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Abstract

Metacognitive knowledge refers to humans’ intu-
itive knowledge of their own thinking and rea-
soning processes. Today’s best LLMs clearly
possess some reasoning processes. The paper
gives evidence that they also have metacognitive
knowledge, including ability to name skills and
procedures to apply given a task. We explore this
primarily in context of math reasoning, develop-
ing a prompt-guided interaction procedure to get
a powerful LLM to assign sensible skill labels to
math questions, followed by having it perform
semantic clustering to obtain coarser families of
skill labels. These coarse skill labels look inter-
pretable to humans.

To validate that these skill labels are meaningful
and relevant to the LLM’s reasoning processes
we perform the following experiments. (a) We
ask GPT-4 to assign skill labels to training ques-
tions in math datasets GSM8K and MATH. (b)
When using an LLM to solve the test questions,
we present it with the full list of skill labels and
ask it to identify the skill needed. Then it is pre-
sented with randomly selected exemplar solved
questions associated with that skill label. This
improves accuracy on GSM8k and MATH for sev-
eral strong LLMs, including code-assisted models.
The methodology presented is domain-agnostic,
even though this article applies it to math prob-
lems.
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1. Introduction
Large language models (LLMs) have demonstrated remark-
able advancements in recent years at natural language in-
ference tasks (1–7), as well as scientific and mathematical
problems (8–11), although their limitations on mathematical
problems are also well-documented (12–17).

A core concept in human pedagogy is Metacognition (18),
sometimes described as thinking about thinking. It refers
to ability to reason about one’s own cognitive processes as
well as about learning-relevant properties of information
or data. Metacognitive Knowledge refers to the learner’s
accumulated knowledge of this type. Pedagogy research
shows that improving learners’ metacognitive knowledge
can improve their capabilities, for example on math (19; 20).
The current paper raises the question “Do LLMs also have
metacognitive knowledge?” And if yes, Can we bootstrap
such knowledge to further improve LLM capabilities?

At first glance, this quest seems difficult. Deciphering
LLMs’ inner working from their huge set of parameters
–all results of non-linear optimization— is notoriously hard.
Furthermore, scientists lack parameter access to most lead-
ing AI models. But there are still reasons to hope we can
understand metacognition by interacting with LLMs. They
display some human tics, such as ability to improve their
math reasoning via Chain of Thought (CoT) (21) and also
the “Let’s think step by step” prompt (22). These were gen-
erally perceived as convenient tricks to get around the limi-
tations imposed by the LLM’s auto-regressive nature. But
other pieces of evidence have emerged about existence of
LLM metacognition. A notable example is Ask-LLM (23),
whereby the LLM appears to give surprisingly helpful an-
swers to the question “Is this a good training datapoint
for an LLM?”The current paper reports on similar direct
approach to deciphering LLM metacognition: Just go ahead
and ask it!

Specifically, the Metacognitive Knowledge of interest in this
paper is the catalog of skills (from the LLM’s viewpoint)
that it applies while solving math questions. Pedagogy re-
search has uncoverex a rich catalog of skills in humans, rang-
ing from simple ones — operations on variables, solving
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Figure 1. Creating Skill Exemplar Repository: First, an LLM
labels each question with a corresponding skill, as detailed in the
prompt provided in Appendix Figure 2 (left). Next, the LLM
is asked to combine similar fine-grained skills into broader skill
clusters, which represent complex skills. This greatly reduces
the number of unique skills from the first stage. The prompt
for this is depicted in Appendix Figure 2 (middle). Then the
LLM is asked to reclassify all examples from the training set into
one of the post-clustering skills. Using these we create a ’Skill
Exemplar Repository’ which consists of skill exemplars consisting
of skill names and their corresponding question/answer examples.
Inference: During inference, we use an LLM to first label a test
question with one of the skills from the skill exemplar repository.
Next, we fetch exemplars from the repository with the same skill
and provide them as in-context examples to solve the test question.

equations, grasping the concept of a function— to difficult
ones such as grasp of difficult theorems and proof strategies.
But currently mathematical datasets used in LLM research
(such as MATH (16)) partition problems using broad human-
assigned topics such as “probability” and “algebra.” We are
interested in a more fine-grained understanding of LLM
skills.

Skill Discovery: Our automated approach for the discovery
of skills utilizes state-of-the-art LLMs to identify their own
catalog of math skills and then organize datasets using that
catalog. Stage 1 of our methodology involves instructing
the LLM to assign skill labels to each example within a
given dataset. Usually this results in fine-grained skills, and
too many skill labels. In Stage 2, the same LLM is asked
to perform semantic clustering on the labeled data, group-
ing examples by the similarity of their underlying skills (as
perceived by the LLM). Each resulting cluster represents a
more coarse-grained skill that is applicable to a larger set of
examples. Our method retains only these coarse skills. (To
give an example, for the MATH dataset, Stage 1 identified
approximately 5000 skills, which Stage 2 reduced to 117
coarse skills.) A random subset of examples representing the
coarse skills are retained as its skill exemplars. (See Figure
1 and Appendix 8). To subsequently improve (in-context)
math problem solving by LLMs we use the repository of
skill exemplars –each labeled with a coarse skill. Here the
LLM is given a new question and the above list of coarse

skills and asked to identify the skill needed to solve this new
question. Then the LLM is provided the previously identi-
fied exemplars for the selected skill as in-context examples
to guide its problem-solving. We note that this is reminis-
cent of how human problem-solving is taught by presenting
examples very congruent with the specific problem at hand.
Here we find that LLM problem solving improves using the
skill labels and skill-exemplars provided by an LLM on the
same dataset. This provision of skill-exemplars can be seen
as a new addition to on top of known prompting methods
such as Chain-of-thought.

Although we describe our method only in context of math, it
seems general enough to be broadly applicable to problem-
solving of other sorts. This is left for future work.

Paper organization and main results: Section 3 describes
the method and Section 4 describes experiments. Using
a strong LLM - GPT-4 - to identify skills, we validate
the usefulness of these skills by demonstrates a significant
11.6% enhancement over CoT on the MATH Dataset us-
ing the method described in Section 3. Furthermore, the
identified skills also improve the generation of code-based
solutions for the problems within the MATH dataset giv-
ing a 7.52% improvement over the baseline PAL approach
(24), which also instructs the model to generate code. Sec-
tion 4.3 shows that the the skill exemplar repository created
for MATH noticeably improved in-context performance for
weaker LLMs on the same dataset and that the repository for
GSM8K helped improve in-context performance for other
math datasets. This shows that a powerful LLM can be used
for deeper understanding of skills that translates across other
LLMs and related datasets.

2. Related Works
For human learning, statistical methods can infer latent skills
from data and use the inferred skills to more accurately
forecast student learning (25; 26). In machine learning,
works that study learning via skill induction include (27–30).
These start with some definition of skills in terms of model
parameters, whereas we use a powerful LLM in a black
box way to identify and consolidate skills. A discussion
of various prompting strategies is covered in Section 4 and
Appendix Section 8.

3. Automated Skill Discovery
We describe an automated process for categorizing mathe-
matical questions according to specific skills needed to solve
them. See Figure 1. Recent works relating skills and LLMs
(31; 32) were an inspiration. Conceptually, the strategy in-
volves the creation of a detailed skill exemplar repository,
which contains a compilation of skill names alongside re-
spective illustrative examples (comprising both questions
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Dataset Topic Skills
GSM8K - multiplication and addition, basic arithmetic, addition and multiplication, arithmetic operations, multiplica-

tion, percentage calculations, subtraction, algebra, subtraction and division, multiplication and division,
multiplication and subtraction, addition and subtraction, percentage calculation, addition subtraction, aver-
age calculation, subtraction multiplication, division, addition, linear equations, algebraic reasoning

Table 1. List of Skills for each Dataset This table lists down the skill obtained after the skill clustering phase for each dataset and
corresponding topics. Skill names were provided by GPT-4-0613. The skills of the other topics in MATH can be found in Appendix Table
8

and answers). During the inference stage, when presented
with a question, the LLM initially looks among skill exem-
plars to identify the skill that is best suited for the question.
The LLM then utilizes the corresponding exemplars for that
skill as in-context prompts.

Notation. The proposed setup consist of a training set
T = {(qT0 , aT0 ), (qT1 , aT1 ), . . . , (qTn , aTn )}, where qTi and aTi
are question and answers from the training set. The training
set is used for selecting in-context examples for inference.
Our test set also consists of set of questions and answers
- E = {(qE0 , aE0 ), (qE1 , aE1 ), . . . , (qEn , aEn )}. To create the
skill exemplars, we first label the training set, T , with a skill
per example using a LLM. Next, we label the test set with
skills to retrieve in-context examples with matching skills
from the skill exemplar repository. The exact procedure of
labelling the training and test set with skills is different and
we detail both approaches below.

3.1. Skill Labelling: categorizing mathematical
questions according to specific skills

The process is illustrated in Figure 1. It had the following
steps.

Assign Skill Name for every example in training Set T :
Using a carefully curated prompt (given in Appendix Figure
2 (left)), we asked a LLM to label each training instance
with a single skill name and a reason for that assigned skill.
Figure 1 (top) represents this process. Applying a strong
LLM for this task - GPT-4-0613 - we found that for the
7, 000 instances in the GSM8K dataset (33), it specified
approximately 500 unique skill names. For the 7, 500 ex-
amples in the MATH dataset (16), it specified 5, 000 skill
names. (This perhaps reflects the hardness and diversity of
MATH compared to GSM8K.) Although these skill labels
precisely encapsulate the capabilities requisite for solving
each question, it is clear that the granularity is excessive,
raising issues reminiscent of classical “overfitting.”

For example, for the question "In a triangle, the

area is numerically equal to the perimeter.

What is the radius of the inscribed

circle? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6"

GPT-4 came up with the skill name understand-
ing of triangle properties and circle radius calculation.
Despite descriptive accuracy, its high specificity may limit
its utility, as it is improbable that an identical question
embodying this precise skill will recur. To address this,

the initial labelling phase is followed by a phase of skill
clustering, aiming to generalize the skill categories for
broader applicability.

Semantic Skill Clustering: In this phase, the LLM was
prompted to aggregate the skills identified in the skill
labelling stage, specifically to group similar skills into
broader categories (Figure 1 (top)) and assign a descriptive
label to each category. (The prompt appears in Appendix
Figure 2 (middle). ) Again utilizing GPT-4-0613 for this,
we obtained a reduced skill set comprising of 22 skills for
GSM-8K and 117 skills for MATH. The list of skills are
presented in Table 1, and Appendix Table 8. Subsequently,
we use the LLM to reclassify all examples in the training
set T using these new skill names from the clustering phase.
Thus the initial highly detailed skill labels get consolidated
into broader, more universally applicable categories. For
instance, the question initially labelled as ”understand-
ing of triangle properties and circle radius calculation”
is relabeled to have the skill name ”understand-
ing of triangles”. This modification significantly
enhances the applicability of the training set for a wider
range of problem-solving scenarios.

Skill Exemplar Repository: Following the skill cluster-
ing and relabelling process of the training set, we estab-
lished a ‘Skill Exemplar Repository.’ This contains a
curated selection of skills and their corresponding exem-
plars, specifically questions and answers, derived from the
training set T . The structure of the skill exemplar reposi-
tory is formalized as follows: skill exemplar repository =
(s0, q

T
0 , a

T
0 ), (s1, q

T
1 , a

T
1 ), . . . , (sn, q

T
n , a

T
n ), where si de-

notes the skill label associated with the i-th question-answer
pair (qTi , a

T
i ). See Figure 1 (top) for an example of such

a repository. This systematic compilation facilitates effi-
cient referencing and application of relevant examples cor-
responding to specific skills during inference. App. Tables
9, 14, and 15 illustrate examples from the skill exemplar
repositories for the GSM-8k and MATH datasets respec-
tively created using GPT-4-0613 . We can see that each
question is labelled with a human interpretable and intuitive
skill name.

3.2. Inference at test time

In the testing phase, the LLM is given a math question Q.
It is asked to first select one skill from the list of skills in
the repository, say si that is most relevant to the question.
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(The prompt employed for this step appears in Appendix
Figure 2 (right).) Next, K Exemplars corresponding to si,
randomly picked, are then employed for few-shot prompting
as usual. By providing the LLM with contextually relevant,
skill-specific examples from the repository, one expects to
enhance its effectiveness at answering the question Q. This
process is depicted in Figure 1 (below).

Transferring skill exemplars to other datasets The
broad range of questions, answers and skill labels in the
exemplar repository makes it an attractive source of rele-
vant in-context examples for solving various mathemati-
cal problems. To demonstrate such adaptability and utility
we applied the Skill Exemplar Repository derived from
GSM8K dataset to solving various existing math word prob-
lem datasets that were designed to evaluate concrete math-
ematical skills or concepts. Section 4.3 reports notable
improvements in problem-solving capabilities across do-
mains.

3.3. Skills from strong LLMs improve weaker LLMs

Through the methodology described above, we find that a
strong LLM - such as GPT-4-0613 - is able assign intuitive
and human interpretable skill names to questions. These
skills are a representation of the metacognitive knowledge
of the LLM. We consider whether this knowledge can be
applied to other LLMs - specifically weaker LLMs. Section
4.3 shows that skill-based in-context examples, labeled us-
ing a stonger LLM as described earlier, also significantly
enhance the performance of less advanced models, such as
Mixtral (34). This underscores that the skill-based knowl-
edge categorization from one LLM is broadly applicable to
other LLMs too.

Skill-exemplars improve various prompting methods
Our approach is designed to be synergistic with a range
of prompting techniques, thereby offering broad applica-
bility across various methodologies. It can be seamlessly
integrated with numerous existing prompting strategies, in-
cluding the Chain of Thought (CoT) approach (21), PAL
(24), and the self-consistency method (35). In each of these
instances, the proposed method enhances the existing frame-
work by substituting the conventional in-context examples
with those meticulously selected from the Skill Exemplar
Repository. This integration not only preserves the inherent
strengths of the original prompting techniques but also aug-
ments them by leveraging the specificity and relevance of
the skill-aligned examples. This adaptability underscores
the versatility and potential of the proposed approach to
improve the efficacy of various language model prompting
strategies.

4. Experiments
In Section 3, we have described a procedure to extract
metacognitive knowledge from LLMs in the form of skill
annotations for mathematical questions. In this section, we
show that this knowledge of skills can be further used to im-
prove reasoning in LLMs by using them to provide pertinent
in-context examples for solving new mathematical problems
through the process described in Section 3.2 and depicted in
Figure 1 (below). Our evaluation focused on three distinct
areas: Text-based Prompts: We utilized chain-of-thought
prompting, as detailed in Section 4.1. This method involves
providing step-by-step reasoning in the prompt to guide the
model’s thought process, Program-based Prompts: Here,
we employed program-aided language models (PALs), de-
scribed in Section 4.2. PALs integrate programming logic
within the language model, aiming to enhance its reason-
ing capabilities, and Transferability: We investigate the
generalizability of these skills across different LLMs and
datasets, as elaborated in Section 4.3. This aspect tests how
well the skills transfer to different LLM models and unseen
datasets. Our results demonstrate that knowledge of skills
significantly improves performance for both text-based and
program-based prompting across different datasets. Fur-
thermore, these skills exhibit strong transferability, boost-
ing mathematical reasoning capabilities across other maths
datasets and LLM models. Finally, we conduct a detailed
analysis to gain a deeper understanding how our approach
influence the reasoning abilities of LLMs.

Prompting Methods We investigate two prominent types
of in-context prompting methods for enhancing mathemati-
cal reasoning in LLMs: Text-based Prompting: Utilizes text
examples to demonstrate problem-solving steps, with Chain-
of-Thought (CoT) (21) being a prime example. Program-
aided Prompting: Employs programs to showcase reasoning
steps, as seen in Program-aided Language Models (PALs)
(24). To assess the effectiveness of these methods, we re-
placed the standard in-context examples used by CoT (21)
and PAL (24) with examples from our skill exemplar reposi-
tory. We then evaluated the performance of LLMs with both
text-based and program-based prompting, using our skill
exemplars versus standard examples.

Baselines Our evaluation also includes a comparison with
four baselines to isolate the impact of our skill-specific ex-
amples: Random: This baseline randomly selects examples
from our repository in contrast to CoT’s fixed examples,
highlighting the necessity of skill-aligned example selection.
Topic-Based: Examples are grouped by broader mathemati-
cal topics (e.g., algebra), as in the MATH dataset (16). This
tests whether finer-grained skills (as detailed in Table 8)
offer an advantage over broader topic categorizations. Com-
plexCOT (36): Chooses complex in-context examples for
CoT, allowing us to analyze whether complexity or skill-
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Prompting Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus Num. Theory Overall
CoT - - - - - - - 42.2

Complex CoT 71.6 36.5 23.4 70.8 53.1 26.7 49.6 50.30
CoT + Topic-Based 71.16 39.45 24.14 67.90 54.64 31.13 47.03 50.31
CoT + Skill-Based 74.28 41.75 27.02 73.12 58.01 33.70 51.10 53.88

Table 2. Text-based prompt results on the MATH Dataset. Our Skill-Based approach, employing CoT prompting, demonstrates superior
performance over all other methods across all topics within the MATH dataset. All experiments were conducted using GPT-4-0613.

specificity has a greater impact on performance. Retrieval-
RSD (37): This selects relevant in-context examples for
few-shot tasks similar to the proposed approach. They first
map the examples to a latent space and then selects top-k
in-context examples based on cosine similarity to the ex-
ample. Through these comparisons, we aim to discern the
relative benefits of skill-specificity and complexity in exam-
ple selection for enhancing LLMs’ mathematical reasoning
capabilities.

Datasets We evaluate the proposed approach using a vari-
ety of mathematical reasoning datasets. We start with the
GSM8K dataset (33), which comprises grade-school level
math problems. We then move on to the challenging MATH
dataset (16), known for its competition-level problems.

To examine the transferability of skills, we apply the skills
from the GSM8K dataset to other math word problem
datasets. These include SVAMP (15), ASDIV (38), and the
MAWPS suite (SingleOP, SingleEQ, AddSub, MultiArith)
(39). Each dataset presents its unique set of challenges and
complexities, allowing us to thoroughly assess the adapt-
ability and effectiveness of our approach across different
mathematical contexts. For details about these datasets,
please refer to the Appendix 9.1.

Language Models In Section 9.4 of the Appendix, we
conduct a comparative analysis of GPT-4-0613, GPT-3.5-
Turbo, and Mixtral-8x7B in their proficiency in generating
precise skill labels. Through experimentation, we show
that the skill labels annotated by GPT-4-0613 lead to the
strongest in-context learning performance on the MATH
dataset (16). Therefore, we establish GPT-4-0613 as the
primary model for skill labeling, clustering, and conducting
the majority of our experiments. For transfer experiments,
as outlined in Section 3.3 and further detailed in Section
4.3, we evaluate the performance of the Mixtral 8x7B model
(34). This dual-model approach allows us to assess the effec-
tiveness of our methods across different advanced language
models.

4.1. Text-based Prompts

We consider the GSM8K dataset (33), containing grade-
level math word problems, and the MATH dataset (16),
featuring competition-level math problems. These experi-
ments aim to assess the efficacy of our approach across a
wide range of mathematical complexities, specifically us-
ing text-based prompting strategies. All experiments were

Base Model Prompting GSM8K

GPT-3.5-Turbo Retrieval RSD 76.8
CoT + Skill-Based 82.03

GPT-4-0613

CoT 93.00
CoT + Random 92.87

CoT + Skill-Based 94.31

CoT + Skill-Based (maj@5) 95.38

Table 3. Text-based prompt results on the GSM8K Dataset. Our
Skill-Based approach outperforms various other methods on the
GSM8K dataset across two different models: GPT-3.5 Turbo and
GPT-4-0613. Refer to text for description of baselines.

carried out using GPT-4-0613, employing 8-shot prompting
and a decoding temperature set to 1.0.

Results on GSM8K. GSM8K dataset (33) contains 7.5k
training problems and 1k test problems. The skill exemplar
repository is created using the training data only, refer to
Section 3.1 for details. See Table 9 in the appendix for
examples from the skill exemplar repository.

We utilize the skill exemplar repository to solve test set
problems from the GSM8K dataset, as outlined in Section
3.2. The results are shown in Table 3. Our Skill-Based ap-
proach outperforms both the Chain-of-Thought (CoT) and
Random baselines on the GSM8K dataset, underscoring the
importance of accurate skill assignment and pertinent in-
context examples in effective problem-solving. Furthermore,
augmenting the Skill-Based approach with self-consistency
(SC, presented as maj@5 in Table 3) techniques (35) leads
to even better performance, highlighting the adaptability
and effectiveness of our method. For the SC experiments,
we sample 5 reasoning chains from the LLM and choose the
most frequent answer. Additionally, we provide a detailed
breakdown of per-skill accuracy for both the proposed ap-
proach and the Random approach in Appendix Figure 3. To
further emphasize the effectiveness of the proposed method,
we compare it to the Retrieval-RSD approach (37) which
is also a pertinent in-context example selection approach
for few-shot prompting. The results are presented in Table
3 show the superiority of our approach as compared to the
Retrieval-RSD approach. We use GPT-3.5-Turbo backbone
for this comparison.

Results on MATH. The MATH dataset, comprising
competition-level math problems, covers topics like Pre-
Algebra, Algebra, Intermediate Algebra, Geometry, Num-
ber Theory, Precalculus, and Probability. Its training set
has 7.5k examples and the test set has 5k examples, each la-
beled by their respective topics. Following the methodology
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described in Section 3.1, we created a Skill Exemplar Repos-
itory using the MATH dataset’s training set. This repository
is showcased through examples in Appendix Tables 14 and
15, providing insights into the range and nature of skills cov-
ered in the MATH dataset. Furthermore, in Appendix Table
10 we show examples of the relevant in-context examples
selected from the skill exemplar repository to solve a given
question. We can see that selected exemplars are similar
to the question to be and correctly illustrate the concepts
required by the question.

Results on the MATH dataset are shown in Table 2. For this
analysis, our proposed approach utilizes a straightforward
Chain-of-Thought (CoT) method, wherein the in-context ex-
amples are sourced from the skill exemplar repository. Our
method achieves a notable improvement in performance,
surpassing the standard Chain-of-Thought (CoT) by an im-
pressive 11.6%. We also outperform 3.5% over Complex
CoT, and 3.5% over the Topic-Based approach. These re-
sults highlight the efficacy of our approach, particularly
with its fine-grained skill labeling. The fact that it surpasses
Complex CoT is especially noteworthy, indicating the im-
portance of selecting in-context examples that are highly
relevant to the specific problem, rather than using their com-
plexity as a proxy for quality.
4.2. Program-Aided Prompts

Program Aided Language Models (PALs), as developed by
24, are designed to produce program-based solutions for
problem-solving, employing Python as the programming
language. This approach addresses the issue of logical or
calculation errors in Language Models by translating solu-
tions into code, thus leveraging a compiler for final answer
generation. In our integration of Skill-Based prompting
with PALs, we modify the in-context example structure: we
use three non-code-based examples from our skill exemplar
repository based on skill matching, followed by one fixed
code-based example, totaling four in-context examples. The
specifics of these prompts are detailed in Appendix Section
9.5.

Our experiment, results of which are shown in Table 4,
tests this modified approach on a subset of 500 examples
from the MATH test set, same as those used in (40). The
findings are significant: despite only one code-based in-
context example (compared to PAL’s four), our approach
shows a 7.52% improvement over PAL. This highlights the
impact of strategically chosen, relevant in-context examples,
on the accuracy of code generation for problem-solving.

4.3. Transfer of Skill Exemplars

Studying Transfer of Skill Exemplars to Other Models
In this study, we explore the transferability of skills from
GPT-4 to other LLMs, particularly focusing on Mixtral

8x7B (34). This experiment replicates the setup used for
the earlier experiments with GPT-4-0613, utilizing the same
skill exemplar repository and skill labels for the MATH
dataset test set examples initially labeled by GPT-4-0613.
For each problem, 4 in-context examples are chosen based
on skill-matching, and outputs are sampled with a decoding
temperature of 0.2. The results are displayed in Table 5. We
use 1 A100L GPU for this experiment.

Here, we compare our Skill-Based approach against two
baselines: Chain-of-Thought with self-consistency (SC) as
per (35) and the Topic-Based approach. For implementing
self-consistency, we generate four reasoning chains and se-
lect the most frequent answer (noted as maj@4 in Table 5).
The results demonstrate that our Skill-Based approach sur-
passes both the Topic-Based and CoT approaches. Notably,
our approach, even without self-consistency, matches the
performance of CoT with SC, highlighting its efficacy in ex-
tracting correct reasoning paths and concepts. Furthermore,
when combined with self-consistency, our approach shows a
remarkable 4.0% improvement over CoT with SC, affirming
its superior efficacy in skill application and reasoning.

Studying Transfer of Skill exemplars to Other Datasets
Here, we investigate the transferability of skills from the
GSM8K training dataset to other math word problem
datasets. We apply our approach to various datasets, in-
cluding SVAMP (15), ASDIV (38), SingleOP, SingleEQ,
AddSub, and MultiArith (39), each comprising distinct prob-
lem types. We utilize the GSM8K-derived skill exemplar
repository for these datasets, testing skill transferability
across similar datasets. Notably, we use the pre-clustering
skill labels, as these datasets feature finer granularity prob-
lems compared to GSM8K, making post-clustering skills
less effective.

The results, presented in Table 6, demonstrate the effective-
ness of our approach. We employ a CoT-based method with
4-shot prompting and greedy decoding, aligning with the
baseline settings. Our Skill-Based approach consistently
surpasses the base CoT across all datasets. We also bench-
mark against a PAL-based approach and a hybrid CoT +
PAL approach from (41), where the model outputs both
CoT and PAL solutions and selects the most accurate. Our
Skill-Based approach outperforms CoT + PAL in 4 out of
6 datasets, offering a simpler yet more effective solution.
These findings affirm the potential of skill knowledge trans-
fer from one dataset to other similar datasets.

4.4. Analysis
We delve into the impact of Skill-Based on precise con-
cept and skill application, Firstly, we pinpoint successful
instances where Skill-Based prompts guide the LLM in se-
lecting and applying the correct skills. Secondly, we investi-
gate cases where, despite pertinent Skill-Based prompts, the
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Prompting Inter Algebra Precalculus Geometry Num. Theory Probability PreAlgebra Algebra Overall
PAL (4-shot) 30.9 23.2 31.7 66.1 57.9 73.2 65.3 52.0

PAL + Skill-Based (3 Skill-Based + 1 Code-Based) 35.05 44.64 39.02 70.97 60.53 78.05 72.58 59.32
PAL + Skill-Based (7 Skill-Based + 1 Code-Based) 37.11 53.57 41.46 72.58 65.79 81.70 73.39 62.00

Table 4. Program-aided prompts results on the MATH dataset. This table illustrates the performance achieved by employing the
Skill-Based approach to generate code for problem-solving tasks drawn from the MATH dataset using GPT-4-0613. Evidently, supplying
pertinent in-context examples grounded in specific skills enhances the program generation performance of GPT-4-0613, leading to a
notable improvement across all topics encompassed in the MATH dataset.

Prompting SC Pre Geometry Inter- Algebra Probab- Pre- Num. Overall
(maj@n) Algebra Algebra ility Calculus Theory

CoT maj@4 - - - - - - - 28.4
+ Topic-Based × 42.94 17.33 11.30 40.78 19.83 14.47 16.85 26.14
+ Skill-Based × 47.76 19.42 13.29 43.05 20.04 16.12 18.33 28.44
+ Topic-Based maj@4 52.58 20.25 10.68 48.78 24.05 14.65 20.93 30.75

+ Skill-Based maj@4 53.96 22.55 13.68 49.70 24.26 18.32 21.48 32.44

Table 5. Transfer Skill Exemplars to Other Models. All experiments are performed using the MATH dataset on the Mixtral 8 × 7B
model, comparing against standard CoT, CoT with topic-based exemplars, CoT with skill-based exemplars, CoT with self-consistency
(maj@4) using both topic and skill-based exemplars. Skill labels and exemplars are obtained from GPT-4-0613. The enhanced performance
of Skill-Based indicates effective transferability of skills from GPT-4 to another model.

Prompting SVAMP SingleOP SingleEQ AddSub MultiArith ASDIV
CoT 91.9 97.2 97.2 93.9 98.0 92.7
PAL 92.2 95.2 96.8 94.9 98.5 90.2

CoT + PAL 93.7 97.3 98.6 95.7 99.0 93.5

CoT + Skill-Based 92.6 97.86 99.01 96.71 98.17 94.03

Table 6. Transfer of Skill Exemplars to Other Datasets Investi-
gation of skill transfer from GSM8K to different math word prob-
lem datasets using GPT-4-0613. Questions in the target dataset are
labeled with corresponding skills from GSM8K, and in-context
examples are selected based on skill-matching. The proposed ap-
proach achieves the highest accuracy in 4 out of 6 cases.

LLM fails to utilize the right concepts. Lastly, we quantify
these instances of failure and compare them against baseline
models, assessing the efficacy of Skill-Based prompting in
enhancing the LLM’s performance. All experiments are
performed using GPT-4-0613.

Instances of LLM benefiting from Skill-Based Approach
In Table 7, we compare the effectiveness of the Skill-Based
approach against the Topic-Based approach in problem-
solving scenarios through examples. The Skill-Based ap-
proach significantly improves the model’s reasoning and
skill application. We highlight the reasoning errors of the
Topic-Based approach in red and the correct reasoning steps
undertaken by the Skill-Based approach in blue.

Our analysis reveals that the Topic-Based approach misap-
plies essential skills. For example, Table 7 shows a funda-
mental misunderstanding of trigonometry in Example 1 and
fails to recognize negative cubes in Example 2. These errors
are notably absent in the Skill-Based approach, demon-
strating its superior understanding and application of key
concepts.

Occurrences of Incorrect Answers Despite Employing
a Skill-Based Approach We examine the limitations of
the skill-based approach in Table 13 (appendix). This table

highlights instances where the model, despite using a skill-
based approach, fails to produce correct answers. We use
blue to denote correct reasoning steps and red for errors.

In Example 1, both the Skill-Based and Topic-Based ap-
proaches correctly apply the logarithm formula but err in se-
lecting the appropriate number or input, categorizing this er-
ror as a ”main skill error” or ”skill error.” This demonstrates
a failure in correctly applying the primary skill needed for
the question, highlighting a limitation of the proposed ap-
proach. Example 2 further illustrates this limitation. Al-
though the Skill-Based approach correctly uses counting
concepts, it erroneously calculates the number of diago-
nals in a hexagon. This error indicates a shortfall in the
application of certain secondary skills required to solve the
problem such as, in this instance, understanding properties
of a hexagon.

These examples suggest that while the Skill-Based approach
effectively guides the application of the main skill required
for a question, it may falter in the application of secondary
skills or in the comprehension of specific question properties.
This analysis underlines the approach’s strengths in primary
skill application but also its limitations in more nuanced or
compound skill scenarios. It would be worthwhile to work
with more complex skills.

Additional Metrics We introduce three metrics to evaluate
the effectiveness of the proposed approach, using examples
from the MATH dataset and employing GPT-4-0613 for clas-
sification. These metrics are: MAIN SKILL ERROR (SKILL
ERROR): This indicates a failure in understanding or apply-
ing the primary skill required for a question, SECONDARY
SKILL ERROR: This denotes errors in comprehending or
applying secondary skills necessary for the question, CAL-
CULATION ERROR: This reflects mistakes in the calculation
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Example 1 Example 2

Question Compute sin 210◦ . Find
⌈

3√−25
⌉

Topic-Based Solution
To solve the problem, we have to know that
the trigonometric functions have period 360◦ ,
which means sin 210◦ = sin(210◦ −
180◦) = sin 30◦= 1/2.

The cube root of −25 is not a real number,
hence it cannot be evaluated. The ceiling func-
tion is applicable only to real numbers, therefore
this expression is undefined.

Skill-Based Solution
The angle 210◦ is 30◦ below the negative
x-axis, so sin 210◦ = sin(−30◦) =
−1/2.
Skill Used: trigonometry.

The cube root of -25, 3√−25, equals -2.92 ap-
proximately, since the ceiling function rounds
up to the nearest integer greater than the given
number, the value will be −2.
Skill Used: exponent and root skills

Table 7. Instances Benefiting from Skill-Based Approach This table illustrates instances where our skill-based approach empowers the
Language Model (LLM) to apply relevant skills effectively. Red-highlighted text reveals conceptual errors by the Topic-Based baseline,
while blue-highlighted text showcases skillful and accurate skill application.

process during question-solving.

These error types are not mutually exclusive; a single in-
stance may exhibit multiple error types. Correctly solved
instances show none of these errors. GPT-4-0613’s role
in classifying examples into these categories is detailed in
Appendix, Section 9.7, and its effectiveness is evidenced
by the classifications in Table 13. To calculate the metrics,
we first determine error rates for each error type and then
derive success rates. These rates indicate how often the
model correctly applies main and secondary skills, as well
as performs calculations, across various questions.

Appendix Figure 4 displays the SKILL SUCCESS RATE,
SECONDARY SKILL SUCCESS RATE, and CALCULATION
SUCCESS RATE for both Skill-Based and Topic-Based ap-
proaches. We expect the skill-based in-context example
selection to be useful for reducing main skill errors. Our hy-
pothesis is supported by our findings, which show a higher
SKILL SUCCESS RATE for this approach. This suggests that
the model more frequently uses the correct skill with the
Skill-Based approach compared to the Topic-Based base-
line. Additionally, the proposed approach also demonstrates
effectiveness in reducing secondary skill errors and calcula-
tion errors, underscoring its overall superior performance.

5. Discussion and Conclusion
We presented a framework for extracting metacognitive
knowledge from Large Language Models in the form of
skills that categorize questions in mathematical datasets
based on concepts required to solve them. This led to a
Skill Exemplar Repository, containing a list of mathemat-
ical question-answer pairs annotated with the respective
skills needed (in the LLM’s own estimation) for the solution.
Leveraging this repository, we furnish pertinent in-context
examples to Large Language Models (LLMs) for tackling
previously unseen mathematical questions. Our experiments
show substantial empirical enhancements across diverse
mathematical datasets, ranging from grade-level math prob-
lems to intricate competition-level math challenges. The
enhancements in performance via use of the repository also

transfers to weaker LLMs.

One limitation of our methodology is that it assigns only
one skill to each math question. As discussed in Section
4.4, mathematical problems often require a combination
of a primary skill and various secondary skills. We leave
design of a more advanced approach —say, using an LLM
to create hierarchies of skills to assign multiple skills to
each datapoint— for future work.

While this paper primarily addresses in-context learning,
our future goal is to extend these methodologies to improve
all models through fine-tuning processes. Presently, our
framework relies on the availability of advanced models like
GPT-4. However, the skill discovery process improved in-
context learning for GPT-4, which suggests that using skills
to fine-tune GPT-4 may raise its capabilities. This hints more
broadly at a path towards bootstrapping model capabilities
–and not just in math—that seems worth exploring.
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Dataset Topic Skills
GSM8K - multiplication and addition, basic arithmetic, addition and multiplication, arithmetic operations,

multiplication, percentage calculations, subtraction, algebra, subtraction and division, mul-
tiplication and division, multiplication and subtraction, addition and subtraction, percent-
age calculation, addition subtraction, average calculation, subtraction multiplication, division,
addition, linear equations, algebraic reasoning

MATH

Pre-Algebra average calculations, ratio and proportion, geometry, basic arithmetic operations, frac-
tions and decimals, probability and combinatorics, multiplication and division, count-
ing and number theory, prime number theory, multiples and zero properties, solv-
ing linear equation, circles, exponentiation rules, perimeter and area

Algebra combinatorial operations and basic arithmetic, function skills, calcula-
tion and conversion skills, solving equations, inequality skills, graph and geometry skills,
number theory skills, factoring skills, complex number skills, sequence and series skills,
quadratic equation skills, geometric sequence skills, polynomial skills, ra-
tio and proportion skills, logarithmic and exponential skills, algebraic manipulation skills,
distance and midpoint skills, arithmetic skills, exponent and root skills, alge-
braic expression skills, function composition skills

Inter-Algebra solving inequalities, understanding and application of functions, in-
equality solving and understanding, quadratic equations and solutions,
calculus optimization skills, polynomial skills, understand-
ing and applying floor and ceiling functions, summation and analysis of series,
function composition and transformation, sequence and series analysis skills,
solving system of equations, understanding and utilizing infininte series, recur-
sive functions and sequences, complex number manipulation and operations,
understanding ellipse properties, complex numbers related skills, simpli-
fication and basic operations, graph understanding and interpretation, un-
derstanding logarithmic properties and solving equations, understand-
ing and manipulation of rational functions, properties and application of exponents,
algebraic manipulation and equations, prime number recognition and properties, abso-
lute value skills

Geometry understanding circle properties and algebraic manipulation, other geometric skills,
pythagorean skills, quadrilateral and polygon skills, triangle geometry skills, calculus skills,
3d geometry and volume calculation skills, circle geometry skills, area calculation skills,
coordinate geometry and transformation skills, ratio and proportion skills, trigonometry skills,
combinatorics and probability skills, algebraic skills

Number Theory base conversion, prime number theory, greatest common divisor calculations, modu-
lar arithmetic, solving equations, number theory, factorization, division and remainders, expo-
nentiation, sequence analysis, arithmetic sequences, basic arithmetic, polynomial operations,
understanding of fractions, number manipulation

Precalculus matrix operations, geometric series comprehension, basic trigonometry, vector operations,
coordinate systems, trigonometric calculations, complex numbers, geometric relations,
calculus, algebra and equations, three dimensional geometry, arithmetic operations,
parametric equations, sequences series and summation, geometry triangle properties,
geometry and space calculation, determinant calculation, geometry transforms, com-
plex number operations

Probability probability calculation with replacement, combinatorics knowledge, probabil-
ity theory and distribution, combinatorial mathematics, counting principals, per-
mutation and combinations, probability concepts and calculations, calculat-
ing and understanding combinations, number theory and arithmetic operations, factori-
als and prime factorization, understanding and applying combinatorics concepts

Table 8. This table lists down the skill obtained after the skill clustering phase for each dataset and corresponding topics.

Appendix
6. List of Skills
In this section, we list down the skills that make up the skill exemplar repository for each of the GSM8K and MATH Datasets
after the skill clustering phase.

7. Prompts Used for Skill Labelling and Skill Clustering
This section presents the prompts used for labelling the skills from the training set T and the test set E as well as the prompt
used for clustering the skills. The training set skill labelling prompt is shown in Figure 2(left), the skill clustering prompts is
shown in Figure 2 (middle), and the test set skill labelling prompt is shown in Figure 2 (right).

8. Related Works: Prompting Strategies
Prompting Methods Prompting methods help enhance the reasoning abilities of language models. Chain-of-Thought
(CoT) prompting, 21, provides in-context math questions together with solutions which include detailed reasoning chains.
Program-Aided Language Models (PAL), 24, instruct the model to produce a code-based solution to the given problem by
providing in-context examples that also contain code-based solutions. Ensemble methods, based on CoT and PAL (35; 42),
incorporate self-consistency, where the most frequent answer is chosen (35), and progressive-hint-prompting, which utilizes
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Input Prompt:
Consider this mathematical question. Label this ques-
tion with a mathematical skill that would be required
to solve the question. Basically, you should be able
to use the skill as a dictionary key in python. The
skill name should be lower case letters only. The skill
name should be very descriptive and you may use
multiple words to describe the skills required in the
question. If you do use multiple words per question,
then join them by an underscore .

question: A printing press is printing brochures. The
press prints 20 single-page spreads, and twice as
many double-page spreads. For each 4 pages printed
for the spreads, the press prints a block of 4 ads, each
of which take up a quarter of a page. The brochures
can be arranged in any order as long as they are made
up of 5 pages each. How many brochures is the print-
ing press creating?

Your answer should be as follows:
<name of the skill>, reason: <reason for the
skill>

GPT 4 Response:
multi step problem solving
reason: The problem involves many steps - first find-
ing the total number of pages printed, then how many
of those pages are ads or spreads, and finally deter-
mining how many 5-page brochures can be made
from the total.

Input Prompt:
Here is a list of skills required to solve a mathematical
question:

[average calculation, proportion calculation, per-
centages, order of operations, subtraction, addi-
tion, multiplication, addition of fractions, per-
mutations combinations, counting, understand-
ing fractions and inequalities]

Reduce the number of unique skills by grouping sim-
ilar skills into categories and give a descriptive name
to each category.

GPT 4 Response:
1. basic arithmetic operations: addition, subtraction,
multiplication

2.fractions and percentages: addition of fractions,
understanding fraction and inqualities, percentages

3. average and proportion: average calculation, pro-
portion calculation

4. order of operations: order of operations

5: combinatorics and counting: counting, permuta-
tions combinations

Input Prompt:
Here is a list of skills required to solve a mathematical
question:

[s 0, s 1, s 2, ...., s n]

Here are some examples of questions that demon-
strate how these skills are applicable:

question: <question 0> skill: s 0
question: <question 1> skill: s 1
question: <question 2> skill: s 2
.
.
.
question: <question n> skill: s n

Label the new question with one skill from the list.

question: <question>

Your answer should be as follows:
<name of the skill>, reason: <reason for the
skill>

GPT 4 Response:
s i, reason: <reason>

Figure 2. Prompts for Skill Labelling and Clustering (left) The prompt which is used for labelling all examples in the training set T
with skills. (middle) The prompt used for clustering the skills obtained after skill labelling. (right) The prompt used to label each test set
example with skills.

a feedback-based strategy for refining responses (42). Notably, all these methodologies employ a fixed set of in-context
examples. A strategy for selecting in-context examples was introduced in ComplexCoT (36), which prefers in-context
examples of higher complexity, i.e., length of the reasoning chains. Our approach proposed also provides dynamically
selected in-context examples sourced from the Skill Exemplar Repository. In our case, examples are selected based on
relevance rather than complexity. The proposed approach can seamlessly integrate with any of the above prompting methods.

9. Experimental Details
9.1. Description of Datasets

• GSM8K Dataset (33) - This dataset consists of 7.3k math word problems in the training set and 1.3k math word
problems in the test set.

• SVAMP Dataset (15) - This dataset consists of 1k grade 4 and lower level math word problems but they introduce
certain variations in each problem making it more challenging for LLMs to solve.

• ASDIV Dataset (38) - This is a dataset consisting 2.3k grade level math word problems. It contains a lot of diversity in
terms of language patterns and types of problems considered.

• Single EQ Dataset (39) - This dataset consists of 509 single equation word problems.

• Single OP Dataset (39) - This dataset consists of 562 single operation math word problems.

• AddSub Dataset (39) - This dataset consists of 295 addition and subtraction word problems.

• MultiArith Dataset (39) - This dataset consists of 600 multi-step arithmetic problems.

• MATH Dataset (16) - This dataset consists of 7.5k training and 5k test competition-level math problems. They cover
the following mathematical topics - Pre-Algebra, Algebra, Intermediate Algebra, Pre-Calculus, Geometry, Number
Theory, and Probability.
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Skills Questions Answers
proportional reasoning Weng earns 12 an hour for babysitting. Yesterday, she just

did 50 minutes of babysitting. How much did she earn?
Weng earns 12/60 = 12/60=0.2 per minute. Working 50
minutes, she earned 0.2 x 50 = 0.2*50=10.

percentage calculations Mark has a garden with flowers. He planted plants of three
different colors in it. Ten of them are yellow, and there are
80% more of those in purple. There are only 25% as many
green flowers as there are yellow and purple flowers. How
many flowers does Mark have in his garden?

There are 80/100 * 10 = 80/100*10=8 more purple flowers
than yellow flowers. So in Mark’s garden, there are 10 + 8
= 10+8=18 purple flowers. Purple and yellow flowers sum
up to 10 + 18 = 10+18=28 flowers. That means in Mark’s
garden there are 25/100 * 28 = 25/100*28=7 green flowers.
So in total Mark has 28 + 7 = 28+7=35 plants in his garden.

fraction calculation Lisa, Jack, and Tommy earned $60 from washing cars all
week. However, half of the $60 was earned by Lisa. Tommy
earned half of what Lisa earned. How much more money
did Lisa earn than Tommy?

Lisa earned $60 * 1/2 = $60*1/2=30. Tommy earned $30 *
1/2 = $30*1/2=15. Lisa earned $30 - $15 = $30-15=15 more
than Tommy.

volume calculation Nancy is filling an aquarium for her fish. She fills it halfway
and goes to answer the door. While she’s gone, her cat
knocks the aquarium over and spills half the water in it.
Then Nancy comes back and triples the amount of water in
the aquarium. If the aquarium is 4 feet long, 6 feet wide,
and 3 feet high, how many cubic feet of water are in the
aquarium?

First calculate the volume of the aquarium by multiplying its
length, width and height: 4 ft * 6 ft * 3 ft = 4*6*3=72 cubic
ft Then figure out what proportion of the aquarium is full
after the cat knocks it over: 1/2 * 1/2 = 1/4 Then figure out
what proportion of the aquarium is full after Nancy refills it:
3 * 1/4 = 3/4 Now multiply the proportion of the aquarium
that’s full by the aquarium’s volume to find out how much
water is in it: 72 cubic ft * 3/4 = 72*3/4=54 cubic ft

Table 9. This dataset shows examples from the skill exemplar repository constructed using the GSM8K training dataset.

Question In-Context Q1 In-Context Q2 In-Context Q3
Compute sin 210◦ Compute sin 510◦ . Compute tan(−3645◦). Find tanY in the right triangle shown

below.[asy] pair X,Y,Z; X = (0,0); Y
= (24,0); Z = (0,7); draw(X–Y–Z–
X); draw(rightanglemark(Y,X,Z,23));
label(”X”,X,SW); label(”Y ”,Y,SE);
label(”Z”,Z,N); label(”25”,(Y+Z)/2,NE);
label(”24”,Y/2,S); [/asy]

Find 3√−25 From the following infinite list of
numbers, how many are integers?
2√4096, 3√4096, 4√4096, 5√4096, 6√4096, . . .

Rewrite 3√
26 · 33 · 113 as an integer. Evaluate ⌈

√
5⌉ + ⌈

√
6⌉ + ⌈

√
7⌉ +

· · · + ⌈
√
29⌉Note: For a real number

x, ⌈x⌉ denotes the smallest integer that
is greater than or equal to x.

Table 10. This table shows the in-context examples obtained from the skill-exemplar repository based on skill-matching. We can see that
the proposed approach provides relevant in-context examples that illustrate the concepts required by the question.

9.2. Grade Level Math Word Problems

We present examples from the GSM8K skill exemplar repository in Table 9.

Skill Wise Accuracy We study for which skills the proposed approach is most beneficial in by comparing the per-skill
accuracy of the proposed Skill-Based approach against the Random baseline. This comparison is presented in Figure 3. We
can see that the proposed approach outperforms the Random Baseline in 11/18 skills.

9.3. MATH Dataset: Competition Level Math Problems

We present example from the MATH skill exemplar repository in Tables 14 and 15.

Number of skill obtained After the skill labelling phase, we end up with 823 skills for prealgebra, 877 for algebra, 805
for intermediate algebra, 620 for geometry, 492 for number theory, 525 for pre calculus, and 406 for probability. After
clustering, we end up with 14 skills for prealgebra, 21 for algebra, 23 for intermediate algebra, 14 for geometry, 15 for
number theory, 19 for precalculus, and 11 for probability. Tables 14 and 15 show examples from the skill exemplar repository
for the math dataset.

Examples of relevant in-context examples In Table 10, we present examples of relevant in-context examples provided by
the skill exemplar repository.

9.4. Comparing Skill Annotation Models

In this section, we compare GPT-4, GPT-3.5, and Mixtral-8x7B as skill annotators for labelling questions with skills and
clustering skills. For skill labeling and clustering we feed the prompts listed in Figure 2 to all the models. We also tested
Llama-2 70B for skill annotation but we found that it was not able to provide a sensible skill name for any example. It
struggles to understand the instruction given in the prompt in Figure 2 (left). Therefore, we discarded it as the skill annotation
model.
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Figure 3. Skill Wise Plot In this Figure we compare the the per-skill accuracies for the Skill-Based approach and the Random approach
on the GSM8K dataset. We can see that proposed Skill-Based approach results in better accuracies for 11/18 skills.
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Next, we found that Mixtral-8x7B, GPT-3.5, and GPT-4 are able to label question with skills as expected but GPT-4 was
more descriptive and in some cases more accurate as well as shown in Table 11.

Question Mixtral-8x7B skill GPT-3.5 skill GPT-4 skill
There are positive integers that have these properties: I. The
sum of the squares of their digits is

order of operations number theory combinatorics and number theory

and II. Each digit is larger than the one on its left. What
is the product of the digits of the largest integer with both
properties?
A Senate committee has 5 Democrats and 5 Republicans. In
how many ways can they sit around a circular table if each
member sits next to two members of the other party?

combinatorics counting and probability circular permutation combinatorics

How many different positive integers can be represented
as a difference of two distinct members of the set
{1, 2, 3, 4, . . . , 16}?

counting counting and probability counting and subtraction

Table 11. Skill Labels Assigned by Mixtral-8x7B, GPT-3.5, and GPT-4

Next, we performed skill clustering with all the above 3 models and found that while GPT-4 and GPT-3.5 succeed at
clustering, Mixtral fails to perform sensible clustering. It puts all skills in one cluser.

Therefore, we are left with GPT-4 and GPT-3.5 for skill-labeling and skill-clustering. We create two different skill exemplar
repositories for GPT-4 and GPT-3.5 respectively. We compare these skill-exemplar repositories by using them to provide
relevant in-context examples to solve questions from the MATH dataset. The results for this comparison are presented
in Table 12. The superior performance with GPT-4 skills indicates that GPT-4 succeeds at providing higher quality skill
annotations as compared to GPT-3.5.

Topic Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus Num. Theory Overall
CoT + Skill-Based (GPT 3.5 skills) 74.85 40.70 25.51 69.41 55.06 33.69 46.29 51.9

CoT + Skill-Based (GPT-4 Skills) 74.28 41.75 27.02 73.12 58.01 33.70 51.10 53.8

Table 12. In this table, we compare the skill exemplar repositories created using GPT-3.5 and GPT-4 on the MATH dataset. The higher
performance with GPT-4 skills illustrates its superiority as the skill annotation model.

9.5. Program Assisted Language Models

In this section, we first present the prompt format used in PAL (24):

<question 1> <code solution 1>
<question 2> <code solution 2>
<question 3> <code solution 3>
<question 4> <code solution 4>

<Q>...

Next, we show how we modify this prompt format to incorporate skills exemplars from the Skill Exemplar Repository:

<question 1> <text solution 1>
<question 2> <text solution 2>
<question 3> <text solution 3>
<question 4> <code solution 4>

<Q>...

Here, <question 1> <text solution 1> <question 2> <text solution 2> <question 3>
<text solution 3> are exemplars from skill exemplar repository exhibiting the same skill as <Q>.

9.6. Examples where the Model makes Mistakes despite Receiving Skill Exemplars

In Table 13 we present examples where the model makes mistakes despite receiving in-context examples with the same skill
as the question it needs to answer. The discussion regarding each example is presented in the main paper.
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Example 1 Example 2

Question
Evaluate log 3√5

125. How many distinct diagonals of a convex hexagon
can be drawn?

Topic-Based Solution

The expression log 3√5
125 asks the question ”to

what power must we raise 3√5 to obtain 125?”.

Since 5
1
3 = 5, then 53x = 125. Recall that

53 = 125. Therefore 125 is actually 53. Hence
the log 3√5

125 = 3.

A hexagon has 6 vertices. A diagonal can be drawn
from a vertex to any other vertex except for the two
adjacent vertices. So, from each vertex, we can
draw 3 diagonals. Therefore, for 6 vertices, we can
draw 6 × 3 = 18 diagonals. We divide this by 2
to get the number of distinct diagonals. Therefore,
a convex hexagon has 9 distinct diagonals.

Skill-Based Solution

We know that loga b = c means ac = b. So we
need to find a number which, when cubed, gives us
125. We know that 53 = 125, so our answer is 3.
Skill Used: logarithmic and exponential skills

A convex hexagon has 6 vertices. From each ver-
tex, we can potentially draw a diagonal to 4 other
vertices. So, each vertex gives us 4 diagonals, for a
preliminary count of 6 × 4 = 24 diagonals. We
must divide by 2 to get the number of unique diago-
nals. The answer is (6 × 4)/2 = 12 diagonals.
Skill Used: counting and number theory

Table 13. Incorrectly answered examples despite providing skill-based exemplars This table highlights situations where the model
encounters reasoning errors despite being supplied with relevant skill-based exemplars to address the problem. Correct reasoning steps are
denoted in blue, while errors are highlighted in red.

9.7. Prompting GPT 4 to classify errors

The prompt which is given to GPT 4 to categorize examples into SKILL ERROR, SECONDARY SKILL ERROR, and
CALCULATION ERROR is shown in Figure 5.
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(b) Secondary Concept Success Rate
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(c) Calculation Success Rate

Figure 4. Ablation Metrics This Figure compares the SKILL SUCCESS RATE, SECONDARY SKILL SUCCESS RATE, and CALCULATION

SUCCESS RATE of the Topic-Based and Skill-Based approaches. We expect the proposed skill-based approach to be mainly useful in
picking the correct skills. We find that this is indeed the case as it achieves a higher skill success rate than the Topic-Based approach.
Moreover, we find that proposed approach also results in lower calculation and secondary skill errors.

9.8. Performance on Ablation Metrics

We present the performance on all the 3 newly introduced metrics in Figure 4. We expect the proposed Skill-Based approach
to be the most beneficial in reducing SKILL ERRORS. This is because the the proposed approach should provide those
in-context examples to the model which have the same main skill as the problem in question. The performance on the
SKILL SUCCESS RATE metric is in-line with this hypothesis. We observe that the proposed approach results in a higher
SKILL SUCCESS RATE which means that the model is using the correct skill more frequently in the proposed approach as
compared to the Topic-Based baseline. Furthermore, we find that the proposed approach is also quite effective in reducing
secondary skill errors and calculation errors. Thus, showing the overall superiority of the proposed approach.
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You are a math wizard who knows exactly what mathematical concept to use to solve any math question.
I am going to give you a math question and a solution and the groundtruth answer for that question. You need to answer some questions that I ask you about it.
Here are examples of questions and the corresponding answers:
Question: We call a number a descending number if each digit is strictly smaller than the digit that comes before it. For example, 863 is a descending number. How many 3-digit descending numbers
are there?
Solution: Since 0 cannot be the leading digit of the number, there are 9 options for the first digit (1-9). Once the first digit is chosen, there are 10 options for the second digit (0 plus the digits less
than the first digit). Both the second and first digits are determined, this leaves 9 options for the third digit (0 and 1-9, excluding the second digit). Hence, there are 9 ∗ 10 ∗ 9 = 810 possible
3-digit numbers. However, this count includes numbers such as 100, 200, etc – where the third digit is not strictly less than the second digit. There are exactly 9 such numbers. So our final answer is

810 − 9 = 801 descending numbers.
Groundtruth: 120
Q1: Are there any calculation mistakes in the solution?
Q2: Are there any mistakes in the main concept required to solve the question?
Q3: Are there any mistakes in any of the secondary concepts required to solve the question?
A1: no —— There are two calculations in the question: 9*10*9=810 and 810 - 9 = 801. Both are correct.
A2: yes —— The main concept is understanding of descending numbers, but this understanding is not correct.
A3: no —— The secondary concept of permutations is correctly used.
Question: How many primes are in the row of Pascal’s Triangle that starts with a 1 followed by a 6?

Solution: The row of Pascal’s Triangle that starts with a 1 followed by a 6 is the sixth row, which is composed of the numbers 1, 6, 15, 20, 15, 6, 1. The only prime number in this row is { 2},

which is the number 2 itself.
Groundtruth: 0
Q1: Are there any calculation mistakes in the solution?
Q2: Are there any mistakes in the main concept required to solve the question?
Q3: Are there any mistakes in any of the secondary concepts required to solve the question?
A1: no —— There are no calculations in the solution.
A2: yes —— The main concept is understanding of primes, but this understanding is not correct.
A3: no —— The secondary concept of Pascal’s Triangle is correctly used.
Question: Two different numbers are randomly selected from the set {1, 2, 3, 4} and they are multiplied. What is the probability that the product is even? Express your answer as a common
fraction.
Solution: There are a total of

(
4
2

)
= 6 pairs of numbers that can be chosen. The pairs that yield an even product are (1,2), (2,3), (2,4), (1,4), and (3,4) for a total of 5 such pairs. Therefore, the

probability is 5
6

. However, each pair can be ordered in two ways (for example, (1,2) and (2,1) are different orderings of the same pair). So we should actually consider that there are 2*6=12 total

outcomes and 2*5=10 successful outcomes. Therefore the probability is {
1
0}{12} =

5

6
.

Groundtruth: 5/6
Q1: Are there any calculation mistakes in the solution?
Q2: Are there any mistakes in the main concept required to solve the question?
Q3: Are there any mistakes in any of the secondary concepts required to solve the question?
A1: no —— There are two calculations in the question: 5/6 and 10/12. Both are correct.
A2: no —— The main concept is understanding of probability, and this understanding is correct.
A3: no —— The secondary concept of combinations is correctly used.
Question: The asymptotes of a hyperbola are y = 2x − 3 and y = 17 − 2x. Also, the hyperbola passes through the point (4, 7). Find the distance between the foci of the hyperbola.

Solution: The two lines y = 2x − 3 and y = 17 − 2x intersect at the point
(

20
4

, 14
4

)
= (5, 3.5), which is the center of the hyperbola. The slopes of the asymptotes are equal

to ± b
a
, where a and b are the semi-major and semi-minor axes of the hyperbola, respectively. Therefore, b

a
= 2, so b = 2a. The hyperbola passes through the point (4, 7), so the

distance from this point to the center of the hyperbola is
√

(4 − 5)2 + (7 − 3.5)2 = a
√

1 + 22 = a
√
5. Thus, a = 1.5. Then b = 2a = 3, so the distance between the foci is

2
√

a2 + b2 = 2
√

(1.5)2 + 32 = 6 .

Groundtruth: 2
sqrt{5}
Q1: Are there any calculation mistakes in the solution?
Q2: Are there any mistakes in the main concept required to solve the question?
Q3: Are there any mistakes in any of the secondary concepts required to solve the question? A1: no —— There are two calculations in the question: 2 ∗ sqrt(1.52 + 32) and sqrt(1 + 22).
Both are correct.
A2: no —— The solution uses the correct concept of finding the intersection of the asymptotes to determine the center of the hyperbola, and correctly identifies the slopes of the asymptotes as

± {
b
}{a}.

A3: yes —— The solution incorrectly equates the distance from the center of the hyperbola to the point it passes through with a
√

1 + 22 = a
√
5. This is incorrect because for a hyperbola, the

distance from the center to a point on the hyperbola is not related to the semi-major and semi-minor axes in this way.
Question: <question>
Solution:<solution>
Groundtruth: <ground truth>
Q1: Are there any calculation mistakes in the solution?
Q2: Are there any mistakes in the main concept required to solve the question?
Q3: Are there any mistakes in any of the secondary concepts required to solve the question?
You should answer Q1, Q2, and Q3 based on the given examples.

Figure 5. Ablation Prompt This figure shows the prompt which is given to GPT 4 to categorize each example from the MATH dataset
into SKILL ERROR, SECONDARY SKILL ERROR, or CALCULATION ERROR
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Topic Skill Question Answer

Pre-Algebra

prime number theory What is the sum of the distinct prime factors of
315?

The distinct prime factors of 315 are 3, 5, and 7,
and their sum is 15.

exponentiation rules Find (44 ÷ 43) · 28 . Performing the arithmetic in the parentheses first,
we obtain 44 ÷ 43 = 4, so we have (44 ÷
43) · 28 = 4 · 28. Since 4 = 22 , we have

4 · 28 = 22 · 28 = 210 = 1024 .
ratio and proportion The ratio of irises to roses in Nikki’s garden is

2:5. She currently has 25 roses. She is planning
to add 20 more roses and enough irises to keep
the same ratio. How many irises will she have
in total after this addition?

After adding 20 roses, Nikki will have 25 +
20 = 45 roses. If she will have 2 irises for
every 5 roses, then she will have 2(9) = 18

irises.

Algebra

factoring skills Factor 9y2 − 30y + 25. The quadratic is the square of 3y, the constant
term is the square of −5, and the linear term
equals 2(3y)(−5), so we have 9y2−30y+

25 = (3y − 5)
2 .

complex number skills Simplify (3 − 2i)2 . (Your answer should be
of the form a + bi.)

(3− 2i)2 = (3− 2i)(3− 2i) = 3(3)+
3(−2i)− 2i(3)− 2i(−2i) = 9− 6i−
6i − 4 = 5 − 12i .

quadratic equation skills What is the sum of the values of x that satisfy
the equation x2 − 5x + 5 = 9?

Subtracting 9 from both sides of the equation,
we have x2 − 5x − 4 = 0. The sum of
the roots of this quadratic is negative its linear

coefficient, which is 5 . (The above is true
because if a quadratic has roots r and s, we have
(x−r)(x−s) = x2−(r+s)+rs = 0.)

Intermediate Algebra

polynomial skills Find the product of the nonreal roots of x4 −
4x3 + 6x2 − 4x = 2005.

We recognize part of the expansion of
(x − 1)4 on the left-hand side. Adding
1 to both sides, we have x4 − 4x3 +
6x2 − 4x + 1 = 2006,which means
(x − 1)4 = 2006. Therefore, x − 1 =
4√2006, i 4√2006,− 4√2006,−i 4√2006.

Since we want the nonreal roots, we only con-
sider the roots

x = 1 ± i
4√
2006.

The product of these roots is P =

(1 + i 4√2006)(1 − i 4√2006) =

1 +
√

2006 .

simplifying and basic operations Let P =(
1 − 1

2

) (
1 − 1

3

) (
1 − 1

4

)
· · ·
(
1 − 1

n

)
.

What is the value of P if n = 2007? Express
your answer as a common fraction.

Simplifying each term in P,

P =

(
1

2

)(
2

3

)(
3

4

)
· · ·
(

n − 1

n

)
.

The denominator of each fraction cancels with
the numerator of the next fraction, so P = 1

n
.

When n = 2007, P =
1

2007
.

graph understanding and interpretation Find the distance between the vertices of the

hyperbola x2

99
− y2

36
= 1.

We read that a2 = 99, so a =
√
99 =

3
√
11. Therefore, the distance between the ver-

tices is 2a = 6
√
11 .

Geometry

pythagorean skills In right triangle ABC, AB = 10, AC = 6
and BC = 8 units. What is the distance from
C to the midpoint of segment AB?

The length of the median to the hypotenuse
of a right triangle is half the length of the hy-
potenuse. Therefore, the desired distance is

10/2 = 5 .
3d geometry and volume calculation skills The area of one lateral face of a right pyramid

with an equilateral triangular base is 75 square
meters. If the slant height is 30 meters, what is
the length of the side of its base, in meters?

Let s represent the sidelength of the equilateral
triangular base. Each face of the pyramid has an
area of 1

2
bh = 75, where b is the sidelength

of the base and h is the slant height of 30 meters.
We have

75 =
1

2
s(30) = 15s.

So, s = 5 and the sidelength of the base is 5
meters.

triangle geometry skills In triangle ABC, AB = 16, AC = 24,
BC = 19, and AD is an angle bisector. Find
the ratio of the area of triangle ABD to the
area of triangle ACD. (Express your answer
as a fraction in lowest terms.)

The ratio of the area of triangle ABD to
the area of triangle ACD is BD/CD. By
the angle bisector theorem, BD/CD =

AB/AC = 16/24 =
2

3
.

Table 14. Math skill exemplar repository This table presents few examples from the skill exemplar repository for 5 topics from the
MATH dataset (16).
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Topic Skill Question Answer

Precalculus

calculus If tanα = 8 and tan β = 7, then find
tan(α − β).

From the angle subtraction formula, tan(α −
β) = tanα−tan β

1+tanα tan β
= 8−7

1+8·7 =

1

57
.

vector operations Find y so that the vectors

(
1
−3
−4

)
and

(
−2
y
−1

)
are orthogonal.

For the vectors

(
1
−3
−4

)
and

(
−2
y
−1

)
to be or-

thogonal, their dot product should be 0:

(1)(−2) + (−3)(y) + (−4)(−1) = 0.

Solving, we find y =
2

3
.

trignometric calculations Convert e11πi/2 to rectangular form. We have that e11πi/2 = cos 11π
2

+

i sin 11π
2

= −i .

Number Theory

factorization Find the product of the divisors of 50. For every divisor d of 50, then 50/d is also a
divisor of 50. Their product is d · (50/d) =
50. It follows that every divisor can be paired
with another divisor of 50 such that their product
is 50 = 2·52 . There are (1+1)(2+1) = 6
divisors of 50: 1, 2, 5, 10, 25, 50. Thus, the

answer is 506/2 = 503 = 125,000 .
division and remainders A whole number is said to be ”9-heavy” if the

remainder when the number is divided by 9 is
greater than 5. What is the least three-digit 9-
heavy whole number?

We begin by computing the residue of the small-
est three digit number modulo 9. We have

100 ≡ 1 (mod 9).

Therefore 100 is not 9-heavy. Counting up from
100 we notice that the first 9-heavy three-digit

number is 105 , since it has a remainder of 6
when divided by 9.

exponentiation Call an integer n oddly powerful if there exist
positive integers a and b, where b > 1, b is
odd, and ab = n. How many oddly powerful
integers are less than 2010?

Let us first determine the number of cubes that
are less than 2010. We have 103 = 1000,
113 = 1331, and 123 = 1728, but
133 = 2197. So there are 12 cubes less
than 2010. As for fifth powers, 45 = 1024,
but 55 = 3125. There are 4 fifth powers less
than 2010, but only 3 of these have not already
been included, since we’ve already counted 1.
Analyzing seventh powers, 37 = 2187, so the
only new seventh power less than 2010 is 27 .
There are no new ninth powers since they are all
cubes, and 211 = 2048 is greater than 2010.

Therefore, there are 12+3+1 = 16 oddly
powerful integers less than 2010.

Probability

combinatorics knowledge Alex has 10 different kinds of lunch meat and 9
different kinds of cheese. If he wants to make a
sandwich with one kind of meat and two kinds
of cheese, how many different sandwiches could
he make? (It does not matter in which order he
chooses the two types of cheese.)

There are
(
10
1

)
= 10 ways for Alex to choose

which kind of lunch meat to put on his sand-

wich, and there are
(
9
2

)
= 36 ways for Alex

to choose which kinds of cheese to put on his
sandwich. The total number of different sand-
wiches Alex can make is 10 · 36 = 360 .

permutations and combinations A bag contains 10 red marbles and 6 blue mar-
bles. Three marbles are selected at random and
without replacement. What is the probability
that one marble is red and two are blue? Express
your answer as a common fraction.

There are three ways to draw two blue marbles
and a red one: RBB, BRB, and BBR. Since there
are no overlapping outcomes, these are distinct
cases and their sum is the total probability that
two of the three drawn will be blue. The desired
probability therefore is

10

16
·
6

15
·
5

14
+

6

16
·
10

15
·
5

14
+

6

16
·
5

15
·
10

14
=

15

56
.

counting princpals How many three digit numbers are there? The three-digit numbers start with 100 and end

with 999. There are 999−100+1 = 900

three-digit numbers.

Table 15. Math skill exemplar repository (Continued) This table presents few examples from the skill exemplar repository for 5 topics
from the MATH dataset (16).
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