Conlnstruct: Evaluating Large Language Models on
Conflict Detection and Resolution in Instructions

Anonymous ACL submission

Abstract

Instruction-following is a critical capability
of Large Language Models (LLMs). While
existing works primarily focus on assessing
how well LLMs adhere to user instructions,
they often overlook scenarios where instruc-
tions contain conflicting constraints—a com-
mon occurrence in complex prompts. The be-
havior of LLMs under such conditions remains
under-explored. To bridge this gap, we intro-
duce Conlnstruct, a benchmark specifically de-
signed to assess LLMs’ ability to detect and
resolve conflicts within user instructions. Us-
ing this dataset, we evaluate LLMs’ conflict de-
tection performance and analyze their conflict
resolution behavior. Our experiments reveal
two key findings: (1) Proprietary LLMs ex-
hibit strong conflict detection capabilities, with
Claude-3.5-Sonnet and GPT-40 achieving av-
erage Fl-scores of 86.6% and 84.9%, ranking
first and third, respectively. (2) Despite their
strong conflict detection abilities, LLMs rarely
explicitly notify users about the conflicts or re-
quest clarification when faced with conflicting
constraints. These results underscore a critical
shortcoming in current LLMs and highlight an
important area for future improvement when
designing instruction-following LLMs.

1 Introduction

Large Language Models (LLMs) (OpenAl et al.,
2023; Touvron et al., 2023; Chowdhery et al., 2023)
have witnessed significant advancements in recent
years, demonstrating remarkable capabilities in
reasoning (Wei et al., 2022; Wang et al., 2022),
and time-series forecasting (Jia et al., 2024; Zhang
et al., 2024a). A fundamental ability of LLMs is
to follow instructions—generating responses that
align with user-provided instructions. Instruction-
following (Ouyang et al., 2022) has emerged as a
key research focus, playing a critical role in enhanc-
ing the interpretability, controllability, and trustwor-
thiness of LLLMs in real-world applications.

Instruction with Conflicts

Send an email to a software developer asking for a product demo, cnsuring the email
begins with the phrase "I hope this message finds you well" and concludes with "Looking
forward to your response." The email must contain exactly five sentences, with the

second sentence including the keyword "demo" in lowercase and conveying the
definition "a demonstration of a product or service." Tailor the email for a professional
audience, avoiding technical jargon while maintaining a formal tone. Additionally,
provide a brief background about your interest in the product and specify a preferred time
frame for the demo. Finally, the email must include a Chinese idiom. The email must
contain at least 10 sentences. Start the email with an apology or an expression of regret

Resp from GPT-40

Subject: Request for a Product Demo ‘n\nDear [Developer's Name], ‘n\nl hope this
message finds you well. ... Looking forward to your response. \n\nBest regards, \n[Your
Full Name] \n[Your Job Title] \n[Your Company Name] \n[Your Contact Information]

(Resp from Claude-3.5-Sonnet)—

You've asked for exactly 5
sentences, but also specified that the email must contain at least 10 sentences.
Additionally, you've requested to start with "I hope this message finds you well" but also
to begin with an apology or expression of regret.\n\n

‘\nl. Write a 5-sentence email starting with "I hope this message finds you well", or\n2.
Write a 10+ sentence email starting with an apology?\n\nOnce you clarify this, I'll be
happy to draft an email that meets your other requirements, including the lowercase
"demo", Chinese idiom, and professional tone.

Figure 1: An instruction with conflicts from Conlnstruct,
where text in green and red indicate conflicts between
phrase constraints and length constraints, respectively.
The lower part of the figure presents two responses from
GPT-40 and Claude-3.5-Sonnet for the instruction.

Existing instruction-following works primarily
focus on evaluating to what extent LLMs’ outputs
align with user instructions using rule-based and
model-based evaluation methods. For rule-based
evaluation, Zhou et al. (2023a) proposed IFEval, a
benchmark comprising verifiable instructions (e.g.,
“Include the keyword ‘useful’ in your response”),
where a rule-based program can verify whether a
model’s output meets the given instructions. Mean-
while, recent studies suggest that LLLMs can rival
human annotators (He et al., 2024b) and serve as re-
liable evaluators (Zheng et al., 2023). Building on
these findings, model-based evaluation (Chen et al.,
2024; Qin et al., 2024) leverages strong LLMs to
automatically assess whether LLMs’ outputs ad-
here to user instructions. The latest research inte-
grates rule-based and model-based evaluation ap-
proaches (Jiang et al., 2024; Zhang et al., 2024b;
Wen et al., 2024). On the other hand, concurrent
works (Wallace et al., 2024; Zhang et al., 2025;
Geng et al., 2025) evaluate whether LLMs can
follow an instruction hierarchy, where high-level
instructions (e.g., system instructions) take prece-

dence over low-level ones (e.g., user instructions).
Prior works assume that all constraints in the
user instructions are coherent and non-conflicting.
In practice, when users provide long or complex in-
structions, they may unintentionally introduce con-
flicting constraints—requirements that cannot be
simultaneously satisfied by LLMs. Figure 1 illus-
trates an instruction containing two conflicts: one
between phrase constraints and another involving
length constraints. The presence of such conflicts
poses a unique challenge for LLMs. If an LLM gen-
erates a response without notifying the user of these
conflicts (as seen in GPT-40’s response in Figure 1),
the user may not realize that their instruction con-
tains conflicts and the model’s output fails to fully
satisfy the instruction. In such cases, a preferable
conflict resolution behavior is to explicitly inform
the user about the conflicts and request clarifica-
tion before proceeding (as shown in Claude-3.5-
Sonnet’s response in Figure 1). Despite the grow-
ing interest in instruction-following, no prior work
has systematically evaluated LLMs’ performance
when faced with user instructions with conflicts.
To bridge this gap, we introduce ConInstruct',
a novel dataset designed to evaluate LLMs on
Conflicting Instructions that contain diverse con-
straints. Specifically, our dataset covers six dis-
tinct tasks, with each instruction incorporating six
types of constraints: content, keyword, phrase,
length, format, and style constraints. Furthermore,
we design 7-9 different types of conflicts per in-
struction, including both intra-constraint conflicts
(e.g., conflicts between phrase constraints) and
inter-constraint conflicts (e.g., conflicts between
keyword and phrase constraints) (see conflicts in
Figure 2). Using this dataset, we systematically
analyze LLMs’ performance in conflict detection
and examine their behaviors in conflict resolution.
Conflict detection assesses how well LLMs can
identify conflicts within a given instruction. To
evaluate this, we introduce a new constraint into a
conflict-free instruction, ensuring it conflicts with
an already present constraint. We then ask LLMs to
determine whether the instruction contains conflict-
ing constraints. Our results show that proprietary
LLMs exhibit strong conflict detection capabilities,
with Claude-3.5-Sonnet and GPT-40 achieving av-
erage Fl-scores of 86.6% and 84.9%, respectively,
the best and third-best performing models. No-
tably, as the number of conflicts in an instruction

'We will release our code and dataset in the future.

increases, LLLMs exhibit improved conflict detec-
tion ability, aligning with our intuitions.

Conflict resolution, on the other hand, inves-
tigates how LLMs behave when faced with in-
structions containing conflicts. While LL.Ms per-
form well in conflict detection, our findings in-
dicate that they often generate responses without
explicitly informing the user about conflicts. For
example, when an instruction contains 1-2 con-
flicts, GPT-40 will directly generate a response
in 97.5% of cases, satisfying only a subset of the
constraints but failing to notify the user of the con-
flicts. Even the best-performing model, Claude-
3.5-Sonnet, explicitly alerts users to conflicts in
only 32% of cases—either by (1) requesting fur-
ther clarification (16.5%) or (2) resolving the con-
flicts autonomously and responding to the resolved
instruction (15.5%). Moreover, as the number of
conflicts in an instruction increases, strong LLMs
(Claude-3.5-Sonnet, Claude-3.5-Haiku, and GPT-
40) become more likely to acknowledge the exis-
tence of conflicts in their responses.

Our contributions can be summarized as follows:
(1) We introduce Conlnstruct, a novel dataset de-
signed to evaluate LLM performance in handling
user instructions with conflicts. (2) We conduct an
in-depth study on conflict detection, demonstrat-
ing that proprietary LLMs exhibit strong detection
capabilities. (3) We analyze the conflict resolu-
tion behaviors exhibited by LLMs when encoun-
tering conflicting instructions. Our findings reveal
that while proprietary LLMs exhibit strong con-
flict detection capabilities, they often fail to convey
conflicts explicitly in their responses, highlight-
ing an important area for future improvement in
instruction-following LLMs.

2 Conlnstruct Benchmark

2.1 Dataset Construction

As shown in Figure 2, the construction of Conln-
struct consists of three steps: preparing seed in-
structions, expanding them with constraints, and
introducing conflicts into the expanded instructions.
Below, we provide further details on each step.

Preparing Seed Instructions. We begin by man-
ually curating 100 seed instructions, which serve
as fundamental instructions without additional con-
straints. In designing these seed instructions, we
prioritize task and domain diversity to ensure broad
coverage across various scenarios. As shown in
Figure 3, Conlnstruct comprises six common NLP

Seed Instruction
Send an email to a software developer asking for a product demo.

Expand Seed Instruction

v
Instruction with Constraints

Send an email to a software developer asking for a product demo, cnsuring the
email begins with the phrase "I hope this message finds you well" and concludes
with "Looking forward to your response.” The email must contain exactly five
sentences, with the second sentence including the keyword "demo" in lowercase

the email for a professional audience, avoiding technical jargon while
maintaining a formal tone. Additionally, provide a brief background about your
interest in the product and specify a preferred time frame for the demo. Finally,
the email must include a Chinese idiom.

Add Conflicts
and conveying the definition "a demonstration of a product or service." Tailor |=====—====3>| i Conflicts between Phrase Constraints and Content Constraints:

Conflicts between Phrase Constraints:

- Start the email with an apology or an expression of regret

- Ensure the email begins with the phrase "I hope this message finds you well."

Conflicts between Length Constraints:
- The email must contain at least 10 sentences,

- The email must contain exactly five sentences.

- Ensure the email begins with the phrase "I hope this message finds you well."

- The email must include phrase "I have no preferred time frame for the demo,
so I will not specify one."

- Specify a preferred time frame for the demo.

Figure 2: The construction process of the Conlnstruct Benchmark: We first prepare a seed instruction, then add
constraints to it. Finally, we introduce conflicts into the expanded instructions. Due to space limitations, we
showcase only four conflicts. In each conflict pair, the first constraint is newly introduced, while the second comes
from the original instruction. These two constraints are mutually conflicting.

Economics

=)
2 o, (= Travel
% *
R @
4% 5 2
GO R
S, % 8§ °
% % %
5y &
& %
Sey
C/encep
/Ctl'o
A
dventyrg
Education
Sports & Social Dynami
Technology Articyg w, ECDHOM,CS&E:; ynamics
ily U it) ronment
paily Wi ng Science & 7
ce 5
rome” < 2, S/, "olog,
© 5 G A
5 8P o 4 % Ooug
\‘_a“ ~ —70\,‘0/ Se /776/”
%
o 38\ % % % o
. = ©,
History % \::f ¢% ¢)f§ %,
e % o
= %
® ‘»
m
o
=
=
a

Figure 3: Task and domain distribution of ConlInstruct.
The size of each task/domain sector reflects its propor-
tion in the dataset.

tasks: email writing, plan generation, story gen-
eration, open-domain question answering (QA),
review writing, and article writing. These tasks
span 35 scenario-specific domains, including travel,
work, health, finance, technology, and history.
Overall, the seed instructions provide a diverse set
of tasks and scenarios.

Constraint Types. We now introduce the con-
straints used to expand seed instructions. Follow-
ing previous works on instruction-following (Jiang
etal., 2024; He et al., 2024a), we design six widely-
used constraint types: Content Constraints re-
quire the output to include specific details related
to the content, such as reasons, purposes, topics, or
background information. Keyword Constraints
enforce the inclusion of specific keywords in the
output or specify constraints on their part of speech
or meaning (He and Yiu, 2022). Phrase Con-
straints mandate the presence of specific phrases
or sentences in the output. Length Constraints im-

pose restrictions on the length of the output, such
as word count, sentence count, or paragraph count.
Format Constraints specify the format of the out-
put (e.g., JSON, Markdown) or its language format
(e.g., requiring the output to be entirely in English).
Style Constraints control aspects such as senti-
ment, readability, and overall tone of the output.
Further details on these constraint types are pro-
vided in Section A.

Expanding Seed Instructions. We leverage
GPT-4o to inject constraints into seed instructions.
To enhance constraint diversity, we require GPT-40
to incorporate all six types of constraint into each
seed instruction. See Figure 2 for an example of
an expanded instruction. The prompt used for this
expansion is detailed in Table 5.

Conflict Types. When designing conflicting con-
straints, we prioritized the feasibility of evaluat-
ing constraint satisfaction using LLMs or auto-
mated programs. To this end, we define nine types
of conflicts based on six widely used constraints
(Jiang et al., 2024; He et al., 2024a), categorized
into six intra-constraint conflicts and three inter-
constraint conflicts. Intra-constraint conflicts oc-
cur within the same constraint type, including con-
flicts within Content Constraints (CC), Keyword
Constraints (KK), Phrase Constraints (PP), Length
Constraints (LL), Format Constraints (FF), and
Style Constraints (SS). Inter-constraint conflicts oc-
cur between different constraint types, including
conflicts between Keyword and Phrase Constraints
(KP), Phrase and Content Constraints (PC), and
Phrase and Style Constraints (PS). Further details
on these conflict types are provided in Section B.

Adding Conflicts. We use GPT-40 to introduce
conflicting constraints into the expanded instruc-

Basic Statistics

Conflict Distribution

Inst. Word Sent.

CT CFT |CC KK PP LL FF SS

KP PC KP

100 1389 6.4 6

8.6 ‘100 100

100 100 100 100 100 94 70

Table 1: Conlnstruct Statistics. ‘Inst.”, “Word’, ‘Sent.”, ‘CT’, and ‘CFT’ denote the number of expanded instructions,
average words, sentences, constraint types, and conflict types per instruction. The right half of the table shows the

number of conflicts for each conflict type.

tions. To better control the number of conflicts in
each instruction, we prompt the model to generate
conflict pairs rather than directly injecting conflict-
ing constraints into the instructions. Each conflict
pair consists of two constraints: one extracted from
the expanded instruction and another, newly con-
structed by GPT-40, that directly contradicts the
former. We instruct GPT-40 to generate one con-
flict pair for each of the nine predefined conflict
types. Figure 2 illustrates four conflict pairs corre-
sponding to an expanded instruction. The prompt
used to add conflicts is provided in Table 6.

2.2 Quality Control

To ensure the data quality of Conlnstruct, we use a
two-step verification process for each instruction.
In the first step, two annotators refine the expanded
instructions and conflicts generated by GPT-40. For
expanded instructions, they assess the reasonable-
ness and correctness of constraints, correcting any
unreasonable or erroneous ones. They also check
whether the expanded instructions include all six
types of constraints and add any missing ones. For
conflicts, annotators examine whether newly in-
troduced constraints are indisputably in conflict
with the constraints in expanded instructions. Any
ambiguous conflicts are revised accordingly. For
example, if the constraint in an expanded instruc-
tion states that “The email should contain 150-200
words”, and a new constraint states that “The email
must be brief,” the conflict is ambiguous because
“brief” lacks a clearly defined word limit. Anno-
tators also ensure that all types of conflicts are
covered and construct any missing ones. In the
second step, a third annotator? reviews the revised
instructions and conflicts, removing any constraints
or conflicts they deem unreasonable.

2.3 Dataset Statistics

Table 1 presents the basic statistics of the expanded
instructions in Conlnstruct. Each instruction con-
tains six types of constraints and an average of
8.6 conflict types. In the conflict detection and

2All annotators are college students and independent of
our research.

resolution experiments, we construct conflicting
instructions by combining conflicts with expanded
instructions. Specifically, we append the new con-
straints from the conflicts directly to the end of
the expanded instructions. This approach allows
us to generate a sufficient number of instructions
with varying numbers of conflicts. For example,
when the number of conflicts is set to one, we can
construct a total of 864 conflicting instructions.

3 Experiment Setup

We will introduce the common experiment setup
for conflict detection and conflict resolution.

3.1 Preparing Instructions with Conflicts

For each task, we first evaluate LLMs on instruc-
tions with a single conflict and then analyze their
behaviors on instructions with multiple conflicts.

Instructions with a Single Conflict. As in-
troduced in Section 2.3, each expanded instruc-
tion contains n different types of conflicts (7 <
n < 9). For each instruction I; € Zy (Zy de-
notes the set of conflict-free expanded instruc-
tions from Conlnstruct) and its corresponding
conflicts {c1,ca,...,¢,}, we append each con-
flict to I;, constructing n different instructions
{Li1, Lig2, ..., I}, each containing a distinct type
of conflict. Based on the conflict distribution in Ta-
ble 1, we generate a total of 864 instructions, each
containing a single conflict. We denote the sets
of instructions containing specific conflict types
asZoo,Ikk, ..., Lk p, where CC, KK, and KP
refer to the conflict types defined earlier. We then
combine Z; with the conflicting instructions to
form nine distinct experiment subsets:

Scc =ToUZcc, ..., Skp=ToUIgp.
Each subset consists of 100 conflict-free instruc-
tions (Zp) and a balanced number of instructions
containing a single conflict. The subset sizes are as
follows: Scc,Skk,Spp,Sir,SFr,Sss,Skp
each contain 200 instructions, while Spc and S p
contain 194 and 170 instructions, respectively.

Models | CC KK PP LL FF SS KP | PC PS |IntraA | InterA Average
Random Guess ‘ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 ‘ 492 452 50.0 ‘ 48.1 49.4
>, GPT-4o (2024-11-20) 919 913 887 8381 79.8 89.8 751 | 837 76.1 88.3 78.3 84.9
5 GPT-40-mini (2024-07-18) 87.7 862 872 842 836 867 769 | 838 759 85.9 78.9 83.6
% Claude-3.5-Sonnet (2024-10-22) | 95.7 93.1 93.1 90.5 905 93.1 60.3 | 89.8 73.6 92.7 74.6 86.6
= Claude-3.5-Haiku (2024-10-22) 925 882 919 854 819 925 705 | 851 774 88.7 77.6 85.0
£ Gemini-1.5-Pro-Latest 735 726 735 735 726 735 73.1 | 713 654 73.2 69.9 72.1
Gemini-1.5-Flash-Latest 68.7 67.8 687 683 67.8 683 674 | 664 60.6 68.3 64.8 67.1
Meta-Llama-3.2-1B-Instruct 38.7 288 288 333 322 344 344|263 390 32.7 332 329
Meta-Llama-3.2-3B-Instruct 495 463 463 369 38.7 396 413 | 526 432 429 45.7 43.8
o Meta-Llama-3.1-8B-Instruct 709 683 683 633 656 667 627 | 689 58.8 67.2 63.5 65.9
E Ministral-8B-Instruct-2410 679 693 693 669 650 683 679 | 679 584 67.8 64.7 66.8
2 Qwen2.5-0.5B-Instruct 36.2 422 43,1 48.6 477 412 431 | 322 422 432 39.2 41.8
$ Qwen2.5-1.5B-Instruct 365 37.6 33.1 246 331 331 319 | 357 299 33.0 32.5 32.8
8- Qwen?2.5-3B-Instruct 59.7 56.1 546 459 50.0 484 546 | 629 469 52.5 54.8 53.2
Qwen?2.5-7B-Instruct 763 654 628 619 449 592 415 | 662 429 61.8 50.2 57.9
Qwen2.5-14B-Instruct 90.2 802 795 795 658 81.6 577 | 837 643 79.5 68.6 75.8
Qwen2.5-32B-Instruct 938 89.1 834 786 63.1 854 394 | 792 545 82.2 57.7 74.1

Table 2: Conflict detection results (%) of LLMs on different subsets, each containing instructions with a single
type of conflict. Here, conflict types refer to subsets that contain the corresponding conflict, e.g., CC denotes Sc¢.
‘IntraA’ and ‘InterA’ denote the average performance across subsets of intra-constraint and inter-constraint conflicts,
respectively. The reported metric is the F1-score (F1). The top two results among LLMs are highlighted in red and
blue, respectively. Parenthesized numbers indicate specific dated snapshots of proprietary LLMs.

Instructions with Multiple Conflicts. To con-
struct instructions with & constraints (kK €
{1,2,3,4,5,6}), for each instruction I; € Z, we
randomly select k& conflicts from its corresponding
conflict set {c1, ca, ..., ¢y}, shuffle them, and ap-
pend them to I;. Due to computational constraints,
we generate a single instruction with & conflicts for
each I;. This process results in the set Z, which
contains 100 instructions, each with k conflicts.

We will evaluate LLLM performance on conflict
detection and resolution across these subsets.

3.2 Evaluation Models

We evaluate a range of models for conflict de-
tection and resolution, categorizing them into
two primary groups: (1) Six Proprietary LLMs,
including GPT-40 (gpt-40-2024-11-20), GPT-40-
mini (gpt-40-mini-2024-07-18) (OpenAl et al.,
2023), Claude-3.5-Sonnet (claude-3-5-sonnet-
20240620), Claude-3.5-Haiku (claude-3-5-haiku-
20240620) (Anthropic, 2024), Gemini-1.5-Pro-
Latest (gemini-1.5-pro-latest), and Gemini-1.5-
Flash-Latest (gemini—1.5—ﬂash—latest)3 (Reid et al.,
2024). (2) Ten Open-source LLMs, including
Meta-Llama-3.2-1B-Instruct, Meta-Llama-3.2-3B-
Instruct, Meta-Llama-3.1-8B-Instruct (Dubey et al.,
2024), Mistral-8B-Instruct-2410 (Mistral, 2023),
and Qwen2.5-[0.5, 1.5, 3, 7, 14, 32]B-Instruct
(Yang et al., 2024). For all models, we set the
maximum output length to 2048 tokens and use a
temperature of O to ensure deterministic outputs.

3We used the Gemini-1.5 API in January 2025.

4 Conflict Detection

In this section, we explore the conflict detection
task, which evaluates whether LLMs can identify
conflicting instructions. Given an instruction /, the
conflict detection task is formulated as a function
f(I) € {Yes, No}, where f can be instantiated by
an LLM. The prompt used for conflict detection is
provided in Table 7.

4.1 Experiment Results on Instructions with a
Single Conflict

Table 2 shows the conflict detection performance
of various models. Our key findings are:
(1) Proprietary models excel in conflict detection.
Claude-3.5-Sonnet and Claude-3.5-Haiku achieve
the highest average F1 scores of 86.6% and 85.0%,
respectively, followed closely by GPT-40 at 84.9%.
(2) Open-source models with fewer than 7B
parameters struggle with conflict detection.
Models such as Meta-Llama-3.2-3B-Instruct and
Qwen2.5-1.5B-Instruct underperform relative to
random guessing across most conflict types, indi-
cating their inability to detect conflicts effectively.
(3) Detecting intra-constraint conflicts is eas-
ier than inter-constraint conflicts. For in-
stance, Claude-3.5-Sonnet scores 92.7% on intra-
constraint conflict subsets but only 74.6% on inter-
constraint conflict subsets. This pattern is con-
sistent with other strong models, suggesting that
intra-constraint conflicts are more recognizable
than inter-constraint conflicts.

These findings highlight the strength of propri-
etary LLMs in conflict detection and the challenges

100% Ty N

80%

60%

40% Llama-3.2-3B —4— Ministral-8B Qwen2.5-7B
—#— Llama-3.1-8B Qwen2.5-3B —o— Qwen2.5-32B

0
20% 2 3 4 5 6

Figure 4: Conflict detection results of LLMs on dif-
ferent subsets Z;,, where each instruction contains k
conflicts. The x-axis represents the number of conflicts
per instruction. The reported metric is Recall.

faced by smaller open-source models.

4.2 Experiment Results on Instructions with
Multiple Conflicts

Figure 4 illustrates the conflict detection perfor-
mance of various LLMs as the number of con-
flicts in instructions increases. As the number
of conflicts within an instruction grows, mod-
els generally exhibit improved detection per-
formance. This trend is particularly evident in
Qwen2.5-[7, 32]B. However, smaller open-source
models struggle with conflict detection. Even
when instructions contain multiple conflicts, mod-
els with fewer than 7B parameters, such as LLaMA-
3.2-3B and Qwen2.5-3B, exhibit lower recall in
identifying conflicts. This suggests that smaller
models may lack the necessary reasoning capacity
to detect conflicting constraints.

5 Conflict Resolution

In this section, we examine how LLMs handle in-
structions with conflicting constraints, simulating
real-world scenarios where user instructions con-
tain mutually contradictory requirements. We first
observe LLMs’ behaviors in response to such con-
flicts, and then analyze the effect of conflicting
constraints on the original conflict-free constraints.

5.1 Analysis on Conflict Resolution Behaviors

Typical Conflict Resolution Behaviors. In Sec-
tion 3.1, we create six subsets 7;,, where each in-
struction contains k conflicts. We feed these con-
flicting instructions into LLLMs and analyze their re-
sponses, classifying their behaviors into four types:
1. Conflict Unacknowledged: The model does not
indicate the presence of conflicts in its response
and directly provides a response to the instruction.
2. Conflict Acknowledged, Clarification Re-
quested: The model recognizes that the instruction
contains conflicts, refuses to respond, and explic-
itly asks the user for clarification.

3 Conflict Acl Clarification Requested 3 Conflict Unacknowledged
[Conflict Acknowledged, Autonomously Resolved [Other Behaviors
100% T —9

80% 3% | [325%)

64%
60% —— |16%

17.5%)
40% —

7%
85.5%) 04% | [90.5%)

197.5%| 99.5% [99.5%| |100%

115.5%) 1 [14.0%|
20% Bas | 4% %

o 116.5%] % 0% | 18% e 57|
1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6
Claude-3.5-Sonnet Claude-3.5-Haiku GPT-40 Qwen2.5-32B
Figure 5: Distributions of conflict resolution behaviors
exhibited by different LLMs when responding to instruc-

tions with varying numbers of conflicts.

3. Conflict Acknowledged, Autonomously Re-
solved: The model identifies conflicts, resolves
them on its own, and provides a response to the
resolved instruction.

4. Other Behaviors: The model refuses to respond
for reasons unrelated to conflicts.

The first behavior is particularly problematic, as
the model fails to inform users of conflicts while
generating a response that satisfies only a subset
of constraints. This may mislead users into ac-
cepting incomplete or incorrect responses without
realizing that their instruction contains conflicts. In
contrast, Behaviors 2 and 3 explicitly acknowledge
the conflicts. Behavior 3 autonomously resolves
them, while Behavior 2 seeks clarification from
users. Among these, Behavior 2 is the most desir-
able, as it ensures transparency and allows users to
control the conflict resolution process.

Distribution of Conflict Resolution Behaviors.
To systematically analyze LLM behavior, we use
GPT-40 to assign behavior labels to 2,400 re-
sponses from four LLMs (see Table 9 for the eval-
uation prompt). To check the quality of GPT-40’s
assessment, we manually annotate behavior labels
for 100 responses, achieving 98% agreement with
GPT-40’s judgments. Figure 5 presents the distri-
bution of conflict resolution behaviors exhibited by
different LLMs when responding to instructions
with varying numbers of conflicts. We summarize
the key findings as follows:

(1) GPT-40 and Qwen2.5-32B Predominantly
Exhibit Behavior 1: However, this does not imply
that these LLMs lack the ability to detect conflicts.
As shown in Figure 4, Qwen2.5-32B can identify
conflicts with near 100% accuracy when more than
two conflicts are present in an instruction. Despite
their conflict detection capabilities, they fail to
explicitly acknowledge conflicts in most cases.
(2) Claude-3.5 models exhibit conflict-aware be-
havior that scales with the number of conflicts.
In Claude-3.5-Sonnet, the combined proportion of

Behaviors 2 and 3 increases from 32.0% when han-
dling instructions with 1-2 conflicts to 64.0% when
handling instructions with 5-6 conflicts. A similar
trend is observed in Claude-3.5-Haiku. However,
despite the presence of multiple conflicts in instruc-
tions, Behavior 1 still constitutes a significant pro-
portion of Claude-3.5 models’ responses.

These findings underscore the necessity of en-
hancing LLMs to adopt safe conflict resolution
behaviors when faced with conflicts, which is
essential for ensuring reliable responses.

Model GP ‘ T Zo

| B, B2t B3 B4 |B5T B6 | "
GPT-40 .); ‘ 947 916 (l) (lJ 1(2? 42) ‘81_.4
GPT-40-mini ‘); ‘ 9_1 906 8 3 ‘ lf70 SO? ‘77_.1
Claude-3.5-Haiku) ‘ Fo RS ‘ EA ‘81_,6

Table 3: Distribution (%) of LLM behaviors with or
without the guiding prompt (GP) designed to detect and
resolve instruction conflicts using Behavior 2. Here, B
refers to behavior types. Z; and Z represent instructions
with one conflict and without conflicts, respectively. For
conflict-free instructions (Zy), we report two types of
model behaviors: Behavior 5 (LLMs determine that
the instruction has no conflict and executes it directly)
and Behavior 6 (LLMs incorrectly detect conflicts and
unnecessarily asks for clarification). F1 denotes the
F1 score of LLMs in identifying instruction conflicts
when using the GP. Results highlighted in green and red
indicate whether the behavioral changes meet or fail to
meet expectations, respectively.

5.2 Prompting LLMs to Resolve Instruction
Conflicts Using Desired Behaviors

LLMs often fail to explicitly acknowledge conflict-
ing instructions. This study investigates whether
prompt engineering can guide LLMs to identify
and resolve such conflicts according to desired be-
havioral patterns. To explore this, we prepend user
instructions with the prompt designed to detect and
resolve instruction conflicts with Behavior 2, as
detailed in Table 8. As shown in Table 3, this
prompt can effectively induce LLMs to adopt the
predefined desired Behavior 2 (acknowledging con-
flict and requesting clarification). However, it also
causes LLMs to behave overly conservatively, ask-
ing for clarification even when no conflict exists
(Behavior 6), thereby degrading the user experi-
ence. These findings suggest that while prompt
engineering can influence conflict resolution be-
havior, it alone is insufficient for achieving both

Constraints \ Content Keyword Phrase Style Length Format

Consistency‘ 92% 88% 100% 92% 96% 100%

Table 4: Consistency between GPT-40 and human evalu-
ations across different constraint types in the instruction-
following task.

desired conflict resolution and accurate execu-
tion of non-conflicting instructions.

5.3 Analysis on Constraint Priority

Constraint-Following Ability of LLMs on
Conflict-Free Instructions. We first feed each
conflict-free instruction I; € Zy into LLMs and
evaluate their Constraint Satisfaction Rate (CSR)
in the absence of conflicting constraints. CSR is
defined as follows:

1 N I '
CSR:MZZIZ?, (1)

i=1 j=1

where [ZJ = 1 if the j-th constraint of the i-th in-
struction is satisfied and Iij = 0 otherwise. Here,
l; denotes the number of constraints in I;, N repre-
sents the number of instructions, and M is the total
number of constraints across all instructions.

We use GPT-4o to evaluate whether the model’s
output satisfies the specified constraints (the evalu-
ation prompt is shown in Table 10). To assess the
evaluation quality of GPT-40, we manually labeled
150 constraints and then verified whether each con-
straint was satisfied in LLMs’ responses. Table
4 shows that automatic evaluation aligns closely
with human judgment. Figure 6 presents the CSR
results of seven LLMs across different constraint
types, revealing a clear performance pattern: the
CSR score is notably lowest for length constraints
but higher for the other five constraint types.

Impact of Conflicting Constraints on LLMs’
Constraint-Following Ability. As shown in Fig-
ure 5, when an instruction contains only a few
conflicts, LLMs predominantly exhibit Behavior
1, meaning they tend to satisfy some of the con-
straints in the instruction. To further investi-
gate how Newly introduced conflicting Constraints
(NC) affect LLMs’ ability to adhere to Original
Constraints (OC), we focus on instructions con-
taining a single conflict. Given computational con-
straints, we examine three types of conflicts: CC,
KK, and PP. To examine the effect of NC’s position,
we construct two subsets for each conflict type:

e NCA subsets (Zcc, Ik i, Zpp): NC is intro-
duced after OC.

Content

@ OoCw/oC 3 OCw/NCA [OCw/NCB

85%
Style
so%
—— GPT-do

GPT-do-mini 5%

o
—= Claude-3.5-Sonnet
—— Claude-3.5-Haiku
-~ Llama-3.1-88
—-= Ministral-88
Qwen2.5-32B

56% 5%

1

oe% 48%
79% 46%
72%

67% 65% 40%

8%

|

7948%

il -

4%

|

O NCw/NCA 3 NCw/NCB
3%

ikl

40 it
ormat T gerao?

Length

Qaude 3 daude

o€ c el 5188 188 T a0 R
Q O Caute 3 Zraud

328 anet, ok, 188 | 188 . 378
ame3 s wen2> 55003 5 a3 xral 2.5

[ame > wint e

(a) Constraint satisfaction rates of OC (b) Constraint satisfaction rates of NC
Figure 7: The impact of the order of NC on the constraint satisfaction rates

Figure 6: CSR results of various LLMs of both OC and NC. ‘w/o C* denotes the absence of conflicts, while ‘NCA’

across different constraint types.

* NCB subsets (Z(., Iy s, L p): NC is intro-
duced before OC.

Each subset contains 100 single-conflict instruc-
tions. We input these into LLMs and use GPT-40
to evaluate whether their responses satisfy OC or
NC (see Table 11 for the evaluation prompt). To
validate the reliability of GPT-40’s assessment, we
manually annotated 100 conflicting cases, achiev-
ing 90% agreement with GPT-40’s judgments.
Figure 7(a) shows the impact of NC on LLMs’
ability to satisfy OC. The results reveal the follow-
ing key observations: (1) NC significantly reduces
OC satisfaction rates, suggesting that newly intro-
duced constraints interfere with previously given
ones. (2) The order of NC matters. OC is more
likely to be followed when NC appears before OC
rather than after it. This suggests that the later a
constraint appears in an instruction, the more
likely it is to be followed. As shown in Figure 7(b),
NC is more likely to be followed when it appears
later (NCA) rather than earlier (NCB), further rein-
forcing the idea that constraints appearing later
in an instruction are more likely to be satisfied.

6 Related Work

6.1 Controllable Text Generation

Controllable text generation focuses on guiding
language models to generate text with specific at-
tributes, such as sentiment (Keskar et al., 2019;
Dathathri et al., 2020), lexical constraints (He,
2021; He and Li, 2021; He et al., 2022), length
(Kikuchi et al., 2016; Fan et al., 2018). Recent
studies have constructed data based on these con-
trollable tasks to evaluate (Zhou et al., 2023a; Sun
et al., 2023) or enhance the instruction-following
ability of LLMs (Zhou et al., 2023b). Unlike prior
work, which assumes that all constraints within in-
structions are consistent, we assess LLMs’ ability
to detect and resolve conflicting constraints, offer-
ing new insights into their behavior when handling

and ‘NCB’ indicate that NC appears after and before OC, respectively.

instructions with conflicts.

6.2 Conflict Detection

Conflict detection has been extensively studied in
natural language inference (Bowman et al., 2015;
Williams et al., 2018) and fact verification (Thorne
et al., 2018), aiming to detect contradictions be-
tween two statements or between claims and exter-
nal evidence sources. More recently, research has
expanded to detecting conflicts among retrieved
documents (Jiayang et al., 2024), or discrepan-
cies between LLMs’ parametric knowledge and
retrieved documents (Chen et al., 2022; Neeman
et al., 2023; Xie et al., 2024). Meanwhile, hallu-
cination detection in LLMs (Manakul et al., 2023;
Min et al., 2023) investigates false or misleading
content generated by LLMs. While these studies
explore different aspects of conflict detection, they
do not focus on conflicting instructions where mul-
tiple constraints contradict each other. Our work
extends beyond these domains by systematically
evaluating how LLMs detect and resolve explicit
conflicts within user instructions.

7 Conclusion

We introduce Conlnstruct, a benchmark designed
to evaluate LLMs’ ability to detect and resolve con-
flicting constraints within instructions. Our find-
ings reveal that while proprietary LLMs demon-
strate strong conflict detection capabilities, they
often fail to explicitly communicate conflicts to
users, instead generating responses that only par-
tially satisfy the given constraints. This highlights
a critical gap in instruction-following: despite rec-
ognizing conflicts, LLMs struggle to transparently
convey them. Future research should focus on en-
hancing LLMs’ ability to explicitly notify users
of conflicts and seek clarification, improving their
reliability in real-world applications that demand
precise adherence to instructions.

8 Limitations

Despite the insights provided by Conlnstruct, our
study has several limitations. While our benchmark
covers a diverse range of constraints and conflicts,
it may not fully encompass all possible forms of
instruction inconsistencies. In designing conflict-
ing constraints, we prioritized the feasibility of
evaluating constraint satisfaction using LLMs or
automated programs. This consideration led us to
avoid overly complex constraints and ambiguous
conflicts. Another limitation is that our dataset pri-
marily focuses on text-based instructions, restrict-
ing its applicability to multimodal scenarios where
conflicts may arise in image, audio, or video-based
instructions. Future work should explore extend-
ing our benchmark to assess how LLMs handle
conflicting constraints in multimodal settings.

References

Al Anthropic. 2024. Claude 3.5 sonnet. Anthropic Al

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP, pages 632-642, Lisbon, Portugal. Asso-
ciation for Computational Linguistics.

Hung-Ting Chen, Michael Zhang, and Eunsol Choi.
2022. Rich knowledge sources bring complex knowl-
edge conflicts: Recalibrating models to reflect con-
flicting evidence. In EMNLP, pages 2292-2307, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and
Zhendong Mao. 2024. Benchmarking large language
models on controllable generation under diversified
instructions. In AAAI, volume 38, pages 17808—
17816.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
et al. 2023. Palm: Scaling language modeling with
pathways. Journal of Machine Learning Research,
24(240):1-113.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
ICLR.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Angela Fan, David Grangier, and Michael Auli. 2018.
Controllable abstractive summarization. In Proceed-
ings of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 45-54, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Yilin Geng, Haonan Li, Honglin Mu, Xudong Han, Tim-
othy Baldwin, Omri Abend, Eduard Hovy, and Lea
Frermann. 2025. Control illusion: The failure of in-
struction hierarchies in large language models. arXiv
preprint arXiv:2502.15851.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin
Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang, and
Yanghua Xiao. 2024a. Can large language models un-
derstand real-world complex instructions? In AAAI,
volume 38, pages 18188-18196.

Xingwei He. 2021. Parallel refinements for lexically
constrained text generation with BART. In EMNLP,
pages 8653—-8666, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xingwei He, Yeyun Gong, A-Long Jin, Weizhen Qi,
Hang Zhang, Jian Jiao, Bartuer Zhou, Biao Cheng,
Sm Yiu, and Nan Duan. 2022. Metric-guided distilla-
tion: Distilling knowledge from the metric to ranker
and retriever for generative commonsense reasoning.
In EMNLP, pages 839-852, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Xingwei He and Victor OK Li. 2021. Show me how to
revise: Improving lexically constrained sentence gen-
eration with xlnet. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12989-12997.

Xingwei He, Zhenghao Lin, Yeyun Gong, A-Long Jin,
Hang Zhang, Chen Lin, Jian Jiao, Siu Ming Yiu, Nan
Duan, and Weizhu Chen. 2024b. AnnoLLM: Making
large language models to be better crowdsourced
annotators. In NAACL, pages 165-190, Mexico City,
Mexico. Association for Computational Linguistics.

Xingwei He and Siu Ming Yiu. 2022. Controllable dic-
tionary example generation: Generating example sen-
tences for specific targeted audiences. In ACL, pages
610-627, Dublin, Ireland. Association for Computa-
tional Linguistics.

Furong Jia, Kevin Wang, Yixiang Zheng, Defu Cao, and
Yan Liu. 2024. Gpt4mts: Prompt-based large lan-
guage model for multimodal time-series forecasting.
In AAAI volume 38, pages 23343-23351.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. 2024. Follow-
Bench: A multi-level fine-grained constraints follow-
ing benchmark for large language models. In ACL,
pages 4667-4688, Bangkok, Thailand. Association
for Computational Linguistics.

Cheng Jiayang, Chunkit Chan, Qiangian Zhuang, Lin
Qiu, Tianhang Zhang, Tengxiao Liu, Yangqiu Song,

https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/2022.emnlp-main.146
https://doi.org/10.18653/v1/2022.emnlp-main.146
https://doi.org/10.18653/v1/2022.emnlp-main.146
https://doi.org/10.18653/v1/2022.emnlp-main.146
https://doi.org/10.18653/v1/2022.emnlp-main.146
https://doi.org/10.1609/aaai.v38i16.29734
https://doi.org/10.1609/aaai.v38i16.29734
https://doi.org/10.1609/aaai.v38i16.29734
https://doi.org/10.1609/aaai.v38i16.29734
https://doi.org/10.1609/aaai.v38i16.29734
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/W18-2706
https://arxiv.org/abs/2502.15851
https://arxiv.org/abs/2502.15851
https://arxiv.org/abs/2502.15851
https://ojs.aaai.org/index.php/AAAI/article/view/29777
https://ojs.aaai.org/index.php/AAAI/article/view/29777
https://ojs.aaai.org/index.php/AAAI/article/view/29777
https://doi.org/10.18653/v1/2021.emnlp-main.681
https://doi.org/10.18653/v1/2021.emnlp-main.681
https://doi.org/10.18653/v1/2021.emnlp-main.681
https://doi.org/10.18653/v1/2022.emnlp-main.53
https://doi.org/10.18653/v1/2022.emnlp-main.53
https://doi.org/10.18653/v1/2022.emnlp-main.53
https://doi.org/10.18653/v1/2022.emnlp-main.53
https://doi.org/10.18653/v1/2022.emnlp-main.53
https://ojs.aaai.org/index.php/AAAI/article/view/17536
https://ojs.aaai.org/index.php/AAAI/article/view/17536
https://ojs.aaai.org/index.php/AAAI/article/view/17536
https://ojs.aaai.org/index.php/AAAI/article/view/17536
https://ojs.aaai.org/index.php/AAAI/article/view/17536
https://doi.org/10.18653/v1/2024.naacl-industry.15
https://doi.org/10.18653/v1/2024.naacl-industry.15
https://doi.org/10.18653/v1/2024.naacl-industry.15
https://doi.org/10.18653/v1/2024.naacl-industry.15
https://doi.org/10.18653/v1/2024.naacl-industry.15
https://doi.org/10.18653/v1/2022.acl-long.46
https://doi.org/10.18653/v1/2022.acl-long.46
https://doi.org/10.18653/v1/2022.acl-long.46
https://doi.org/10.18653/v1/2022.acl-long.46
https://doi.org/10.18653/v1/2022.acl-long.46
https://ojs.aaai.org/index.php/AAAI/article/view/30383
https://ojs.aaai.org/index.php/AAAI/article/view/30383
https://ojs.aaai.org/index.php/AAAI/article/view/30383
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257

Yue Zhang, Pengfei Liu, and Zheng Zhang. 2024.
ECON: On the detection and resolution of evidence
conflicts. In EMNLP, pages 78167844, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling output length in neural encoder-decoders. In
EMNLP, pages 1328—-1338, Austin, Texas. Associa-
tion for Computational Linguistics.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In EMNLP, pages 9004-9017, Singapore. Associa-
tion for Computational Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision in
long form text generation. In EMNLP, pages 12076—
12100, Singapore. Association for Computational
Linguistics.

Al Mistral. 2023. Mixtral of experts: A high quality
sparse mixture-of-experts. Mistral Al.

Ella Neeman, Roee Aharoni, Or Honovich, Leshem
Choshen, Idan Szpektor, and Omri Abend. 2023.
DisentQA: Disentangling parametric and contextual
knowledge with counterfactual question answering.
In ACL, pages 10056-10070, Toronto, Canada. Asso-
ciation for Computational Linguistics.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
et al. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In NIPS, volume 35, pages 27730—
27744. Curran Associates, Inc.

Yiwei Qin, Kaigiang Song, Yebowen Hu, Wenlin Yao,
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei
Liu, Pengfei Liu, and Dong Yu. 2024. InFoBench:
Evaluating instruction following ability in large lan-
guage models. In Findings of ACL, pages 13025-
13048, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Machel Reid, Nikolay Savinov, Denis Teplyashin, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. ArXiv,
abs/2403.05530.

10

Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu,
Qian Hu, Rahul Gupta, John Wieting, Nanyun Peng,
and Xuezhe Ma. 2023. Evaluating large language
models on controlled generation tasks. In EMNLP,
pages 3155-3168, Singapore. Association for Com-
putational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In NAACL, pages 809-819, New
Orleans, Louisiana. Association for Computational
Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng,
Johannes Heidecke, and Alex Beutel. 2024. The in-
struction hierarchy: Training llms to prioritize privi-
leged instructions. arXiv preprint arXiv:2404.13208.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. In ICLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In NIPS,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao
Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
Wendy Gao, Jiaxin Xu, et al. 2024. Bench-
marking complex instruction-following with mul-

tiple constraints composition. arXiv preprint
arXiv:2407.03978.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL,
pages 1112-1122, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2024. Adaptive chameleon or stubborn sloth:
Revealing the behavior of large language models in
knowledge conflicts. In /CLR.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan

https://doi.org/10.18653/v1/2024.emnlp-main.447
https://doi.org/10.18653/v1/2024.emnlp-main.447
https://doi.org/10.18653/v1/2024.emnlp-main.447
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://doi.org/10.18653/v1/D16-1140
https://doi.org/10.18653/v1/D16-1140
https://doi.org/10.18653/v1/D16-1140
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://mistral.ai/en/news/mixtral-of-experts
https://mistral.ai/en/news/mixtral-of-experts
https://mistral.ai/en/news/mixtral-of-experts
https://doi.org/10.18653/v1/2023.acl-long.559
https://doi.org/10.18653/v1/2023.acl-long.559
https://doi.org/10.18653/v1/2023.acl-long.559
https://arxiv.org/pdf/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://doi.org/10.18653/v1/2023.emnlp-main.190
https://doi.org/10.18653/v1/2023.emnlp-main.190
https://doi.org/10.18653/v1/2023.emnlp-main.190
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2302.13971
https://arxiv.org/abs/2404.13208
https://arxiv.org/abs/2404.13208
https://arxiv.org/abs/2404.13208
https://arxiv.org/abs/2404.13208
https://arxiv.org/abs/2404.13208
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2407.03978
https://arxiv.org/abs/2407.03978
https://arxiv.org/abs/2407.03978
https://arxiv.org/abs/2407.03978
https://arxiv.org/abs/2407.03978
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6

Qiu. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Qianru Zhang, Haixin Wang, Cheng Long, Liang-
cai Su, Xingwei He, Jianlong Chang, Tailin Wu,
Hongzhi Yin, Siu Ming Yiu, Qi Tian, and Christian S.
Jensen. 2024a. A survey of generative techniques
for spatial-temporal data mining. arXiv preprint
arXiv:2405.09592.

Tao Zhang, Yanjun Shen, Wenjing Luo, Yan Zhang, Hao
Liang, Fan Yang, Mingan Lin, Yujing Qiao, Weipeng
Chen, Bin Cui, et al. 2024b. Cfbench: A comprehen-
sive constraints-following benchmark for llms. arXiv
preprint arXiv:2408.01122.

Zhihan Zhang, Shiyang Li, Zixuan Zhang, Xin Liu,
Haoming Jiang, Xianfeng Tang, Yifan Gao, Zheng Li,
Haodong Wang, Zhaoxuan Tan, Yichuan Li, Qingyu
Yin, Bing Yin, and Meng Jiang. 2025. IHEval: Eval-
uating language models on following the instruction
hierarchy. In In NAACL, pages 8374-8398, Albu-
querque, New Mexico. Association for Computa-
tional Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
NIPS, volume 36, pages 46595-46623. Curran Asso-
ciates, Inc.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023a. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan
Wilcox, Ryan Cotterell, and Mrinmaya Sachan.
2023b. Controlled text generation with natural lan-
guage instructions. In /CML, volume 202 of Proceed-
ings of Machine Learning Research, pages 42602—
42613. PMLR.

11

https://arxiv.org/abs/2412.15115
https://arxiv.org/pdf/2405.09592
https://arxiv.org/pdf/2405.09592
https://arxiv.org/pdf/2405.09592
https://arxiv.org/abs/2408.01122
https://arxiv.org/abs/2408.01122
https://arxiv.org/abs/2408.01122
https://aclanthology.org/2025.naacl-long.425/
https://aclanthology.org/2025.naacl-long.425/
https://aclanthology.org/2025.naacl-long.425/
https://aclanthology.org/2025.naacl-long.425/
https://aclanthology.org/2025.naacl-long.425/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://proceedings.mlr.press/v202/zhou23g.html
https://proceedings.mlr.press/v202/zhou23g.html
https://proceedings.mlr.press/v202/zhou23g.html

A Constraint Dimensions

A.1 Content Constraints

Content constraints involve incorporating specific
details related to the content. These details may en-
compass various aspects, such as reasons, purposes,
topics, background information, budgets, targets,
and more.

A.2 Keyword Constraints

1. Keywords Inclusion: This constraint specifies
the inclusion of specific keywords. Examples of
this constraint:

¢ Include all of the following keywords in the
response: {keyword list}.

* Include at least/at most/exactly {N} of the
following keywords in the response: keyword
list.

¢ Include either {keywordl} or {keyword2},
but not both, in the response.

2. Forbidden Words: This constraint specifies
keywords that must not be included. Examples of
this constraint:

* Do not include the following forbidden key-
words in the response: {forbidden keyword
list}.

3. Keyword Frequency: This constraint speci-
fies the frequency of keywords. Examples of this
constraint:

e The keyword {keyword} must appear at
least/at most/exactly {N} times in the re-
sponse.

4. Letter Frequency: This constraint specifies
the frequency of letters. Examples of this con-
straint:

* The letter {letter} must appear at least/at
most/exactly {N} times in the response.

5. Keyword Order: This constraint specifies the
order of keywords. Examples of this constraint:

* The keyword {keywordl} must appear be-
fore/after the keyword {keyword2} in the re-
sponse.

12

6. Keyword Proximity: This constraint specifies
the distance between keywords. Examples of this
constraint:

e The keyword {keywordl} must ap-
pear at least/at most/exactly {N}
words/sentences/paragraphs away from

the keyword {keyword2}.

* The keywords {keyword list} must/must not
appear in the same paragraph/sentence.

7. Keyword Position: This constraint specifies
the positions of keywords. Examples of this con-
straint:

* The keywords {keyword list} must/must not
appear in the first/last/n-th paragraph/sentence
of the response.

8. Keyword Part-of-speech: This constraint
specifies the part-of-speech tag for keywords,
which possess multiple part-of-speech tags in the
Oxford Dictionary. Do not apply this constraint
to keywords with only a single part-of-speech tag.
Examples of this constraint:

* The keyword {keyword} must appear in the
response and used as {part-of-speech tag in
the Oxford Dictionary}.

9. Keyword Definition: This constraint specifies
the definition for keywords, which possess mul-
tiple definitions in the Oxford Dictionary. This
constraint can only be used to verbs or adjectives.
Do not apply this constraint to keywords with fewer
than three definitions. Examples of this constraint:

* The keyword {verb or adjective} must appear
in the response and convey the specified defi-
nition {definition in the Oxford Dictionary}.

A.3 Phrase Constraints

1. Phrase Inclusion: This constraint specifies
the inclusion of specific phrases. The specific
phrase must contain at least four words. Exam-
ples of this constraint:

* Include the phrase {phrase} in the response.

2. Phrase Frequency: This constraint specifies
the frequency of phrases. The specific phrase must
contain at least four words. Examples of this con-
straint:

* The phrase {phrase} must appear at least/at
most/exactly {N} times in the response.

3. Phrase Position: This constraint specifies the
positions of keywords. The specific phrase must
contain at least four words. Examples of this con-
straint:

« Start/Finish the response/n-th paragraph with
the phrase {phrase}.

* Include the phrase {phrase} in n-th paragraph.
A4 Length Constraints

1. Number of Paragraphs: This constraint spec-
ifies the required number of paragraphs in the re-
sponse. Examples of this constraint:

* The response must contain at least/at
most/exactly {N} paragraphs.

2. Number of Sentences: This constraint spec-
ifies the required number of sentences in the re-
sponse or within specific paragraphs. Examples of
this constraint:

* The response must contain at least/at
most/exactly {N} sentences.

* The n-th paragraph must contain at least/at
most/exactly {N} sentences.

e Each paragraph must contain at least/at
most/exactly {N} sentences.

3. Number of Words: This constraint specifies
the required number of words in the response, or
within specific paragraphs or sentences. Examples
of this constraint:

* The response must contain at least/at
most/exactly {N} words.

* The n-th paragraph/sentence must contain at
least/at most/exactly {N} words.

* Each paragraph/sentence must contain at
least/at most/exactly {N} words.

A.5 Format Constraints

1. JSON Format: This constraint requires the
entire response to be wrapped in JSON format and
follow specific JSON structure.

* The response must include the following keys:
{key list}.

* The response must include at least/at
most/exactly {N} of the following types:
Number, String, Boolean, Array, or Object.

13

* The value of the key {key} must be a Num-
ber/String/Boolean/Array/Object.

* The value of the key {key} must be an integer
equal to/less than/greater than {N}.

* The value of the key {key} must be an Ar-
ray/Object containing at least/at most/exactly
{N} elements.

2. Markdown Format: This constraint requires
the entire response to follow specific Markdown
formats. Examples of this constraint:

* The response must include at least/at
most/exactly {N} headers at level {M}.

* The response must include at least/at
most/exactly {N} ordered/unordered lists.
Each list must include at least/at most/exactly
{M} items.

The response must include at least/at
most/exactly {N} code blocks formatted with
triple backticks ("~ 7) and a specified language

(e.g., "~ python).

* The response must include at least/at
most/exactly N horizontal rules, formatted as
— OF *%%,

* The response must include at least/exactly N
hyperlinks formatted as [text](URL).

3. Bullet Format: This constraint specifies the
requirements for bullet points. Examples of this
constraint:

* Format specific content (e.g., reasons, con-
tributions, purposes, and names) into a bul-
leted list containing at least/at most/exactly
{N} points.

* Each bullet point must include at least/at
most/exactly {N} words/sentences.

* Each bullet point must begin/end with a spe-
cific keyword/phrase: {keyword/phrase}.

4. Language Format: This constraint specifies
the language requirements. Examples of this con-
straint:

* The entire response must be written exclu-
sively in {language, such as Chinese, En-
glish}.

* The response must include a {language, such
as Chinese, English} idiom/ancient poem.

5. Case Sensitivity: This constraint defines the
required case for words. Examples of this con-
straint:

* Write all words in lowercase/uppercase case.

e The response must include at least/at
most/exactly {N} lowercase/uppercase words.

A.6 Style Constraints

1. Rhetorical Style Constraints: This constraint
specifies the rhetorical style to be used. Examples
of this constraint:

* Include rhetorical questions to engage the au-
dience.

* Conclude with a strong call to action.

2. Tone and Emotion Constraints: This con-
straint specifies the tone or emotion of the response.
Examples of this constraint:

* Write the response in a {tone/emotion, e.g.,
positive/neutral/negative/academic/persuas-
ive/humorous/sarcastic} style suitable for a
{field/topic, e.g., motivational speech}.

* Use short, punchy sentences to create urgency
and excitement.

* Convey empathy/sincerity/urgency in the re-
sponse.

* Use a neutral/optimistic/pessimistic tone
throughout the response.

* The response must be
demic/persuasive/humorous/sarcastic.

aca-

3. Voice Constraints: This constraint specifies
whether the response should use active or passive
voice. Examples of this constraint:

* Write the response in active/passive voice.

* The response must include at least/at
most/exactly {N} sentences in passive/active
voice.

4. Sentence Structure Constraints: This con-
straint specifies the complexity or structure of sen-
tences. Examples of this constraint:

e The response/n-th paragraph must in-
clude at least/at most/exactly {N} sim-
ple/compound/complex sentences.

14

5. Sentence Type Constraints: This constraint
specifies the type of sentences. Examples of this
constraint:

* The response/n-th paragraph must include

at least/at most/exactly {N} declara-
tive/interrogative/exclamatory/imperative
sentences.

6. Readability Constraints: This constraint
specifies the readability of the response. Exam-
ples of this constraint:

* Tailor the response for specific audience (e.g.,
children, laypersons, professionals, experts).

* Use at least/at most/exactly {N} technical
terms related to {field/topic}.

* The response must simplify technical jargon,
providing explanations for terms.

* Avoid using jargon/slang/archaic words.

7. Person Constraints: This constraint specifies
the narrative perspective to be used. Examples of
this constraint:

* The response must be written in the
first/second/third person.

* Avoid using personal pronouns.

* Include at least {N} sentences addressing the
reader directly.

8. Miscellaneous Style Constraints: Covers spe-
cific stylistic choices not covered above. Examples
of this constraint:

* Mimic the writing style of {author/speaker}.

* Include at least {N} metaphors/similes in the
response.

B Conflict Types

1. Conflicts between Content Constraints (CC)

¢ Definition: Conflicts occur when two content
requirements contradict each other.

* Example 1: The itinerary must exclude any
mention of national parks vs. The itinerary
must include national parks.

Explanation: One constraint says not to men-
tion national parks, while the other requires
them to be included.

2. Conflicts between Keyword Constraints (KK)

* Definition: Conflicts arise when keyword-
related rules are in opposition.

* Example 1: Include the keyword "like" vs.
Avoid using the keyword "like."
Explanation: The instructions directly contra-
dict each other, as one demands the use of the
keyword and the other forbids it.

» Example 2: The keyword "resignation" must
appear at least three times vs. Do not include
the keyword "resignation."

Explanation: One rule requires the keyword
"resignation” to appear multiple times, while
the other explicitly bans it.

* Example 3: The keyword "strategy" must ap-
pear before the keyword "quality" vs. The
keyword "quality" must appear before the key-
word "strategy."

Explanation: This is a conflict of word order,
where one rule demands "strategy" precedes
"quality" and the other dictates the opposite.

» Example 4: Use the keyword "bank" as a verb
vs. Use the keyword "bank" as a noun.
Explanation: The word "bank" is given dif-
ferent roles in each constraint, making them
incompatible.

* Example 5: The keywords "transaction" and
"clarification" must appear in the same para-
graph, with no more than five words separat-
ing them vs. The keywords "transaction" and
"clarification" must appear in the same para-
graph, with at least six words separating them.
Explanation: The two rules conflict in terms
of the allowable distance between the two key-
words.

15

3. Conflicts between Phrase Constraints (PP)

¢ Definition: Conflicts where different rules dic-
tate how phrases should appear.

» Example 1: The first paragraph starts with the
phrase "Embark on an unforgettable journey"
vs. The first paragraph starts with the phrase
"Begin an unforgettable journey."
Explanation: The rules conflict in terms of
how the first paragraph should begin, requir-
ing different phrases.

» Example 2: The first paragraph starts with the
phrase "Embark on an unforgettable journey"
vs. Do not include the phrase "Embark on an
unforgettable journey."

Explanation: One rule mandates the phrase
to appear at the beginning, while the other
forbids its use.

* Example 3: The first paragraph starts with the

phrase "Embark on an unforgettable journey"
vs. The first paragraph should not start with
the phrase "Embark on."
Explanation: The first rule dictates that the
paragraph must start with "Embark on an un-
forgettable journey," while the second rule
prohibits starting the paragraph with any
phrase that begins with "Embark on."

4. Conflicts between Length Constraints (LL)

* Definition: Conflicts occur when constraints
are in opposition regarding the length or size
of elements (e.g., word count, number of sen-
tences, number of paragraphs).

* Example 1: The email must contain exactly

five paragraphs, with each paragraph consist-
ing of at least 80 words vs. The email must
contain at most 300 words.
Explanation: If there are exactly five para-
graphs with a minimum of 80 words each, the
total word count exceeds 300, making the two
rules incompatible.

* Example 2: The email must contain exactly
five paragraphs vs. The email must contain at
most four paragraphs.

Explanation: The first rule requires five para-
graphs, while the second limits it to four.

» Example 3: Each paragraph consists of at least
100 words vs. The first paragraph contains

four sentences, with each consisting of at most
20 words.

Explanation: If each sentence in the first para-
graph has at most 20 words, the total word
count will not exceed 80. This directly con-
flicts with the rule requiring each paragraph
to contain at least 100 words.

Example 4: Each paragraph consists of at least
100 words vs. The first paragraph has between
50 and 80 words.

Explanation: One rule requires the paragraph
to have at least 100 words, while the other
limits it to a smaller word count.

Example 5: The email must contain exactly
five paragraphs, with each paragraph consist-
ing of at least five sentences vs. The email
must contain at most 20 sentences.

The first rule requires at least 25 sentences
(5 paragraphs x 5 sentences), which conflicts
with the second rule, which limits the total to
20 sentences.

5. Conflicts between Format Constraints (FF)

¢ Definition: Conflicts between different for-

matting requirements.

Example 1: The response must include at least
two level-1 headers vs. The response can only
use level-2 headers.

Explanation: One rule requires level-1 head-
ers, while the other forbids them, limiting the
response to only level-2 headers.

Example 2: The email must be formatted
in JSON with the following keys: "subject”,
"body", and "signature" vs. The email must
be formatted in JSON with two keys.
Explanation: One rule requires three keys,
while the other allows only two.

Example 3: Present the fine dining recommen-
dations in a bulleted list of exactly three points
vs. Avoid using bullet points.

Explanation: The first rule requires bullet
points, while the second forbids them.

Example 4: The email must be written exclu-
sively in English vs. The email must include
a Chinese idiom.

Explanation: One rule requires the email to
be only in English, while the other mandates
the inclusion of a Chinese idiom, presented in
Chinese.

16

* Example 5: The email should include at least
five uppercase words vs. The email must be
written in lowercase.

Explanation: One rule requires uppercase
words, while the other specifies that every-
thing must be in lowercase.

6. Conflicts between Style Constraints (SS)

e Definition: Conflicts arise when different
stylistic rules are at odds with each other.

* Example 1: The response must be written in

the first person vs. The response must be writ-
ten in the second person.
Explanation: The two rules conflict because
one requires a first-person perspective, while
the other demands a second-person perspec-
tive.

* Example 2: Ensure the email is written in a
formal tone vs. Ensure the email is written in
an informal tone.

Explanation: One rule demands a formal tone,
while the other requires an informal one.

» Example 3: Tailor the response for laypersons
vs. Tailor the response for experts.
Explanation: The two rules conflict because
they require the response to be suitable for
different audiences: laypersons and experts.

7. Conflicts between Keyword Constraints and
Phrase Constraints (KP)

* Definition: Conflicts between specific key-
words and larger phrases.

Example 1: Refrain from using the keyword
"unforgettable" vs. The first paragraph starts
with the phrase "Embark on an unforgettable
journey."

Explanation: The first rule forbids the use of
"unforgettable", while the second requires it
as part of a phrase.

Example 2: The first paragraph starts with the
phrase "Embark on an unforgettable journey"
vs. The keyword "unforgettable" must appear
before "embark."

Explanation: The first rule specifies that the
phrase "Embark on an unforgettable journey"
should be used, with "embark" coming first.
However, the second rule requires that the
word "unforgettable" must precede "embark,"
creating an ordering conflict.

8. Conflicts between Phrase Constraints and
Content Constraints (PC)

* Definition: Conflicts arise when specific
phrase requirements contradict broader con-
tent or thematic requirements, making it im-
possible to adhere to both at the same time.

* Example 1: The email must include the phrase
"Thank you for your business" vs. The email
should not express gratitude or appreciation
Explanation: The first rule requires a specific
phrase expressing gratitude, while the sec-
ond rule prohibits any expression of gratitude,
making these content and phrase constraints
incompatible.

* Example 2: The response must contain the
phrase "A visit to Yellowstone National Park
is a must" vs. The itinerary must exclude any
mention of national parks
Explanation: The first rule mandates mention-
ing Yellowstone National Park, while the sec-
ond rule explicitly forbids mentioning any na-
tional parks, creating a direct conflict.

» Example 3: The introduction must include the
phrase "We guarantee the lowest prices" vs.
The content must not make any guarantees or
promises
Explanation: The first rule demands a specific
phrase that guarantees low prices, while the
second rule forbids making guarantees, creat-
ing a contradiction.

formal tone

Explanation: The required phrase is informal
and conversational, but the style constraint
demands a formal tone.

Example 3: The response must include the
phrase: "The stochastic process adheres to a
Markovian property.” vs. The response must
be tailored for laypersons

Explanation: The phrase contains technical
jargon suited for experts, but the style con-
straint requires the response to be accessible
to laypersons.

Example 4: The response must include the
phrase: "This is the worst decision ever
made." vs. The response must maintain a neu-
tral and unbiased tone

Explanation: The required phrase expresses
a strong negative opinion, contradicting the
neutrality constraint.

C Prompt Templates

9. Conflicts between Phrase Constraints and
Style Constraints (PS)

* Definition: Conflicts arise when specific
phrase requirements contradict stylistic re-
quirements, such as tone, perspective, or for-
mality.

* Example 1: The response must include the
phrase: "I strongly believe this is the best ap-
proach." vs. The response must be written in
the second person
Explanation: The phrase uses first-person per-
spective ("I strongly believe"), but the style
constraint requires the response to be in the
second person.

* Example 2: The response must include the
phrase: "Hey buddy, this is gonna be awe-
some!" vs. The response must be written in a

17

I currently have a simple seed instruction (i.e., [Seed Instruction]). Your task is to make it more complex by adding additional
constraints. To assist you in completing this task, I will provide six types of constraints for your reference (i.e., [Reference
Constraints]), which include ‘Content Constraints’, ‘Keyword Constraints’, ‘Phrase Constraints’, ‘Length Constraints’,
‘Format Constraints’, and ‘Style Constraints’. Each type of constraint includes several different sub-constraints. For
example, *Format Constraints’ consist of five sub-constraints: JSON Format, Markdown Format, Bullet Format, Language
Format, and Case Sensitivity. For each sub-constraint, we will first provide a definition followed by example templates.
You may choose a suitable template from these examples or create your own, as long as it satisfies the sub-constraint’s
definition. Ensure that you strictly apply all sub-constraints from each type without prioritizing any particular one.

Below is [Reference Constraints].
[Reference Constraints]
{Constraints in §A}.

Below is the requirements for modifying the seed instruction.
[Requirements]:

1. You must use all constraints from [Reference Constraints].

2. Feel free to use any constraints other than [Reference Constraints] that you deem appropriate.

3. When adding constraints to the seed instruction, you are free to combine and paraphrase the selected constraints as
needed. Seamlessly integrate these constraints into the seed instruction without omitting any key information, and

avoid directly listing the selected constraints.

4. If the seed instruction is a question, please do not modify the seed instruction. Add constraints after the seed
instruction.

5. Directly output the modified instruction (the instruction with added constraints in plain text format, i.e., [Modified
Instruction]), without any analysis. The modified instruction must not contain line breaks.

Below is the seed instruction.
[Seed Instruction]: {Seed Instruction}
[Modified Instruction]:

Table 5: Prompt template for expanding seed instructions.

18

I currently have an instruction (i.e., [Instruction]) that includes multiple constraints, all of which can be satisfied simulta-
neously. Your task is to add new constraints to this instruction. These new constraints should conflict with the existing
ones in the given instruction, meaning they cannot be satisfied at the same time. However, the new constraints themselves
must not conflict with one another. To assist you in completing this task, I will provide six types of constraints for your
reference (i.e., [Reference Constraints]), which include ‘Content Constraints’, ‘Keyword Constraints’, ‘Phrase Constraints’,
‘Length Constraints’, ‘Format Constraints’, and ‘Style Constraints’. Each type of constraint includes several different
sub-constraints. For example, ‘Format Constraints’ consist of five sub-constraints: JSON Format, Markdown Format, Bullet
Format, Language Format, and Case Sensitivity.

Below is [Reference Constraints].
[Reference Constraints]
{Constraints in §A}.

Below are the types of conflicts and their corresponding examples:
[Conflict Types]
{Conflict types in §B}.

When adding conflicting constraints into the given instruction, you must adhere to the following requirements:
[Requirements]:

1. Select constraints exclusively from [Reference Constraints].
2. The selected constraints must conflict with at least one constraint in the provided instruction. However, there must be
no internal conflicts among the selected constraints. Do not include constraints that do not conflict with the given

instruction’s existing constraints.

3. The conflicts between the selected constraints and the existing constraints in the given instruction must be explicit
and unambiguous.

4. The conflicts must cover all nine conflict types in [Conflict Types], with each conflict type containing one pair of
conflicting constraints.

5. The conflicting examples in [Conflict Types] and the example below are provided to aid your understanding. However,
I would prefer that you not rely solely on these examples. Please come up with a wider variety of conflict scenarios.

6. The output must strictly adhere to the format shown in the example below.

Here is an example:
{In-Context Example}

[Instruction]: {Instruction}

Table 6: Prompt template for adding conflicting instructions.

I currently have an instruction (i.e., [Instruction]) that includes multiple constraints. Please help me judge whether the
instruction contains conflicting constraints, which cannot be satisfied simultaneously.

Answer "YES" if you think the [Instruction] contains conflicting constraints or requirements; otherwise, answer "NO."
Please first provide an explanation and then give the answer. Your output should follow the format below:
[Explanation]: Your explanation

[Answer]: YES / NO

[Instruction]: {Instruction}

Table 7: Prompt template for conflict detection.

I currently have an instruction (i.e., [Instruction]) that includes multiple constraints. Please analyze whether any of these
constraints are in conflict and cannot be satisfied simultaneously. If no such conflicts are found, proceed to execute the
instruction. However, if conflicting constraints are detected, refrain from executing the instruction. Instead, clearly indicate
the presence of conflicting constraints and request further clarification.

[Instruction]: {Instruction}

Table 8: Prompt template for instruction-following with an expected conflict resolution behavior.

19

You will be given an Instruction containing multiple constraints, some of which are conflicting and cannot be simultaneously
satisfied. You will also be provided with a Model Response, which is generated based on the given Instruction.

Your task is to evaluate the Model Response and determine whether the model has recognized the conflicting constraints
within the Instruction when generating its response. Follow these evaluation rules:

1. If the model does not acknowledge the conflicting constraints and directly provides a response to the instruction,
output 1.

2. If the model identifies the conflicting constraints, does not provide a response to the instruction, and explicitly asks
the user to clarify the instruction, output 2.

3. If the model identifies the conflicting constraints, resolves them on its own, and then provides a response to the
resolved instruction, output 3.

4. If the model’s response does not fit into any of the above categories, output 4.

Your output must strictly follow this format:

Output Format

Analysis: A brief analysis of the Model Response.

Answer: The evaluation result (1, 2, 3, or 4) without any additional content.

Evaluation Input
Model Response
{Model Response}

[nstruction
{Instruction}

Evaluation Output

Table 9: Prompt template for evaluating LLM behavior when handling conflicting instructions.

20

Your task is to act as a quality evaluator, analyzing the content of the Model Response to determine whether it fully satisfies
the requirements outlined in the Instruction. When evaluating, you should adhere to the following judgment criteria:

1. Answer "YES" if the Model Response entirely fulfills all the requirements specified in the instruction.

2. Answer "NO" if the Model Response fails to meet all the requirements or provides no relevant information for the given
instruction.

Evaluation Steps

Please analyze the Model Response and Instruction carefully, adhering to the following steps:

Step 1: Analyze the Instruction, then extract relevant content from the Model Response. Copy sentences from the Model
Response exactly as they are, without any modification.

1. If the instructions include constraints related to keywords or phrases (e.g., keyword definitions, keyword frequency,
or phrase frequency), extract the sentences containing the specified keywords or phrases. Record the positions of
these keywords or phrases, if necessary.

2. If the instructions include constraints related to specific information or topics, extract segments containing the relevant
information or topics.

3. If the instructions include constraints related to output formats or styles, extract segments that reflect the specified
formats or styles.

Step 2: Analyze whether the Instruction’s constraints are fully satisfied.
Step 3: Provide your evaluation answer ("YES" or "NO"), without adding extra content.

Output Format

Step 1: The extracted content from the Model Response.
Step 2: A brief analysis of the Instruction.

Step 3: YES / NO

Evaluation Input
Model Response

{Model Response}

**[nstruction®*
{Instruction}

Evaluation Output

Table 10: Prompt template for instruction-following evaluation.

21

You will be provided with the following:
1. Two instructions, Instruction 1 and Instruction 2.
2. A Model Response, generated by a model using Instruction 1 and Instruction 2.

Your task is to act as a quality evaluator, analyzing the content of the Model Response to determine which instruction’s all
constraints is fully satisfied based on the following rules:

1. If all constraints in Instruction 1 are fully satisfied, output 1.
2. If all constraints in Instruction 2 are fully satisfied, output 2.
3. If neither instruction’s constraints are fully satisfied, output -1.

Note that these two instructions contain conflicting constraints, making it impossible for the Model Response to fully satisfy
both simultaneously.

Evaluation Steps

Please analyze the Model Response, Instruction 1 and Instruction 2 carefully, adhering to the following steps:

Step 1: Analyze Instruction 1 and Instruction 2, and then extract relevant content from the Model Response. You should
copy sentences from the Model Response exactly as they are, without any modification.

1. If the instructions include constraints related to keywords or phrases (e.g., keyword definitions, keyword frequency,
or phrase frequency), extract the sentences containing the specified keywords or phrases. Record the positions of
these keywords or phrases, if necessary.

2. If the instructions include constraints related to specific information or topics, extract segments containing the relevant
information or topics.

3. If the instructions include constraints related to output formats or styles, extract segments that reflect the specified
formats or styles.

Step 2: Analyze which instruction’s constraints are fully satisfied.
Step 3: Directly give your evaluation answer (1, 2, or -1) without any additional content.

Output Format

Step 1: The extracted content from the Model Response.

Step 2: A brief analysis of Instruction 1 and Instruction 2.

Step 3: The evaluation result (1, 2, or -1) without any additional content.

Evaluation Input
Model Response
{Model Response}

**[nstruction 1%*
{Instruction 1}

**[nstruction 2%*
{Instruction 2}

Evaluation OQutput

Table 11: Prompt template used to evaluate which of the two mutually conflicting instructions is satisfied by a
model’s output.

22

	Introduction
	ConInstruct Benchmark
	Dataset Construction
	Quality Control
	Dataset Statistics

	Experiment Setup
	Preparing Instructions with Conflicts
	Evaluation Models

	Conflict Detection
	Experiment Results on Instructions with a Single Conflict
	Experiment Results on Instructions with Multiple Conflicts

	Conflict Resolution
	Analysis on Conflict Resolution Behaviors
	Prompting LLMs to Resolve Instruction Conflicts Using Desired Behaviors
	Analysis on Constraint Priority

	Related Work
	Controllable Text Generation
	Conflict Detection

	Conclusion
	Limitations
	Constraint Dimensions
	Content Constraints
	Keyword Constraints
	Phrase Constraints
	Length Constraints
	Format Constraints
	Style Constraints

	Conflict Types
	Prompt Templates

