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ABSTRACT

This paper is on Few-Shot Object Detection (FSOD), where given a few templates
(examples) depicting a novel class (not seen during training), the goal is to detect
all of its occurrences within a set of images. From a practical perspective, an FSOD
system must fulfil the following desiderata: (a) it must be used as is, without
requiring any fine-tuning at test time, (b) it must be able to process an arbitrary
number of novel objects concurrently while supporting an arbitrary number of
examples from each class and (c) it must achieve accuracy comparable to a closed
system. While there are (relatively) few systems that support (a), to our knowledge,
there is no system supporting (b) and (c). In this work, we make the following
contributions: We introduce, for the first time, a simple, yet powerful, few-shot
detection transformer (FS-DETR) that can address both desiderata (a) and (b). Our
system builds upon the DETR framework, extending it based on two key ideas: (1)
feed the provided visual templates of the novel classes as visual prompts during
test time, and (2) “stamp” these prompts with pseudo-class embeddings, which are
then predicted at the output of the decoder. Importantly, we show that our system
is not only more flexible than existing methods, but also, making a step towards
satisfying desideratum (c), it is more accurate, matching and outperforming the
current state-of-the-art on the most well-established benchmarks (PASCAL VOC
& MSCOCO) for FSOD. Code will be made available.

1 INTRODUCTION

Thanks to the advent of deep learning, object detection has witnessed tremendous progress over
the last years. However, the standard setting of training and testing on a closed set of classes has
specific important limitations. Firstly, it’s unfeasible to annotate all objects of relevance present
in-the-wild, thus, current systems are trained only on a small subset. It does not seem straightforward
to significantly scale up this figure. Secondly, human perception operates mostly under the open set
recognition/detection setting. Humans can detect/track new unseen objects on the fly, typically using
a single template, without requiring any “re-training” or “fine-tuning” of their “detection” skills,
arguably a consequence of the prior representation learned, an aspect we sought to exploit here
too. Finally, important applications in robotics, where agents may interact with previously unseen
objects, might require their subsequent detection on the fly without any re-training. Few-Shot Object
Detection (FSOD) refers to the problem of detecting a novel class not seen during training and, hence,
can potentially address many of the aforementioned challenges.

There are still important desiderata that current FSOD system must address in order to be practical
and flexible to use: (a) They must be used as is, not requiring any re-training (e.g. fine-tuning) at
test time. However, many existing state-of-the-art FSOD systems (e.g. Sun et al. (2021); Wu et al.
(2021); Qiao et al. (2021)) rely on re-training with the few available examples of the unseen classes.
While such systems are still useful, the requirement for re-training makes them significantly more
difficult to deploy on the fly and in real-time or on devices with limited capabilities for training.
(b) They must be able to handle an arbitrary number of novel objects (and moreover an arbitrary
number of examples per novel class) simultaneously during test time, in a single forward pass without
requiring batching. This is akin to how closed systems work, which are able to detect multiple objects
concurrently. However, to our knowledge there is no FSOD system possessing this property without
requiring re-training. (c) They must attain classification accuracy that is comparable to that of closed

1



Under review as a conference paper at ICLR 2023

systems. However, existing FSOD systems are far from achieving such high accuracy, especially for
difficult datasets like MSCOCO.

This work aims to significantly advance the state-of-the-art in all three above-mentioned challenges.
To this end, and building upon the DETR Carion et al. (2020) framework, we propose a system,
called Few-Shot DETR (FS-DETR), capable of detecting multiple novel classes at once, supporting
a variable number of examples per class, and importantly, without any extra re-training. In our
system, the visual template(s) from the new class(es) are used, during test time, in two ways: (1) in
FS-DETR’s encoder to filter the backbone’s image features via cross-attention, and more importantly,
(2) as visual prompts in FS-DETR’s decoder, “stamped” with special pseudo-class encodings and
prepended to the learnable object queries. The pseudo-class encodings are used as pseudo-classes
which a classification head attached to the object queries is trained to predict via a Cross-Entropy loss.
Finally, the output of the decoder are the predicted pseudo-classes and regressed bounding boxes.

In summary, our main contributions are:

1. We propose the very first, to the best of our knowledge, Few-Shot DEtection TRansformer
(FS-DETR) capable of detecting multiple novel objects at once, supporting a variable number
of samples per class, and without requiring any fine-tuning.

2. We show that all these features can be enabled by extending DETR based on two key ideas:
(1) feed the provided visual templates of novel classes as visual prompts during test time,
and (2) “stamp” these prompts with pseudo-class embeddings, which are then predicted at
the output of the decoder along with bounding boxes.

3. We also propose a simple and efficient yet powerful pipeline consisting of unsupervised
pre-training followed by prompt-like base class training.

4. In addition to being more flexible, our system matches and outperforms state-of-the-art
results on the standard FSOD setting on PASCAL VOC and MSCOCO. Specifically, FS-
DETR outperforms the not re-trained method of Han et al. (2021) (ICCV21) and most
re-training based methods on extreme few-shot settings (k = 1, 2), while being competitive
for more shots.

2 RELATED WORK

DEtection TRansformer (DETR) approaches: After revolutionizing NLP Vaswani et al. (2017);
Raffel et al. (2019), Transformer-based architectures have started making significant impact in
computer vision problems Dosovitskiy et al. (2020); Liu et al. (2021b). In object detection, methods
are typically grouped into two-stage (proposal-based) Ren et al. (2015); He et al. (2017); Cai &
Vasconcelos (2018) and single-stage (proposal-free)Lin et al. (2017); Liu et al. (2016); Tian et al.
(2019b); Zhou et al. (2019); Law & Deng (2018) methods. In this field, a recent breakthrough is the
DEtection TRansformer (DETR) Carion et al. (2020), which is a single-stage approach that treats
the task as a direct set prediction without requiring hand-crafted components, like non-maximum
suppression or anchor generation. Specifically, DETR is trained in an end-to-end manner using
a set loss function which performs bipartite matching between the predicted and the ground-truth
bounding boxes. Because DETR has slow training convergence, several methods have been proposed
to improve it Meng et al. (2021); Zhu et al. (2021b); Dai et al. (2021). Conditional DETR Meng
et al. (2021) learns a conditional spatial query from the decoder embeddings that are used in the
decoder for cross-attention with the image features. Deformable DETR Zhu et al. (2021b) proposes
deformable attention in which attention is performed only over a small set of key sampling points
around a reference point. Unsupervised pre-training of DETR Dai et al. (2021) (UP-DETR) improves
its convergence, where randomly cropped patches are summed to the object queries and the model is
then trained to detect them in the original image.

While our approach is agnostic to the exact variant of DETR, due to its fast training convergence, we
opted to use Conditional DETR as the model that we build our FS-DETR approach upon. Beyond
this, the above mentioned works are on closed set recognition and while UP-DETR’s unsupervised
pre-training could be potentially used for few-shot detection, the experimental setting presented in
their work doesn’t match the standard settings for few-shot detection and no code is provided for its
training. We re-implemented UP-DETR Dai et al. (2021) for few-shot detection and found that our
method outperforms it. This is expected as their goal is unsupervised pre-training and not FSOD.
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Few Shot Object Detection (FSOD) methods can be categorised into re-training based and without
re-training methods. Re-training based methods assume that during test time, but before deployment,
the provided samples of the novel categories can be used to fine-tune the model. This setting is
restrictive as it requires training before deployment. Instead, without re-training methods can be
directly deployed on the fly for the detection of novel examples.

Re-training based approaches can be divided into meta-learning and fine-tuning approaches. Meta-
learning based approaches attempt to transfer knowledge from the base classes to the novel classes
through meta-learning Finn et al. (2017); Gidaris & Komodakis (2019). Meta R-CNN Yan et al.
(2019) introduces a Predictor-head Re-modelling Network which uses examples of novel classes
to meta-learn corresponding class-attentive vectors that are used to modulate (via attention) RoI
features in order to detect the novel objects. MetaDet Wang et al. (2019) proposes a weight prediction
meta-model that can predict the parameters of class-specific layers using the examples of the novel
classes. TIP Li & Li (2021) proposes to augment the standard FSOD pipeline with consistency
regularization using the predictions obtained by standard image augmentations. FSIW Xiao & Marlet
(2020) proposes to tackle both FSOD and few-shot viewpoint estimation through a proposed feature
aggregation module and meta-training on a balanced dataset. Fine-tuning based methods follow
the standard pre-train and fine-tune pipeline. TFA Wang et al. (2020) proposes fine-tuning the final
classification layer of a Faster R-CNN model (first trained on base classes), with a balanced subset
containing also the examples of the novel classes. More recently, SRR-FSD Zhu et al. (2021a)
proposed to construct a semantic space using word embeddings, and then train a FSOD by projecting
and aligning object visual features with their corresponding text embeddings. CME Li et al. (2021)
proposes to learn a feature embedding space where the margins between novel classes are maximised.
Retentive R-CNN Fan et al. (2021) addresses the problem of learning a FSOD without catastrophic
forgetting (i.e. without compromising base class accuracy). FSCE Sun et al. (2021) aims to decrease
instance similarity between objects belonging to different categories by adding a secondary branch to
the primary RoI head, which is trained via supervised contrastive learning. The method of Zhang &
Wang (2021) proposes a hallucinator network to generate examples which can help the classifier learn
a better decision boundary for the novel classes. FSOD-UP Wu et al. (2021) proposes to construct
universal prototypes capturing invariant object characteristics which, via fine-tuning, are adapted to
the novel categories. DeFRCN Qiao et al. (2021) is a fine-tuning based method which proposes to
perform stop-gradient between the RPN and the backbone, and scale-gradient between RCNN and
the backbone. Currently, DeFRCN represents the state-of-the-art of FSOD re-trained methods.

Without re-training approaches are primarily based on metric learning Vinyals et al. (2016); Snell et al.
(2017). A standard approach is Hsieh et al. (2019), which uses cross-attention between the backbone’s
and the query’s features to refine the proposal generation, then re-uses the query to re-weight the RoI
features channel-wise (in a squeeze-and-excitation manner) for novel class classification. A similar
approach for proposal generation is described in Fan et al. (2020), where the squeeze-and-excitation
module is replaced with a multi-relation network. Finally, QA-FewDet extends Hsieh et al. (2019);
Fan et al. (2020) by modelling class-class, class-proposal and proposal-proposal relationships using
various GCNs and, to our knowledge, represents the state-of-the-art FSOD method without re-training.
We show that the proposed FS-DETR outperforms it by a large margin.

3 METHOD

Given a dataset where each image is annotated with a set of bounding boxes representing the
instantiations of C known base classes, our goal is to train a model capable of localizing objects
belonging to novel classes, i.e. unseen during training, using up to k examples per novel class. In
practice, we partition the available datasets into two disjoint sets, one containing Cnovel classes for
testing, and another with Cbase classes for training (i.e. C = Cnovel∪Cbase and Cnovel∩Cbase = ∅).

3.1 OVERVIEW OF FS-DETR

We build the proposed Few-Shot DEtection TRansformer (FS-DETR) upon DETR’s architecture 1.
FS-DETR’s architecture consists of: (1) the CNN backbone used to extract visual features from the

1We note that, in practice, due to its superior convergence properties, we used the Conditional DETR as the
basis of our implementation but for simplicity of exposition we will use the original DETR architecture.
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Figure 1: In the proposed FS-DETR, the available templates are provided as additional visual prompts
to the system in order to condition and control the output. To train and test the system, these prompts
are “stamped” with pseudo-class embeddings (see Sec. 3.2) which are predicted at the output of the
decoder along with bounding boxes (note, that there is no correlation between actual classes and
pseudo-classes, e.g. the cat could be of either class: “blue” or “red“ as there is no preferred order).
FS-DETR naturally supports k−shot detection, as the model can process multiple examples per class
at once. Templates belonging to the same class will share the same pseudo-class embedding. Red
and blue colors denote the different pseudo-classes associated to the input templates.

target image and the templates, (2) a transformer encoder that performs self-attention on the image
tokens and cross-attention between the templates and the image tokens, and (3) a transformer decoder
that processes object queries and templates to make predictions for pseudo-classes (see also below)
and bounding boxes. Contrary to the related works of Fan et al. (2020); Han et al. (2021), our system
processes an arbitrary number of templates (i.e. new classes) jointly, in a single forward pass, i.e.
without requiring batching, significantly improving the efficiency of the process.

Key contributions: DETR re-formulates object detection as a set prediction problem, making object
predictions by “tuning” a set of N learnable queries O ∈ RN×d to the image features through
cross-attention. The queries O are used as prompts in DETR for closed-set object detection. To
accommodate for open-set FSOD, we propose to provide novel classes’ templates as additional visual
prompts to the system in order to condition and control the detector’s output. To train the system, we
also propose to “stamp” these prompts with pseudo-class embeddings, which are then predicted by
the decoder along with bounding boxes. The proposed FS-DETR is depicted in Fig. 1. Compared
to Carion et al. (2020), we highlight key differences in our mathematical formulation in red.

3.2 FS-DETR

The following subsections detail FS-DETR’s architecture and main components.

Template encoding: Let Ti,j ∈ RHp×Wp×3, i ∈ {1, . . . ,m}, j ∈ {1, . . . , k} be the template
images of the available classes (sampled from Cbase during training) where m is the number of
classes at the current training iteration (m can vary), and k is the number of examples per class (i.e.
k-shot detection; k can also vary). A CNN backbone (e.g. ResNet-50) generates template features
X = CNN(T), X ∈ Rmk×d using either average or attention pooling (see Sec. 5).

Pseudo-class embeddings: We propose to dynamically and randomly associate, at each training
iteration, the k templates in X belonging to the i-th class (for that iteration) with a pseudo-class
represented by a pseudo-class embedding csi ∈ Rd, which are added to the templates as follows:

Xs = X+Cs, (1)

where Cs ∈ Rmk×d contains the pseudo-class embeddings for all templates at the current iteration.
The pseudo-class embeddings are initialised from a normal distribution and learned during training.
They are not determined by the ground-truth categories and are class-agnostic. During each inference
step, we arbitrarily associate to a template (belonging to some class) the i-th embedding as described
by Eq. 1. The goal is to predict the pseudo-class i. Note that the actual class information is not used.
As the assigned embedding changes at every iteration, there is no correlation between the actual
classes and the learned embeddings. See also Fig. 1 that exemplifies this process. In the proposed
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FS-DETR, each decoded object query oi in O will attempt to predict a pseudo-class using a classifier.
Pseudo-class embeddings add a signature to each template allowing the network to track the template
within and dissociate it from the rest of the templates belonging to a different class. The pseudo-class
embeddings are a key contribution of our approach. The method cannot be trained without the
pseudo-class embeddings (i.e. it won’t converge). As transformers are permutation invariant, it’s not
possible to predict the pseudo-class without such embeddings.

Templates as visual prompts: We propose to provide the templates Xs as visual prompts to the
system by prepending them to the sequence of object queries fed to the decoder:

O′ = [Xs O], O′ ∈ R(mk+N)×d. (2)
As shown below, the templates will induce pseudo-class related information into the object queries via
attention. This can be interpreted as a new form of training-aware soft-prompting Liu et al. (2021a).

FS-DETR encoder: Given a target image I ∈ RH′×W ′×3, the same CNN backbone used for template
feature extraction first generates image features Z = CNN(I), Z ∈ RS×d, S = H ×W , which
are enriched with positional information through positional encodings Z← Z+Ps, Ps ∈ RS×d.
The features Z are then processed by FS-DETR’s encoder layers in order to be enriched with global
contextual information. The l−th encoding layer processes the output features of the previous layer
Zl−1 using a series of Multi-Head Self-Attention (MHSA), Layer Normalization (LN), and MLP
layers (typical in Vaswani et al. (2017) and Carion et al. (2020)), as well as a newly proposed
Multi-Head Cross-Attention (MHCA) layer as follows 2:

Z′ = MHSA(LN(Zl−1)) + Zl−1, (3)
Z′′ = MHCA(LN(Z′),Xs) + Z′, (4)

Zl = MLP(LN(Z′′)) + Z′′. (5)

The purpose of the MHCA layer above is to filter and highlight early on, before decoding, the image
tokens of interest. We have found that such a layer noticeably increases few-shot accuracy (see
also Section 5). FS-DETR’s encoder is implemented by stacking L = 6 blocks, each following
Eq. (3)-(5). As image tokens are permutation invariant, we followed Carion et al. (2020) and used a
fixed positional encoding. For the templates, pseudo-class embeddings serve as positional encodings.

FS-DETR decoder: FS-DETR’s decoder accepts as input the concatenated templates and learnable
object queries O′ which are transformed by the decoder’s layers through self-attention and cross-
attention layers in order to be eventually used for pseudo-class prediction and bounding box regression.
The l−th decoding layer processes the output features of the previous layer Vl−1 as follows:

V′ = MHSA(LN(Vl−1) +O′) +Vl−1, (6)

V′′ = MHCA(LN(V′) +O′,Zl) +V′, (7)

Vl = MLP(LN(V′′)) +V′′, (8)

where V0 = [Xs zeros(N, d)]. Notably, different MLPs are used to process the decoder’s
features V = [VXs VO] corresponding to the templates VXs and the object queries VO:

MLP(V) = [MLP(VXs) MLP(VO)]. (9)
FS-DETR’s decoder consists of L = 6 layers implemented using Eqs. (6)-(9).

FS-DETR training and loss functions: For each base class that exists in the target image, we create
a template for that class by randomly sampling and cropping an object from that category using a
different image (containing an object of the same class) from the train set. After applying image
augmentation, the cropped object/template is passed through the CNN backbone of FS-DETR. For
each target image and template i (depicted in that image), the ground truth is yi = (csi , bi), where
csi is the target pseudo-class label (up to m classes in total) and bi ∈ [0, 1]4 are the normalised
bounding box coordinates. To calculate the loss for training FS-DETR, only the N transformed
object queries VL

O ∈ RN×d from the output of the last decoding layer are used for pseudo-class
classification and bounding box regression (i.e. VL

Xs is not used). To this end, pseudo-class and

2We follow DETR’s notation where O′ is added to LN(Vl−1) and then projected to form the query Q and
key K for self-attention. Here, the first layer Vl−1 is initialised as [Xs, zeros] while in DETR with zeros.
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bounding box prediction heads are used to produce a set of N predictions {ŷi}Ni=1 consisting of the
pseudo-class probabilities p̂i(cs) and the bounding box coordinates b̂i. The heads are implemented
using a 3-layer MLP and ReLU activations. Similarly to Carion et al. (2020), we used an additional
special pseudo-class ∅ to denote tokens without valid object predictions. Note that as the training is
done in a class-agnostic way via mapping of the base class templates to pseudo-classes (the actual
class information is discarded) the model is capable to generalise to the unseen novel categories.

Following Carion et al. (2020), bipartite matching is used to find an optimal permutation {ŷσi}Ni=1.
Finally, the loss is:

L =

N∑
i=1

λ1LCE(c
s
i , p̂σ(i)(c

s)) + λ2||bi − b̂σ(i)||1 + λ3IoU(bi, b̂σ(i)), (10)

where IoU is the GIoU loss of Rezatofighi et al. (2019) and λi are the loss weights.

Pre-training: Transformers are generally more data hungry than CNNs due to their lack of inductive
bias Dosovitskiy et al. (2020). Therefore, building representations that generalise well to unseen
data, and prevent overfitting within the DETR framework, requires larger amounts of data. To this
end, we used images from ImageNet-100 Tian et al. (2019a) and to some extent MSCOCO, for
unsupervised pre-training where the classes and the bounding boxes are generated on-the-fly using an
object proposal system, without using any labels. Our pre-training is detailed in the appendix.

4 EXPERIMENTS

Datasets: Experiments presented in this work were all conducted using PASCAL VOC Everingham
et al. (2010; 2015) and MSCOCO Lin et al. (2014) datasets. Moreover, ImageNet100 Tian et al.
(2019a), consisting of ∼125K images and 100 categories, is used (without labels) to pre-train our
object detector. PASCAL VOC and MSCOCO are used to train and evaluate few-shot experiments.
Following previous works Kang et al. (2019); Wang et al. (2020); Han et al. (2021), we evaluate
the proposed method on PASCAL VOC 2007+2012 and MSCOCO 2014, using the same data splits
provided by Kang et al. (2019); Wang et al. (2020). Specifically, PASCAL VOC is randomly divided
into three different splits, each consisting of 15 base and 5 novel classes; as is common practice,
training is done on the PASCAL VOC 2007+2012 train/val sets, and evaluation on the PASCAL VOC
2007 test set. Similarly, MSCOCO is split into base and novel categories, where the 20 overlapping
categories with PASCAL VOC are considered novel, while the remainder are the base categories;
following recent convention Kang et al. (2019); Wang et al. (2020); Han et al. (2021), 5k samples
from the validation set are held out for testing, while the remaining samples from both train and
validation sets are used for training.

Evaluation setting: There are currently two widely-used FSOD evaluation protocols. The first
focuses exclusively on novel classes while disregarding base class performance, thus not monitoring
base class catastrophic forgetting. The second, more comprehensive protocol, often called generalised
few-shot object detection (G-FSOD), considers both base and novel classes. The choice of protocol
and, hence, results interpretation, bears special importance for re-training based methods, as general-
izability to base classes might be compromised. Without re-training methods, as FS-DETR, adhere to
the second protocol (G-FSOD) by default, as base class catastrophic forgetting is not applicable.

Baselines: Existing FSOD methods can be broadly categorised into: re-training based, and without
re-training. The latter can handle few-shot detection on the fly at deployment, while re-training based
FSOD methods generally tend to perform better. Re-training based methods can be further subdivided
into “meta-learning” and “fine-tuning” approaches. “Re-training based: meta-learning” approaches
include: FSRW Kang et al. (2019), MetaDet Wang et al. (2019), Meta R-CNN Yan et al. (2019), Xiao
et al. Xiao & Marlet (2020), DCNET Hu et al. (2021), TIP Li & Li (2021) and QA-FewDet Han et al.
(2021). “Re-training based: fine-tuning” methods include: TFA Wang et al. (2020), MPSR Wu et al.
(2020), Fan et al. Fan et al. (2020), CME Li et al. (2021), SRR-FSD Zhu et al. (2021a), Zhang et
al. Zhang & Wang (2021) and DeFRCN Qiao et al. (2021), “Without re-training” methods include:
UP-DETR Dai et al. (2021), Fan et al. Fan et al. (2020) and QA-FewDet Han et al. (2021). Note that
these two last methods can also be re-trained, offering improved accuracy.
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Table 1: FSOD performance (AP50) on the PASCAL VOC dataset. Results with † are from Han
et al. (2021) while those with ‡ were produced by us. Results with ∗ disregard performance on base
classes Qiao et al. (2021). Our approach outperforms all without re-training methods. Moreover, it
provides competitive results compared with other re-training based methods for k = 3, 5, 10, and
even outperforms them for k = 1, 2, i.e. extreme few-shot settings.

Method / Shot Venue Backbone Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Re-training based methods (meta-learning or fine-tuning)

FSRW∗ Kang et al. (2019) ICCV’19 YOLOv2 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet∗ Wang et al. (2019) ICCV’19 VGG16 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN∗ Yan et al. (2019) ICCV’19 RN-101 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA w/cos Wang et al. (2020) ICML’20 RN-101 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
TFA w/cos∗ Wang et al. (2020) ICML’20 RN-101 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Xiao et al. Xiao & Marlet (2020) ECCV’20 RN-101 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
MPSR∗ Wu et al. (2020) ECCV’20 RN-101 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7
Fan et al.† Fan et al. (2020) CVPR’20 RN-101 37.8 43.6 51.6 56.5 58.6 22.5 30.6 40.7 43.1 47.6 31.0 37.9 43.7 51.3 49.8
DCNET Hu et al. (2021) CVPR’21 RN-101 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
TIP Li & Li (2021) CVPR’21 RN-101 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9
CME Li et al. (2021) CVPR’21 RN-101 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
SRR-FSD Zhu et al. (2021a) CVPR’21 RN-101 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
Zhang et al.∗ Zhang & Wang (2021) CVPR’21 RN-101 47.0 44.9 46.5 54.7 54.7 26.3 31.8 37.4 37.4 41.2 40.4 42.1 43.3 51.4 49.6
QA-FewDet Han et al. (2021) ICCV’21 RN-101 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5
DeFRCN Qiao et al. (2021) ICCV’21 RN-101 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
DeFRCN∗ Qiao et al. (2021) ICCV’21 RN-101 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4

Without re-training methods

Fan et al.† Fan et al. (2020) CVPR’20 RN-101 32.4 22.1 23.1 31.7 35.7 14.8 18.1 24.4 18.6 19.5 25.8 20.9 23.9 27.8 29.0
UP-DETR‡ Dai et al. (2021) ICCV’21 DETR-R50 38.2 40.4 44.5 45.8 46.0 20.0 23.6 25.8 28.0 33.9 34.1 35.3 37.0 40.1 40.3
QA-FewDet Han et al. (2021) ICCV’21 RN-101 41.0 33.2 35.3 47.5 52.0 23.5 29.4 37.9 35.9 37.1 33.2 29.4 37.6 39.8 41.5
FS-DETR (Ours) this work DETR-R50 45.0 48.5 51.5 52.7 56.1 37.3 41.3 43.4 46.6 49.0 43.8 47.1 50.6 52.1 56.9

4.1 RESULTS ON PASCAL VOC

Table 1 summarises our results and compares them with the current state-of-the-art on PASCAL
VOC. Experiments for k-shot detection were conducted for three data splits, where k was set to
1, 2, 3, 4, 5, 10 and AP50 values are reported. Note that Table 1 is split into two sections: Methods
at the top require an additional few-shot re-training stage, while those at the bottom, including our
method, do not require any re-training. Here, it can be appreciated that our approach outperforms all
without re-training methods by a large margin, improving the current state-of-the-art Han et al. (2021);
Dai et al. (2021) in any shot and all split experiments by up to 17.8 AP50 points, and, in most cases,
by at least ∼10 AP50 points. Moreover, and contrary to Han et al. (2021), our method can process
multiple novel classes in a single forward pass. Finally, we re-implemented UP-DETR Dai et al.
(2021) for few-shot detection on PASCAL VOC (since there is no publicly available implementation
for few-shot detection or results). Our method largely outperforms it, perhaps unsurprisingly, as the
latter was not developed for few-shot detection, but for unsupervised pre-training.

Importantly, the proposed method provides competitive results or even outperforms re-training based
methods (meta-learned or fine-tuned). Specifically for k = 3, 5, 10, our method provides accuracy
which is on par with that of the most accurate methods (e.g. Li & Li (2021); Li et al. (2021); Zhu et al.
(2021a); Qiao et al. (2021)). However, for k = 1, 2, i.e. on extreme few-shot settings, our method
outperforms all re-training based methods but DeFRCN∗ Qiao et al. (2021). However, DeFRCN∗ is
fine-tuned to optimise novel class performance only. The same method, DeFRCN, when optimised
for both base and novel classes (G-FSOD setting), achieves a more muted performance and still
below FS-DETR (ours) for extreme few-shot settings. Qualitative visualizations in appendix.

4.2 RESULTS ON MSCOCO

Table 2 shows evaluation results for FS-DETR and all competing state-of-the-art methods on
MSCOCO. Similarly to above, Table 2 is split into methods requiring re-training at the top and
those that do not require re-training at the bottom. There, it can be appreciated that FS-DETR
outperforms all comparable state-of-the-art methods Han et al. (2021); Fan et al. (2020) by up to 3.1
AP50 points (1-shot) and, in most cases, by at least∼ 1.1 AP50 points. In our experiments UP-DETR
failed to converge on MSCOCO, hence, results are not included Table 2. We speculate that this might
be due to UP-DETR’s partitioning the input queries by the number query patches, therefore, limiting
the number of tokens query patches interact with. This appears to be too restrictive for MSCOCO.
Moreover, and in line with results observed on PASCAL VOC, FS-DETR achieves competitive
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results to those of re-trained based methods on MSCOCO, a far more challenging dataset. FS-DETR
outperforms all re-training based methods for k = 1, 2, 3, with the exception of DeFRCN∗ Qiao et al.
(2021), while performing comparably for k = 5, 10. Similar to observations from Sec. 4.1, DeFRCN
optimised for both base and novel classes performs below FS-DETR for extreme few-shot settings.

Table 2: FSOD performance on the MSCOCO dataset. Results with † are from Han et al. (2021).
Results with ∗ disregard performance on base classes Qiao et al. (2021). Our method consistently
outperforms the state-of-the-art methods in most of the shots and metrics.

1-shot 2-shot 3-shot 5-shot 10-shot
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Re-trained methods (meta-learning or fine-tuning)

FSRW∗ Kang et al. (2019) – – – – – – – – – – – – 5.6 12.3 4.6
MetaDet∗ Wang et al. (2019) – – – – – – – – – – – – 7.1 14.6 6.1
Meta R-CNN∗ Yan et al. (2019) – – – – – – – – – – – – 8.7 19.1 6.6
TFA w/cos Wang et al. (2020) 1.9 3.8 1.7 3.9 7.8 3.6 5.1 9.9 4.8 7.0 13.3 6.5 9.1 17.1 8.8
TFA w/cos∗† Wang et al. (2020) 3.4 5.8 3.8 4.6 8.3 4.8 6.6 12.1 6.5 8.3 15.3 8.0 10.0 19.1 9.3
Xiao et al.† Xiao & Marlet (2020) 3.2 8.9 1.4 4.9 13.3 2.3 6.7 18.6 2.9 8.1 20.1 4.4 10.7 25.6 6.5
MPSR∗† Wu et al. (2020) 2.3 4.1 2.3 3.5 6.3 3.4 5.2 9.5 5.1 6.7 12.6 6.4 9.8 17.9 9.7
Fan et al.† Fan et al. (2020) 4.2 9.1 3.0 5.6 14.0 3.9 6.6 15.9 4.9 8.0 18.5 6.3 9.6 20.7 7.7
DCNET Hu et al. (2021) - - - - - - - - - - - - 12.8 23.4 11.2
TIP Li & Li (2021) - - - - - - - - - - - - 16.3 33.2 14.1
CME Hu et al. (2021) - - - - - - - - - - - - 15.1 24.6 16.4
SRR-FSD Zhu et al. (2021a) - - - - - - - - - - - - 11.3 23.0 9.8
Zhang et al. Zhang & Wang (2021) 4.4 7.5 4.9 5.6 9.9 5.9 7.2 13.3 7.4 - - - - - -
QA-FewDet Han et al. (2021) 4.9 10.3 4.4 7.6 16.1 6.2 8.4 18.0 7.3 9.7 20.3 8.6 11.6 23.9 9.8
DeFRCN Qiao et al. (2021) 4.8 - - 8.5 - - 10.7 - - 13.6 - - 16.8 - -
DeFRCN∗ Qiao et al. (2021) 9.3 - - 12.9 - - 14.8 - - 16.1 - - 18.5 - -

Methods without re-training

Fan et al.† Fan et al. (2020) 4.0 8.5 3.5 5.4 11.6 4.6 5.9 12.5 5.0 6.9 14.3 6.0 7.6 15.4 6.8
QA-FewDet Han et al. (2021) 5.1 10.5 4.5 7.8 16.4 6.6 8.6 17.7 7.5 9.5 19.3 8.5 10.2 20.4 9.0
FS-DETR (Ours) 7.0 13.6 7.5 8.9 17.5 9.0 9.8 18.5 9.8 10.7 20.5 10.8 11.1 21.6 11.0

Table 3: FSOD performance (AP50) on the PASCAL VOC dataset Novel Set 1 for various template
construction configurations. † - result produced using bounding-box jittering for the patch extraction.

Resolution Pool. type Novel Set 1
1 2 3 5 10

128 global.avg. 42.9 46.0 49.4 50.5 54.0
128 attn. 45.0 48.5 51.5 52.7 56.1
128† attn. 39.0 42.8 44.6 46.4 50.3
96 attn. 43.2 45.7 49.0 50.1 52.9
192 attn. 45.1 48.3 51.0 52.9 57.0

5 ABLATION STUDIES

Herein, we ablate different variations and components of our method, analysing the impact of different
design choices. Unless otherwise specified, we report results on Novel Set 1 on PASCAL VOC. For
more details and discussions see appendix.

Design of template encoder: An important component of our system is the extraction of discrimi-
native prompts from the novel classes’ templates. To this end, we re-use FS-DETR’s input image
CNN encoder. However, to focus on the most important components we used attention-based pooling
instead of simple global average pooling. In Table 3 we report the impact of: (a) resolution, (b)
augmentation level, and (c) pooling type. As the results show, increasing the resolution from 128 to
192px yields no additional gains. This suggests that, at least for the datasets in question, fine grained
details are not quintessential for the identification of the targeted novel class and higher level concepts
suffice. While spatial augmentation generally helps (i.e. for object recognition), we found that adding
noise to the ground truth bounding box of the template at train time leads to lower accuracy. This
makes the problem for the object detector too hard, and impedes convergence. Finally, attentive
pooling can further boost the performance compared with a simpler global average pooling.
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Pre-training: Many FSOD systems use pre-trained backbones on ImageNet for classification.
Deviating from this, we pre-train our system in an unsupervised manner on ImageNet images and
parts of MSCOCO without using the labels. We note that this is especially important for transformer
based architectures which were shown to be more prone to over-fitting due to the lack of inductive
bias Dosovitskiy et al. (2020). As the results from Table 4 show, unsupervised pre-training, can
significantly boost the performance, preventing over-fitting toward the base classes and improving
overall discriminative capacity. To reduce over-fitting the pre-training loss on ImageNet data is applied
during supervised training every 8th iteration. Additional details and experiments in appendix.

Table 4: Few-shot object detection performance (AP50) on the PASCAL VOC dataset on the Novel
Set 1 for models with and without pre-training.

Pre-training Novel Set 1
1 2 3 5 10

19.0 21.1 23.3 24.0 24.6
✓ 45.0 48.5 51.5 52.7 56.1

Auxiliary losses: We explored the impact of using additional auxiliary losses applied to the object
queries, an L2 feature loss and a contrastive loss, where the positive pairs are formed by taking
the input templates with all the object query tokens assigned to it by the Hungarian assignment
algorithm. We did not observe any further gains from the additional losses, suggesting that the
pseudo-classification loss alone suffices for guiding the network.

Impact on individual components: Herein, we analyse the accuracy improvement obtained by
two components of FS-DETR namely the MHCA layer in FS-DETR’s encoder (see Eq. 5), and
the type-specific MLPs (TS-MLP) in FS-DETR’s decoder (see Eq. 9). As Table 5 shows, while
our system, without both components, provides satisfactory results, unsurprisingly, the addition of
TS-MLP further boosts the accuracy. This is expected as the information carried by the object queries
and template tokens is semantically different, so ideally they should be transformed using different
functions. Finally, the MHCA within the encoder injects template-related information early on to
filter or highlight certain areas of the image, and also helps increase the accuracy.

Table 5: Impact of various components on the few-shot object detection performance (AP50) on the
PASCAL VOC dataset (Novel Set 1).

Approach Novel Set 1
1 2 3 5 10

FS-DETR w/o TS-MLP 42.2 46.9 48.3 49.2 51.6
FS-DETR w/o MHCA of Eq. 4 38.1 40.6 41.7 42.2 45.6

FS-DETR 45.0 48.5 51.5 52.7 56.1

6 CONCLUSIONS

In this work we propose FS-DETR, a novel transformer based few-shot architecture, that is simple
yet powerful, while also being very flexible and easy to train. FS-DETR outperforms all previously
proposed methods, thus achieving a new state-of-the-art. In addition to the outstanding results and
discussions presented in Sec. 4, the proposed method can simultaneously predict arbitrary number of
classes, using variable-shots per class, in a single forward pass. These results, in combinations with
the methods formulation, clearly demonstrate not only its performance improvements but also its
high flexibility. Therefore, FS-DETR can uniquely satisfy the outlined FSOD system desiderata (a)
and (b), while at the same time making big improvements toward satisfying (c).

ETHICS STATEMENT

Due to the vast computational resources required, training NNs is energy intensive, hence, potentially
detrimental to the environment. As our approach requires no re-training for novel classes, the power
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and compute requirements of adjusting to new classes is reduced. Due to its algorithmic nature, we
foresee no direct negative applications for our approach. However, similarly to most data-driven
systems, bias from the training data can potentially affect the fairness of the model. As such, we
suggest to take this aspect into consideration when deploying the models into real-world scenarios.
For a more detailed description of the impact and limitations please refer to the appendix.

REPRODUCIBILITY STATEMENT

The basis of the implementation used for all experiments conducted and detailed in this work make
use the Conditional DETR Meng et al. (2021) library (which itself is based on the DETR Carion et al.
(2020) library). Key algorithmic differences are detailed and highlighted in Section 3. Additional
implementation details, including data preprocessing steps as well as pre-training and training hyper-
parameters, are shared in Appendix A and B. To further assist efficient reproduciblily of our work,
the complete code base (training and inference) will be made publicly available.
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A IMPLEMENTATIONS DETAILS

FS-DETR extends Conditional DETR Meng et al. (2021) (see Section 3), and was pre-trained and
trained on a single node with 8 P40 GPUs. Following Dai et al. (2021), the ResNet50 He et al. (2016)
backbone is initialized from SwAV Caron et al. (2020) and kept frozen. Pre-training makes use of
ImageNet-100 without labels, with object proposals detection as a pretext task.

Pre-training hyper-parameters were set to: Batch size of 32 per GPU, AdamW optimizer Loshchilov
& Hutter (2017) with a learning rate of 10−4, frozen backbone CNN, path dropout of 0.1, training for
60 epochs with the learning rate decreased by factor of 10 after 40 epochs. When using larger images
for pre-training (i.e. containing complex scenes) the batch size is decreased to 2.

Training hyper-parameters were set to: Batch size of 2 per GPU, SGD with momentum (0.9) Qian
(1999) with the learning rate initially set to 5e−1, path dropout of 0.1, training for 30 epochs with
the learning rate decreased by a factor of 10 after 20 epochs (and respectively 15 for COCO).
Augmentation followed DETR: input images were resized such that the short axis is 480 at least
and 800 pixels at most, and the long side is, at most, 1333 pixels, and randomly cropped with 0.5
probability.
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Patch augmentation hyper-parameters. The templates are cropped tightly based on the bounding box
and then rescaled to a 128× 128px image. During training we apply the following augmentations:
color jittering, with 0.8 probability and 0.4 intensity, random gray scale (0.2 probability) and Gaussian
blur with a probability of 0.5.

B PRE-TRAINING PROCESS

Transformer based architectures are known to generally be more data-hungry than their homologous
CNNs Dosovitskiy et al. (2020); Carion et al. (2020). To alleviate this, we introduce a label-free
pre-training step that closely mimics the training stage.

More specifically, at train time, for any given input image, we crop a set of patches according to
the object proposals produced by Selective Search Uijlings et al. (2013) 3. Each of these patches
represents an object (belonging to some class) and can be mapped to a pseudo-class, by associating it
to a different pseudo-class embedding. Note, that random patches can be used too, but the former
leads to faster convergence. The goal of the network is to predict the location of these patches (i.e.
object templates). To make the task harder, the patches (templates) are augmented using a set of
random transformations before being passed to the backbone. Finally, the network is trained using a
regression (for the bounding boxes) and a classification loss. As opposed to the supervised training
stage, the classification loss is reduced to a binary classification problem: object/no object. The
model is then trained using the hyper-parameters described in Section A while the ResNet based
backone is initialised from a model pre-trained on Imagenet without supervision (SwAV Caron et al.
(2020)). The process is illustrated in Fig. 2.

Pre-training dataset For our DETR pre-training, we used the images belonging to the base classes
from COCO (60 classes in total) and ImageNet-100 (a subset of ImageNet introduced in Tian et al.
(2019a)). We note the following: firstly, there is no overlap between COCO base classes and VOC
and COCO novel classes. Secondly, ImageNet-100 contains classes that can be matched to 7 out
of 20 VOC classes (bird, cat, dog, boat, car, motorcycle and chair). Specifically, split-1 of VOC
novel classes contains 2/5 classes (bird and motorbike) that overlap with ImageNet-100, split-2 0/5
and split-3 3/5 (boat, cat and motorbike). Please note that NONE of the labels in ImageNet-100 (or
COCO) are used at any stage of the pre-training. While we agree that the underlying data distribution,
even for unsupervised learning is important, judging from the results from Tables 1 and 2 the gains
in absolute terms offered by our approach are consistent across all 3 sets (note that split-2 has no
overlap at all).

We note that, recent state-of-the-art methods (e.g. Fan et al Fan et al. (2020), QA-FewShot Han et al.
(2021), DeFRCN Qiao et al. (2021)) make use of a backbone pre-trained with full supervision on
the entire ImageNet, same which includes all VOC/COCO novel classes. In this regard, we trained
FS-DETR initialized from a backbone pre-trained on the entirety of Imagenet for classification using
full supervision (e.g. same as Fan et al. (2020); Han et al. (2021); Qiao et al. (2021)). Preliminary
results shown in Tab. 6 (which could likely be improved from hyper-parameter optimization) indicate
an overall improvement of approx. 1.5%. This highlights that the pre-training data used in the
proposed work doesn’t offer any advantage over prior art approaches that use fully supervised pre-
trained backbones. Further to this, DeFRCN Qiao et al. (2021) experimented with using a backbone
pre-trained on ImageNet without labels (SwAV weights - same as ours) which resulted in substantially
degraded performance of approx. 5.0%.

Table 6: Impact of different initialisation of backbone on the PASCAL VOC dataset (Novel Set 1).

Approach Novel Set 1
1 2 3 5 10

FS-DETR (Swav) 45.0 48.5 51.5 52.7 56.1
FS-DETR (ImageNet) 47.1 49.9 52.5 53.8 57.0

3Selective Search is a training-free generic region proposal algorithm that computes a hierarchical grouping
of image regions based on color, texture, size and shape, and hence, has no notion of object classes.
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Figure 2: FS-DETR pre-training stage. The pre-training process largely mimics the training stage,
with a few notable differences: (1) no annotations are used, (2) the target bounding boxes are proposed
by selective search or sampled randomly, (3) the templates are sampled from the target image itself
and (4) only two classes are defined - object and no object.

Figure 3: Novel class 1-shot detection examples with FS-DETR. First three columns depict success
cases, while the right-most column failures. Green and red boxes indicate novel and base classes,
respectively. Note that in the top-left image two novel classes are detected simultaneously.

C QUALITATIVE EVALUATION

Fig. 3 shows 1-shot detection examples of FS-DETR, with success cases shown on the first three
columns, and fail cases on the right-most column. The image on top-left of the figure, illustrates
an important and unique property of FS-DETR: Two novel classes coexist in a single image, and
FS-DETR is able to successfully detect both of them at the same time.

Fig. 4 shows the effect of varying the 1-shot template used during novel class detection. There,
smaller images refer to the templates used for 1-shot detection on the paired larger image. From the
left-most two pairs of columns, it can be appreciated that even under large template visual variability,
FS-DETR proves to be extremely robust, with detections hardly affected by the template change. The
right-most illustrates a failure case, where the sofa fails to be detected.
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Figure 4: Effect of different 1-shot template on detection with FS-DETR. Small images indicate the
template used to detect the objects on the larger images. The left-most two pairs of columns illustrate
the robustness to template change, while the right-most column pair illustrates a failure case.

Additionally, in Fig. 5 we visualise the attention weights between the visual prompts and the encoded
image features. Notice that our network learns to attend to parts of the target image that are
semantically similar to the provided templates that are present in the target image.

D DISCUSSION, CHALLENGES AND LIMITATIONS

Herein we offer a pertinent discussion on some things we tried but didn’t work, defining some of
the limitations and challenges that arise within the proposed framework and more so in general for
FSOD using images within DETR framework.

D.1 FEW-SHOT OBJECT DETECTION OBJECTIVE AMBIGUITY

A general limitation of few shot object recognition systems, trained and/or tested using one or more
visual examples is the ill-definess of what represents a class. For example, presenting a template
depicting a dog could require identifying the class “dog”, “bulldog”(i.e. find dogs of a given bred), “a
white dog” etc. While as the number of examples increases the ambiguity decreases, the problem is
not fully solvable within the visual domain. A natural solution to this problem could be provided by
constructing the templates using natural language. While an interesting solution, this goes beyond
the scope of this work.

That being said, to some extent, our approach alleviates parts of this problem: As our model has
to distinguish locally within the set of provided positive (present in the image) and negative (not
present) templates, it can use them to semantically ground the notion of a class, effectively defining
the semantic hierarchy. For example, if all templates are representing different apple varieties, the
model is expected to differentiate between these varieties instead of detecting any apple.

D.2 CHALLENGES WITHIN THE DETR FRAMEWORK

Despite it’s remarkable success and appealing formulation that removes the need of an explicit object
proposal component or post-processing step (i.e. NMS), in the context of few-shot detection some of
this advantages pose additional challenges, some of which we detail bellow. We believe this aspects
could represent potentially interesting future exploration directions.

Semantic misalignment Traditional object detection systems, such as Ren et al. (2015); Redmon
et al. (2016); He et al. (2017) preserve an exact feature alignment between the regressed bounding
box and the semantic information (i.e. the ROI pooling extracts features at the location given by the
proposal). DETR derived approaches however construct their representation gradually by adapting a
set of object queries via self-attention and cross-attention with the encoded features. As each object
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Figure 5: Attention weights between the visual prompts (templates) and the encoded image features
for three randomly sampled target images (left column) from VOC Pascal dataset. Notice that the
network learns to attend to the parts of the image that are semantically close to the presented templates.
For each target image (left column), we show the attention weights generated by four templates.
We observe that for the target image of the first row, only the car template generates attention of
high magnitude at several locations corresponding to the location of the cars in the target image.
Similarly, for the target image of the second row only the horse and the person templates fire at the
corresponding locations in the target image as expected. Similar conclusions can be drawn for the
target image of the last row.

query operates (attends) to the entire image, as opposed to the local ROI, the query can encode
information outside of the predicted bounding box. Thus, we can get to cases where the class may be
correct although the bounding box contains mostly objects of an incorrect category.

Therefore, when we tried to use an external supervised classifier, applied to the image region cropped
based on the predicted bounding box, surprisingly we noticed a deterioration of the performance.
Upon visual inspection we observed a manifestation of the above mentioned phenomena, where the
model was able to predict the correct class despite the fact that the predicted bounding box contained
predominantly content of a different class, while the external supervised classifier was unable to.

Reduced proposal diversity A key characteristic of DETR systems is the removal of an a) external
object proposal generator and b) implicit Non Maximum Suppression (NMS). Upon close inspection
of our system we noticed that as we advance within the transformer based decoder, the bounding
boxes are pruned via self-attention. By the end, despite having 100-300 object queries, most will point
to a very small set of distinct regions of the image, lacking the diversity present in more traditional
systems, such as in Fast RCNN. The consequence of this is a higher likelihood of missing unseen
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classes in limited data scenarios, making the pre-training even more so important to train the built-in
object proposals system.
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