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ABSTRACT

Given two neural network classifiers with the same input and output domains, our
goal is to compare the two networks in relation to each other over an entire input
region (e.g., within a vicinity of an input sample). Towards this, we introduce
and quantify the Relative Output Margin (ROM) with which decisions are made.
A larger output margin for a network w.r.t. another indicates that this network
consistently makes a correct decision every time the other network does, and it does
so in the entire input region. More importantly, as opposed to best-effort testing
schemes, our framework is able to establish provably-correct (formally verified)
bounds on ROM gains/losses over an entire input region. The proposed framework
is relevant in the context of several application domains, e.g., for comparing a
trained network and its corresponding compact (e.g., pruned, quantized, distilled)
network. We evaluate our framework using the MNIST, CIFAR10, and two real-
world medical datasets, to show its relevance.

1 INTRODUCTION

Quantitative comparison of neural networks, e.g., in terms of performance, is a fundamental concept
in the Machine Learning (ML) domain. One common example is when a network is pruned,
quantized, or distilled to run the compact networks on edge devices or smart sensors. In the
medical domain, for instance, neural networks can enable implantable and wearable devices to detect
cardiac arrhythmia (Sopic et al., 2018a) or epileptic seizures (Baghersalimi et al., 2024) in real time.
However, due to their limited computing resources, such devices often adopt the compact networks
corresponding to the original medical-grade networks. It is vital for the compact network to reliably
detect cardiac abnormalities/seizures, as lack of reliable decisions can jeopardize patients’ lives.
Therefore, reasoning about the decisions made by the compact network w.r.t. to an original/reference
network is vital for the safe deployment of the compact networks.

Traditionally, testing techniques have been adopted to quantitatively compare two neural networks.
However, testing techniques often cannot cover all possible scenarios, hence do not provide any hard
formal guarantees. This is required in the context of safety-critical applications, e.g., in the medical
domain as discussed above. Therefore, here, we investigate providing hard correctness guarantees
based on formal verification techniques.

In this work, we focus on neural network twins, i.e., two neural networks trained for the same
learning/classification task, with the same input and output domains, but not the same weights and/or
architectures. We define an input region as the region in a vicinity of a given input sample, e.g.,
captured by the absolute-value/Euclidean/maximum norm centered around the input sample. Given
network twins and an input region, we investigate whether it is possible to prove that, in the entire
input region, one network consistently makes a correct decision every time the other network does.

To this end, we consider the Output Margin (OM) of a network. Let us focus on binary classification
for the simplicity of presentation. Given an input sample, the OM for one classifier corresponds to
the magnitude of the change/perturbation in the output that leads to misclassification of the input
sample. The larger the OM, the larger the adversarial perturbations needed to toggle the decision.

To quantitatively compare the neural network twins, we examine the OM of the two classifiers relative
to each other, which we refer to as Relative Output Margin (ROM). Given the network twins and a
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common input sample, ROM allows us to quantify the magnitude of the OM for one network relative
to the other. Therefore, ROM captures whether the OM for one network is larger than the other.

We, then, extend the notion of ROM to Local Relative Output Margin (LROM), where we account
for an entire input region (all perturbed inputs captured by the absolute-value/Euclidean/maximum
norm centered around the input sample). That is, LROM not only enables us to reason about the
given input samples, but also to reason about the entire region in the vicinity of the samples.

In this paper, we propose a framework to establish safe (provably-correct) bounds on LROM and
formal verification guarantees on the decisions made by neural network twins in the entire input
region. LROM enables us to formally prove that a network consistently makes a correct decision
every time the other network does, and it does so in the entire input region. We evaluate our proposed
framework extensively on several datasets to show its relevance, including two real-world medical
applications for detection of cardiac arrhythmia or epileptic seizures. Our main contributions are
summarized below:

• We formalize the notion of Local Relative Output Margins (LROMs) to quantitatively
compare neural network twins in relation to each other in an entire input region.

• We propose a sound framework to derive (provably-correct) verified bounds on Local
Relative Output Margins (LROMs) in an entire input region, to quantitatively compare the
decisions of neural network twins.

• We conduct extensive experiments to compare the decisions made by pre-trained classifiers
and their corresponding pruned, quantized, or knowledge-distilled counterparts on the
MNIST dataset (LeCun, 1998), CIFAR10 dataset (Krizhevsky, 2009), CHB-MIT Scalp EEG
database (Shoeb, 2010), and MIT-BIH Arrhythmia database (Goldberger et al., 2000).

2 LOCAL RELATIVE OUTPUT MARGINS (LROMS)

In this section, we formally describe Deep Neural Network (DNN) classifiers. Moreover, we introduce
and formalize the notion of ROM and its extension to an entire input region, i.e., LROM.

2.1 DEEP NEURAL NETWORKS (DNNS)

In this work, we mainly consider DNN classifiers. A DNN classifier is a nonlinear function N :

RnN
0 → RnN

N consisting of a sequence of N layers followed by a softmax layer. Each layer is a linear
transformation followed by a nonlinear activation function. Here, nN

k is the number of neurons in the

kth layer of network N. Let fN
k (·) : RnN

k−1 → RnN
k be the function that derives values of the kth

layer from the output of its preceding layer. The values of the kth layer, denoted by x(k), are given
by:

x(k) = fN
k (x(k−1)) = actNk (W (k)x(k−1) + b(k)),

where W (k) and b(k) capture weights and biases of the kth layer, and actNk represents an activation
function.The last layer uses softmax as the activation function to associate a probability to each class.
For each class ci in the last layer N + 1, the softmax function value is: x(N+1)

ci = σ(x(N))ci .

2.2 LOCAL RELATIVE OUTPUT MARGINS (LROMS)

We consider two DNNs N1 with N1 + 1 layers with values x(0), . . .x(N1+1) and N2 with N2 + 1
layers with values y(0), . . .y(N2+1). Suppose nN1

0 = nN2
0 and nN1

N1
= nN2

N2
. Such networks are said

to be compatible/twins as their inputs and outputs have the same dimensions.

Let us now introduce the notions of Output Margin (OM) and of Relative Output Margin (ROM).

Definition 2.1. Output Margin (OM) πN1

x(0)(ci, cj) of classes (ci, cj) for DNN N1 and input x(0) is

the probabilities’ ratio πN1

x(0)(ci, cj) =
σ(x(N1))ci
σ(x(N1))cj

of the outcome being ci by the one of being cj .

Recall classifiers decide on the class with a maximum softmax value. Let us consider binary
classification for the simplicity of presentation. Assuming the predicted class to be ci, then
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πN1

x(0)(ci, cj) =
σ(x(N1))ci
σ(x(N1))cj

≥ 1. The closer the OM is to one, the more sensitive the decision is to per-

turbations, because even minor perturbations may toggle the decision, i.e., σ(x(N1))cj ≥ σ(x(N1))ci .

Definition 2.2. Relative Output Margin (ROM) ΠN1|N2

x(0) (ci, cj) of class pair (ci, cj) for DNN N1

w.r.t. compatible DNN N2 and for common input x(0) = y(0), is the quotient of OMs in N1 and N2:

Π
N1|N2

x(0) (ci, cj) =
πN1

x(0)(ci, cj)

πN2

y(0)(ci, cj)
=

σ(x(N1))ci · σ(y(N2))cj
σ(x(N1))cj · σ(y(N2))ci

.

We use Π
N1|N2

x(0) (ci, cj) to compare the output margins (given a common input) between classes ci
and cj in two compatible DNNs N1 and N2.

In this paper, our main goal is to establish bounds on ROM values in the entire input region,
e.g., in the vicinity of an input x̃(0) or in a δ-neighborhood of an input x̃(0), defined as Dδ

x̃(0) ={
x(0) s.t. ∥x(0) − x̃(0)∥∞ ≤ δ

}
.

Definition 2.3. Local Relative Output Margin (LROM) of classes (ci, cj) for DNN N1 w.r.t. compat-

ible DNN N2 in Dδ
x̃(0) is the set

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
.

Note that, if min
{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
≥ 1, then πN1

x(0)(ci, cj) ≥ πN2

x(0)(ci, cj), for all

x(0) in the entire input region Dδ
x̃(0) . This, in turn, means that, in the entire input region Dδ

x̃(0) , N1

will make a correct decision every time N2 does.

3 METHOD

In this section, we introduce an optimization problem to bound LROMs for two compatible DNNs.
We also describe how we introduce and handle an over-approximation of the two networks in order
to soundly solve the optimization problem and derive a (provably-correct) verified bound.

3.1 THE LROM OPTIMIZATION PROBLEM

Assume two compatible DNNs N1 and N2 with respectively N1 + 1 and N2 + 1 layers, a common
input x̃(0) in the domain D of N1 and N2, and a perturbation bound δ. Our goal is to find, for any
class pair (ci, cj), a tight lower bound for min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
and a tight upper

bound for max
{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
.

Directly solving the above optimization problem involves the softmax function. Instead, we look into
ln
(
Π

N1|N2

x(0) (ci, cj)
)

and observe (Lemma A.1 in the appendix) it coincides with (x
(N1)
ci − x

(N1)
cj )−

(y
(N2)
ci − y

(N2)
cj ). Hence, we can characterize LROM bounds by reasoning on inputs to the softmax

layers (i.e., networks’ logits). Therefore, our optimization objective is simplified to:

ln
(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= min

x(0)∈Dδ

x̃(0)

(
(x(N1)

ci − x(N1)
cj )− (y(N2)

ci − y(N2)
cj )

)
,

ln
(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= max

x(0)∈Dδ

x̃(0)

(
(x(N1)

ci − x(N1)
cj )− (y(N2)

ci − y(N2)
cj )

)
.

Building on the above, let MN1|N2

x̃(0),δ
(ci, cj) be the value obtained as solution to the problem:

3
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MN1|N2

x̃(0),δ
(ci, cj) = min

x(0)
(x(N1)

ci − x(N1)
cj )− (y(N2)

ci − y(N2)
cj ), (1)

s.t. y(0) = x(0), x̃(0) ∈ D, (2)

∥x(0) − x̃(0)∥∞ = ∥y(0) − x̃(0)∥∞ ≤ δ, (3)

x(k) = fN1

k (x(k−1)), ∀k ∈ {1, . . . , N1}, (4)

y(l) = fN2

l (y(l−1)), ∀l ∈ {1, . . . , N2}. (5)

Equation (1) introduces the objective function used to capture the (logarithm of the) minimum ROM
of the class pair (ci, cj) for network N1 w.r.t. N2 in the input region Dδ

x̃(0) . Note that x(N1)
ci −x

(N1)
cj

captures the difference between the logit values associated to classes ci and cj in network N1.
Similarly, y(N2)

ci − y
(N2)
cj captures the difference between the logit values associated to the same

classes in N2. The objective function is then to minimize the difference between these two quantities.

Let us consider Equations (2)–(5). Equation (2) enforces both that y(0) (the perturbed input to
network N2) equals x(0) (the perturbed input to network N1), and that the original input x̃(0) belongs
to the dataset D of the two networks. Equation (3) enforces that the perturbed inputs x(0) and y(0)

are in the δ-neighborhood of x̃(0). Equation (4) characterizes values of the first N1 layers of network
N1 as it relates the values of the kth layer (for k in {1, . . . , N1}) to those of its preceding layer, using

the nonlinear function fN1

k : Rn
N1
k−1 → Rn

N1
k . The same is applied to network N2 using the nonlinear

functions fN2

l : Rn
N2
l−1 → Rn

N2
l for each layer l as captured in Equation (5).

3.2 A SOUND OVER-APPROXIMATION OF DNNS BEHAVIOR

Solving the above minimization problem is not trivial. Indeed, the activation functions result in
nonlinear constraints for Equations (4) and (5). Here, we focus on Rectified Linear Unit (ReLU)
functions, which are the most widely used activation functions in DNNs. Several recent approximation
approaches have been proposed to tackle the nonlinearity of the activation functions in the context
of verification problems for DNNs (Zhang et al., 2024; Baninajjar et al., 2023; Katz et al., 2019;
Singh et al., 2019). To be able to capture ReLU, here, we consider existing relaxations (Ehlers, 2017;
Baninajjar et al., 2023; Singh et al., 2019) to over-approximate the values computed at each layer
using linear inequalities (described in Section A.2 in the appendix).

These over-approximations result in a relaxed optimization program that can be solved using Linear
Programming (LP). The solution of the relaxed optimization problem is denoted by RN1|N2

x̃(0),δ
(ci, cj).

Because the relaxed optimization over-approximates the exact one in Equations (1)–(5) and that we
are able to find the optimal solution to the LP relaxed formulation, any lower bound obtained for the
relaxed problem is guaranteed to be smaller than a solution for the original minimization problem,
i.e., RN1|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj).

Theorem 3.1. Let (ci, cj) be a pair of classes of compatible DNNs N1 and N2. Assume a neighbor-
hood Dδ

x̃(0) and let RN1|N2

x̃(0),δ
(ci, cj) (resp. RN2|N1

x̃(0),δ
(ci, cj)) be a solution to the relaxed minimization

problem corresponding to LROM of N1 w.r.t. N2 (resp. N2 w.r.t. N1). Then:

RN1|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj) = ln

(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
≤ ln

(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= − ln

(
min

{
Π

N2|N1

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= −MN2|N1

x̃(0),δ
(ci, cj) ≤ −RN2|N1

x̃(0),δ
(ci, cj)

Proof. Proof sketch in appendix.

Theorem 3.1 not only provides a safe lower bound on LROM, i.e., RN1|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj),

but also a safe upper bound, i.e., −RN2|N1

x̃(0),δ
(ci, cj) ≥ MN1|N2

x̃(0),δ
(ci, cj).
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An alternative approach to what we presented in this section is to reason based on independently-
obtained ranges of Output Margins (OMs) for each network. However, such an approach results
in an important loss of precision as it does not consider a common input to both networks, as we
formalized in Theorem A.3 in the appendix and show empirically in Section 4.

4 EVALUATION

We evaluate our proposed framework and investigate ranges of LROMs for various datasets and
DNNs.1 All experiments are executed on a MacBook Pro equipped with an 8-core CPU and 32 GB
of RAM using the Gurobi solver (Gurobi Optimization, LLC, 2023).

4.1 DATASETS

We use four different datasets for the evaluation of our framework, namely, the MNIST dataset (LeCun,
1998), CIFAR10 dataset (Krizhevsky, 2009), CHB-MIT Scalp EEG database (Shoeb, 2010) and
MIT-BIH Arrhythmia database (Goldberger et al., 2000).

MNIST dataset (LeCun, 1998) contains grayscale handwritten digits, with each digit being depicted
through a 28×28 pixel image. We consider the first 100 images of the test set, similar to (Ugare et al.,
2022).

CIFAR10 dataset (Krizhevsky, 2009) comprises 32×32 colored images categorized into 10 different
classes. In alignment with (Ugare et al., 2022), we focus on the first 100 images from the test set.

CHB-MIT Scalp EEG database (Shoeb, 2010) includes 23 individuals diagnosed with epileptic
seizures. These recordings are sampled in the international 10–20 EEG system, and our focus is on
F7-T7 and F8-T8 electrode pairs, commonly used in seizure detection (Sopic et al., 2018b).

MIT-BIH Arrhythmia database (Goldberger et al., 2000) involves 48 individuals with 2-channel
ECG signals.To establish a classification problem, we consider a subset of 14 cardiac patients who
demonstrated at least two different types of heartbeats.

4.2 NETWORKS

4.2.1 ORIGINAL NETWORKS

For the MNIST and CIFAR10 datasets, we use fully-connected DNNs from (Ugare et al., 2022),
which all have gone through robust training as outlined in (Chiang et al., 2020). They share the
same structure, consisting of 7 dense layers with 200 neurons each. Patients in the CHB-MIT and
MIT-BIH datasets have personalized convolutional DNNs. For each patient in the CHB-MIT dataset,
the DNN has 2048 input neurons, two convolution layers followed by max-pooling layers with 3
and 5 filters, kernel sizes of 100 and 200, and a dense layer with 40 neurons. The accuracy (µ± σ)
is 85.7%± 14.8%. For each patient in the MIT-BIH dataset, the DNN has an input layer with 320
neurons, a convolution layer with a 64-size kernel and 3 filters, and a dense layer with 40 neurons.
The accuracy (µ± σ) is 92.2%± 9.1%.

4.2.2 COMPACT NETWORKS

We explain the architecture and design of compact networks. Our experiments involve pruning,
quantization, and knowledge distillation. These techniques are used to derive compact DNNs enabling
energy-efficient inference on limited resources, and improving generalization and interoperability.

Pruned Networks are derived through a pruning procedure applied to DNNs, selectively nullifying
certain weights and biases. Pruned networks maintain the architecture of their original counterparts.
For the MNIST and CIFAR10 datasets, we use pruned networks generated by (Ugare et al., 2022)
and (Baninajjar et al., 2024) through post-training pruning. Each pruned network generated by (Ugare
et al., 2022) eliminates the smallest weights/biases in each layer, which is called Magnitude-Based
Pruning (MBP), resulting in nine pruned networks with pruning rates ranging from 10% to 90%.

1The models, datasets, and code are included in the Supplementary Material.
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(Baninajjar et al., 2024) produces Verification-friendly Neural Networks (VNNs) through the op-
timization of weights/biases, aiming to preserve their functionality while reducing the number of
non-zero weights and biases. For the CHB-MIT and MIT-BIH datasets, we employ MBP pruning
procedure where values below 10% of the maximum weight/bias are set to zero. In this context,
accuracy (µ± σ) is slightly reduced to 84.1%± 17.2% and 90.7%± 10.9% for the CHB-MIT and
MIT-BIH datasets, respectively. Additionally, we utilize networks generated by (Baninajjar et al.,
2024) with accuracies of 82.5%± 9.6% and 92.0%± 9.1%.

Quantized Networks are obtained by quantization, where the precision of the networks’ weights is
reduced by converting them from 32-bit floating-point numbers to lower-precision representations.
Quantized networks have the same architecture as their corresponding original networks. The DNNs
of the MNIST and CIFAR10 datasets are presented by (Ugare et al., 2022) that are created by float16,
int16, int8, and int4 post-training quantization. The same quantization is applied on individualized
networks trained for CHB-MIT and MIT-BIH datasets. The accuracy (µ± σ) of the int16 quantized
networks is reported as 81.6%±14.8% and 91.9%±10.1% for the CHB-MIT and MIT-BIH datasets,
respectively. The accuracy of other quantized networks can be found in the appendix.

Distilled Networks or student networks are compact networks trained using knowledge distillation
to transfer information from larger teacher networks to mimic their behavior (Hinton et al., 2015).
The architecture of distilled networks differs from the original ones. Furthermore, the temperature
parameter affects the complexity of the distillation task, and we evaluate nine temperature values
ranging from 1 to 9. As (Ugare et al., 2022) has not provided distilled networks for the MNIST and
CIFAR10 datasets, we produce them using the methodology outlined in (Hinton et al., 2015). We
consider DNNs featuring a single layer with 20 neurons for all the distilled networks. The same
structure is employed to generate distilled networks for convolutional DNNs trained for CHB-MIT
and MIT-BIH datasets. The accuracy (µ± σ) of the distilled network with T = 5 is 71.6%± 8.7%
and 89.7% ± 11.2% for CHB-MIT and MIT-BIH datasets, respectively. Other accuracies can be
found in the appendix.

4.3 RESULTS AND ANALYSIS

We conduct several experiments with our proposed method for establishing bounds on LROMs. We
exclusively focus on correctly classified samples within each test set. We consider the widths and
depths of the networks when defining perturbations. We use δ = 0.001 and δ = 0.01 for the MNIST
and CIFAR datasets and experiment with several values for the CHB-MIH dataset (δ up to 0.002)
and the MIT-BIH dataset (δ up to 0.4). We say LROM of N1 w.r.t. N2 is verified on a sample if
we can establish, over the sample neighborhood, RN1|N2

x̃(0),δ
(c, cj) ≥ 0 for all pairs (c, cj), where c

is the correct class. This would mean that MN1|N2

x̃(0),δ
(c, cj) ≥ 0, because our method is sound, i.e.,

RN1|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj). Here, we use zero as a threshold as it corresponds to checking

increases or decreases of OM from one network to the other. However, our approach can easily
accommodate other thresholds. We simply state that “N1 has a verified LROM sample” if LROM
of N1 w.r.t. N2 is verified on the sample and N2 is clear from the context. Each time we verify
LROM of N1 w.r.t. N2 for a sample, then the corresponding OM of any (c, cj), for correct class
c, are guaranteed to be larger in N1 than the OM in N2. In addition, each time we show the upper
bound of N1 w.r.t. N2 is negative (i.e., the lower bound of N2 w.r.t. N1 is positive) then the upper
bound is indeed negative. In other words, if verified LROM of N1 w.r.t. N2, then the OMs for the
correct class in N2 are indeed smaller than those in N1.

4.3.1 MNIST DATASET

Figures 1a– 1c describe the results of investigating LROMs for MNIST DNNs when δ = 0.001.
Figure 1a shows a noticeable rise in the percentage of verified LROM with increasing pruning
proportions when investigating original networks w.r.t. pruned networks. There are two potential
explanations for this phenomenon. First, the similarity between the original and less-pruned networks
may result in no network having higher LROMs across the entire perturbation neighborhood. Second,
our method may be capable of verifying LROMs of more samples in more-pruned networks, due to
their sparsity. In addition, the last column of Figure 1a presents the results of investigating verified
LROM of the VNN generated based on the original network using (Baninajjar et al., 2024). The
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(a) MNIST, Pruned (Ugare et al.,
2022), (Baninajjar et al., 2024)
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Figure 1: Stacked bar plots for verified LROM of DNNs trained on the MNIST and CIFAR10 datasets
for different pruning methods, quantization precisions, and distillation temperatures for δ = 0.001.

.

results indicate that the LROM of the VNN is comparable to that of the original network, since the
verified LROM of both VNN and its corresponding original network is close to zero.

The percentages of verified LROM for quantized networks are depicted in Figures 1b, where the
x-axis denotes quantization precision. Based on the results, original networks are more likely to
have higher numbers of LROMs than quantized networks. However, Figure 1b shows the proportion
of verified LROM for the quantized network with float16 precision is higher than the original one.
Figure 1c represents percentages of verified LROMs of distilled networks w.r.t. original networks.
The x-axis denotes the temperature of the distilled network, and the y-axis indicates the percentage
of verified LROM. This figure shows the proportion of verified LROMs of distilled networks w.r.t.
original networks increases as temperatures rise. The patterns of LROM exhibited by distilled
networks set them apart from pruned and quantized networks, rendering them a favorable option for
creating compact and energy-efficient networks.

Processing Time. The processing time of verifying LROM depends on the perturbation, i.e., the
value of δ, and the architecture of original and compact networks. In the case of the MNIST dataset,
we exclusively take into account δ = 0.001 and δ = 0.01. The processing time (µ± σ) is 15.0± 0.7
seconds when δ = 0.001 and 18.3± 5.2 seconds when δ = 0.01 for pruned and quantized networks.
The processing time (µ± σ) of distilled networks is 6.7± 0.1 and 6.9± 0.2 seconds for δ = 0.001
and δ = 0.01, respectively.

Comparison with Independent Analysis. Figures 2a– 2d demonstrate minimum and maximum
LROMs for original networks w.r.t. the compact ones, using our method with joint analysis compared
to the independent analysis. Due to the page limit, we present a pruned network with 50% pruning
in Figure 2a, a VNN in Figure 2b, a quantized network with int16 precision in Figure 2c, and a
distilled network with T = 5 in Figure 2d. The identity line divides the coordinate system into two
sections; if a point lies above the identity line, it indicates that the point achieved a lower value
using our method, and vice versa. These figures show that our method consistently achieves higher
minimum LROMs, i.e., the corresponding values (triangles) are always below the identity line,
compared to the independent analysis. Similarly, our method consistently achieves lower maximum
LROMs, i.e., the corresponding values (circles) are always above the identity line. This indicates
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Figure 2: Minimum and maximum LROMs obtained by our method with joint analysis compared to
independent analysis for original networks w.r.t. the compact ones when δ = 0.01.

that our method reduces over-approximation in investigating LROMs, thereby finding minimum and
maximum LROMs closer to the actual minimum and maximum LROMs. The further the points are
from the identity line, the tighter the LROMs obtained by our framework. Figures 2a- 2c show the
difference between independent and joint analysis is significant, as the points (both triangles and
circles) significantly deviate from the identity line.

The results of verified LROM and comparison with independent analysis for convolutional DNNs
trained on the MNIST dataset from (Ugare et al., 2022) are provided in the appendix.

Adversarially-Trained Models. As discussed earlier, our proposed framework is applicable to
any two neural networks. In this section, we analyze three neural networks, two of which are
adversarially-trained models that defend against adversarial attacks—specifically Projected Gradient
Descent (PGD)—using different values of ϵ. These networks share the same architecture with 6×500
neurons, as outlined in (Singh et al., 2019), and PGD-trained ones have ϵ values of 0.1 and 0.3,
denoted as PGD1 and PGD3, respectively.

The investigation of LROM for all pairs of these three networks with δ = 0.001 reveals that there is
no sample such that the non-defended network exhibits higher OMs compared to its PGD-trained
counterparts. Additionally, PGD1 and PGD3 consistently have more verified LROM than the non-
defended network. These results become even more intriguing when compared to the outcomes of
separately investigating the robustness of the neural networks using formal verification techniques.
Considering δ = 0.001, the certified accuracy of the non-defended, PGD1, and PGD3 networks is
100% when each is evaluated individually using verification tools. Our framework highlights that,
although robustness evaluations of neural networks might yield similar results, this does not imply
that the networks behave identically. For instance, when considering a higher perturbation, such as
δ = 0.01, for individual robustness verification, the certified accuracy of the non-defended network
drops to 89%, while the PGD-trained networks maintain a certified accuracy of 99%. This indicates
that the results obtained by our framework accurately reflect the networks’ behaviors.

Further investigations reveal that increasing δ to 0.04 leads to a more pronounced drop in the certified
accuracy of PGD1 compared to PGD3, with PGD1’s accuracy falling to 29% while PGD3’s remains
at 87%. This is also reflected in our verified LROM results for δ = 0.001, where PGD1 has 24%
verified LROM with respect to PGD3, compared to 38% for PGD3 with respect to PGD1. Note that
the remaining 38% represents samples where neither of the PGD-trained networks consistently has
higher OMs across all non-target classes.
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Figure 3: The box plots show verified LROM of original and compact convolutional DNNs trained
for all patients of the CHB-MIT (Shoeb, 2010) and MIT-BIH (Goldberger et al., 2000) datasets.

4.3.2 CIFAR10 DATASET

Figures 1d– 1f describe the results of investigating LROMs for CIFAR10 DNNs when δ = 0.001.

Although the general patterns in the results of the CIFAR10 DNNs are similar to those of the MNIST
DNNs, a few differences are observed. In Figures 1e, the quantized network with the precision of
int8 w.r.t. the original network has higher verified LROM. Moreover, in Figures 1f distilled networks
consistently exhibit a higher number of verified LROM across different temperatures.

Processing Time. The processing time of CIFAR10 DNNs is higher than MNIST ones, as the number
of parameters is higher due to the input size. The processing time (µ ± σ) is 33.1 ± 2.1 seconds
when δ = 0.001 and 43.9 ± 8.1 seconds when δ = 0.01 for pruned and quantized networks. The
processing time (µ ± σ) of distilled networks is 15.0 ± 0.9 and 18.1 ± 2.6 seconds for δ = 0.001
and δ = 0.01, respectively.

Comparison with Independent Analysis. Figures 2e– 2h demonstrate minimum and maximum
LROMs for original networks w.r.t. the compact ones, using our joint analysis with our method vs.
the independent analysis. Same as MNIST DNNs, we present a pruned network with 50% pruning in
Figure 2e, a VNN in Figure 2f, a quantized network with int16 precision in Figure 2g, and a distilled
network with T = 5 in Figure 2h, due to the page limit. The results from the CIFAR10 DNNs exhibit
similarities to those of the MNIST DNNs, albeit with a less pronounced distinction between joint and
independent analysis.

The results of verified LROM and comparison with independent analysis for convolutional DNNs
trained on the CIFAR10 dataset from (Ugare et al., 2022) are provided in the appendix.

4.3.3 CHB-MIT DATASET

We explore the LROM of convolutional DNNs trained on the CHB-MIT dataset to categorize EEG
signals of patients with epileptic seizures as captured in Figure 3a– 3d. Here, the x-axis shows
different perturbation values applied to the input of a pair of original and compact networks. The
general pattern of the LROMs of pruned (with both MBP and VNN methods), quantized, and
distilled networks is that we could verify LROMs for more samples when the original networks were
investigated w.r.t. the compact ones. Besides, the number of verified cases decreases by increasing
perturbation. This can be caused by an actual decrease of LROM over a neighborhood, or by an
exacerbated over-approximation as generated by the framework. Figure 3b shows that the average
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verified LROM of VNNs is comparable to their original counterparts. Figure 3d compares original
and distilled networks, concluding on more cases than pruned and quantized networks.

4.3.4 MIT-BIH DATASET

In this section, we assess the LROM of convolutional DNNs trained on the MIT-BIH dataset in
categorizing ECG signals from patients with cardiac arrhythmia, as demonstrated in Figures 3e–
3h. Similar to DNNs trained for the CHB-MIT dataset, the number of verified samples drops as
perturbation increases, either due to reduced LROM across a range of perturbed inputs or increased
over-approximation generated by the framework. The behavior of MBP pruned and quantized
networks is also similar to CHB-MIT DNNs such that the LROM of original networks is higher than
their corresponding pruned and quantized ones. However, the results of VNN pruned networks are
slightly different whereas the verified LROMs are closer to their original counterparts. Moreover,
distilled networks display a different pattern such that their verified LROM is higher than their
corresponding original networks.

5 RELATED WORK

To investigate the impact of quantization on neural network, (Duncan et al., 2020) empirically show
that quantization not only maintains robustness but can also enhance it, and generally, accuracy is
preserved after the quantization process. Duncan defines robustness as the proportion of robust data
points in the original model that are also robust in the quantized model. In contrast, our method also
considers the margins with which the networks make their decisions, in addition to classification
results. The results in (Duncan et al., 2020) indicate a reduction in number of misclassified inputs and
a preservation of the robustness for given perturbations around them. We observe a decrease in the
obtained margins. This suggests that models may remain robust, but they do so with reduced margins.

The studies by (LI et al., 2023) and (Jordao & Pedrini, 2021) show network pruning can empirically
improve robustness of a trained network. However, our research indicates this is not always the case.
(Wang et al., 2018) uses similar pruning methods as ours but applies two white box attacks including
fast gradient sign method (FGSM) (Goodfellow et al., 2014) and projected gradient descent (PGD)
(Madry et al., 2018). Their findings, which are consistent with ours, suggest setting small weights to
zero can result in less robust networks. It appears that pruning solely for the purpose of reducing
the number of parameters, without considering the overall accuracy of the network, can diminish
its robustness. However, more deliberate pruning methods, such as stability-based pruning, might
actually improve robustness.

6 CONCLUSIONS

In this work, we propose a framework to compare the two networks in relation to each other over
an entire input region. Towards this, we introduce and quantify the Relative Output Margin (ROM)
with which decisions are made. A larger output margin for a network w.r.t. another indicates that this
network consistently makes a correct decision every time the other network does, and it does so in the
entire input region. In addition, our framework allows establishing lower and upper bounds on the
output margins, given an entire input region, to quantitatively compare neural networks twins. The
proposed framework is relevant in the context of several application domains, e.g., for comparing
a trained network and its corresponding compact (e.g., pruned, quantized, distilled) network. We
evaluate our framework using the MNIST, CIFAR10, and two real-world medical datasets, to show
its relevance.

Limitations: Built upon decades of progress in linear programming, our framework, while benefiting
from the impressive polynomial time complexity of linear programming, is constrained by the
problem sizes manageable by the current state-of-the-art linear programming toolboxes.

Broader Impacts: This paper presents work whose goal is to compare two DNNs in relation to each
other. This is particularly important in the context of safety-critical applications, e.g., autonomous
driving or medical applications, as we show in this paper using two medical case studies. This work
enables us to quantify the safety of the decisions made by two DNNs in relation to each other.
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A APPENDIX

A.1 PROOFS FROM SECTION 3

Lemma A.1. Let (ci, cj) be a pair of classes of compatible DNNs N1 and N2. Assume common
input x(0) = y(0). Suppose N1 has N1 + 1 layers x(0), . . .x(N1+1) and N2 has N2 + 1 layers
y(0), . . .y(N2+1). Then:

ln
(
Π

N1|N2

x(0) (ci, cj)
)
= (x(N1)

ci − x(N1)
cj )− (y(N2)

ci − y(N2)
cj )

Proof. By applying the ln function on the definition of ΠN1|N2

x(0) (ci, cj):

ln
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Π

N1|N2

x(0) (ci, cj)
)
= ln

(
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Corollary A.2. Let (ci, cj) be a pair of classes of compatible DNNs N1 and N2 (with resp. N1 + 1

and N2 + 1 layers). Assume common input x̃(0) = ỹ(0) and perturbation δ. For x(0) = y(0) with
x(0) ∈ Dδ

x̃(0) , let x(0), . . .x(N1+1) be layers in N1 and y(0), . . .y(N2+1) be layers in N2. Then:

ln
(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= minx(0)∈Dδ

x̃(0)

(
(x

(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj )

)
ln
(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= maxx(0)∈Dδ

x̃(0)

(
(x

(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj )

)
Proof. By applying the ln function on min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
and using Lemma A.1:

ln
(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= min

{
ln
(
Π

N1|N2

x(0) (ci, cj)
)
| x(0) ∈ Dδ

x̃(0)

}
= min

{(
(x

(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj )

)
| x(0) ∈ Dδ

x̃(0)

}
= minx(0)∈Dδ

x̃(0)

(
(x

(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj )

)
ln
(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
= max

{
ln
(
Π

N1|N2

x(0) (ci, cj)
)
| x(0) ∈ Dδ

x̃(0)

}
= max

{(
(x

(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj )

)
| x(0) ∈ Dδ

x̃(0)

}
= maxx(0)∈Dδ

x̃(0)

(
(x

(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj )

)
Theorem A.3. Let (ci, cj) be a pair of classes of compatible DNNs N1 and N2. Assume a neighbor-
hood Dδ

x̃(0) and let RN1|N2

x̃(0),δ
(ci, cj) (resp. RN2|N1

x̃(0),δ
(ci, cj)) be a solution to the relaxed minimization

problem corresponding to LROM of N1 w.r.t. N2 (resp. N2 w.r.t. N1). Then:

RN1|N2

x̃(0),δ
(ci, cj) ≤ ln

(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
and ln

(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
≤ −RN2|N1

x̃(0),δ
(ci, cj)
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Proof. As mentioned in Section 3.2 any lower bound obtained for the relaxed problem is
guaranteed to be smaller than a solution for the original minimization problem. Since
min

{
ln
(
Π

N1|N2

x(0) (ci, cj)
)

| x(0) ∈ Dδ
x̃(0)

}
≥ RN1|N2

x̃(0),δ
(ci, cj), we get:

min
{
ln
(
Π

N1|N2

x(0) (ci, cj)
)

| x(0) ∈ Dδ
x̃(0)

}
= ln

(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
≥ RN1|N2

x̃(0),δ
(ci, cj)

And similarly in a symmetric manner:

min
{
ln
(
Π

N2|N1

x(0) (ci, cj)
)

| x(0) ∈ Dδ
x̃(0)

}
= min

{
ln

(
σ(x(N2))ci ·σ(y

(N1))cj
σ(x(N2))cj ·σ(y

(N1))ci

)
| x(0) ∈ Dδ

x̃(0)

}
= min

{
− ln

(
σ(y(N1))ci ·σ(x

(N2))cj
σ(y(N1))cj ·σ(x

(N2))ci

)
| x(0) ∈ Dδ

x̃(0)

}
= −max

{
ln

(
σ(y(N1))ci ·σ(x

(N2))cj
σ(y(N1))cj ·σ(x

(N2))ci

)
| x(0) ∈ Dδ

x̃(0)

}
= −max

{
ln
(
Π

N1|N2

x(0) (ci, cj)
)

| x(0) ∈ Dδ
x̃(0)

}
= − ln

(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
≥ RN2|N1

x̃(0),δ
(ci, cj)

Then we can deduce:

RN1|N2

x̃(0),δ
(ci, cj) ≤ ln

(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
and ln

(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
≤ −RN2|N1

x̃(0),δ
(ci, cj)

A.2 A SOUND OVER-APPROXIMATION OF DNNS BEHAVIOR

Solving the original minimization problem is not trivial. Indeed, the activation functions result in
nonlinear constraints for Equations (4) and (5). Our analysis targets ReLU layers, it can be generalized
to accommodate any nonlinear activation function that can be represented in a piece-wise linear form
(Ehlers, 2017). ReLU functions are the most widely used activation functions in DNNs. Recall the
last layer is a softmax layer, but we are only interested in the possible values of its inputs. We explain
in the following how to over-approximate the values computed at each layer using linear inequalities.
The goal is to make possible the computation of a tight lower bound for the minimization problem
from Section 3.1.

A ReLU compounds two linear segments, resulting in a piece-wise linear function. Consider
x̂
(k)
i = W

(k)
i,: x(k−1)+ b

(k)
i , the value of the ith neuron in the kth layer before applying the activation

function. The output x(k)
i of the ReLU of x̂(k)

i is x̂(k)
i if x̂(k)

i ≥ 0 and 0 otherwise. When considering

a δ-neighborhood as inputs, each neuron x̂
(k)
i gets lower and upper bounds, denoted as x̂(k)

i and x̂
(k)

i ,
respectively. Applying ReLU to each neuron x̂

(k)
i results in the neuron being always active when

both lower and upper bounds are positive (i.e., ReLU coincides with the identity relation), and always
inactive when both are negative (i.e., ReLU coincides with zero). There is a third situation where
lower and upper bounds have different signs. To adapt ReLU to our optimization framework, we
consider as in (Ehlers, 2017) the minimum convex area bounded by x̂

(k)
i and x̂

(k)

i . The convex is
given by the three inequalities:

x
(k)
i ≤ x̂

(k)

i .
x̂
(k)
i − x̂

(k)
i

x̂
(k)

i − x̂
(k)
i

, x
(k)
i ≥ x̂

(k)
i , x

(k)
i ≥ 0.

Lower and upper bounds of each neuron can be calculated by propagating through the network,
starting from the input layer w.r.t. the perturbation δ. In fact, our proposed framework can manage
various layers including, but not limited to, convolution, zero-padding, max-pooling, permute, and
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flattening layers. For instance, a max-pooling layer with a pool size of pk can be approximated with
pk + 1 inequalities as follows. Let J = {(i− 1)pk + 1, . . . , ipk}, use:

x
(k)
i ≥ x

(k−1)
j ,∀j ∈ J,∑

j∈J

x
(k−1)
j ≥ x

(k)
i +

∑
j∈J

x
(k−1)
j −max

j∈J
x
(k−1)
j .

Other nonlinear layers used in Equations (4) and (5) can also be over-approximated using linear
inequalities.

A.3 JOINT VS INDEPENDENT ANALYSIS

We abuse notation and write MN1|0
x̃(0),δ

(ci, cj) to mean the value of the objective function in Equation (1)
(of the original optimization problem in Section 3) when choosing a constant second network N2

that assigns equal probabilities to each outcome. This corresponds to computing minimum Output
Margins (OMs) for N1 on its own. Our original optimization problem and its linear relaxation
compute ROMs’ bounds for a given input that is common to both networks and that is ranging
over the considered neighborhood. This can be simplified by independently computing ranges of
Output Margins (OMs) for each network and by combining the results. This would result in sound
approximations of ROMs. However, this decoupled approach results in a loss of precision as it does
not consider a common input to both networks. This is formalized by the theorem below, and is
witness by our experiments where we evaluate the corresponding loss in precision. We report on the
experiments in Section 4.

Theorem A.4. MN1|0
x̃(0),δ

(ci, cj) +M0|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj)

Proof. Recall:

• MN1|N2

x̃(2),δ
(ci, cj) = min

{(
(x

(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj )

)
| x(0) ∈ Dδ

x̃(0)

}
• MN1|0

x̃(0),δ
(ci, cj) = min

{(
(x

(N1)
ci − x

(N1)
cj )

)
| x(0) ∈ Dδ

x̃(0)

}
• M0|N2

x̃(0),δ
(ci, cj) = min

{(
−(y

(N2)
ci − y

(N2)
cj )

)
| y(0) ∈ Dδ

x̃(0)

}
Let x(N1)

ci ,x
(N1)
cj ,y

(N2)
ci ,y

(N2)
cj be the logits values obtained in the solution MN1|N2

x̃(2),δ
(ci, cj).

Let x(N1)
ci

′
,x

(N1)
cj

′
be the logits values obtained in the solution MN1|0

x̃(2),δ
(ci, cj).

Let y(N2)
ci

′
,y

(N2)
cj

′
be the logits values obtained in the solution M0|N2

x̃(2),δ
(ci, cj).

By definitions:

• (x
(N1)
ci

′
− x

(N1)
cj

′
) ≤ (x

(N1)
ci − x

(N1)
cj )

• −(y
(N2)
ci

′
− y

(N2)
cj

′
) ≤ −(y

(N2)
ci − y

(N2)
cj )

Hence:

(x(N1)
ci

′
− x(N1)

cj

′
)− (y(N2)

ci

′
− y(N2)

cj

′
) ≤ (x(N1)

ci − x(N1)
cj )− (y(N2)

ci − y(N2)
cj )

and
MN1|0

x̃(0),δ
(ci, cj) +M0|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 ADDITIONAL TABLES AND FIGURES FOR SECTION 4

In this section, we provide supplementary experiments.

A.4.1 MNIST AND CIFAR10 DATASETS

Together with the fully-connected DNNs, there are convolutional DNNs trained on the MNIST
and CIFAR10 datasets provided by (Ugare et al., 2022). The convolutional DNN trained on the
MNIST dataset includes two convolution layers, each preceded by a zero-padding layer, followed by
five dense layers, each comprising 256 neurons. The convolutional DNN trained on the CIFAR10
dataset has two additional pairs of convolution and zero-padding layers compared to the MNIST’
convolutional DNN. Figure 4 presents the stacked bar plots of verified LROMs obtained using our
method on the convolutional DNNs when δ = 0.001. Figure 5 demonstrates the minimum and
maximum values of LROMs achieved by our method with joint analysis, compared to the values
obtained by independent analysis of the networks when δ = 0.01.
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Figure 4: Stacked bar plots for verified LROM of convolutional DNNs trained on the MNIST and
CIFAR10 datasets when δ = 0.001.

A.4.2 CHB-MIT AND MIT-BIH DATASETS

Here, we provide the accuracy (µ± σ) of quantized and distilled networks generated for CHB-MIT
and MIT-BIH datasets in Tables 1 and 2, respectively.

Table 1: Accuracy of quantized networks trained on CHB-MIT and MIT-BIH datasets.

float16 int8 int4
CHB-MIT 85.7± 14.8 80.9± 15.0 85.1± 15.1
MIT-BIH 92.2± 10.1 91.8± 10.1 90.9± 10.7

Moreover, we assess the verified LROMs of quantized and distilled networks derived from convo-
lutional DNNs trained on the CHB-MIT and MIT-BIH datasets, shown in Figure 6 and 7. These
networks have different precision/temperature compared to those mentioned in Section 4.
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Figure 5: Minimum and maximum LROMs obtained by our method with joint analysis compared to
independent analysis for original networks w.r.t. the compact ones when δ = 0.01.

Table 2: Accuracy of distilled networks trained on CHB-MIT and MIT-BIH datasets.

T1 T2 T3 T4 T6 T7 T8 T9
CHB-MIT 73.4± 9.5 72.5± 11.2 73.0± 9.4 71.0± 9.0 71.5± 9.6 73.5± 9.7 73.5± 8.6 71.5± 9.5
MIT-BIH 91.9± 6.7 90.6± 9.2 90.0± 11.2 89.1± 12.7 90.3± 10.2 90.6± 10.3 90.6± 10.2 90.2± 10.0
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Figure 6: The box plots show verified LROM of the original and compact convolutional DNNs
trained for all patients of the CHB-MIT and MIT-BIH datasets.
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Figure 7: The box plots show verified LROM of the original and compact convolutional DNNs
trained for all patients of the CHB-MIT and MIT-BIH datasets.

18


	Introduction
	LRPR
	DNN
	LRPR

	Method
	The LRPR Optimization Problem
	A Sound Over-Approximation of DNN Behavior

	Evaluation
	Datasets
	Networks
	Original Networks
	Compact Networks

	Results and Analysis
	MNIST Dataset
	CIFAR10 Dataset
	CHB-MIT Dataset
	MIT-BIH dataset


	Related Work
	Conclusions
	Appendix
	Proofs from Section 3
	A Sound Over-Approximation of DNN Behavior
	Joint vs Independent Analysis
	Additional tables and figures for Section  4
	MNIST and CIFAR10 Datasets
	CHB-MIT and MIT-BIH datasets



