
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MANI-GS: GAUSSIAN SPLATTING MANIPULATION
WITH TRIANGULAR MESH

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural 3D representations such as Neural Radiance Fields (NeRF), excel at pro-
ducing photo-realistic rendering results but lack the flexibility for manipulation
and editing which is crucial for content creation. Previous works have attempted
to address this issue by deforming a NeRF in canonical space or manipulating
the radiance field based on an explicit mesh. However, manipulating NeRF is
not highly controllable and requires a long training and inference time. With the
emergence of 3D Gaussian Splatting (3DGS), extremely high-fidelity novel view
synthesis can be achieved using an explicit point-based 3D representation with
much faster training and rendering speed. However, there is still a lack of effec-
tive means to manipulate 3DGS freely while maintaining rendering quality. In
this work, we aim to tackle the challenge of achieving manipulable photo-realistic
rendering. We propose to utilize a triangular mesh to manipulate 3DGS directly
with self-adaptation. This approach reduces the need to design various algorithms
for different types of Gaussian manipulation. By utilizing a triangle shape-aware
Gaussian binding and adapting method, we can achieve 3DGS manipulation and
preserve high-fidelity rendering. Our approach is capable of handling large de-
formations, local manipulations, and soft body simulations while keeping high-
quality rendering. Furthermore, we demonstrate that our method is also effective
with inaccurate meshes extracted from 3DGS. Experiments conducted demon-
strate the effectiveness of our method and its superiority over baseline approaches.
Project page here: https://mani3dgs.github.io/

1 INTRODUCTION

Manipulating and editing 3D content is essential for content creation and has various applications in
movies, gaming, and virtual/augmented reality. 3D model editing enables users to create and modify
models flexibly, thereby enhancing production efficiency. The traditional pipeline for modeling and
editing a 3D asset with photo-realistic rendering involves a process with geometry modeling, tex-
turing, UV mapping, lighting, and rendering, which is a tedious and time-consuming flow requiring
lots of manual work.

Over the past few years, the neural radiance field (NeRF) (Mildenhall et al., 2021) has been widely
studied due to its high capability and simple reconstruction process in 3D representation. However,
the implicit representation poses challenges for editing.

To address this, some methods are proposed to edit this implicit neural radiance field (Mildenhall
et al., 2021). NeRF-Editing (Yuan et al., 2022) is the first to utilize the triangular mesh to help edit the
implicit radiance field. They train a canonical NeuS (Wang et al., 2021) and extract the triangular
mesh from NeuS (Wang et al., 2021). A tetrahedra grid is then constructed to contain the object
mesh. To render the deformed object by editing the triangular mesh, a volume rendering is conducted
in the deformed space. The sampling points in deformed space are mapped to canonical space based
on the constructed tetrahedra grid, where the points in deformed space have the same tetrahedron
barycentric coordinate in the same tetrahedron with their corresponding points in canonical space.
Moreover, (Jambon et al., 2023; Liu et al., 2023) demonstrate similar ideas by employing tetrahedra
to deform sampling points and achieve editable nerf-based scenes. Instead, Neu-Mesh (Yang et al.,
2022) and SERF (Zhou et al., 2023a) define the neural radiance field by associating each mesh vertex
with radiance and geometry features. Then they can conduct volume rendering like Point-NeRF (Xu

1

https://mani3dgs.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Our proposed approach allows for 3DGS manipulation, including large deformation, local
manipulation, and even physical simulation (such as soft body simulation), while maintaining high-
quality rendering. Please zoom in for more details.

et al., 2022) in deformed space without backward mapping. However, these editing methods based
on implicit neural radiance fields still suffer from inconvenient manipulation, suboptimal rendering
results, and long training and rendering times.

Meanwhile, 3DGS (Kerbl et al., 2023) has gained significant attention in differential rendering due
to its high-fidelity and fast rendering proficiency. However, despite being an explicit 3D repre-
sentation, it still lacks an effective method for manipulating 3DGS while maintaining high-quality
rendering. SuGaR (Guédon & Lepetit, 2023), the work most closely related to our objective, de-
velops a novel algorithm to extract a triangular mesh from 3DGS. Although their main goal is not
to facilitate editable photorealistic rendering, they bind the 3DGS to the extracted mesh, enabling
model animation as demonstrated in their demo.

This work proposes a method that enables 3DGS manipulation, achieving high-quality and photo-
realistic rendering. Our key insight is to manipulate 3DGS using a triangular mesh as the proxy,
which allows for direct transfer of mesh manipulation to 3DGS with 3DGS self-adaptation. With
our methods, we can achieve large deformation, local manipulation, and soft body simulaton with
high-quality results as shown in Figure 1, which also avoid the need to design various algorithms for
different types of manipulation.

To achieve controllable 3DGS manipulation through the mesh, an intuitive approach is to bind the
GS to lay perfectly on the triangle and enforce the GS to be thin enough. After mesh manipulation,
the GS will automatically adapt its rotation and position with the attached triangle, as employed
in SuGaR (Guédon & Lepetit, 2023). However, SuGaR heavily relies on the accuracy of mesh
geometry, inheriting the defects of mesh rendering. Specifically, for inaccurate parts, SuGaR cannot
inpaint the missing parts or remove the redundant parts in the final rendering.

Adding an offset to the position of attached Gaussians during the reconstruction may seem like
a reasonable solution to compensate for mesh inaccuracy. However, this fixed offset cannot be
generalized well to the deformed space after novel manipulation. Our proposed solution is to define
a local coordinate system for each triangle, which we refer to as local triangle space. We then bind
Gaussians to each triangle and optimize the Gaussian attributes, including rotation, position, and
scaling, in the attached local triangle space.

During mesh manipulation, the attributes in the local triangle space remain unchanged, while the
global Gaussian position, scaling, and rotation will be self-adaptively adjusted according to our
proposed formula. As a result, our proposed approach enables us to manipulate 3DGS using a
triangular mesh while maintaining rendering quality. Since our Gaussians are set to be free outside
the triangle, we can also support high-fidelity manipulation even when the Gaussians are bound to
an inaccurate mesh, exhibiting a high tolerance for mesh accuracy.

GaMeS (Gao et al., 2024) and Mesh-GS (Waczyńska et al., 2024) are two concurrent works that also
employ triangular meshes for Gaussian Splatting manipulation. In particular, GaMeS (Gao et al.,
2024) constrains the Gaussians on the surface exactly; Mesh-GS (Waczyńska et al., 2024) permits
an offset along the normal direction without adapting the Gaussian scale when the triangle shape

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

changes. In contrast, our model allows for Gaussian move in the triangle local space which means
we can achieve high-quality rendering without the need for accurate mesh. Gaussian scaling also
adapts in response to changes in triangle shape when large deformations are applied to the mesh.

In summary, the contributions of our paper are listed as follows:

• We propose a 3DGS manipulation method that can effectively transfer the triangular mesh
manipulation to 3DGS and maintain high-quality rendering.

• We introduce a triangle shape aware Gaussian binding strategy with self-adaption, which
has a high tolerance for mesh accuracy and supports various 3DGS manipulations.

• We evaluate our method and achieve state-of-the-art results, demonstrating various 3DGS
manipulations, including large deformation, local manipulation, and soft body simulation.

2 RELATED WORK

2.1 NERF EDITING

Recently, neural radiance field (Mildenhall et al., 2021) (NeRF) has garnered significant attention
due to its high-quality and photo-realistic rendering results for novel view synthesis. NeRF rep-
resents the scene as a continuous function that maps a spatial location and viewing direction to a
volume density and color, which is parameterized by a multilayer perceptron (MLP). Owing to the
implicit representation that encodes the scene within the network parameters, editing and deforming
the geometry of the NeRF scene explicitly like mesh can be challenging. To enable user editing of
NeRF, (Liu et al., 2021) introduce editing conditional radiance fields trained on a shape category.
However, it only supports basic editing operations, such as removing/adding object parts or shape
transfer. CLIP-NeRF (Wang et al., 2022) achieves NeRF editing with text or images by leveraging
CLIP model (Radford et al., 2021) but still can not edit the geometry locally. Some other work (Xi-
ang et al., 2021; Wang et al., 2023b; Bao et al., 2023; Zhan et al., 2023) edit the NeRF in texture
level which is not the focus of this paper.

To edit and deform NeRF locally, (Jambon et al., 2023; Yuan et al., 2022; Liu et al., 2023) construct
a tetrahedra grid based on the underlying 3D shape. After explicitly deforming the tetrahedra into
the posed space for editing, the sampled 3D points are mapped from the posed space to the canonical
space through the unaltered tetrahedron, which means the canonical position can be calculated from
the shared barycentric coordinate for both deformed and canonical tetrahedron. The density and
radiance in the posed space can be calculated for the mapped sampling points in canonical space.
On the other hand, (Wang et al., 2023a; Zhou et al., 2023a; Yang et al., 2022) employ mesh as the
guidance for deformation. NeuMesh (Yang et al., 2022) presents a novel representation to encode
neural implicit field on a mesh-based scaffold for geometry and texture editing. (Wang et al., 2023a)
achieves the manipulation of both the geometry and color of neural implicit fields through differen-
tiable colored meshes. Furthermore, there are several methods (Sun et al., 2022; Ma et al., 2022;
Zhang et al., 2022; Chen et al., 2023a; Zheng et al., 2022) that particularly focus on editing NeRF
for avatar. In this work, we introduce an editing method based on 3DGS for general objects.

2.2 MESH-BASED NERF RENDERING

NeRFs have shown impressive rendering results, however, rendering one pixel using NeRF repre-
sentation necessitates a volumetric rendering algorithm that involves inferring MLP hundreds of
times to estimate their radiance and density. This process is significantly slower than traditional
mesh rendering. To accelerate NeRF rendering, several methods (Chen et al., 2023b; Rakotosaona
et al., 2023; Yariv et al., 2023; Chen et al., 2023b; Yao et al., 2022; Tang et al., 2023b) have been
proposed to combine NeRF representation with mesh reconstruction. By converting this implicit
representation to an explicit mesh, these methods may also facilitate applications like editing. In
particular, MobileNeRF (Chen et al., 2023b) represents NeRF as a collection of polygons with deep
feature textures, which can be rendered using the classic polygon rasterization pipeline, generating
a feature vector for each pixel and passing it to an MLP to decode the color. MobileNeRF is capable
of achieving rendering even on standard mobile devices. Additionally, NeRFMeshing (Rakotosaona
et al., 2023) distills the reconstructed NeRF into a signed surface approximation network to extract
3D mesh and shows the simulation results for editing. BakedSDF (Yariv et al., 2023) proposes a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

neural surface-volume representation to extract the mesh and supports editing like material decom-
position, appearance editing, and physics simulation. However, the editing results of these methods
heavily rely on the accuracy of the extracted mesh. Artifacts present in the mesh will directly influ-
ence the editing results. In contrast, our method demonstrates robustness to the reconstructed mesh
and can still yield promising results even with the inaccurate mesh.

2.3 GAUSSIAN SPLATTING EDITING, SIMULATION AND ANIMATION

3D Gaussian Splatting (Kerbl et al., 2023) presents an innovative 3D Gaussian scene representation,
accompanied by a differentiable renderer that attains real-time rendering of radiance fields while
maintaining high quality. Initially, 3D Gaussian Splatting focuses solely on static scenes, which has
been extended to model dynamic scenes (Wu et al., 2023; Huang et al., 2023; Yang et al., 2023; Lin
et al., 2023; Zhou et al., 2023b), human avatars (Zielonka et al., 2023; Qian et al., 2023; Yuan et al.,
2023; Hu et al., 2023; Xu et al., 2023; Kirschstein et al., 2023), Gaussian Splatting simulation and
animation (Guédon & Lepetit, 2023; Xie et al., 2023; Jiang et al., 2024; Feng et al., 2024). Specif-
ically, SuGaR (Guédon & Lepetit, 2023) proposes a method to extract meshes from 3D Gaussian
Splatting with additional regularization, in which they bind 3DGS on extracted mesh and animated
with Gaussian Splatting rendering. GSP (Feng et al., 2024) incorporates physically-based fluid
dynamics in 3DGS and PhysGaussian (Xie et al., 2023) introduces a unified simulation-rendering
pipeline that generates physics-based dynamics with photorealistic renderings. VR-GS (Jiang et al.,
2024) achieves interactive physics-based editing in Virtual Reality. In this work, we also introduce
a Gaussian Splatting manipulation method that binds Gaussian Splatting to the mesh, achieving
state-of-the-art results.

3 METHOD

Recently, due to its exceptional high-fidelity rendering capabilities and fast rendering speed,
3DGS (Kerbl et al., 2023) has emerged as a popular 3D representation in the differential render-
ing field. However, despite being an explicit 3D representation, it still lacks a way for manipulating
this 3D representation for editing while maintaining high-quality rendering after the manipulation.
In this work, giving multi-view RGB images of an object as input, we introduce a method for object
manipulation that can achieve photorealistic editable rendering by employing Gaussian Splatting.

The pipeline of our method is illustrated in Figure 2 and consists of three main stages. First, we
extract a mesh from 3D Gaussian Splatting (3DGS) or a neural surface field for subsequent 3D
Gaussian binding (Sec. 3.2). Next, we devise a novel Mesh-Gaussian binding method dedicated
to manipulating Gaussian Splatting while maintaining photo-realistic rendering quality (Sec. 3.3).
Finally, we describe the types of Gaussian manipulation we support(Sec. 3.4).

3.1 PRELIMINARY

Thanks to its superior capability for high-fidelity and rapid rendering, 3D Gaussian Splatting (3DGS)
(Kerbl et al., 2023) has recently emerged as a popular 3D representation in differential rendering.
3DGS utilizes explicit 3D Gaussians as its primary rendering primitives. A 3D Gaussian point is
mathematically defined as:

G(x) = exp(−1

2
(x− µ)⊤Σ−1(x− µ)). (1)

Each 3D Gaussian point is characterized by a 3D mean position coordinate µ and a covariance
matrix Σ. Additionally, each Gaussian has an opacity o and a view-dependent color c represented
by a set of spherical harmonics (SH). To ensure that the covariance matrix Σ retains its meaning-
ful interpretation, it is parameterized as a unit quaternion q and a 3D scaling vector s, defined as
Σ = RSS⊤R⊤.

To render an image from a specific viewpoint, 3D Gaussians are projected onto the image plane,
resulting in 2D Gaussians. The 2D covariance matrix is approximated as:

Σ′ = JWΣW⊤J⊤, (2)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where W and J denote the viewing transformation and the Jacobian of the affine approximation
of perspective projection transformation (Zwicker et al., 2002), respectively. The 2D means are
calculated through the projection matrix. After this, the pixel color is composited through the alpha
blending of N ordered 2D Gaussians:

C =
∑
i∈N

Tiαici with Ti =

i−1∏
j=1

(1− αi). (3)

Here, α is obtained by multiplying the opacity o with the 2D covariance’s probability computed
from Σ′ and pixel coordinate on the image space.

3.2 MESH EXTRACTION

Our method can achieve high-quality editing using guided meshes obtained from various methods.
In this section, we investigate different mesh extraction and reconstruction techniques with different
mesh accuracy and processing time to guide the 3D Gaussians in our approach.

Marching Cube for Gaussian Splatting. In DreamGaussian (Tang et al., 2023a), the method at-
tempts to summarize the alpha values of neighboring Gaussian points as the composite density value
of marching cube sampling points. However, We found that this method often ignores the thin and
small structures. With our Mesh-Gaussian binding strategy, we can achieve high-fidelity rendering
with the inaccurate mesh and support smooth Gaussian manipulation.

Screened Poisson Reconstruction. 3D Gaussian Splatting could be considered a type of point
cloud, making it intuitive to extract the mesh using the Poisson-reconstruction algorithm. However,
the 3D Gaussians do not have normal vectors for reconstruction. Inspired by recent 3DGS inverse
rendering methods (Gao et al., 2023; Liang et al., 2023), we allocate an additional gaussian attribute,
normal n, for 3D Gaussians, which is supervised by the pseudo normal derived from depth map.
After training 3DGS with normal attributes, we can extract the mesh using the Screened poisson
surface reconstruction (Kazhdan & Hoppe, 2013) algorithm.

Neural Implicit Surfaces. In this work, we also try to extract high-quality surfaces from the implicit
representation utilizing the method proposed in NeuS (Wang et al., 2021). NeuS mesh has a large
number of triangles, which negatively affects both training and inference speeds. We utilize mesh
decimation techniques to reduce the count of triangles to approximately 300K.

3.3 BINDING GAUSSIAN SPLATTING ON MESH

Owing to the exceptional proficiency in high-fidelity and fast rendering, 3DGS has gained significant
attention in differential rendering. However, despite being an explicit 3D representation, it currently
lacks a method for effectively manipulating 3DGS while preserving high-quality rendering simul-
taneously. Mesh editing techniques, such as large-scale deformation, localized manipulation, and
simulation, have been widely acknowledged and extensively researched for many years. Our pri-
mary objective is to associate the 3DGS with mesh triangles, enabling the manipulation of 3DGS
and its rendering results following mesh editing.

Given a reconstructed or extracted triangular mesh T with K vertices {vi}Ki=1 and M triangles
{fi}Mi=1, the goal of our method is to construct a 3DGS model bound to mesh triangles and optimize
each Gaussian attribute {µi, qi, si, oi, ci}. To simplify the notation, we will omit the subscript in
subsequent sections.

For each triangle f in the given mesh T , which is composed of three vertices (v1,v2,v3), we
initialize N Gaussians on this triangle. To be specific, the mean position µ of initialized Gaussians
is formulated as µ = (w1v1 + w2v2 + w3v3), w = (w1, w2, w3) is the pre-defined barycentric
coordinate of each Gaussians attached on the triangle. And w satisfy (w1 + w2 + w3) = 1.

Gaussians on Mesh. To achieve controllable 3DGS manipulation through the mesh, an intuitive
way is to perfectly attach the GS to the triangle, as shown in the SuGaR (Guédon & Lepetit, 2023).
With the rotation matrix denoted as R = {r1, r2, r3} and the scaling vector represented by s =
(s1, s2, s3), SuGaR train 3DGS with a flat Gaussian distribution on the mesh by setting s1 = ϵ,
where ϵ is close to zero. r1 is defined by the normal vector n of the attached triangle. The Gaussians
have only 2 learnable scaling factors (s2, s3) instead of 3, and only 1 learnable 2D rotation rather

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Overview of our method.(1) Firstly, we extract a triangular mesh from 3DGS (Kerbl et al.,
2023) or a neural surface field(NeuS (Wang et al., 2021)). (2) Next, we bind N Gaussians to each
triangle in the local triangle space, and optimize the local Gaussian attributes (µl,Rl, sl, o, c). The
triangle attributes (µt,Rt, e) are calculated based on the triangle vertices. (3) Finally, we manipu-
late 3DGS by transferring the mesh manipulation directly, thus achieving manipulable rendering.

than a quaternion, to keep the Gaussians flat and aligned with the mesh triangles. This type of
binding strategy heavily relies on mesh accuracy, which lacks the flexibility of 3DGS to model
complex object rendering. Moreover, the mesh quality obtained from SuGaR is significantly inferior
compared to the ground truth and recent neural surface reconstruction results, which increases the
difficulty of editing.

Gaussians on Mesh with Offset. To compensate for the inaccuracy of the extracted mesh, it would
be better to add an offset ∆µ to the Gaussians 3D mean µ, which enables the Gaussians to move
out of the attached triangle f . Although it could improve the rendering quality of the reconstructed
static object, it would result in noisy and unexpected rendering distortion in the manipulated object
due to the mismatched localized relative position between Gaussians.

Triangle Shape Aware Gaussian Binding and Adapting. To preserve the high-fidelity rendering
results after manipulation, the key lies in maintaining the local rigidity and preserving the relative
location between Gaussians, both for 3D means and rotations. Our key insight is to define a local
coordinate system in each triangle space.

The first axis direction of triangle space is defined as the direction of the first edge. The second axis
direction of triangle space is defined as the triangle’s normal direction. The third axis direction of
triangle space is defined as the cross product of the first and second axis. Then the triangle coordinate
system rotation can be formulated as:

Rt = [rt1, r
t
2, r

t
3] = [

(v2 − v1)

∥v2 − v1∥
,nt,

(v2 − v1)

∥v2 − v1∥
× nt] (4)

where v1, v2 is the first and second vertex location repectively, nt is the normal vector which can
be calulated by:

nt =
(v2 − v1)× (v3 − v1)

∥(v2 − v1)× (v3 − v1)∥
. (5)

We then optimize the Gaussians’ local position µl and local rotation Rl in triangle space instead of
the global position and rotation in the original 3DGS.

Then the global rotation, scale and location of 3DGS are as follows:

R = RtRl, s = sl, µ = Rtµl + µt (6)

where, µt is the global coordinate of each triangle center. In practice, we initialize N local Gaussian
points and bind them for each Gaussian point, whose initialized position is on the triangle uniformly.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This Gaussian mesh binding method can preserve the relative position and rotation between Gaus-
sians that are bonded on neighboring triangles after mesh manipulation. However, following mesh
manipulation, not only does the triangle center change but also the triangle shape. With the altered
triangle shape, the local Gaussian position and scaling should adjust accordingly. When the triangle
enlarges, it is intuitive that the local scaling and position should expand as well:

R = RtRl, s = βesl, µ = eRtµl + µt, (7)

where β is a hyper-parameter, adaption vector e = [e1, e2, e3] is designed to make sure that the
global scaling s is proportionable to the triangle shape. The first axis is along the first edge, so e1
is designed as the length l1 of the first edge of the triangle. The second axis is along the normal
direction, we set e2 = (0.5 ∗ (e1 + e3)). The third axis is perpendicular to the first edge, we set e3
as the average length of the second and third edges (0.5 ∗ (l2 + l3)).

3.4 MANIPULATE GAUSSIAN SPLATTING THROUGH MESH

Utilizing our triangle shape aware gaussian binding and adapting strategy, upon the completion of
model training and mesh manipulation, the 3DGS is instantly manipulated and adapted. During
mesh manipulation, the attributes in the local triangle space remain unchanged. The triangle rota-
tion, position, and edge length can be calculated instantly. Therefore, the global Gaussian position,
scaling, and rotation can be self-adaptively adjusted following our proposed formula. In this paper,
we exhibit the 3DGS manipulation rendering outcomes, such as large-scale deformation, local ma-
nipulation, and soft-body simulation, which are driven by the manipulated mesh. Many 3D design
software applications possess the capability to execute mesh manipulation. In our experiments, we
employ Blender to manipulate the mesh.

4 EXPERIMENTS

4.1 TRAINING DETAILS

The first stage of our methods includes a mesh extracting stage, during which we extract triangular
mesh from NeuS (Wang et al., 2021) or 3DGS (Screened Poisson or Marching Cube). However, the
extracted mesh always contains enormous triangles, which we try to decimate to around 300K.

With the extracted mesh, we conduct the triangle shape aware Gaussian binding and adapting
strategy on the mesh. For each triangle, we bind N = 3 Gaussian on the surface initially. The
Gaussian attributes are optimized subsequently with the supervision of multi-view rendering loss in
the second stage. We train our model for 30K iterations in the initial stage to extract mesh and 20K
iterations in the second stage. All experiments are conducted on a single NVIDIA A100 GPU.

4.2 DATASETS, METRICS AND METHODS FOR COMPARISON

To evaluate our methods, we compare Mani-GS with previous editable novel view synthesis meth-
ods, a NeRF-based editing method NeRF-Editing (Liu et al., 2021) and a 3DGS-based editing
method SuGaR (Guédon & Lepetit, 2023). For the evaluation, we employ the commonly used met-
rics:PSNR, SSIM, LPIPS. We evaluate our methods mainly on the NeRF Synthetic dataset (Milden-
hall et al., 2021) and DTU dataset (Jensen et al., 2014)(in Appendix 9).

4.3 EVALUATION

Static Rendering Table 1 provides a quantitative comparison of all NeRF Synthetic 8 cases between
our method and competing methods. We conducted experiments using their official code repository.

The numerical results of the NeRF-Editing were not presented in their original paper, we ran their
code to provide more visual and numerical comparisons. As depicted in Table 1, we observed
some outliers in ”Drums, Ficus” that were lower than even 10 PSNR compared to ours and SuGaR.
Therefore, we remove these outliers with a strikeout in the table. As can be observed, our approach
surpasses all the baseline methods with respect to PSNR, SSIM, LPIPS, which means we achieve

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Quantitative comparison of our methods with NeRF-Editing (N.E.) (Liu et al., 2021) and
SuGaR (Guédon & Lepetit, 2023) on NeRF Synthetic dataset in terms of SSIM, PSNR, LPIPS. (↑
means higher is better, ↓ means lower is better.) The best results are marked in bold.

Subject PSNR↑ SSIM↑ LPIPS↓
N.E. SuGaR Ours N.E. SuGaR Ours N.E. SuGaR Ours

Chair 28.15 31.33 35.38 0.943 0.977 0.986 0.061 0.027 0.011
Drums 21.14 25.36 26.19 0.884 0.939 0.953 0.12 0.062 0.039
Ficus 23.82 29.94 35.40 0.909 0.959 0.986 0.101 0.039 0.013
Hotdog 32.67 35.45 37.49 0.969 0.980 0.984 0.048 0.035 0.019
Lego 29.16 32.09 36.33 0.944 0.968 0.982 0.074 0.037 0.015
Material 29.48 28.7 29.91 0.944 0.937 0.956 0.063 0.076 0.046
Mic 29.60 34.07 37.46 0.952 0.980 0.992 0.046 0.029 0.007
Ship 25.01 27.90 31.01 0.083 0.885 0.890 0.194 0.127 0.097
Average 30.61 33.65 0.9531 0.966 0.054 0.030

the best rendering quality. We are 3.0 higher than SuGaR in PSNR, 0.013 higher in SSIM, and 0.024
lower in LPIPS.

Figure 3: Visual comparison between ours, NeRF-Editing (Liu et al., 2021)(N.E.) and
SuGaR (Guédon & Lepetit, 2023) for static rendering. It illustrates our proposed method can contain
a much more accurate boundary in ”Ship” , and detailed results in ”Drums”.

In Figure 3, we present qualitative results of our approach and other methods in overview and zoom-
in details. Our methods render more detailed and more accurate boundaries. For SuGaR, it attempts
to bind 3D Gaussians on the triangle and enforce that the attached Gaussian is closely aligned on
the triangle. In practice, they set the scale s1 along the triangle’s normal direction to a value close
to zero, i.e., s1 = ϵ. This binding strategy heavily depends on the accuracy of the mesh. As can
be observed in the third column of Figure 3, wrong geometry leads to an inaccurate rendering,
especially in the boundary region.

Manipulation Rendering In Figure 4, we showcase our manipulation results. In these four cases,
we manipulate the underlying mesh with large deformation, the Chair is stretched, Lego is tapered,
Ficus and Mic is bent respectively. As demonstrated in Chair, Ficus, we have more accurate bound-
ary and shape, as well as in the bottom region. This indicates that when the geometry is not that
accurate, SuGaR can not adapt to compensate for geometry error, which results in missing geometry
and dilated boundary geometry. For Lego, Mic, we can maintain the high rendering quality even after
the large deformation, while SuGaR shows some distortion and noise in rendering results after large
deformation. We did not present the manipulation results of NeRF-Editing (Liu et al., 2021) since
we can not obtain their reasonable results using their code. So we compare with NeuMesh (Yang
et al., 2022). As observed, we present more abundant and distinct details compared to NeuMesh.
Please see the numerical comparison with NeuMesh in Appendix on DTU and NeRF datasets.

In addition to the large deformation, our method also produces promising results for local manipu-
lation and physics simulation. Here we show an example of soft body simulation. In Figure 5 row

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: We offer an editing comparison between our method, SuGaR, and NeuMesh. Our ap-
proach demonstrates fewer artifacts and less blurring effects than SuGaR, and presents more abun-
dant and distinct details compared to NeuMesh. For further details, please zoom in.

1, we try to blend the red sauce and yellow sauce of Hotdog as shown in the blue box, which shows
satisfying editing and reasonable rendering quality. In Drums, we repose a cymbal and elastically
deform a cymbal as shown in the blue box. After reposing and elastic deformation, we still preserve
the photo-realistic rendering results. Note that the manipulation is achieved by manipulating the
triangular mesh directly, the 3DGS rendering is achieved simultaneously with self-adaption.

In the second row of Figure 5, we present the rendering results of soft body simulation at different
timesteps. As observed, we can achieve soft body simulation by just transferring the mesh simulation
to 3DGS, which eliminates the need for a soft body simulation algorithm dedicated to 3DGS.

Figure 5: Visual results of local manipulation and soft body simulation. In row 1, we demonstrate
that our proposed GS-mesh binding method enables us to support local part manipulation, In row 2,
we showcase a 3DGS soft body simulation demo at different timesteps.

4.4 ABLATION STUDY

We conduct ablation studies to verify the effectiveness of triangle shape aware Gaussian binding and
adapting method. We first evaluate the strategy of directly binding 3DGS to the mesh, which implies
that the 3D position is fixed on the triangle. As shown in Table 2, the performance significantly
drops, with a decrease of approximately 2.6 PSNR compared to our best model. For visual ablation
in Figure 6, 3DGS on NeuS Mesh after deformation shows a boundary with many burrs.

Next, we verify the effectiveness of adding 3D offset for 3DGS on Mesh. Although the offset can
enhance the fitting of 3DGS to the static scene, as demonstrated in Table 2, it fails to generate
satisfactory deformation rendering results because the offset only fits the static scene and remains
unchanged during subsequent deformations. Consequently, it leads to significant noise and distortion
after manipulation in Table 2.

Finally, we conduct experiments with different meshes extracted using different methods. The 3DGS
Marching Cube Mesh (3DGS MC) is of low quality, including a dilated boundary and very noisy
surface, as can be observed in Figure 6 row 2. The screened poisson mesh (Poisson Recon.) has

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Quantitative ablation comparison between 3DGS On NeuS Mesh, NeuS Mesh + Offset,
Ours with Marching Cube Mesh,Ours with Screened Poisson Mesh on NeRF Synthetic dataset. (↑
means higher is better, ↓ means lower is better.)

Method PSNR↑ SSIM↑ LPIPS↓
3DGS On NeuS Mesh 30.87 0.9521 0.0447
NeuS Mesh + Offset 32.48 0.9625 0.0341
Ours + Marching Cube Mesh 32.11 0.9602 0.035
Ours + Screened Poisson Mesh 33.42 0.9638 0.0324
Ours + NeuS Mesh 33.45 0.9646 0.0309

some unconnected regions and missing parts compared with NeuS mesh (NeuS). However, using our
triangle shape aware Gaussian binding and adapting method can still achieve 3DGS manipulation
and maintain high-fidelity rendering even after very large deformation as shown in Figure 6 row 2.
As shown in Table 2, the numerical results obtained with screened poisson mesh are only slightly
lower than those obtained with NeuS mesh. When the mesh is of low quality, such as the MC mesh,
the quantitative results are approximately 1 PSNR lower than the best, but still 2 PSNR higher than
only binding 3DGS on the best Mesh (NeuS mesh), and 1.5 PSNR higher than SuGaR.

We also evaluate our method using mesh extracted from SuGaR, whose mesh is extremely dense.
The PSNR using SuGaR mesh is 33.67, which is 3 PSNR higher than the original SuGaR results.

Figure 6: Visual Results of Ablation Study. After deformation, (3DGS on Mesh) shows a burring
boundary, (Mesh + Offset) leads to significant noise and distortion, (Ours Full) can maintain the
high fidelity rendering. In the second row, we demonstrate that even with a low-quality mesh, we
can still achieve high-quality editable rendering.

5 CONCLUSION AND LIMITATION

In this paper, we introduce a triangle shape aware Gaussian binding strategy with self-adaptation,
which supports various 3DGS manipulations, maintains rendering quality, and has a high toler-
ance for mesh accuracy. We evaluate our methods on the NeRF synthetic dataset and demonstrate
state-of-the-art results, showcasing various 3DGS manipulations, including large deformations, lo-
cal manipulations, and soft body simulations.

During our experiments, we noticed that some results still exhibit distortions. When the local region
of the manipulated mesh contains highly non-rigid deformations, it can result in rendering distor-
tions. Additionally, during our simulation demos, we found that conducting physics simulations on
meshes with more than 35K triangles can take hours. It would be a novel direction to explore fast
simulation methods for 3DGS. Finally, we found that our results may not have accurate boundary
rendering when the extracted mesh has a significant discrepancy from the ground truth mesh, such
as unconnected regions.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Chong Bao, Yinda Zhang, Bangbang Yang, Tianxing Fan, Zesong Yang, Hujun Bao, Guofeng
Zhang, and Zhaopeng Cui. Sine: Semantic-driven image-based nerf editing with prior-guided
editing field. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 20919–20929, 2023. 3

Yue Chen, Xuan Wang, Xingyu Chen, Qi Zhang, Xiaoyu Li, Yu Guo, Jue Wang, and Fei Wang. Uv
volumes for real-time rendering of editable free-view human performance. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16621–16631, 2023a.
3

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploit-
ing the polygon rasterization pipeline for efficient neural field rendering on mobile architectures.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16569–16578, 2023b. 3

Yutao Feng, Xiang Feng, Yintong Shang, Ying Jiang, Chang Yu, Zeshun Zong, Tianjia Shao,
Hongzhi Wu, Kun Zhou, Chenfanfu Jiang, et al. Gaussian splashing: Dynamic fluid synthesis
with gaussian splatting. arXiv preprint arXiv:2401.15318, 2024. 4

Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable 3d
gaussian: Real-time point cloud relighting with brdf decomposition and ray tracing. arXiv preprint
arXiv:2311.16043, 2023. 5

Lin Gao, Jie Yang, Bo-Tao Zhang, Jia-Mu Sun, Yu-Jie Yuan, Hongbo Fu, and Yu-Kun Lai. Mesh-
based gaussian splatting for real-time large-scale deformation. arXiv preprint arXiv:2402.04796,
2024. 2

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. arXiv preprint arXiv:2311.12775, 2023. 2,
4, 5, 7, 8, 15

Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
animatable 3d gaussians. arXiv preprint arXiv:2312.02134, 2023. 4

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi.
Sc-gs: Sparse-controlled gaussian splatting for editable dynamic scenes. arXiv preprint
arXiv:2312.14937, 2023. 4

Clément Jambon, Bernhard Kerbl, Georgios Kopanas, Stavros Diolatzis, George Drettakis, and
Thomas Leimkühler. Nerfshop: Interactive editing of neural radiance fields. Proceedings of
the ACM on Computer Graphics and Interactive Techniques, 6(1), 2023. 1, 3

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale multi-
view stereopsis evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 406–413, 2014. 7, 14

Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau,
Feng Gao, Yin Yang, et al. Vr-gs: A physical dynamics-aware interactive gaussian splatting
system in virtual reality. arXiv preprint arXiv:2401.16663, 2024. 4

Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Transactions
on Graphics (ToG), 32(3):1–13, 2013. 5, 16

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023. 2, 4,
6

Tobias Kirschstein, Simon Giebenhain, and Matthias Nießner. Diffusionavatars: Deferred diffusion
for high-fidelity 3d head avatars. arXiv preprint arXiv:2311.18635, 2023. 4

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting for inverse
rendering. arXiv preprint arXiv:2311.16473, 2023. 5

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. arXiv preprint arXiv:2312.03431, 2023. 4

Ruiyang Liu, Jinxu Xiang, Bowen Zhao, Ran Zhang, Jingyi Yu, and Changxi Zheng. Neural im-
postor: Editing neural radiance fields with explicit shape manipulation. In Computer Graphics
Forum, volume 42, pp. e14981. Wiley Online Library, 2023. 1, 3

Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, and Bryan Russell.
Editing conditional radiance fields. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 5773–5783, 2021. 3, 7, 8

Li Ma, Xiaoyu Li, Jing Liao, Xuan Wang, Qi Zhang, Jue Wang, and Pedro V Sander. Neural
parameterization for dynamic human head editing. ACM Transactions on Graphics (TOG), 41
(6):1–15, 2022. 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021. 1, 3, 7, 14

Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, and
Matthias Nießner. Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. arXiv
preprint arXiv:2312.02069, 2023. 4

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021. 3

Marie-Julie Rakotosaona, Fabian Manhardt, Diego Martin Arroyo, Michael Niemeyer, Abhijit
Kundu, and Federico Tombari. Nerfmeshing: Distilling neural radiance fields into geometrically-
accurate 3d meshes. arXiv preprint arXiv:2303.09431, 2023. 3

Jingxiang Sun, Xuan Wang, Yong Zhang, Xiaoyu Li, Qi Zhang, Yebin Liu, and Jue Wang. Fenerf:
Face editing in neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7672–7682, 2022. 3

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023a. 5

Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong Wang, and Gang
Zeng. Delicate textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint
arXiv:2303.02091, 2023b. 3

Joanna Waczyńska, Piotr Borycki, Sławomir Tadeja, Jacek Tabor, and Przemysław Spurek. Games:
Mesh-based adapting and modification of gaussian splatting. arXiv preprint arXiv:2402.01459,
2024. 2

Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. Clip-nerf: Text-and-
image driven manipulation of neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3835–3844, 2022. 3

Can Wang, Mingming He, Menglei Chai, Dongdong Chen, and Jing Liao. Mesh-guided neural
implicit field editing. arXiv preprint arXiv:2312.02157, 2023a. 3

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689, 2021. 1, 5, 6, 7, 14, 16

Xiangyu Wang, Jingsen Zhu, Qi Ye, Yuchi Huo, Yunlong Ran, Zhihua Zhong, and Jiming Chen.
Seal-3d: Interactive pixel-level editing for neural radiance fields, 2023b. 3

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023. 4

Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, and Hao
Su. Neutex: Neural texture mapping for volumetric neural rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7119–7128, 2021. 3

Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. arXiv preprint
arXiv:2311.12198, 2023. 4

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich
Neumann. Point-nerf: Point-based neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5438–5448, 2022. 1

Yuelang Xu, Benwang Chen, Zhe Li, Hongwen Zhang, Lizhen Wang, Zerong Zheng, and Yebin
Liu. Gaussian head avatar: Ultra high-fidelity head avatar via dynamic gaussians. arXiv preprint
arXiv:2312.03029, 2023. 4

Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda Zhang, Zhaopeng Cui, and Guofeng
Zhang. Neumesh: Learning disentangled neural mesh-based implicit field for geometry and tex-
ture editing. In European Conference on Computer Vision, pp. 597–614. Springer, 2022. 1, 3, 8,
14

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023. 4

Yao Yao, Jingyang Zhang, Jingbo Liu, Yihang Qu, Tian Fang, David McKinnon, Yanghai Tsin,
and Long Quan. Neilf: Neural incident light field for physically-based material estimation. In
European Conference on Computer Vision, pp. 700–716. Springer, 2022. 3

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P Srinivasan, Richard Szeliski,
Jonathan T Barron, and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-time view syn-
thesis. arXiv preprint arXiv:2302.14859, 2023. 3

Ye Yuan, Xueting Li, Yangyi Huang, Shalini De Mello, Koki Nagano, Jan Kautz, and Umar
Iqbal. Gavatar: Animatable 3d gaussian avatars with implicit mesh learning. arXiv preprint
arXiv:2312.11461, 2023. 4

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:
geometry editing of neural radiance fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18353–18364, 2022. 1, 3

Fangneng Zhan, Lingjie Liu, Adam Kortylewski, and Christian Theobalt. General neural gauge
fields. arXiv preprint arXiv:2305.03462, 2023. 3

Jingbo Zhang, Xiaoyu Li, Ziyu Wan, Can Wang, and Jing Liao. Fdnerf: Few-shot dynamic neural ra-
diance fields for face reconstruction and expression editing. In SIGGRAPH Asia 2022 Conference
Papers, pp. 1–9, 2022. 3

Zerong Zheng, Han Huang, Tao Yu, Hongwen Zhang, Yandong Guo, and Yebin Liu. Structured
local radiance fields for human avatar modeling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15893–15903, 2022. 3

Kaichen Zhou, Lanqing Hong, Enze Xie, Yongxin Yang, Zhenguo Li, and Wei Zhang. Serf:
Fine-grained interactive 3d segmentation and editing with radiance fields. arXiv preprint
arXiv:2312.15856, 2023a. 1, 3

Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Driv-
inggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes.
arXiv preprint arXiv:2312.07920, 2023b. 4

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier
Romero. Drivable 3d gaussian avatars. arXiv preprint arXiv:2311.08581, 2023. 4

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa splatting. IEEE
Transactions on Visualization and Computer Graphics, 8(3):223–238, 2002. 5

A APPENDIX

In this appendix, we provide more visual rendering and geometry results on the NeRF (Mildenhall
et al., 2021) Synthetic dataset including some video demos (included in supply.) in Sec. A.1. And
we further evaluate our methods on the DTU (Jensen et al., 2014) dataset and provide qualitative
and quantitative results in Sec. A.2. In addition, we give an efficiency analysis of training time and
inference time in Sec. A.3. Finally, we describe more implementation details of our method in
Sec. A.4.

A.1 MORE RESULTS ON NERF SYNTHETIC DATASET

Soft Body Simulation. In addition to the visual results presented in Figure 5 of the main paper,
we also provide the geometry after simulation and rendering at different viewpoints in Figure 7.
To improve the speed of the mesh simulation, we decimated the original mesh from 300K to 35K
triangles. While this may result in some decrease in rendering quality due to the reduced number of
triangles as well as Gaussians, it was necessary to ensure reasonable simulation speed.

Figure 7: Visual results of softbody simulation at different viewpoints. The left column displays the
geometry after simulation, while the right three columns showcase the rendering results from three
different viewpoints.

Demo Video. In order to further demonstrate the effectiveness of our methods, we have provided
additional visual videos showcasing large deformation, soft body simulation, and local manipula-
tion. These videos can be accessed through a local webpage by navigating to the mani-gs folder and
clicking on index.html.

Methods DTU NeRF 360◦ Synthetic

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeuS (Wang et al., 2021) 26.352 0.909 0.176 30.588 0.960 0.058
Neu-Mesh (Yang et al., 2022) 28.289 0.921 0.117 30.95 0.951 0.043
Ours 31.496 0.943 0.088 36.67 0.986 0.013

Table 3: We compare quantitative rendering quality with NeuS (Wang et al., 2021) and
NeuMesh (Yang et al., 2022) on the DTU dataset and the NeRF Synthetic dataset.

Numerical Comparison with NeuS and Neu-Mesh. We have compared our methods with NeuS
and Neu-Mesh on the NeRF Synthetic dataset, and the results are presented in Table 3. According

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

to NeuMesh, they only chose 4 representative scenes (Lego, Mic, Chair, Hotdog) that worked well
for evaluation. Therefore, we use the same 4 scenes for comparison. Our approach achieves a PSNR
score that is 5.7 higher than Neu-Mesh, an SSIM score that is 0.035 higher than Neu-Mesh, and
an LPIPS score that is 0.03 lower than Neu-Mesh. These results demonstrate that our approach
has achieved the best overall performance in all metrics compared to neural implicit field methods
(NeuS and Neu-Mesh) on the NeRF Synthetic dataset.

Binding Gaussians on low-quality mesh. In some extreme cases, the Screend Poisson surface
reconstruction method may result in a very low-quality triangular mesh. However, with our mesh-
Gaussians binding strategy, we can still generate much better rendered images than those produced
by SuGaR (Guédon & Lepetit, 2023), even though SuGaR may have a much better mesh in such
case as shown in Figure 8.

Figure 8: Binding Gaussians on a low-quality mesh (ours on the left, SuGaR on the right), we
are still able to achieve high-fidelity manipulated rendering results when the mesh we generate of
Screened Poisson reconstruction is of low quality. In contrast, SuGaR fails to produce satisfactory
results, even though it has a better mesh in this particular case.

A.2 MORE RESULTS ON DTU DATASET

Figure 9: Manipulation rendering results in DTU dataset. The left two columns showcase the
geometry and rendered image before manipulation, while the right three columns showcase the
geometry and rendered image after manipulation. To highlight the deformed area, we have enclosed
it within a red rectangle.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We have also evaluated our approach on the DTU dataset, which includes 15 cases with multi-view
images as input. The results are presented in Table 3, and demonstrate that our approach achieves
a PSNR score that is 2.8 higher than Neu-Mesh, and a SSIM score that is 0.022 higher than Neu-
Mesh. Additionally, our approach has a LPIPS score that is 0.016 lower than Neu-Mesh, indicating
that our approach achieves the best overall performance on the DTU dataset.

We have also presented the manipulation results in Figure 9. The left two columns showcase the
geometry and rendered image before manipulation, while the right three columns showcase the ge-
ometry and rendered image after manipulation. In the first row, the wing of a pigeon is manipulated,
while in the second row, the arms of a tiger are swinging down. In the third row, a toy is twisted to
the left. The manipulation results presented in Figure 9 demonstrate that our approach can success-
fully transfer mesh manipulation to Gaussian-Splatting, resulting in accurate and visually appealing
results.

A.3 EFFICIENCY ANALYSIS

The efficiency of GS Binding training and rendering speed depends on the number of Gaussians,
which is the product of the triangle number T and the Gaussians number for each triangle N . In
Table 4, We first fixed T and tested different values of N . Our results indicate that N=3 leads to
the best rendering quality while keeping a competitive rendering speed. When N = 1, the PSNR
slightly decreased with a faster training and rendering speed.

We also evaluated the impact of underlying mesh resolution by testing meshes with different tri-
angles (270K, 150K, 70K). As shown in Table 4, the rendering quality decreases while efficiency
improves with decreasing mesh resolution.

Regarding the editing time, it primarily depends on the time cost of mesh editing. We use Blender
for mesh editing, and in our experience, local manipulation and large deformation can be achieved
instantly. Soft body simulation can be a more time-consuming process, as it depends on the simula-
tion algorithm employed in Blender.

Table 4: Efficiency Analysis
N=4 N=3 N=1 N=1 N=1

Triangles(K) 270 270 270 150 70
Points(K) 1080 810 270 150 70
Training (min) 16 13 7 5.5 4.5
Speed (FPS) 244 300 452 571 572
PSNR 36.36 36.39 36.27 35.86 34.52

A.4 IMPLEMENTATION DETAILS

A.4.1 TRAINING DETAILS OF MESH EXTRACTION STAGE

As outlined in our main paper, the first stage of our approach involves mesh extraction. While we
utilize the NeuS (Wang et al., 2021) mesh as the foundation for binding Gaussians, we also explore
extracting mesh from Gaussian-Splatting.

In this work, we try to extract triangular mesh using the Screened Poisson surface reconstruction
(Kazhdan & Hoppe, 2013) method from trained Gaussian-Splatting model. We incorporate a nor-
mal attribute n for each 3D Gaussian and optimize the normal attribute with the pseudo-normal
constraint.

The normal consistency is quantified as follows:

Ln = ∥N − Ñ∥2. (8)

where N is the rendered-normal map, Ñ is the pseudo-normal map computed from rendered depth
map.

Besides the normal constraint Ln, the ordinary L1 Loss and Structural Similarity Index (SSIM) loss
are also incorporated into optimization by comparing the rendered image C with the observed image

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Cgt. To address the issue of unwarranted 3D Gaussians in the background region, we employ a mask
cross-entropy loss. This loss is defined as follows:

Lmask = −Bm logB − (1−Bm) log (1−B), (9)

where Bm denotes the object mask and B denotes the accumulated transmittance B =
∑

i∈N Tiαi.

Then all the loss terms can be summarized as follows:

Lstage1 = λ1L1 + λ2LSSIM + λ3Ln + λ4Lmask, (10)

where λ1 = 1, λ2 = 0.2, λ3 = 0.01, λ4 = 0.1. We train this stage for 30K steps with adaptive
density control, which is executed at every 500 iterations within the specified range from iteration
500 to 10K. Once the training stage is complete, we proceed with Screened Poisson surface recon-
struction using the positions and normals of the Gaussians as input. The mesh extraction process
takes less than 1 minute to complete.

In addition to mesh extraction, we also utilize Gaussian-Splatting Marching-Cube to extract the
triangular mesh. Our approach involves sampling a grid with a resolution of 256× 256× 256. For
each sampling point, we identify its nearest Gaussian points. Sampling points that have the nearest
Gaussians within a pre-defined distance threshold τ are assigned a density value of 1, while those
that do not meet the threshold are assigned a density value of 0. τ is set to 0.01 in practice. The
density threshold for Marching-Cube is set to 1e-4.

Based on the visual comparison, the overall mesh quality can be ranked as follows: NeuS > Poisson
Reconstruction > Marching-Cube.

A.4.2 TRAINING DETAILS OF GAUSSIAN-BINDING STAGE

To ensure an accurate representation of each triangle, we bind N Gaussians to it. Prior to training, we
initialize the positions of the Gaussians on the attached triangle. The N initialized position is calcu-
lated using a barycentric coordinate, with a predefined barycentric coordinate set of [1/2, 1/4, 1/4],
[1/4, 1/2, 1/4], [1/4, 1/4, 1/2]. For the hyper-parameter β mentioned in main paper equation (8),
we set β = 10 in most cases, β = 100 in Materials.

In the Gaussian-Binding stage, we don’t perform adaptive control because we find it doesn’t influ-
ence the final performance. We also train 300K iterations in this stage with L1 loss, SSIM loss and
mask entropy loss. The overall loss in this can be summarized as follows:

Lstage2 = λ1L1 + λ2LSSIM + λ3Lmask, (11)

where λ1 = 1, λ2 = 0.2, λ3 = 0.1.

17


	Introduction
	Related Work
	NeRF Editing
	Mesh-based NeRF Rendering
	Gaussian Splatting Editing, Simulation and Animation

	Method
	Preliminary
	Mesh Extraction
	Binding Gaussian Splatting on Mesh
	Manipulate Gaussian Splatting through Mesh

	Experiments
	Training Details
	Datasets, Metrics and Methods for Comparison
	Evaluation
	Ablation Study

	Conclusion and Limitation
	Appendix
	More Results on NeRF Synthetic Dataset
	More Results on DTU Dataset
	Efficiency Analysis
	Implementation Details
	Training Details of Mesh Extraction Stage
	Training Details of Gaussian-Binding Stage



