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Abstract

Despite recent advancements in Large Lan-001
guage Models (LLMs), their performance on002
tasks involving long contexts remains sub-003
optimal. In-Context Learning (ICL) with few-004
shot examples may be an appealing solution005
to enhance LLM performance in this scenario;006
However, naïvely adding ICL examples with007
long context introduces challenges, including008
substantial token overhead added for each few-009
shot example and context mismatch between010
the demonstrations and the target query. In011
this work, we propose to automatically gen-012
erate few-shot examples for long context QA013
tasks by recycling contexts. Specifically, given014
a long input context (1-3k tokens) and a query,015
we generate additional query-output pairs from016
the given context as few-shot examples, while017
introducing the context only once. This ensures018
that the demonstrations are leveraging the same019
context the target query while only adding a020
small number of tokens to the prompt. We021
further enhance each demonstration by instruct-022
ing the model to explicitly identify the relevant023
paragraphs before the answer, which improves024
performance while providing fine-grained at-025
tribution to the answer source. We apply our026
method on multiple LLMs and obtain substan-027
tial improvements on various QA datasets with028
long context, especially when the answer lies029
within the middle of the context. Surprisingly,030
despite introducing only single-hop ICL ex-031
amples, LLMs also successfully generalize to032
multi-hop long-context QA using our approach.033

1 Introduction034

Long contexts are prevalent in various domains,035

ranging from legal documents and scientific articles036

to lengthy reports and novels. These may consist of037

a single extensive document or multiple passages,038

typically retrieved through specific retrieval mech-039

anisms (e.g., RAG; Lewis et al., 2020).040

Yet, while Large Language Models (LLMs) have041

demonstrated impressive capabilities in a variety042

Figure 1: Performance of Gemini Pro (v1.0) on a sam-
ple of the Lost-in-the-middle dataset (Liu et al., 2023).
The X-axis is the position of the relevant passage in the
context. The baseline (blue line) displays a U-shaped
curve, performing well only when the relevant passage
is at the beginning or end of the input. The oracle (green
line) shows significant performance gain when the rele-
vant passage ID is provided in the prompt, showing that
the main bottleneck is the identification of supporting
evidence(s). DOUBLEDIPPER (our method, orange line)
flattens this U-shaped trend.

of tasks including answering questions requiring 043

one or multiple reasoning steps, they often strug- 044

gle to answer simple questions when faced with 045

long contexts. Despite substantial engineering ef- 046

forts (Chen et al., 2023) to extend the context win- 047

dow of LLMs to extremely long inputs (32k and 048

even 1M tokens), these models continue to struggle 049

with much shorter inputs, comprising only a few 050

thousand tokens. 051

In order to answer questions from long inputs, 052

models should implicitly identify relevant informa- 053

tion segments and then reason over these segments 054

to formulate an answer. It has been shown that 055

LLMs struggle when the relevant information is 056

buried in the middle of the context (Liu et al., 2023) 057

or obscured by numerous irrelevant details (Levy 058

et al., 2024). Our analysis (illustrated in Figure 1) 059

identifies the identification of relevant information 060
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Figure 2: Comparison of traditional In-Context-
Learning (ICL) and our new method. In traditional
ICL (left), each example comprises a possibly lengthy
context, accompanied by a query and an answer, typi-
cally derived from the training dataset. Conversely, our
approach (right) simplifies each example to just a ques-
tion and an answer, both of which are generated directly
from the provided input context.

as a primary performance bottleneck of current061

models in long contexts.062

In this work, we introduce a novel method to en-063

hance the QA performance of LLMs in long input064

setups (to allow direct comparisons across a wide065

swath of models, we limit "long context" here to066

1-3k tokens). Our approach, termed DOUBLEDIP-067

PER, leverages LLMs’ In-Context Learning (ICL)068

capability and is based on two principles. First, in-069

stead of typical ICL, where each few-shot example070

is standalone with a separate length context and a071

question-answer (QA) pair, we propose to recycle072

the given input context and automatically generate073

few-shot examples from this context. Specifically,074

we randomly select a few paragraphs from the075

given input context and generate QA pairs for each076

passage. These generated QAs serve as demon-077

stration examples and are placed between the input078

context and the target input question. Figure 2079

illustrates the differences between the traditional080

ICL with few-shot examples and DOUBLEDIPPER.081

Second, we further enrich each ICL example to082

instruct the model to explicitly identify the para-083

graph(s) containing the relevant information before084

generating the answer. This can be regarded as085

a structured Chain of Thought that incentivizes086

the model to pinpoint relevant information before087

reasoning, an essential capability for long-context088

processing.089

By generating few-shot demonstrations from090

various sections of the input context while in- 091

structing the model to identify relevant passages, 092

DOUBLEDIPPER encourages the model to develop 093

deeper reading comprehension skills specific to 094

the given input evidence. This, in turn, allows the 095

model to answer subsequent queries with higher 096

accuracy. DOUBLEDIPPER presents several advan- 097

tages. In terms of efficiency, since each example 098

does not include its own input context, our method 099

adds to the original prompt a minimal number of to- 100

kens, resulting in a substantially cheaper inference 101

than traditional ICL. Additionally, recycling the 102

same context for ICL demonstrations ensures that 103

the few-shot examples refer to the same domain 104

as the input question, thus obviating the need for 105

external retrieval processes. Finally, DOUBLEDIP- 106

PER generates answers with attribution to relevant 107

paragraphs, improving the model’s lookup ability 108

and offering transparency, which substantially sim- 109

plifies human evaluation (Slobodkin et al., 2024). 110

We applied DOUBLEDIPPER to a variety of 111

LLMs, both commercial (Gemini Pro and Gem- 112

ini Ultra; Team et al., 2023) and open-source 113

(Llama (Touvron et al., 2023), Mistral (Jiang et al., 114

2023) and Gemma (Team et al., 2024)), and eval- 115

uate it on various QA datasets with long inputs, 116

including common multi-hop QA datasets. Our 117

experiments demonstrate that with only 3 self- 118

generated few-shot examples, DOUBLEDIPPER 119

consistently outperforms the baseline on our eval- 120

uation set. In addition, for some models, DOU- 121

BLEDIPPER enhances the robustness to the position 122

of the relevant information within the text. Inter- 123

estingly, while our few-shot examples focus on 124

single-paragraph answers, DOUBLEDIPPER gen- 125

eralizes well to multi-hop QAs where the answer 126

requires information from multiple passages. 127

2 Background 128

Challenges in Long Context for Language Mod- 129

eling. LLMs have been well-documented to strug- 130

gle when input length grows (An et al., 2023), and 131

especially so when it exceeds input lengths seen 132

during training (Anil et al., 2022). Various meth- 133

ods have been proposed to advance long-context 134

capabilities: Architectural, e.g., to augment the 135

embedding layer to cleverly extrapolate to unseen 136

lengths (Vaswani et al., 2017; Press et al., 2021; 137

Caciularu et al., 2022); and via data, e.g., to incor- 138

porate longer inputs and more challenging long- 139

context scenarios into training (He et al., 2023; 140
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Chen et al., 2023). However, this challenging prob-141

lem stubbornly remains in competitive models to-142

day (Liu et al., 2023; Bishop et al., 2023; Levy143

et al., 2024). In contrast to the above methods,144

DOUBLEDIPPER does not involve training or archi-145

tectural changes.146

In documenting and exploring LLM perfor-147

mance in long-context settings, many different148

benchmarks targeting it have been proposed, such149

as Scrolls and Zero-Scrolls (Shaham et al., 2022,150

2023), Loogle (Li et al., 2023), LongBench (Bai151

et al., 2023), inter alia. We describe the most rel-152

evant evaluation benchmarks used in this work in153

Section 4.154

In-Context Learning The area of in-context155

learning (ICL) is a class of prompting techniques156

where demonstrations are added to the prompt in157

order to steer or improve model behavior (Min158

et al., 2022a). Typically, in-context learning in-159

volves hand-crafted demonstrations (Song et al.,160

2022), automatic retrieval of demonstrations from161

a larger set (Paranjape et al., 2023), or instruct-162

ing the model to perform various tasks one after163

another in a pipeline (Gao et al., 2022). Recent im-164

provements in long-context capabilities of LLMs165

have also had effect on improving the yield from in-166

context learning by simply using more short-length167

demonstrations (Agarwal et al., 2024).168

While such methods are widely used for their169

effectiveness (Brown et al., 2020b; an Luo et al.,170

2024), they remain under-explored in settings of171

long-context. The reason is simple: If the context is172

already extremely long, adding additional demon-173

strations comparable in length to the input context174

will likely amplify the existing limitations of long175

context handling (Li et al., 2024). In this work,176

we tackle these challenges and present a novel ICL177

method for long contexts.178

3 DOUBLEDIPPER179

Recall that our work focuses on the task of ques-180

tion answering (QA) with long input context com-181

prising multiple paragraphs. In addition to the an-182

swer, we aim to identify the supporting paragraphs183

in order to provide attribution. Formally, given184

a long input text D composed of n paragraphs185

D = {p1, p2, ..., pn} and a question q, the goal is to186

generate the answer a and identify the set(s) of para-187

graphs that support the answer S = {s1, ..., sk}.188

The number of the supporting paragraphs is not189

known in advance and can be one or more.190

We describe DOUBLEDIPPER, an efficient 191

method for improving the performance of large 192

language models (LLMs) when dealing with long 193

contexts. The core principles of DOUBLEDIPPER 194

involve: (1) recycling the input context to automat- 195

ically generate few-shot examples, and (2) “teach- 196

ing” the model via in-context learning (ICL) to ex- 197

plicitly pinpoint the supporting paragraphs before 198

generating the answer. 199

Figure 3 illustrates DOUBLEDIPPER. Starting 200

with the input paragraphs D, we initially select k 201

paragraphs at random (e.g., paragraphs 15, 5, and 202

17, for k := 3). For each chosen paragraph, we 203

prompt the model to formulate a question that per- 204

tains to the specific paragraph, accompanied by an 205

appropriate answer (for further details on prompt 206

specifications, refer to Appendix A). Each gener- 207

ated QA pair is directly associated with its origin 208

paragraph, enabling us to assemble the following 209

structured in-context demonstration, shown as the 210

DOUBLEDIPPER block in Figure 3: 211

Question : qi 212

Evidence : pi 213

Answer : ai 214

Here, pi indicates the index of the paragraph as- 215

sociated with the QA pair (qi, ai). Given a test 216

question q, we then form a QA prompt by concate- 217

nating the original input context D, the compiled 218

demonstrations and q. The model first generates the 219

one or more indices of the supporting paragraph(s), 220

followed by the answer. 221

Unlike traditional few shot examples that instruct 222

the model about a specific task, DOUBLEDIPPER 223

aims to coach the model on how to “handle” the 224

specific input context. This is achieved by guiding 225

the model to explicitly localize relevant informa- 226

tion before generating the answer. By randomly 227

sampling multiple paragraphs from the input, DOU- 228

BLEDIPPER guarantees that the ICL demonstra- 229

tions involve reading different parts of the context, 230

allowing the model to better comprehend the in- 231

put text. Beyond improving the performance of 232

the QA task, instructing the model to provide the 233

supporting paragraphs is valuable on its own as it 234

offers transparency and substantially eases human 235

evaluation (Slobodkin et al., 2024). 236

DOUBLEDIPPER offers several advantages. 237

First, as each example in the demonstration con- 238

sists only of a question, an answer and the ID of 239

relevant passage, the number of added tokens due 240
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Instructions: […]

[0]: The Parc botanique de Neuvic (6 hectares) is a botanical garden located in Neuvic-Sur-L'Isle […]

[5] Santa Cruz de las Flores is the name of a town located south of Tlajomulco de Zuñiga, in the state of Jalisco, 
Mexico. It has been called Xochitlan, meaning "Place of Flowers" 
[6]: Graft-De Rijp is a former municipality in the Netherlands, in the province of North Holland. 

[15]: The Jardin Botanique de l'Université de Strasbourg (3.5 hectares) is a botanical garden at 28 rue Goethe, 
Strasbourg, Bas-Rhin, Alsace, France. It is open daily without charge.

[17]: Marquette is an unincorporated community in [...], located on Illinois Route 29, east of De Pue.
[18]: The capital and seat of the provincial government is Haarlem, and the province's largest city is the 
Netherlands' capital Amsterdam. The King's Commissioner of North Holland is Johan Remkes, serving since 2010.

See below a few examples:
Question: Is there an admission fee for the Jardin botanique de l'Université de Strasbourg?
Evidence: [15]
Answer: No, it is open daily without charge.
Question: What is the name of the town located south of Tlajomulco de Zuñiga?
Evidence: [5]
Answer: Santa Cruz de las Flores
Question: What is the name of the community that is west of Marquette?
Evidence: [17]
Answer: De Pue

Who was in charge of the state where Graft-De Rijp is located?
Evidence: [6, 18]
Answer: Johan Remkes
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Figure 3: Example of DOUBLEDIPPER applied to the MuSique dataset. Given 20 passages as input, DOUBLEDIPPER
randomly selects 3 passages (specifically passages 15, 5, 17) and automatically generates a question-pair for each
one. As each QA is associated with its respective paragraph, we form the demonstrations to instruct the model to
identify the relevant passage(s) and the correct answer.

to the extra demonstrations is minimal, leading to a241

low additional cost and computation. Furthermore,242

by reusing the same context to generate demon-243

strations, our approach guarantees that all few shot244

examples are derived from the exact same domain245

as the input query (Rubin et al., 2022).246

Finally, we observe that, although the QA pairs247

in the demonstration are confined to individual248

paragraphs, the actual query q may require rea-249

soning over multiple paragraphs (i.e., multi-hop250

QA). Surprisingly, LLMs can generalize from251

DOUBLEDIPPER local examples to these complex,252

global questions and successfully generate indices253

to multiple paragraphs (see Section 5).254

4 Experiments255

Datasets We apply our method to various256

datasets, each presenting its own domain-specific257

challenges. We selected these datasets because the258

supporting paragraphs are also annotated. Over-259

all our evaluation set include 5.5K instances, with260

statistics of each dataset given in Table 1.261

The Lost-in-the-middle dataset (Liu et al.,262

2023) includes examples from NaturalQuestions-263

Open (Kwiatkowski et al., 2019; Lee et al., 2019).264

Dataset # Instances Avg. # tokens

Lost-in-the-middle 2,500 2,815
FLenQA 1,500 3,225
HotpotQA 500 1,646
2Wiki 500 1,222
MuSiQue 500 2,549

Table 1: Evaluation datasets in our experiments. The
average number of tokens is computed according to
Gemma’s tokenization of the simple prompt.

Each instance consists of twenty Wikipedia pas- 265

sages, with only one passage containing the answer 266

to the query. The remaining passages are distrac- 267

tors that are lexically similar but do not contain the 268

answer. To assess the robustness of large language 269

models (LLMs) to the position of relevant informa- 270

tion, Liu et al. (2023) evaluated cases where the 271

relevant passage appeared in positions 1, 5, 10, 15, 272

and 20. Following their methodology, we sampled 273

500 instances for each position, resulting in a total 274

of 2,500 instances. 275

FLenQA (Levy et al., 2024) is a benchmark 276

that includes simple questions with answers of ei- 277

ther “True” or “False” based on two key sentences. 278
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FLenQA includes three subtasks. The first subtask279

is Monotone Relations (MonoRel), where each in-280

stance asks whether a transitive relation between281

two entities holds based on the context (e.g., "Is282

X younger than Y?" based on the sentences "X is283

younger than Z" and "Z is younger than Y"). The284

second subtask, People In Rooms (PIR), involves285

one key sentence indicating that a person is in a286

specific room and another key sentence describing287

a property of this room. The question asks whether288

the person is in a room with the described property.289

The final subtask is Simplified Rule Taker (SRT),290

based on RuleTaker (Clark et al., 2020). Each in-291

stance consists of a logical rule, two sentences each292

introducing a fact, and a question over the rule and293

facts. For each subtask, FLenQA includes con-294

texts with varying lengths, from 50 to 3,000 tokens,295

by simply adding irrelevant text, demonstrating296

consistent performance degradation with increased297

input length. In our experiments, we sampled 250298

instances for each subtask with input lengths of299

2,000 and 3,000 tokens, leading to a total of 1,500300

instances for FLenQA.301

In addition, we evaluate our method on com-302

mon multi-hop QA benchmarks. We sampled 500303

instances from each of the following datasets: Hot-304

PotQA (Yang et al., 2018), 2Wiki (Ho et al., 2020),305

and MuSiQue (Trivedi et al., 2022). In all these306

datasets, the input text includes multiple passages,307

and models need to perform at least two steps of308

reasoning over different passages in order to an-309

swer the question.310

Models We apply our method to a variety of311

models, both commercial and open-source. The312

commercial models include Gemini-1.0-Ultra and313

Gemini-1.0-Pro (Team et al., 2023). The open-314

source models we tested are Llama-2-7b-chat,315

Llama-2-13b-chat, Llama-2-70b-chat (Touvron316

et al., 2023), Gemma-2b-it (v1.1), Gemma-7b-it317

(v1.1)(Team et al., 2024) and Mistral-7b-instruct318

(v0.2)(Jiang et al., 2023). Details about models’319

size and context window are shown in Table 2.320

For few-shot generation, we conducted two dis-321

tinct experiments in order to analyze the effect of322

different question generation models. In the first323

experiment, dubbed DOUBLEDIPPER (Self), we324

employed the same LLM for both generating the325

demonstrations and answering to the query. In326

the second experiment, named DOUBLEDIPPER327

(PaLM 2), we generated a single set of few-shot ex-328

amples using PaLM 2 (Anil et al., 2023) and then329

Size Context Window

Gemini v1.0
Pro 32k

Ultra 32k

Llama-2
7B 4k

13B 4k
70B 4k

Mistral 7B 8k

Gemma
2B 8k
7B 8k

Table 2: Models used with DOUBLEDIPPER.

supplied these examples to various LLMs. This 330

approach allowed us to assess the performance con- 331

sistency across different models when provided 332

with the same set of demonstrations. 333

Baselines We compare DOUBLEDIPPER to the 334

vanilla baseline, which takes as input the entire 335

context D and the query q and generate only the 336

answer a. 337

Evaluation We evaluate each dataset with the 338

original evaluation metrics. Namely, we report 339

Accuracy for Lost-in-the-middle (Liu et al., 2023) 340

and FLenQA (Levy et al., 2024), and Token F1 for 341

HotPotQA (Yang et al., 2018), 2Wiki (Ho et al., 342

2020) and MuSique (Trivedi et al., 2022). 343

In addition to the task’s accuracy, we also evalu- 344

ate the performance of the identification of the sup- 345

porting paragraph(s), by computing the F1 score on 346

the predicted set of supporting passages compared 347

to the ground truth (Yang et al., 2018; Ho et al., 348

2020; Trivedi et al., 2022). 349

Implementation Details We randomly select 350

three passages from the input (see Section 6 for 351

an analysis of the number of self-generated demon- 352

strations on the performance), each containing at 353

least two sentences, and ask the model to gener- 354

ate five QA pairs per passage (see Appendix A for 355

the exact prompt). We then randomly select a sin- 356

gle QA pair for each passage to form the few shot 357

demonstrations. For all experiments, including few- 358

shot generation and question-answering, we use a 359

temperature setting of 0. 360

5 Results 361

Table 3 presents the QA performance of our two 362

variants of DOUBLEDIPPER, namely DOUBLEDIP- 363

PER (Self) and DOUBLEDIPPER (PaLM 2) on our 364

evaluation set. We report the performance of the 365
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Avg. Lost PIR MonoRel SRT HotPotQA 2Wiki MuSique

Gemini Pro 39.4 49.0 73.0 30.8 54.4 28.1 18.6 22.1
+ DOUBLEDIPPER (Self) 50.0 58.4 85.6 28.6 52.2 56.6 36.5 32.0
+ DOUBLEDIPPER (PaLM 2) 54.6 58.4 87.6 40.6 52.8 62.2 42.8 38.0

Gemini Ultra 53.9 53.0 81.2 30.8 66.0 61.6 42.6 42.3
+ DOUBLEDIPPER (Self) 53.1 57.2 73.4 20.6 54.6 68.9 51.5 45.6
+ DOUBLEDIPPER (PaLM 2) 54.7 56.8 78.6 25.0 56.6 69.1 52.6 44.2

Gemma-2b-it (v1.1) 35.9 24.0 53.4 49.8 49.6 34.6 28.1 11.6
+ DOUBLEDIPPER (Self) 35.5 25.5 66.0 54.2 49.2 24.7 18.6 10.5
+ DOUBLEDIPPER (PaLM 2) 41.2 23.6 75.8 57.8 49.4 38.2 28.1 15.4

Gemma-7b-it (v1.1) 27.2 7.1 52.2 49.8 48.6 12.3 16.7 3.4
+ DOUBLEDIPPER (Self) 47.6 45.8 92.6 74.2 45.4 40.4 22.4 12.4
+ DOUBLEDIPPER (PaLM 2) 51.3 44.0 94.8 74.8 45.2 49.6 32.1 18.4

Mistral-7b-instruct (v0.2) 45.8 61.3 70.6 68.0 49.0 36.3 21.7 13.9
+ DOUBLEDIPPER (Self) 48.9 60.4 96.2 84.6 42.6 28.3 17.8 12.6
+ DOUBLEDIPPER (PaLM 2) 52.8 58.9 95.6 82.8 44.4 43.1 26.4 18.4

Llama-2-7b-chat 31.6 42.0 46.8 39.0 37.4 32.7 15.1 8.2
+ DOUBLEDIPPER (Self) 33.3 45.6 64.2 37.2 35.4 23.3 17.8 9.2
+ DOUBLEDIPPER (PaLM 2) 38.5 43.9 67.6 36.8 35.2 39.2 30.1 16.4

Llama-2-13b-chat 32.4 51.2 54.2 40.6 43.8 18.2 10.8 7.9
+ DOUBLEDIPPER (Self) 34.9 46.9 66.0 44.6 38.4 22.7 19.3 8.4
+ DOUBLEDIPPER (PaLM 2) 38.3 47.6 71.0 37.8 36.4 32.8 32.2 10.4

Llama-2-70b-chat 45.3 61.1 66.6 76.4 50.2 33.8 17.7 11.0
+ DOUBLEDIPPER (Self) 46.1 57.2 85.6 76.6 44.8 27.8 20.3 10.7
+ DOUBLEDIPPER (PaLM 2) 51.6 54.2 88.2 78.0 47.0 44.5 34.2 15.0

Table 3: Results of the baseline, DOUBLEDIPPER (Self) and DOUBLEDIPPER (PaLM 2) on various QA datasets.

supporting paragraphs prediction in Appendix B.366

On average, our straightforward method, which au-367

tomatically generates few-shot examples from the368

provided input context, outperforms the baseline,369

often by a significant margin (e.g., +15.2 points for370

Gemini Pro, +7 points for Mistral Instruct, +6.3371

points for Llama2 70B). Comparing the two vari-372

ants, DOUBLEDIPPER (PaLM 2) generally yields373

better results than DOUBLEDIPPER (Self), indicat-374

ing that higher-quality question-answer (QA) pairs375

in the few-shot examples enhance performance.376

Nonetheless, DOUBLEDIPPER (Self) already sur-377

passes the baseline by a considerable margin on378

its own in most benchmarks. Notably, while DOU-379

BLEDIPPER produces simple QAs answerable from380

a single paragraph, it demonstrates strong gener-381

alization across diverse QA formats (except SRT),382

including PIR and MonoRel, which involves True/-383

False questions, and multi-hop QA datasets (Hot-384

PotQA, 2Wiki, and MuSique), where reasoning385

over multiple paragraphs is required.386

Furthermore, following (Liu et al., 2023), Fig-387

ure 4 shows the performance of the tested LLMs388

for both the baseline and DOUBLEDIPPER (Self)389

on our sample of the Lost-of-the-middle dataset,390

according to the position of the document that con-391

tains the answer. For Gemini Pro, Gemini Ultra,392

Gemma 2B, Gemma 7B, Llama 7B, the perfor-393

mance curve for DOUBLEDIPPER consistently sur-394

passes the baseline across nearly all document po-395

sitions. This reveals that beyond improving perfor- 396

mance, DOUBLEDIPPER can make the model more 397

robust to the position of the relevant document. For 398

Mistral, Llama 2 13B and Llama 2 70B, Figure 4 399

shows that DOUBLEDIPPER performs on par or bet- 400

ter than the baseline when the relevant document is 401

in the middle of the input, but still underperforms 402

the baseline at the beginning and the end. This vari- 403

ation can likely be attributed to the inherent biases 404

of LLMs towards the beginning and end of inputs, 405

while adding in context demonstrations mitigates 406

this bias. 407

6 Analysis 408

Few-shot vs. Zero-shot In order to assess the 409

effectiveness of the few shots in DOUBLEDIPPER, 410

we prompt the model in a zero-shot setting to ex- 411

plicitly specify the ID of the relevant passage(s) 412

before generating the answer. The results of the 413

QA task are detailed in Table 4 and the performance 414

in identifying supporting paragraphs is reported in 415

Appendix B. 416

For all open-source models, this zero-shot 417

prompting strategy leads to a significant decline in 418

QA performance compared to the baseline (see Ta- 419

ble 3), which merely prompts the model for the an- 420

swer (e.g., -32.3 points for Gemma 2B, -9.2 points 421

for Llama 7B, -4.2 points for Mistral). This drop is 422

likely because retrieving relevant passages makes 423

the task more complex compared to standard QA, 424
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Figure 4: Performance (accuracy) of the models on our sample of the Lost-in-the-middle dataset (Liu et al., 2023)
according to the position of the document that contains the answer.

Avg. Lost PIR MonoRel SRT HotPotQA 2Wiki MuSique

Gemini Pro Zero-shot 50.0 59.7 77.4 38.8 54.2 51.2 34.6 34.1
DOUBLEDIPPER 54.6 58.4 87.6 40.6 52.8 62.2 42.8 38.0

Gemini Ultra Zero-shot 56.5 56.2 76.8 34.8 62.2 68.3 52.4 44.9
DOUBLEDIPPER 54.7 56.8 78.6 25.0 56.6 69.1 52.6 44.2

Gemma-2b-it (v1.1) Zero-shot 3.6 6.4 4.2 5.4 0.0 3.3 4.9 0.7
DOUBLEDIPPER 41.2 23.6 75.8 57.8 49.4 38.2 28.1 15.4

Gemma-7b-it (v1.1) Zero-shot 7.5 2.6 36.0 5.4 0.0 3.9 3.3 1.0
DOUBLEDIPPER 51.3 44.0 94.8 74.8 45.2 49.6 32.1 18.4

Mistral-7b-instruct (v0.2) Zero-shot 41.9 59.0 77.4 67.4 51.8 13.7 12.3 11.8
DOUBLEDIPPER 52.8 58.9 95.6 82.8 44.4 43.1 26.4 18.4

Llama-2-7b-chat Zero-shot 22.4 29.2 45.0 29.2 33.4 9.8 7.9 2.4
DOUBLEDIPPER 38.5 43.9 67.6 36.8 35.2 39.2 30.1 16.4

Llama-2-13b-chat Zero-shot 14.0 8.0 43.0 3.0 37.0 5.2 0.3 1.2
DOUBLEDIPPER 38.0 36.7 71.4 36.6 50.0 27.4 27.4 16.8

Table 4: Comparison of DOUBLEDIPPER to prompting models in a zero-shot setting to provide explicitly the
supporting paragraphs, then generate the answer.

as models are not typically trained to perform such425

“retrieval” tasks. This is further supported by the426

poor performance in supporting passages identifi-427

cation shown in Appendix B, where F1 scores are428

often close to zero.429

Despite these challenges, DOUBLEDIPPER’s430

self-generated demonstrations systematically im-431

prove performance for all open-source models on432

both QA and supporting passages identification433

across all datasets. On average, Mistral’s QA per-434

formance improves by 10.9 points, and its identi-435

fication of relevant paragraphs increased by 30.5436

F1 score. This aligns with previous research sug-437

gesting that models can learn new tasks through438

in-context learning (ICL).439

Comparison to traditional ICL To analyze the 440

performance gain of DOUBLEDIPPER compared 441

to the traditional In-Context-Learning, we prompt 442

a representative model from each family (Gemini 443

Pro, Gemma 2B, Llama 7B, and Mistral) with few- 444

shot examples from the same dataset, each example 445

including its own context and question-answer pair. 446

We report the results in Table 5. For all models, 447

DOUBLEDIPPER achieves a higher performance 448

than the traditional ICL. Interestingly, for Gemma 449

2B and Llama 7B, the traditional ICL not only 450

underperforms DOUBLEDIPPER but it also signifi- 451

cantly hurts performance compared to the baseline 452

(e.g., -14.3 for Gemma 2B and -14.9 for Llama 453

7b). This performance drop might be because each 454

7



Avg. Lost PIR MonoRel SRT HotPotQA 2Wiki MuSique

Gemini Pro ICL 48.6 59.1 69.8 30.0 52.8 55.6 41.0 32.0
DOUBLEDIPPER 54.6 58.4 87.6 40.6 52.8 62.2 42.8 38.0

Gemma-2b-it (v1.1) ICL 21.6 0.2 28.2 26.4 13.0 39.7 39.1 4.3
DOUBLEDIPPER 41.2 23.6 75.8 57.8 49.4 38.2 28.1 15.4

Llama-2-7b-chat ICL 16.7 0 13.2 13.2 14.2 37.0 38.2 0.7
DOUBLEDIPPER 38.5 43.9 67.6 36.8 35.2 39.2 30.1 16.4

Mistral-7b-instruct ICL 52.1 68.5 79 67.8 39.2 49.4 36.7 24.1
DOUBLEDIPPER 52.8 58.9 95.6 82.8 44.4 43.1 26.4 18.4

Table 5: Comparison of traditional In-Context Learning (ICL) where each demonstration example comprises a full
text, a question and an answer to DOUBLEDIPPER where the demonstrations contain only question-answer pairs,
automatically generated on the same input text.

k = 3 k = 5 k = 10

Gemini Pro 54.6 54.1 54.7
Gemini Ultra 54.7 54.1 53.8
Gemma-2b-it (v1.1) 41.2 40.8 41.0
Gemma-7b-it (v1.1) 51.3 50.2 49.5
Mistral-7b-instruct (v0.2) 52.8 52.8 52.4
Llama-2-7b-chat 33.3 32.5 31.5
Llama-2-13b-chat 34.9 34.4 33.0
Llama-2-70b-chat 51.6 51.1 51.5

Table 6: Average performance on our evaluation set
with various numbers of self-generated few shot demon-
strations (k) in DOUBLEDIPPER.

demonstration in the traditional ICL setup com-455

prises a few thousand tokens, which exacerbates456

the models’ existing challenges with processing457

long-range dependencies.458

As mentioned in Section 3, DOUBLEDIPPER459

promotes also efficiency by adding to the original460

prompt only a few extra tokens, leading to a signif-461

icantly cheaper inference than the traditional ICL.462

How many examples are needed? In Table 6,463

we explore the impact of varying k, the number of464

self-generated few-shot examples in DOUBLEDIP-465

PER to 3, 5, and 10. Our analysis reveals no sig-466

nificant differences in performance across these467

variations, while 3 self-generated examples are suf-468

ficient to improve performance. This finding is in469

line with previous work (Brown et al., 2020a; Min470

et al., 2022b).471

DOUBLEDIPPER without identification of sup-472

porting paragraphs To ablate the second princi-473

ple in DOUBLEDIPPER, namely the explicit identi-474

fication of the supporting paragraphs before gener-475

ating the answer, we prompt Gemini Pro and Gem-476

ini Ultra with self-generated few shot examples477

that comprise only question-answer pairs (without478

instructing the model to retrieve the relevant pas-479

sage(s)). Gemini Pro achieves on average 36.2480

points (-18.4) and Gemini Ultra achieves 54.0 (-0.7 481

points). This indicates that instructing small mod- 482

els (e.g., Gemini Pro) with explicit prediction of 483

supporting paragraphs achieves similar results to 484

large models (Gemini Ultra). 485

Do few-shot examples really “instruct” the 486

model to comprehend the text or provide clues to 487

the query? To answer this question, we prompt 488

Gemini Pro and Gemini Ultra with only the self- 489

generated demonstrations without the input context. 490

As expected, removing the input context leads to a 491

huge performance drop, -31.7 for Gemini Pro and 492

-22.8 for Gemini Ultra compared to DOUBLEDIP- 493

PER. This confirms that DOUBLEDIPPER indeed 494

“teaches” the model how to comprehend the input. 495

Qualitative Analysis We manually analyze 50 496

prompts, with few-shot demonstrations produced 497

by Gemini Ultra. Our review confirms that 93.5% 498

of these self-generated QAs are correct, meaning 499

that the question is meaningful and the answer 500

could be found in the corresponding paragraph. 501

7 Conclusion 502

We develop DOUBLEDIPPER, a straightforward 503

method for enhancing the performance of Ques- 504

tion Answering with long context and providing 505

attribution to the relevant paragraph(s) in the in- 506

put. By recycling the input context to generate 507

the few shot examples, each demonstration in- 508

cludes solely a question, an answer and a pointer to 509

the relevant paragraph, without a separate context, 510

thus effectively addressing the challenging of In- 511

Context-Learning with long context. Experimental 512

results show that our approach ourperforms both 513

the vanilla LLM and the traditional ICL in various 514

QA settings, including distractor passages in the 515

input, True/False questions and multi-hop QA. 516
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8 Limitations517

One notable limitation of our approach is the518

extended inference time required for generating519

question-answer pairs. Future research could miti-520

gate this issue by developing smaller, specialized521

models specifically tailored for QA generation.522

Additionally, our evaluation set is constrained to523

instances that are solely in English and range be-524

tween 1,000 to 4,000 tokens. Expanding the diver-525

sity of languages and token ranges could enhance526

the robustness and applicability of our findings.527

Lastly, although we employ a strategy of ran-528

domly sampling k paragraphs from the input to529

ensure the model engages with varied segments of530

the text, we did not optimize the selection of these531

paragraphs. Future work could explore more strate-532

gic methods for paragraph selection to potentially533

enhance the efficacy and relevance of the generated534

examples.535
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A Prompts802

Figure 5 shows the zero-shot prompt we use803

for generating the question-answer pairs in DOU-804

BLEDIPPER. For the QA prompts, we use the same805

instructions and prompt template as the original806

papers (Lost-in-the-middle and FLenQA) and add807

a simple line for the instructions in other multi-hop808

QA datasets: “Please answer the question based809

on the given passages below.”. For MuSique, since810

the dataset includes questions that are not answer-811

able, we add the following sentence to the prompt:812

“If the question can’t be answered given the given813

passages, please write "unanswerable"”.814

B Identification of Supporting Passages815

Table 7 presents the F1 results of the tested mod-816

els for the supporting relevant passages identifica-817

tion. Without any demonstration (zero-shot), all818

open source models achieve a poor performance,819

while DOUBLEDIPPER significantly improves per-820

formance (+37.8 F1 for Llama2 70B, +38 F1 for821

Gemma 7B, +30.5 F1 for Mistral).822
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Given the following passage, please write 5 questions that could be asked in the passage.
The questions should include enough information so that they can be understood without
the passage and the answer should be concise. For each question, please write also the
short answer from the text in the following format:

Q1:
A1:
Q2:
A2:
Q3:
A3:
Q4:
A4:
Q5:
A5:

Figure 5: Template prompt for the generation question-answer pairs.

Avg. Lost PIR MonoRel SRT HotPotQA 2Wiki MuSique

Gemini Pro

Baseline - - - - - - - -
Zero-shot 54.5 58.2 47.1 75.9 46.6 56.3 58.3 39.4
DOUBLEDIPPER (Self) 50.0 59.7 77.4 38.8 54.2 51.2 34.6 34.1
DOUBLEDIPPER (PaLM 2) 50.6 60.1 47.3 68.0 21.2 58.8 57.9 41.0

Gemini Ultra

Baseline - - - - - - - -
Zero-shot 40.4 57.4 30.3 39.4 17.0 52.4 43.7 42.9
DOUBLEDIPPER (Self) 37.5 58.6 25.5 21.5 11.1 55.4 46.4 44.3
DOUBLEDIPPER (PaLM 2) 38.4 58.0 28.0 24.6 12.0 55.3 47.0 43.7

Gemma-2b-it (v1.1)

Baseline - - - - - - - -
Zero-shot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DOUBLEDIPPER (Self) 23.3 10.4 43.1 37.5 13.5 20.1 13.0 25.3
DOUBLEDIPPER (PaLM 2) 25.6 9.1 48.7 48.7 15 18.7 14 25.3

Gemma-7b-it (v1.1)

Baseline - - - - - - - -
Zero-shot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DOUBLEDIPPER (Self) 38.0 39.7 44.8 59.8 7.1 41.8 36.5 36.1
DOUBLEDIPPER (PaLM 2) 36.9 39.2 45.2 58.6 7.3 40.1 32.8 35

Mistral-7b-instruct (v0.2)

Baseline - - - - - - - -
Zero-shot 11.5 6.7 0.7 2.9 0.0 17.2 18.2 34.5
DOUBLEDIPPER (Self) 42.0 48.2 66.2 60.6 5.8 41.7 29.3 42.2
DOUBLEDIPPER (PaLM 2) 41.5 48.3 70.0 58.6 6.8 40.0 26.0 40.6

Llama-2-7b-chat

Baseline - - - - - - - -
Zero-shot 0.8 0.2 0.0 0.0 3.2 0.0 0.0 2.1
DOUBLEDIPPER (Self) 19.4 17.5 27.7 20.2 5.7 21.7 19.7 23.3
DOUBLEDIPPER (PaLM 2) 19.6 15.8 29.3 21.6 5.7 22.2 20.7 22.0

Llama-2-13b-chat

Baseline - - - - - - - -
Zero-shot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DOUBLEDIPPER (Self) 28.8 16.5 51.0 32.0 18.4 29.6 22.2 31.7
DOUBLEDIPPER (PaLM 2) 30.3 13.4 51.6 30.5 15.6 36.4 27.3 36.9

Table 7: Performance (F1) of supporting paragraph(s) prediction. The baseline does not predict supporting para-
graphs. DOUBLEDIPPER provides a significant performance boost for all open source models, whose performance
is close to 0 (except from Mistral) in the zero shot setting. The performance of the zero-shot experiment is close to
zero for open source models except from Mistral, whereas DOUBLEDIPPER successfully instructs the models to
retrieve the relevant paragraphs.
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