mixture and clustered based on their similarity mea-
sures, where here image features are modeled as infinite Gaussian mixture distribution Allen et al.
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(2019) to characterize the samples from the unseen classes by computing the posterior distribu-
tion for unrepresented clusters more accurately and inferring the number of classes automatically
and text features are characterized by Poisson distribution. Specifically, xn is a noisy measure-
ment of its true position and is a draw from the Gaussian mixture model, where the mean of each
Gaussian component Tk is unknown and the variance Ck is known. In order to characterize the
uncertainty and the outliers from the input, the Gaussian prior is placed on the top of the mean for
each Gaussian component. Namely, Tk satisfies the normal distribution with the mean µk and the
precision matrix Λk. ωi is the latent variable for the ith data point specifying which Gaussian it
came from and π is the mixing weight for the Gaussian mixture model. Specifically, a Normal-
Wishart prior Murphy (2007) is placed on the mean and precision of the Gaussian components:
p(µ,Λ) =

∏K
k=1N(µk|m0, (β0Λk)−1)W (Λk|W0, ν0) , where m0 is set to be zero and β0 is set to

be a very small value. W (Λ|W, ν) is a Wishart distribution with scale matrix W and ν degrees of
freedom. For text features after word embeddings, εl and ζl are the prior shape and rate parameters
respectively in the Gamma distribution that generates the average rate parameter for the l-th Pois-
son feature. In particular, the cluster assignments for each observation are drawn from multinomial
distributions where the prior parameters represent the mixing weights of the corresponding clusters.
Specifically, the truncated stick-breaking process is employed to construct mixing weights. By con-
struction, a single parameter α controls the portion of the K − 1 major clusters, and χ separately
controls for the portion of the remainder via a stick-breaking procedure Beta((K − 1)α, χ) Blei
& Jordan (2017). Namely, where ω = [ω1, . . . , ωK ] belongs to the (K − 1)-dimensional simplex
and is generated from a Dirichlet prior with two parameters p(ω)D̃ir(α, . . . , α, χ). Typically, given
the image data x and the textual features t, variational inference with deep learning from powerful
probabilistic models are constructed by an inference neural network q(z|x, t) and a generative neu-
ral network p(x, t|z). The generative model and the inference model are parameterized by θ and φ
respectively. Subsequently, the network parameters are estimated by optimizing the evidence lower
bound (ELBO) in the variational inference. For unsupervised learning of multimodality data, the
vanilla VAEs are optimized by maximizing ELBO:

ELBO = Epdata(t,x)[L(t, x)], L(x) := Ez∼q(z|x,t)[ln p(t|z)]−DKL[q(z|x, t)//p(z)] (1)

The Generative and Inference Model: We shall now present the proposed generative and in-
ference model for few-shot learning. Given a semi-supervised learning setting, the labels y are
either unknown (for unlabeled data) or noisy (for labeled data). The generative model is then
defined as: pθ(x, t|ω, T,C)pθ(T |Z, µ,Λ, λ)pθ(a|z, ỹ, x, t)pθ(x, t|ỹ, z)p(z)p(ỹ)p(ω)p(t|λ). Define
pθ as the deep neural network with parameters θ and y as the ground truth of class label. For
unlabeled data, y is considered as a latent variable. Further denote Cat(.) as a multinomial
distribution and in this paper we reasonably assume that the labels are of categorical distribu-
tion and the proposed model applies to other distributions for the latent variable y. In order
to fit more complicated posteriors for the marginal distribution p(z|x, t) and bridge the gap be-
tween two modalities, motivated by Maaløe et al. (2017), we extend the variational distribution
with auxiliary variables a, so that the generative model is invariant to marginalization over a
p(x, z, a, ω, T, C, µ,Λ) = pθ(x|ω, T,C)pθ(T |Z, µ,Λ)pθ(a|z, x)pθ(x, z). To attenuate the influ-
ence with the noisy labels, further denote ỹ as the corrupted labels and ŷ as the corrected label after
denoising layer. Define K×K noise transition matrix M to associate ỹ with ŷ and estimation of M
has been addressed in previous methods Sukhbaatar et al. (2015)Patrini et al. (2017). In particular,
M = (Mi,j) ∈ [0, 1]c×c(

∑
iMi,j = 1). The proposed generative model can then be expressed as:

p(z) = N(z|0, I) , p(ỹ) = Cat(ỹ|η) , pθ(a|z, ỹ, x, t) = f(a; z, ỹ, x, t) ,
pθ(x, t|z, ỹ) = f(x, t; z, ỹ, θ) , p(Tk|µk,Λk) = N(tk|µk,Λ−1

k ), p(ŷ = i|ỹ = j) = Mij , (2)
p(x, t|T,C, λ) = N(xn|tk, Ck)

∏Nl
n=1N(tn|tỹn , Cỹn)λ

kexp−λ

k!

if the jth cluster is represented
p(x, t|T,C, λ) =

∫
p(xn|tk, Ck)p(tk|µk,Λk)p(µk,Λk)dµkdΛk

λkexp−λ

k!

if the jth cluster is unrepresented

The inference model can be represented as:

qφ(a, z, µ,Λ, T, ỹ, λ|x, t) = q(z|a, ỹ, x, t)q(a|x, t)q(ỹ|a, x, t)q(T, µ,Λ, λ|x, t)
qφ(z|a, ỹ, x, t) = N(z|µφ(a, ỹ, x, t), diag(σ2)), qφ(ỹ|a, x, t) = Cat(ỹ|ηφ(a, x, t)),
qφ(µk,Λk) = q(µk|Λk)q(Λk), q(λl|t) ∝ Gamma(λl|εl +

∑
i ψiktil, ζl +

∑
i ψik) , (3)
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where q(λl|t) characterizes posterior variational density of Poisson parameters given the discrete
embedded feature vectors t converted from text data. ψik stands for the probability of the ith obser-
vation belongs to the cluster k. til represents the l-th Poisson feature of the ith observation. Denote
N−n,j as the number of data points, excluding xn which belongs to the mixture component j. To
compute q(T, µ,Λ, λ|x, t), mean-field approximation is applied Bishop (2006) to factorize all the
latent variables and parameters for the represented and unrepresented jth cluster respectively:

q(T, µ,Λ, λ|x, t) =
N−n,j
N−1+αN(xn|tk, Ck)

∏Nl
n=1N(tn|tỹn , Cỹn)q(λl|t)

q(T, µ,Λ, λ|x, t) = α
N−1+α

∫
p(xn|tk, Ck)p(tk|µk,Λk)p(µk,Λk)dµkdΛkq(λl|t) (4)

The above equation indicates that given the multimodality data, the unlabeled samples has a certain
probability of being classified as unrepresented mixtures (e.g. unseen new classes), which facilitates
the learning capabilities of the proposed robust semi-supervised few shot learning. Within an iter-
ation, some unlabeled samples are associated with unrepresented mixtures, a new represented mix-
tures will emerge which successfully addressed the challenges in semi-supervised few shot learning
when the unlabeled data contains unseen new classes which doesnot exist in labeled data.
Robust Variational Lower Bound: To further alleviate the impact from outliers, the robust di-
vergence is employed to infer network parameters more accurately. The theoretical foundation of
β-divergence has been initially defined at Basu et al. (1998), where the β-divergence between two
functions g and f are defined as

Dβ(g ‖ f) =
1

β

∫
g(x)1+βdx+

∫
f(x)1+βdx− β + 1

β

∫
g(x)f(x)βdx (5)

When β → 0, the β-divergence converges to KL-divergence, limβ→0Dβ(g ‖ f) = DKL(g ‖ f).
As described in Futami et al. (2018), minimizing the β-divergence from the empirical distribution
p̂(x) to p(x; θ) arg minθDβ(p̂(x) ‖ p(x; θ)), it is easy to show 1

N

∑N
i=1 p(xi; θ)

β ∂ ln p(xi;θ)
∂θ −

Ep(x;θ)[p(x; θ)β ∂ ln p(x;θ)
∂θ ] . As the probability densities of outliers are usually much smaller than

those of inliers, the first term of the above equation is the likelihood weighted according to the power
of the probability density for each sample, which effectively suppress the likelihood of outliers. This
estimator is also called asM -estimator Huber & Ronchetti (2011), which provides provably superior
performance in various machine applications Li & Gal (2017). The variational lower bound for the
proposed RCFSL model for labeled data can be represented as

log p(x, ỹ, t) =
∫
a

∫
z

∫
T

∫
µ

∫
Λ

∫
λ

∫
ω

log(x, ỹ, a, z, T, µ,Λ, λ, t)dadzdTdµdΛdλdω ≥
E[log(pθ(a, z, T, µ,Λ, λ, ω, x, ỹ, t))]− E[qφ(a,z,T,µ,Λ,ω|x,t,ỹ)] = E[log(pθ(a, z, T, µ,Λ, ω, x, t, ỹ))]

−E[qφ(a|x,t)]− E[qφ(z|a,ỹ,x,t)]− E[qφ(T |µ,Λ,x)]− E[qφ(µ,Λ)]− E[qφ(ω|α)]− E[qφ(λ|t)]

The above inequality can be rewritten as

log p(x, ỹ, t) ≥ Eqφ(a,z,T,µ,Λ,λ,ω|x,y,t) [log pθ(a,z,T,µ,Λ,λ,x,ỹ,t)
qφ(a,z,T,µ,Λ,λ,ω|x,ỹ,t)

] = Eqφ(a,z,T,µ,Λ,λ,ω|x,t,ỹ)

[log(pθ(x, t, ỹ|a, z, T, µ,Λ, λ, ω))] + DKL[q(a, z, T, µ,Λ, λ|x, t, ỹ)//p(a, z, T, µ,Λ, λ)] (6)
To mitigate the influence of outliers, let H = {a, z, T, ω, µ,Λ, λ} represent the set of all the latent
variables and leverage the technique from Futami et al. (2018), we can replace KL-divergence with
β-Divergence and cast the β-ELBO for labeled data Lβ as:

Lβ =

∫
q(H|x, t, ỹ)(−β + 1

β

N∑
i=1

p(ỹi|H;xi, ti)β +N

∫
p(ỹ|H;x, t)1+βdỹ) + DKL[q(H|x, t, ỹ)//p(H)] (7)

For unlabeled data, by introducing the variational distribution for ỹ as qφ(a, x, t|ỹ), the variational
lower bound for the proposed RCFSL can be represented as

log p(x, t) =
∫
a

∫
z

∫
T

∫
µ

∫
Λ

∫
ỹ

log(x, ỹ, a, z, T, µ,Λ)dadzdTdµΛdỹ ≥ Eqφ(a,ỹ,z,T,µ,Λ|x,t)

[log pθ(a,z,T,µ,Λ,x,t,λ,ỹ)
qφ(a,z,T,µ,Λ,λ,ỹ|x,t) ] = E[log(pθ(a, z, T, µ,Λ, ω, λ, x, t, ỹ))]− E[qφ(a|x,t)]− E[qφ(ỹ|a,x,t)]

−E[qφ(z|a,ỹ,x,t)]− E[qφ(T |µ,Λ,x)]− E[qφ(µ,Λ)]− E[qφ(ω|π)]− E[qφ(λ|t)]

Similarly, replacing the KL-divergence with β-Divergence and augmenting the latent variableHu =
{a, z, y, T, ω, µ,Λ, λ}, the β-ELBO for unlabeled data in RCFSL is:

Uβ =

∫
q(Hu|x, t)(−

β + 1

β

N∑
i=1

p(xi, ti|Hu)β +

∫
p(x, t|Hu)1+βdx) + DKL[q(Hu|x, t)//p(Hu)] ,
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Practically, Lβ and Uβ are calculated via Monte Carlo sampling. The robustness of our pro-
posed ELBO can be guaranteed leveraging the influence function (IF) Futami et al. (2018)Huber &
Ronchetti (2011). As IF is widely used to analyze how much contamination affects estimated statis-
tics, it is straightforward to show that given the perturbation on the empirical cumulative distribution
caused by outliers, it is straightforward to show that the IF of our posterior distribution is bounded.
The objective function for robust cross-modal variational autoencoder is: LRCV AE = Lβ + λ1Uβ ,
where λ1 represents the weight to control the trade-off between the labeled data and unlabeled data.
Robust Feature Generation: The construction of the proposed uncertainty priors and the robust
divergence measure in our framework aims at better approximation of the posterior distribution un-
der noisy labels and outliers. This is also related to employing generative adversarial learning of z
and x, t defined by the data, the encoder, the prior and decoder. Different from VAEs that assumes
parametric data distribution and perform posterior inference, GANs in general utilize implicit data
distribution and do not provide meaningful latent representations. By learning both a generator G
and a discriminator D, a min-max objective is optimized:

min
G

max
D
{Ex,t∼pdata(x,t)[ln(D(x, t))] + Ez∼p(z)[ln(1−D(G(z))]} (8)

In Kaneko et al. (2019), a noise transition model is incorporated to learn a clean label conditional
generative distribution. But their model only considered noisy labels without outliers and is lim-
ited to supervised learning. Recent work on semi-supervised GAN with k classes Kumar et al.
(2017)Salimans et al. (2016) modify the discriminator with k + 1 outputs on the discriminator by
considering the fake images as the k + 1th class. Hence, the loss for the training can be computed
with a supervised loss and an unsupervised loss respectively:

L = Lsup + Lunsup = −Ex,t,y∼pd(x,t,y) log pf (y|x, t, y ≤ k)−
Ex,t∼pg(x,t) log(pf (y = k + 1|x, t))− Ex,t∼pd(x,t) log(1− pf (y = k + 1|x, t)) , (9)

where Lsup represents the negative log probability of the label given the data is real. De-
note D(x, t) = 1 − pf (y = k + 1|x, t), the loss for semi-supervised GAN on multimodal-
ity data LsGAN can be written as: L = −Ex,t∼pd(x,t) logD(x, t) − Ez∼noise(1 − D(G(z))) −
Ex,t,y∼pd(x,t,y) log pf (y|x, t, y ≤ k) . More recently, the label noise robust GAN (rGAN) Kaneko
et al. (2019) has achieved promising performance in classifying images with noisy labels by in-
corporating a noise transition model to learn a clean label conditional generative distribution under
noisy labels. Thus, given the noise samples (x̃r, ỹr) ∼ p̃d(x, ỹ), to construct a label-noise robust
conditional generator and discriminator, the objective function of the robust semi-supervised GAN
in the proposed robust cross-modal semi-supervised few-shot learning is expressed as: LRSGAN =
−Ex,t∼pd(x,t) log(1− C̃(ỹ = k+1|x, t))−Ez∼noise(1−D(G(z)))−E(x̃r,t,ỹr)∼p̃d(x,t,ỹ) log C̃(ỹ =

ỹr|x, t, ỹ ≤ k) = −Ex,t∼pd(x,t) log(1 −Mŷr,ỹr Ĉ(ŷ = k + 1|x, t)) − Ez∼noise(1 − D(G(z))) −
E(x̃r,t,ỹr)∼p̃d(x,t,ỹ) log

∑
ŷr Mŷr,ỹr Ĉ(ŷ = ŷr|x, t, ŷ ≤ k) . Without modeling the data distribution

explicitly and representing the latent space in a meaningful manner, it does not provide the function-
ality to counter the outliers in the generator and discriminator. Motivated by the thought of bridging
the gap between robust VAE and robust GAN, we feed the robust variational posterior p(z|x, t) in-
stead of the random noise p(z) into the label noise robust semi-supervised GAN as the source of
randomness as both of the decoder and the generator of RSGAN share the mapping from z to x and
t. The full optimization function for the proposed RCFSL framework can be represented as:

minGRCFSL maxD Epdata(x,t)[L(x, t)]L(x, t) := lnD(x, t) + DKL[q(H|x, t, ỹ)//p(H)] +

λ1DKL[q(Hu|x, t)//p(Hu)] + Ez∼q(H|x,t,ỹ)[ln(1−D(GRSGAN (z)) + (−β+1
β

∑N
i=1 p(ỹi|H;xi, ti)β +

N
∫
p(ỹ|H;x, t)1+βdỹ] + λ1Ez∼q(Hu|x,t)[(−

β+1
β

∑N
i=1 p(xi, ti|Hu)β + λ1N

∫
p(x, t|Hu)1+βdx)] , (10)

where λ1 is set to be the ratio of unlabled samples verus labeled samples and the discrimina-
tor loss is characterized by E[lnD(x, t)] = −Ex,t∼pd(x,t) log(1 − Mŷr,ỹr Ĉ(ŷ = k + 1|x, t)) −
E(x̃r,t,ỹr)∼p̃d(x,t,ỹ) log

∑
ŷr Mŷr,ỹr Ĉ(ŷ = ŷr|x, t, ŷ ≤ k) . This new architecture is expected to

better predict the class labels under the compound noise. We then train RCFSL including the robust
heterogenous encoder, the generator and the robust discriminator in an end-to-end manner using
adaptive moment estimation (Adam) Kingma & Ba (2015). Each multimodal embedding prototype
pc (of category c) is computed by averaging the embeddings of all support samples of class c. Once
the robust embedding is obtained, the distance between the embedding of the query qt and the multi-
modal prototype pc is calculated by p(y = c|pc) =

exp(−d(f(qt),pc))∑
k exp(−d(f(qt),pk)) where d refers to Euclidean

distance and the query is classified as the class with the minimum distance.
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Table 1: Semi-supervised few-shot classification accuracy on test split of miniImageNet. The top
row of uni-modality results are only applied to visual features. The middle row reports the classi-
fication performance on the methods of cross modality alignment based methods extended to few
shot learning framework and the last row demonstrates the results with robust few shot learning.

Dataset mIN(5N 3K 1C) mIN(5N 5K 2C) mIN(5N 10K 3C)

Uni-modality few shot learning methods
MAMLFinn et al. (2017) 43.35± 0.81% 51.64± 0.47% −−−

Matching NetworkVinyals et al. (2016) 40.23± 0.75% 49.68± 0.63% −−−
Prototypical NetworkSnell et al. (2017) 46.72± 0.59% 63.49± 0.36% 71.27 ± 0.59%
Discriminative k-shotBauer et al. (2017) 51.64± 0.37% 68.36± 0.42% 72.83 ± 0.25%

SNAILMishra et al. (2018) 53.22± 0.28% 69.16± 0.48% 73.45 ± 0.13%
CAMLJiang et al. (2019) 57.87± 0.62% 70.67± 0.39% −−−

Cross modality modeling extended to metric-based FSL framework
CBPL-FSLXing et al. (2019a) 56.39± 0.27% 73.11 ± 0.45% −−−
ReViSE-FSLTsai et al. (2017) 41.69± 0.69% 64.25± 0.34% 72.35± 0.47%

f-CLSWGAN-FSLXian et al. (2018) 51.63±0.76% 53.62± 0.26% 73.71± 0.59%
CADA-VAE-FSLSchönfeld et al. (2019) 56.33±0.45% 71.97±0.27% 75.42± 0.60%

AM3+TADAMXing et al. (2019b) 64.31± 0.37% 74.03±0.55% 77.60± 0.49%
VHE-raster-scan-GANZhang et al. (2020) 78.65± 0.42% 79.23±0.75% 78.52± 0.35%

Robust few shot learning methods
AQGoldblum et al. (2020) 73.42± 0.63% 76.26± 0.58% 79.05± 0.42%
RAPNetLu et al. (2020b) 75.72± 0.51% 79.87± 0.47% 81.24± 0.64%

RCFSL(ours) 84.63± 0.35% 85.35± 0.39% 87.21± 0.39%

3 EXPERIMENTS

Dataset and Competing Methods: We extensively evaluate the proposed robust cross-modal semi-
supervised few shot learning (RCFSL) algorithm on multiple benchmark datasets including mini-
ImageNet(mIN), tieredImageNet (tIN), Fewshot-CIFAR100 (FC100) and Caltech-UCSD Birds 200-
2011 (CUB). The miniImageNet dataset is a subset of ILSCRS-12 which includes 100 classes where
each class contains 600 RGB images with size 84 by 84. We split the datasets by using 64 classes
for training, 16 classes for validation and 20 classes for testing where 16 classes are utilized to mon-
itor the model’s generalization performance. The CUB Bird dataset contains 11788 images of 200
different bird species, where the data is split equally in training and testing data. Namely, for each
category, 30 training image and 30 testing images are included, where in the training dataset, 10%
images are labeled images and the rest of the images are unlabeled. 10 short textual descriptions
per image are provided by Reed et al. (2016). Following the work Zhang et al. (2017), the text
encoder pretrained by Reed et al. (2016) is employed and the data is split such as |CBase| = 150,
|CNovel| = 50. Specifically, n = {1, 2, 5, 10, 15, 20} images are selected from novel classes in
order to perform few shot learning. We evaluate the two types of label noise including symmetric
noise and asymmetric noise. For symmetric noise, we inject the label noise by randomly flipping
the labels of the labeled data into a different label in the novel classes. For asymmetric noise,
the corrupted labels are generated by replacing the correct labels with their most similar classes
(using nearest neighbor measurement). Outliers are mimicked by including samples from data dis-
tributions far away from the training data distributions, namely out-of-distribution (OOD) samples.
GloVe Pennington et al. (2014) is utilized to extract the word embeddings for the category labels,
where the embeddings are trained with large unsupervised text corpora. RCFSL is compared with
multiple benchmark methods and state-of-the-art approaches. Typically, similarly as Xing et al.
(2019b), three families of methods are evaluated: (1) uni-modality few-shot learning methods such
as MAMLFinn et al. (2017), LEORusu et al. (2019) and CAMLJiang et al. (2019). In particular,
latent embedding optimization (LEO) Rusu et al. (2019) addresses MAML problem by relying on a
few updates on a low data regime to train models in a high dimensional parameter space. (2) cross
modality few shot learning methods ReViSE Tsai et al. (2017), CADA-VAE Schönfeld et al. (2019)
Xing et al. (2019b), VHE-raster-scan-GANZhang et al. (2020) and Feature transformTseng et al.
(2020). Among them, ReViSE Tsai et al. (2017) minimizes maximum mean discrepancy (MMD) of
the distributions from two representation spaces for better alignment. CADA-VAE Schönfeld et al.
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Table 2: Semi-supervised few-shot classification accuracy on test split of tieredImageNet (tIN). The
top row of uni-modality results are only applied to visual features. The middle row reports the
classification performance on the methods of cross modality alignment based methods extended to
few shot learning and the last row demonstrates the results with robust few shot learning.

Dataset tIN(5N 3K 1C) tIN(5N 5K 2C) tIN(5N 10K 3C)

Uni-modality few shot learning methods
MAMLFinn et al. (2017) 47.65± 0.66% 52.63± 0.71% −−−

Prototypical NetworkSnell et al. (2017) 49.65± 0.56% 68.13± 0.57% 73.57 ± 0.67%
Discriminative k-shotBauer et al. (2017) 51.64± 0.37% 69.27± 0.42% 74.06 ± 0.25%

SNAILMishra et al. (2018) 55.63± 0.31% 70.23± 0.48% 75.69 ± 0.43%
CAMLJiang et al. (2019) 58.76± 0.45% 71.35± 0.32% −−−

Cross modality modeling extended to metric-based FSL framework
CBPL-FSLXing et al. (2019a) 58.57± 0.45% 74.35 ± 0.67% −−−
ReViSE-FSLTsai et al. (2017) 44.53± 0.81% 67.61± 0.85% 73.65± 0.56%

Feature transformTseng et al. (2020) 59.78±0.85% 73.21± 0.42% 75.23± 0.63%
CADA-VAE-FSLSchönfeld et al. (2019) 57.64±0.59% 71.97±0.27% 77.31± 0.57%

AM3+TADAMXing et al. (2019b) 65.92± 0.53% 74.03±0.55% 78.34± 0.45%
VHE-raster-scan-GANZhang et al. (2020) 73.41± 0.63% 76.35±0.75% 79.03± 0.32%

Robust few shot learning methods
AQGoldblum et al. (2020) 75.31± 0.56% 78.35± 0.62% 81.33± 0.48%
RAPNetLu et al. (2020b) 76.48± 0.51% 80.11± 0.53% 82.61± 0.39%

RCFSL(ours) 85.65± 0.47% 87.63± 0.34% 88.57± 0.42%

(2019) leverages two VAEs to embed information for both modalities and align the distribution of the
two latent spaces. (3) Robust few shot learning methods including robust attentive profile networks
(Rapnets) Lu et al. (2020b) and Adversarial Querying (AQ) Goldblum et al. (2020). RapnetsLu
et al. (2020b) consists of an embedding module, a correlation module, and an attentive module to
suppress the outliers in few-shot learning. Adversarial Querying Goldblum et al. (2020) produces
adversarially robust meta-learners and achieves efficient classification for few-shot learning tasks.
Implementation Details: For miniImagenet, tiredImagenet and FC100 datasets, we parameterize
the heterogeneous VAE with three sets of 5 by 5 fully convolutional, ReLU and pooling layers fol-
lowed by two fully connected hidden layers where each pair of layers contains the hidden units as
dim(h) = 1000. We further set the dimension of the auxiliary variable a and the latent variable z
to be 200 respectively. For the CUB dataset, we leverage Resnet-18 as backbone and incorporate
the uncertainty prior for the input, the noise transition model along with the auxiliary variables as
our encoder. The network is trained with SGD using a batch size of 128. A momentum of 0.9 is
set with a weight decay of 0.0005. The network is trained for 30000 iterations. The initial learning
rate is set as 0.1, and reduce it by a factor of 10 after iterations 15,000, 17,500 and 19,000. For
the configurations of discriminator in GAN, we follow the same configuration of DC-GAN and fol-
low the similar discriminator Mirza & Osindero (2014) for DC-GAN. β is varied from 0.1 to 0.4
where the best performance is reported. The similar setup in Xing et al. (2019b) is utilized relying
on ACC(N,K,C) to evaluate the performance of classification accuracy in a N -way and K-shot
SFSL settings, where C represents the total number of outliers and noisy labels in each class. We
use 10 textual descriptions per image to generate multimodal prototypes. The semi-supervised few-
shot classification accuracy on test split of miniImageNet is shown in Table 1. As shown in Table
1, RCFSL achieves the best classification accuracy compared to all of the competing methods in
different cases. The large performance margin suggests the proposed mechanism not only fuses two
modalities of features cohesively and but also effectively suppresses the noisy labels and outliers in
semi-supervised few-shot learning. Compared to the adaptive modality mixture mechanism (AM3)
with TADAM as backbone Xing et al. (2019b), RCFSL has the advantage of fusing multimodal
distributions in the heterogeneous encoder via the latent space to fully utilize the multimodal feature
representation instead of computing multimodal prototypes with a convex combination afterwards.
In contrast to robust FSL methods like Rapnets Lu et al. (2020b) and AQ Goldblum et al. (2020),
the performance gain can be mainly attributed to the fact that RCFSL employs a mathematically
rigorous variational inference insensitive to noisy labels and outliers to optimize network parame-
ters, yielding more accurate classification performance. The margin in performance is particularly
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Table 3: Semi-supervised few-shot learning results (%) using our method with different combi-
nations of denoising strategies training with different levels of label noise and outliers. The bold
number in each column of sub-boxes represents the best result. Here UP stands for uncertainty
priors, RD means robust divergence and CM represents cross multimodal data (images and text).

Dataset Denoising Strategies mIN tIN FC100 CUB-200
UP RD SM

5N 5K 2C

No No No 78.79 80.55 61.35 70.77
Yes No No 79.25 83.07 62.27 72.34
Yes Yes No 80.36 83.38 64.13 72.66
Yes Yes Yes 85.35 87.63 68.33 76.93

Figure 3: Comparison of the t-SNE visualization with two dimensional multimodal prototype space
for the FewShot CIFAR-100 dataset using RapNetsLu et al. (2020b) and our RCFSL (β=0.2) on a
10-Way 8-shot semi-supervised learning (Fig 3.(a) and (b)), where each class includes 2 noisy labels
and 2 outliers. The index number represents superclasses 0 to 9 in CIFAR-100. Each number lo-
cates on the median position of the corresponding vectors and the outliers are marked with squares.
The embeddings from 10 distinct clusters using our method corresponds to true class labels, which
validates the robustness of our method to label noise and outliers. Fig 3(c)- (d) illustrate the classi-
fication accuracy vs the number of shots for FC100 and CUB-200 datasets respectively.

remarkable in the fewer shots scenario, supporting the robustness of RCFSL. Similar performance
evaluations are conducted on tieredImageNet dataset in Table 2 and RCFSL again is the top per-
former under various noise settings. Fig.3 demonstrates the comparison of the t-SNE visualization
with two dimensional multimodal prototype space for the FewShot CIFAR-100 dataset using Rap-
NetsLu et al. (2020b) and our RCFSL (β=0.2) on a 10-Way 8-shot semi-supervised learning (Fig
3.(a)- (b)), where it clearly shows our method has a better capability in terms of separating noisy
labels and outliers in semi-supervised few-shot learning. We also investigate the classification ac-
curacy of different methods versus the number of shots in Fig 3.(c)- (d) for FC100 and CUB200
datasets respectively with 25% noisy labels and outliers respectively, RCFSL yields considerable
performance gains over competing methods especially with smaller number of shots.
Ablation Study: Described in the ablation study in Table 3, RCFSL w/o uncertainty prior excludes

the uncertainty prior from the model. Therefore, the performance degradation suggests the impor-
tance of the proposed hierarchical structure for variational inference by placing the uncertainty prior
on the infinite GMMs to counter the detrimental effects of outliers. Secondly, our method w/o robust
divergence replaces β-divergence which places small weights on noisy labels and outliers with the
regular KL-divergence. Moreover, RCFSL w/o cross modality relies on only image data for SFSL
where multi-modality further improves the classification accuracy by at least 4%.

4 CONCLUSION

By integrating uncertainty prior of an infinite Gaussian mixture model into the heterogenous encoder
and the robust lower bound based on β-divergence for variational inference, our RCFSL is capable
of tackling the outliers and noisy labels simultaneously in semi-supervised few shot learning. More-
over, by integrating the robust semi-supervised GAN for feature generation, experimental evalua-
tions on multiple benchmark datasets have demonstrate the superiority of the proposed method with
large margins using multimodality data.
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A DERIVATION OF INFLUENCE FUNCTION FOR LOWER BOUND OF RCFSL

Define G(x) as a empirical cumulative distribution given by {xi}ni=1 and denote the perturbed ver-
sion of G at z as Gε,z(x) = (1− ε)G(x) + ∆z(x), where ε is the contamination portion and ∆z(x)
is the point mass at x. Given a statistic T . the influence function (IF) is defined as Futami et al.
(2018)

IF (z, T,G) =
∂T (Gz,ε(x))

∂ε
|ε=0 (11)

Thus, the IF of the heterogenous variational autoencoder for LRCV AE is given by

(∂
2LRCVAE
∂H2

u
)−1 ∂

∂Hu
Eq(Hu)[DKL[q(Hu|x, t)//p(Hu)]

+N(β+1
β p(z|Hu)β −

∫
p(x, t|Hu)1+βdx]

+(∂
2LRCVAE
∂H2 )−1 ∂

∂HEq(H)[DKL[q(H|x, t)//p(H)]

+N(β+1
β p(ỹ|x, t, H)β −

∫
p(ỹ|x, t, H)1+βdỹ] , (12)

It is straightforward to show that the above result is always bounded, namely RCFSL is robust to the
compound noise (the outliers on the data x and the labels y).

B VISUAL COMPARISON WITH ROBUST DIVERGENCE

Fig.1 demonstrates the comparison of the t-SNE visualization with two dimensional multimodal
prototype space for the FewShot CIFAR-100 dataset using the same setting as our method ex-
cept replacing robust divergence with KL-divergence and our RCFSL (β=0.2) on a 10-Way 8-shot
semi-supervised learning, where it clearly shows the efficacy of the robust divergence by offering a
stronger capability in separating noisy labels and outliers in semi-supervised few-shot learning.
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Figure 4: Comparison of the t-SNE visualization with two dimensional multimodal prototype space
for the FewShot CIFAR-100 dataset using RCFSL with KL-divergence in variational inference and
RCFSL with robust divergence (β=0.2) on a 10-Way 8-shot semi-supervised learning, where each
class includes 2 noisy labels and 2 outliers. The index number represents superclasses 0 to 9 in
CIFAR-100. Each number locates on the median position of the corresponding vectors and the
outliers are marked with squares. The embeddings from 10 distinct clusters using our method corre-
sponds to true class labels, which validates the robustness of our method to label noise and outliers.

Table 4: Comparison of the training time (hours) of RCFSL on Fewshot CIFAR-100 with several
state-of-the-art approaches evaluated on a single Nvidia V100 GPU.

CBPL-FSLXing et al. (2019a) ReViSE-FSLTsai et al. (2017) Feature transformTseng et al. (2020)

6.3h 7.6h 5.9h
CADA-VAE-FSLSchönfeld et al. (2019) AM3+TADAMXing et al. (2019b) VHEraster-scan-GANZhang et al. (2020)

7.2h 6.3h 8.3h
AQGoldblum et al. (2020) RAPNetLu et al. (2020b) RCFSL

4.7h 6.1h 5.2h

C DETAILS ON NETWORK STRUCTURE, TRAINING AND INFERENCE TIME
COMPARISON

The discriminator of RCFSL following deep convolutional GAN is structured as follows: the first
convolutional layer is of size 32×32×64, the second convolutional layer is of dimension 16×16×
128, the third layer is 8×8×256 and the last convolutional layer is of the dimension 4×4×512 with
the convolutional filter size 5×5×3. Each convolutional layer is followed by a batch normalization
layer and then a ReLU layer.

We analyze the training time (hours) and inference time (seconds) of our RCFSL to demonstrate
its computational efficiency in Table 4 and Table 5. The training and the inference time of RCFSL
is reported on Fewshot-CIFAR100 with several state-of-the-art approaches, evaluated on a single
Nvidia V100 GPU. RCFSL is slower than AQ Goldblum et al. (2020), however is faster than the rest
of competing methods for both training and inference time due to the efficient probabilistic graphical
model and the effective novel lower bound and compact network architecture.

D DISCUSSION ON DIFFERENCES FROM OTHER MULTIMODAL VAES

Prior approaches Pandey & Dukkipati (2017) on multimodal VAEs mostly focus on cross-modal
generation. In particular, given two modalities x1 and x2(e.g. image and text), these approaches

13



Under review as a conference paper at ICLR 2022

Table 5: Comparison of the inference time (seconds) of RCFSL on Fewshot CIFAR-100 with several
state-of-the-art approaches evaluated on a single Nvidia V100 GPU.

CBPL-FSLXing et al. (2019a) ReViSE-FSLTsai et al. (2017) Feature transformTseng et al. (2020)

43s 52s 36s
CADA-VAE-FSLSchönfeld et al. (2019) AM3+TADAMXing et al. (2019b) VHEraster-scan-GANZhang et al. (2020)

47s 39s 57s
AQGoldblum et al. (2020) RAPNetLu et al. (2020b) RCFSL

17s 37s 23s

learn the conditional generative model p(x1|x2), where the conditioning modality x2 and the gen-
eration modality x1 are usually not interchangebale. Compared to Pandey & Dukkipati (2017), our
heterogeneous robust VAE targets joint image-text modeling by explicitly modelling the joint dis-
tribution over latent variables from both image and textual data. Moreover, our multimodal VAEs
integrates the uncertainty priors, denoising layers and robust variational lower bound to ensure the
robustness in the presence of noisy labels and outliers. The work Suzuki et al. (2017) introduced
joint multimodal VAE (JMVAE) which aims at learning shared representation with joint encoder
qψ(z|x1, x2). Distinct from Suzuki et al. (2017) which does not consider the robust modeling to
tackle with outliers, our approach leverages infinite Gaussian mixture models equipped with uncer-
tainty prior which not only characterizes the distributions for image-text modeling more accurately
but also facilitates the learning of new unseen classes by inferring the number of classes automati-
cally in few-shot learning. Recently, Zhang et al. (2020) utilized a VAE that encodes an image into a
deterministic-upward–stochastic-downward ladder-structured latent representation, and then is ap-
plied to decode the corresponding text. While our work is relying on joint encoding and decoding
schemes on image-text modelling and focusing on tackling the noisy-labels and outliers by enhanc-
ing the robustness of multimodal modeling using the various proposed techniques. More recently,
Shi et al. (2019) leverages a mixture-of-experts multimodal variational autoencoder (MMVAE) to
learn generative models on different sets of modalities, indicating the suitability of mixture models
for learning from multi-modal data. Our work (RCFSL) advances MMVAE Shi et al. (2019) in three
aspects: (1) We places uncertainty prior on the parameters of mixture models to avoid the collapsing
of models in the presence of outliers and derived novel inference solution given the uncertainty prior
(shown in our novel generative and inference models in Eqs (2)-(4)); (2) instead of using importance
weighted autoencoder (IWAE) estimator Burda et al. (2015)Shi et al. (2019), RCFSL takes advan-
tage of robust divergence to derive the robust evidence lower bound for unlabeled data and labeled
data respectively which are unique and mathematically rigorously (e.g. Eq(7)), yielding superior
performance for classification of noisy dataset in semi-supervised few-shot learning. (3) RCFSL
integrates the denoising layers in both multimodal VAE and robust GAN to mitigate the influence of
noisy labels, which further enhances the robustness of the model.

E EVALUATION ON SEMANTIC LABEL NOISE

In order to evaluate our algorithm under real-world noise (semantic label noise), RCFSL is further
evaluated on Clothing 1M dataset with the network architecture Resnet-18. For Clothing1M dataset,
it includes 1 million training images with 14 classes obtained from online shopping websites and la-
bels are generated from surrounding texts. Since the data is collected from multiple online shopping
websites and include many mislabelled samples, therefore the labels are contaminated by real-world
noise (semantic label noise). The data is split such as |CBase| = 10, |CNovel| = 4. Table 6
demonstrates the comparison of classification accuracy using different learning algorithms on the
Clothing1M datasets (real-world noise with 10% and 20% outliers respectively), where n = 5 im-
ages are selected from novel classes in order to perform few shot learning. As it can be seen from
Table 6, our RCFSL continues to serve as the best performing method in the presence of seman-
tic label noise compared to other competing methods under different noise statistics, which further
confirms the outstanding learning capability of the proposed approach in robust semi-supervised
few-shot learning. Moreover, Figure 5 illustrates exemplary images with compound noise detected
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Table 6: Comparison of classification accuracy using different learning algorithms on the Cloth-
ing1M datasets (real-world noise with 10% and 20% outliers respectively) for 5 way 5 shot semi-
supervised few shot learning on 1000 test episodes.

Dataset Clothing1M (10%) Clothing1M (20%)

CBPL-FSLXing et al. (2019a) 59.3 56.8
ReViSE-FSLTsai et al. (2017) 70.2 68.4

Feature transformTseng et al. (2020) 71.6 69.3
AM3+TADAMXing et al. (2019b) 71.8 70.5

VHE-raster-scan-GANZhang et al. (2020) 72.9 70.7
AQGoldblum et al. (2020) 72.6 70.1
RGANKaneko et al. (2019) 73.9 71.5
RAPNetLu et al. (2020b) 74.3 71.8

RCFSL 82.6 77.1

Figure 5: Exemplary images with compound noise detected by RCFSL from Clothing1M dataset,
where the false labels are noted in orange and the true labels are noted in light blue.

by RCFSL from Clothing1M dataset, where the false labels are noted in orange and the true labels
are noted in light blue.

F EVALUATION ON OMNIGLOT DATASET

We further evaluate the proposed algorithm on Omniglot dataset. The Omniglot dataset includes
1623 different handwritten characters from 50 different alphabets where each of the 1623 charac-
ters was drawn online via Amazon’s Mechanical Turk by 20 different people and each image is
paired with stroke data, a sequences of spatial and temporal coordinates with in milliseconds. Ta-
ble 7 demonstrates the comparison of classification accuracy using different learning algorithms on
the Omniglot dataset (20% symmetric label noise with 10% outliers) for semi-supervised few shot
learning on 1000 test episodes, where it can be seen from Table 7 that our RCFSL provides the
best performance against other competing methods in the presence of noisy labels and outliers in
semi-supervised few-shot learning.
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Table 7: Comparison of classification accuracy using different learning algorithms on the Omniglot
dataset (20% symmetric label noise with 10% outliers) for semi-supervised few shot learning on
1000 test episodes.

Dataset 5 way 5 shot 5 way 10 shot

CBPL-FSLXing et al. (2019a) 95.2 97.8
ReViSE-FSLTsai et al. (2017) 95.6 98.1

Feature transformTseng et al. (2020) 96.3 98.3
AM3+TADAMXing et al. (2019b) 96.2 98.2

VHE-raster-scan-GANZhang et al. (2020) 96.5 98.6
AQGoldblum et al. (2020) 96.8 98.7
RGANKaneko et al. (2019) 97.1 98.9
RAPNetLu et al. (2020b) 97.3 99.1

RCFSL 97.9 99.7

Table 8: Unsupervised test log-likelihood using different learning algorithms on the permutation
invariant MNIST dataset (with 20% outliers) the normalizing flows VAE (VAE+NF), importance
weighted auto-encoder (IWAE), variational Gaussian pro-cess VAE (VAE+VGP), Ladder VAE
(LVAE) with FT denoting the finetuning procedure Sønderby et al. (2016) and auxiliary deep gen-
erative models Maaløe et al. (2017) and our method (β=0.2), where L represents the number of
stochastic latent layers z1, . . . , zL and IW characterizes the importance weighted samples during
training.

Method − log p(x)

VAE+NFMiyato et al. (2015), L=1 -89.35
IWAE, L=1, IW=1 Burda et al. (2015) -90.26

IWAE, L=1, IW=50 Burda et al. (2015) -88.36
IWAE, L=2, IW=1 Burda et al. (2015) -89.71

IWAE, L=2, IW=50 Burda et al. (2015) -86.43
VAE+VGP, L=2 Tran et al. (2015) -85.79

LVAE, L=5, IW=1 Sønderby et al. (2016) -85.08
ADGM, L=1, IW=1 Maaløe et al. (2017) -84.67
ADGM, L=1, IW=2 Maaløe et al. (2017) -84.34

RCFSL+ KL divergence, L=1, IW=2 -83.76
RCFSL (robust divergence), L=1, IW=2 -81.35

G COMPARISON OF LOG-LIKELIHOOD WITH ROBUST DIVERGENCE

We report the roust lower bound for the unlabeled data with 5000 importance weighted samples
where the similar setting as Rasmus et al. (2015) with warm up, batch normalization and 1 Monte
Carlo and IW sample for training. The percentage of outliers is set to be 20%. Table 8 demonstrates
the log-likelihood scores for the permutation invariant MNIST dataset. The results shown in Table
8 indicates the the proposed method has strong expressive power by performing better than other
methods in terms of log-likelihood due to the utilization of the robust divergence in the inference,
especially by comparing with the same RCFSL method but with KL-divergence.

H ANALYSIS FOR DIFFERENT TERMS IN THE OPTIMIZATION FUNCTION

In the above optimization cost function of RCFSL in the equation (10), the first term represents the
supervised and unsupervised loss from the discriminator, the second and the third terms tend to min-
imize the approximation error by ”regularizing” q(H|x, t, ỹ) and q(Hu|x, t) to the prior p(H) and
p(Hu) for labeled data and unlabeled data respectively. The fourth term characterizes the generator
loss from the robust semi-supervised GAN (RSGAN). The fifth to the eighth terms are employed
to enhance the robustness in the presence of data outliers with β-divergence for the ELBOs on the
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labeled data and unlabeled data respectively, which is shown to be insensitive to the small contami-
nation of the data.
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