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Abstract

Large reasoning models (LRMs) demonstrate001
impressive logical capabilities and are able to002
solve complex problems through multi-step de-003
duction. However, they often generate unneces-004
sarily long chains of thought that significantly005
increase inference cost without yielding pro-006
portional gains in accuracy. We present an007
efficient logical reasoning framework that uses008
a dynamic router to instantly assess the diffi-009
culty of the question. For simple questions,010
the router dispatches them to a reinforcement011
learning–trained model that enforces strict con-012
trol of the output length through learned poli-013
cies during inference; for complex questions,014
they are dispatches to LRMs employing cus-015
tomized prompt strategies for different type of016
questions that ensures computational resources017
are invested only where they are truly valuable.018
Comprehensive experiments on arithmetic, log-019
ical, and commonsense benchmarks show that020
our framework reduces token usage, outper-021
forming prior reasoning systems and demon-022
strating that efficiency stems from thinking just023
enough and only when necessary.024

1 Introduction025

In recent years, Large Reasoning Models026

(LRMs)(Xu et al., 2025), such as OpenAI’s o1(Wu027

et al., 2024), Alibaba’s Qwen3(Qwen3, 2025), and028

DeepSeek’s R1(DeepSeek-AI et al., 2025), have029

achieved remarkable progress in solving complex030

tasks like mathematical reasoning and code gener-031

ation. These models often rely on reasoning tech-032

niques such as Chain-of-Thought (CoT) prompt-033

ing(Wei et al., 2022), where intermediate steps are034

explicitly generated to improve answer accuracy035

and interpretability.036

Existing reasoning frameworks such as CoT,037

ToT(Yao et al., 2023), and GoT (Besta et al., 2024),038

these frameworks typically involve problem de- 039

composition, multi-path generation, and answer 040

aggregation. However, this step-by-step generation 041

process often leads to substantial computational 042

overhead and excessive token consumption. We 043

observe that many of these frameworks are being 044

out of date: even simple zero-shot prompts can 045

now achieve comparable accuracy, making tradi- 046

tional reasoning pipelines increasingly redundant 047

in some cases. 048

To validate our observation, we compare the av- 049

erage number of output tokens and the correspond- 050

ing accuracies across multiple benchmark datasets, 051

as shown in Figure 1. We observe a clear trend: as 052

the number of output tokens increases, the accuracy 053

does not improve accordingly. For instance, on 054

AIME24, Qwen3-32B generates over 7,500 tokens 055

per correct answer, and more than 10,000 tokens 056

when the prediction is incorrect. This indicates 057

that excessive token usage—rather than ensuring 058

correctness—often reflects a behavioral pattern in 059

which LRMs "overthink" even moderately difficult 060

questions. In some cases, even simple problems 061

can trigger unnecessarily long outputs, leading to 062

significant inefficiency without accuracy gains. 063

To address the inefficiency and overthinking be- 064

haviors (Sui et al., 2025) , where the model gen- 065

erates overly elaborate reasoning chains, even for 066

problems that may not require them that leads to ex- 067

cessive computational cost. Inspired by the LLM 068

cascade(Yue et al., 2024) design, we employ a 069

weaker LLM for simple queries and a stronger 070

LLM for more complex questions. We propose a 071

reasoning framework, which integrates reasoning 072

awareness with token efficiency. It highlights the 073

key components of our system including routing, 074

prompt strategies, and model length control. 075

Experimental results on a range of benchmarks 076

demonstrate that our framework reduces average 077
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Figure 1: Comparison of token consumption and accuracy across reasoning models and datasets. Harder benchmarks
(AIME24 and MATH) drive substantially higher token usage, whereas easier tasks (GSM8K and HELLASWAG)
require fewer tokens. Overall, reasoning models consume more tokens for only marginal accuracy improvements,
and incorrect answers incur the highest token cost.

token consumption by 10–50% compared to strong078

baselines, while keeping accuracy drops within079

acceptable bounds. As shown in Figure 2, our080

method achieves a competitive accuracy of 0.84081

on GSM8K while using only 820 tokens signifi-082

cantly fewer than other methods such as COT and083

SPP. Our method achieves the highest reasoning084

efficiency among all compared approaches, as re-085

flected by the largest circle in the plot.086

To sum up, our contributions are stated as fol-087

lows:088

• We conduct a systematic evaluation of the log-089

ical reasoning capabilities of LRMs and find090

they tend to generate excessively long out-091

puts without significant improvements in ac-092

curacy. Further analysis reveale that even sim-093

ple problems often trigger unnecessary deep094

reasoning, resulting in wasted computational095

resources.096

• We propose a dynamic framework that en-097

ables the system to adaptively invoke different098

types of models based on task difficulty, im-099

proving overall efficiency. We explore prompt100

strategies originally designed for LLMs and101

demonstrated their effectiveness when applied102

to LRMs.103

• Our experimental results show that our frame-104

work achieves higher efficiency across diverse105

tasks while significantly reducing token con-106

sumption, outperforming existing reasoning107

frameworks.108

Figure 2: Comparison of our and other reasoning meth-
ods on GSM8K where the x-axis shows total token
usage. Circle size reflects reasoning efficiency (accu-
racy per 1,000 tokens). Larger circles indicate higher
efficiency with our method achieving competitive accu-
racy at substantially lower token cost.

2 Related work 109

Research can be broadly grouped into three cat- 110

egories. In this section, we first introduce the 111

relevant foundational concepts, then review com- 112

mon reasoning frameworks, and finally examine 113

approaches for reducing token consumption. 114

2.1 LRMs, Reinforcement Learning 115

Large Reasoning Models (LRMs)(Xu et al., 116

2025),such as O1(Wu et al., 2024),Qwen(Qwen3, 117

2025),DeepSeek(DeepSeek-AI et al., 2025) have 118

emerged as a powerful extension of large language 119

models, specifically targeting complex reasoning 120

tasks such as mathematical problem solving, multi- 121

step logical inference, and structured question an- 122

swering. By using Chain-of-Thought(Wei et al., 123

2022) reasoning chains, these models explicitly 124

break down their thought process into ordered, 125
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step-by-step sequences before delivering a final126

answer, which greatly enhances their performance127

on complex reasoning tasks.128

Reinforcement learning has been proven to be129

effective in further improving the mathematical130

reasoning ability of LLMs after the Supervised131

Fine-Tuning(Lu et al., 2023)stage. It is used132

to further optimize model outputs in terms of133

correctness, structural coherence, and token effi-134

ciency. PPO(Schulman et al., 2017)is a widely135

used method that optimizes generation behavior136

based on a learned reward model, as applied in137

systems like InstructGPT(Ouyang et al., 2022).138

DPO(Rafailov et al., 2024)is a method that directly139

learns from human preference rankings between140

outputs, without explicitly modeling reward func-141

tions. GRPO(Shao et al., 2024)is a flexible opti-142

mization framework that supports complex reward143

signals, such as format consistency, content quality,144

and length control.145

2.2 Structured Reasoning Framework146

Prior works such as Chain of Thought prompt-147

ing (Wei et al., 2022), Automatic Chain of148

Thought Prompting(Zhang et al., 2023),Tree149

of Thoughts(Yao et al., 2023) and Graph of150

Thoughts(Besta et al., 2024) frameworks have151

demonstrated the importance of guiding model152

reasoning through intermediate steps, allowing153

models to break down tasks into solvable steps.154

In addition, other reasoning frameworks include155

Self-Refine (Madaan et al., 2023), which itera-156

tively produces self-feedback and refines its output157

for up to four rounds; LLM-Cascade (Yue et al.,158

2024), which dynamically routes between weaker159

and stronger models using a CoT-2D-Vote strat-160

egy; SPP (Wang et al., 2024b), which instantiates161

multiple personas of a single LLM to collabora-162

tively solve problems; and MAD-judge (Feng et al.,163

2025), which orchestrates a three-agent debate with164

a judge module over three rounds. These meth-165

ods cover a broad spectrum of Chain-of-Thought166

enhancements and provide a fair benchmark for167

evaluating our proposed framework.168

2.3 Token Saving Framework169

Researchers are shifting their focus toward reduc-170

ing token usage. The survey Stop Overthinking(Sui171

et al., 2025) systematically categorizes current172

methods for efficient LLM reasoning, addressing 173

the “overthinking” problem by reviewing model 174

design, output control, prompt adaptation, and eval- 175

uation strategies. 176

DGoT framework(Ning et al., 2024a) aligns 177

with this trend by dynamically optimizing the rea- 178

soning structure to achieve more cost-effective gen- 179

eration. SoT(Shang et al., 2024) leverages the syn- 180

ergy between small and large LLMs to mimic hu- 181

man intuitive and reflective thinking. CPO(Zhang 182

et al., 2024) improves CoT reasoning by fine- 183

tuning LLMs with preference signals from ToT. 184

FrugalGPT(Chen et al., 2024) leverages LLM cas- 185

cading to intelligently route queries across mod- 186

els. Skeleton-of-Thought(Ning et al., 2024b) intro- 187

duces a parallel generation framework that reduces 188

LLM inference latency by decoupling structure 189

planning and content generation. TRIM(Garrachón 190

Ruiz et al., 2024) reduces LLM inference cost 191

by first generating a concise output with a large 192

model, then reconstructing the full text using a 193

smaller model. Token-Budget-Aware LLM Rea- 194

soning(Han et al., 2024) reduces unnecessary ver- 195

bosity in CoT-style outputs by dynamically allo- 196

cating token budgets, enabling efficient reasoning 197

with minimal performance loss. 198

3 Our Method 199

To accomplish this, we propose our method, which 200

consists of three part: (i) Router Dispatch, (ii) 201

Token-Efficient Policy Optimization(TEPO) and 202

(iii) Adaptive Prompt Optimization. This section 203

provides detailed descriptions of them, as illus- 204

trated in Figure 3. 205

3.1 Problem Formulation 206

Let X be the universe of math problem texts 207

and Y the set of correct solutions. A sample 208

(x, y) ∈ D ⊂ X × Y contains a problem x and 209

its ground-truth answer y. Each problem also pos- 210

sesses a difficulty label c ∈ {0, 1}, we pre-evaluate 211

the model on various datasets and assign a binary 212

difficulty label: 213

c =

{
1, if the answer on x is correct
0, otherwise

214

Here, x denotes the input math problem; s is the 215

difficulty score output by the routerMrouter; τ ∈ 216
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Weaker 

LLM

Low Score

High Score
 Router 

LLM

 Test 

Datasets

Score Prompt

Prompt Template

Batch of Question and Answer

Question 1：Weng earns $12 an hour for babysitting. she just did 

50 minutes of babysitting. How much did she earn?

Answer 1：10

Question 2：In a class of 50 students, 28 participate in 

MATHCOUNTS, 21 participate in science club. How many students 

participate in both MATHCOUNTS and science ?

Answer 2：5

Question N：If the fourth term of an arithmetic…… what is the 

sixth term ?

Answer N：21

Simple Question

Complex Question

Train 

Datasets

Module ① : Router Dispatch

Module ② :  Token-Efficient Policy Optimization

Module ③ : Adaptive Prompt Optimization

Qwen2.5-

1.5B

o1

o2

oG

Reward 

Model

80,000 mixed 

data samples

Token 

Control

Correct

Answer 

Format

Group 

Computation

Specific Prompt

Effective Validation

Find the budget token step and vocab

Combined Prompt
Problem

Define

Problem

Classify
Datasets Feature……

Datasets 1：(GSM8K)Joy can read 8 pages of a book in 20 

minutes. How many hours will it take her to read 120 pages?

Datasets 2：(MATH)How many vertical asymptotes does the graph 

of $y=\\frac{2}{x^2+x-6}$ have?

……

Combined Prompt Strategy

Parameter Search

r1

r2

rG

A1

A2

AG

Concise

Step

Vocab

Budget

Stronger 

LLM

Concise

Step

Please answer the question following 

these prompt {Combined Prompt}.

Answer：
<reasoning>To calculate Weng's earnings from babysitting, we 

need to determine the number of hours she worked and then 

multiply that by her hourly wage.Weng worked 50 minutes of 

babysitting.……Therefore, Weng earned $10 from 

babysitting.</reasoning><answer>$10</answer>

Cost Tokens:451

Cost Savings:50%

Answer

……

Answer：
<think>Okay, so there's a problem here about a class with 50 

students.……Yep, that adds up. So the answer is 5.</think>1. 

Total students = 50.  2. Neither activity: 6 ⇒ At least one 

activity: 50 - 6 = 44.  ……6. Solve: |M ∩ S| = 28 + 21 - 44 = 5.  

Answer: 5 students participate in both.

Cost Tokens:712

Cost Savings:70%

Optimized Answer

… … …

Answer

Trainging Strategy Reward Design

Please keep in consice.
Use descending step order.

Use less than budget tokens.
Do not use words in vocab.

Please based on the {Datasets 
Feature} statistics, assess the 

difficulty of the current question.

Please strictly follow the 
XML format below and 
adhere to the constraints

Figure 3: Our framework comprises three modules: Router dispatch for difficulty prediction, token-Efficient Policy
Optimization for wearker llm, and stronger LLM controlled by adaptive prompt optimization.

(0, 10) is the difficulty threshold—if s ≥ τ , follow217

the high branch, otherwise the low branch;Mweak218

andMstrong are the weak and strong LLMs (the219

former with length-control policy πlen, the latter220

with prompt strategy P); ŷ is the final answer; and221

TR, Tweak, Tstrong denote the token consumption222

of the router, weak LLM, and strong LLM stages,223

respectively.224

3.2 LLM Router Dispatch225

We implement the router as a dedicated LLM de-226

notedMrouter with prompt Prouter, operating in227

a no-thinking mode (switching the template as in228

Qwen3(Qwen3, 2025) to conserve token resources)229

to produce an score s ∈ [0, 10]:230

s = Mrouter(x;Prouter)231

where larger s indicates a complex problem. Given232

a threshold τ ∈ (0, 10), we route each x via233

ŷ(x) =

{
Mstrong(x), s ≥ τ

Mweak(x), s < τ.
234

We show in Algorithm 5 about how to select the235

optimal threshold τ∗.236

To evaluate the quality of different routing strate-237

gies, we compute the F1-score based on a binary238

classification task: identifying whether a question239

is simple or complex.240

For each input question, the routing module out-241

puts a binary decision:242

• Positive (complex): stronger model; 243

• Negative (simple): weaker model. 244

The F1-score is computed as: 245

F1 =
2 · Precision · Recall
Precision + Recall

(1) 246

where Precision is defined as the ratio of true posi- 247

tives to the sum of true positives and false positives, 248

and Recall is the ratio of true positives to the sum 249

of true positives and false negatives. This metric 250

reflects how effectively the routing strategy dis- 251

tinguishes complex reasoning tasks from simple 252

ones. 253

3.3 Token-Efficient Policy Optimization 254

We adopt Generative RL with Policy Optimiza- 255

tion (Shao et al., 2024) whose surrogate loss for a 256

trajectory (xt, y
G
t ) is: 257

L =E
[
min

(
πθ(y

G
t |xt)

πθref
(yGt |xt)

R̂G
t , clip

(
πθ(y

G
t |xt)

πθref
(yGt |xt)

,

1− ϵ, 1 + ϵ
)
R̂G

t

)
− λDKL

[
πθ ∥πref

]]
.

(2) 258

where πθ is the trainable policy, πref the fixed ref- 259

erence model, and R̂G
t the normalised return. 260

To encourage concise, step-by-step reasoning 261

while enforcing output-length constraints, we de- 262

compose the reward for a generated answer y into 263

three interpretable components: 264

rcorr = 1{ y = ygold } 265
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rfmt =


1, if format(y) = VALID,

0.5, if format(y) = PARTIAL,

0, otherwise,

266

267
rlen = 1{ny ≤ nbudget ∧ nstep ≥ 2}.268

where ny is the output length in tokens and PAR-269

TIAL denotes a response that satisfies the required270

structure only partially (e.g., correct sections but271

missing delimiters). Here, nstep is the number of272

reasoning sentences in the generated response. In-273

spired by the Qwen3(Qwen3, 2025) design philos-274

ophy which consistently encourages step-by-step275

reasoning, we consider explicit multi-step thinking276

indispensable. To prevent the model from “lazy”277

behavior that outputs only the final answer with-278

out the intermediate thought process, we enforce279

the constraint nstep ≥ 2. The overall reward R(y)280

is the sum of the three components. It serves as281

the normalized return R̂G
t in our TEPO surrogate282

objective.283

3.4 Adaptive Prompt Optimization284

We have analyzed the existing prompt-based strate-285

gies as illustrated in the Table 1. In our experi-286

ments, we investigate the effectiveness of different287

combinations of these prompt-based strategies.288

Prompt method Content
Keep Concise Keep in concise
Step Count Use descending step order
Token Budget Use less than budget tokens
Vocab Banned Do not use words in vocab
Our Combined prompt Keep Concise and Step Count

Table 1: Illustrations of the other prompt methods and
our combined prompts.

The CCOT(Renze and Guven, 2024) method289

encourages the model to keep responses concise290

through prompt instructions.291

The S1 paper(Muennighoff et al., 2025) and292

TALE (Han et al., 2024) proposes prompt-based293

strategies such as step control and token budget,294

which guide the model to complete reasoning295

within a limited number of steps or tokens. To de-296

termine an appropriate token budget for different297

reasoning tasks, we adopt a data-driven estimation298

approach based on token consumption statistics, as299

illustrated in Algorithm 1. We apply a step estima-300

tion and token budget procedure to determine the301

optimal number of reasoning steps and tokens for302

a given model and prompt template. As shown in 303

Algorithm 3 and Algorithm 2. 304

The TRIM (Garrachón Ruiz et al., 2024) method 305

introduces a strategy that defines a forbidden word 306

list to guide the model away from verbose or ir- 307

relevant responses. In our approach, we collect 308

historical responses generated by the model and 309

feed them into a large language model to auto- 310

matically generate a forbidden vocabulary list, as 311

described in Algorithm 4. 312

3.5 Cost Analysis 313

We define TR(x) be the number of tokens con- 314

sumed by the router, Tweak(x) the tokens con- 315

sumed by the weak modelMweak, and Tstrong(x) 316

the tokens consumed by the strong modelMstrong. 317

The total inference cost is then: 318

Cost(x) = TR(x) +

{
Tstrong(x), s ≥ τ

Tweak(x), s < τ
(3) 319

Each T includes both the input token length and the 320

output token length, where the output consists of 321

the reasoning trace denoted as reasoning_content 322

and the final answer denoted as content. 323

Eff(x) =
Acc(x)× 1000

Costinput(x) + Costoutput(x)
(4) 324

We define Eff as the amount of accuracy gained 325

per 1,000 tokens consumed. It reflects how effec- 326

tively a model utilizes its token budget to produce 327

correct answers. A higher Eff value indicates that 328

the model achieves better performance while con- 329

suming fewer tokens. 330

4 Experiments 331

In this section, we report experimental results that 332

highlight the efficiency and effectiveness of our 333

proposed framework, covering preliminary moti- 334

vation studies, framework validation experiments, 335

ablation analyses, and comparative evaluations. 336

4.1 Settings 337

We conduct experiments on a diverse set of 338

datasests, including GSM8K(Cobbe et al., 2021), 339

Game24(Yao et al., 2023), Sorting032(Besta 340

et al., 2024), HellaSwag(Zellers et al., 2019), and 341
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Methods Game24 Sorting32 Gsm8k Hellaswag Math
Eff I/T O/T Eff I/T O/T Eff I/T O/T Eff I/T O/T Eff I/T O/T

COT (best of 1) 0.31 198 2808 0.10 655 8887 0.77 235 953 0.47 462 1234 0.21 625 2996
COT (best of 5) 0.19 694 3692 0.09 1283 8948 0.67 652 762 0.33 912 1011 0.13 1662 3550
GOT 0.09 692 9179 0.08 1904 9865 0.12 736 6653 0.08 1026 7237 0.08 1095 9331
LLM-CASCADE 0.25 212 3124 0.16 611 4612 0.50 211 1460 0.39 805 1337 0.20 1141 3010
SELF-REFINE 0.18 317 4414 0.12 350 6750 0.45 347 1274 0.32 915 1435 0.14 1037 4834
SPP 0.24 201 3144 0.18 311 4512 0.61 236 1291 0.40 445 1329 0.21 260 2768
MAD+JUDGE 0.20 307 4130 0.17 404 4923 0.62 340 894 0.36 519 1375 0.25 348 3232
Ours 0.33 387 2450 0.21 507 4318 1.02 403 417 0.48 641 659 0.26 518 1984

Table 2: Comparison of our method against baseline reasoning methods across multiple benchmarks. Our method
achieves superior Efficiency (Eff) while significantly reducing both avg input tokens (I/T) and avg output tokens
(O/T) compared to others. All methods use QwQ-32Bby default.

Prompt Strategy Deepseek-R1-Distill-Llama-70B QwQ-32b Deepseek-R1-Distill-Qwen-32B Qwen3-32b
Keep Concise 51.9% 35.8% 47.9% 23.0%
Step Count 61.0% 25.0% 16.6% 25.8%
Token Budget 53.2% 45.0% 33.9% 12.7%
Vocab Banned 42.2% 34.6% 42.4% 24.2%
Our Combined Strategy 64.4% 47.3% 70.9% 36.8%

Table 3: Token savings (%) of each prompting strategy across different models. Evaluation of prompt strategies
on the GSM8K dataset. Each strategy was applied individually and in combination, with our combined approach
achieving the best token savings.

Math500(Zellers et al., 2019).We evaluate the out-342

of-distribution generalization ability of our frame-343

work on the MMLUPro(Wang et al., 2024a) bench-344

mark, which covers a wide range of domains that345

are not seen during training. We provide compre-346

hensive experimental configurations and additional347

implementation details in the appendix B.348

4.2 Main Results349

As shown in Table 2, our method consistently350

achieves the highest reasoning efficiency (Eff)351

across all five benchmarks, outperforming prior ap-352

proaches such as CoT, GOT, and LLM-CASCADE.353

Notably, on datasets like GSM8K, Game24, and354

Math, our method reaches Eff scores of 1.02, 0.33,355

and 0.26, respectively substantially higher than all356

baselines.357

This demonstrates that our framework deliv-358

ers more accurate reasoning per token consumed,359

achieving up to 3× greater efficiency than multi-360

step methods such as GOT or CoT, which require361

significantly more output tokens.362

Unlike prior pipelines that rely on multiple sam-363

pled generations or lengthy intermediate chains,364

our design focuses on dynamic routing and budget-365

aware prompt strategies, yielding compact yet ef-366

fective responses. While our method incurs slightly367

longer input prompts due to adaptive routing and368

prompt formatting, the resulting dramatic reduc- 369

tions in output length more than compensate for 370

this overhead. 371

Overall, our framework achieves a superior 372

trade-off between accuracy and computational cost, 373

making it highly suitable for resource-constrained 374

inference scenarios without compromising answer 375

quality. 376

4.3 Comparative Study 377

In this comparative study, we conduct comparison 378

experiments on each of the core modules of our 379

system. 380

4.3.1 Prompt Strategy Comparison 381

To analyze the impact of different prompt strate- 382

gies on token efficiency, we conduct experiments 383

on GSM8K using several reasoning LLMs. As 384

shown in Table 3, each strategy—including Keep 385

Concise, Step Count, Token Budget, and Vocab 386

Banned—demonstrates varying degrees of token 387

savings depending on the model architecture. 388

Based on the trends shown in Figure 4, we are 389

able to identify optimal values for both token bud- 390

get and step count. These observations allow us 391

to select balanced configurations that maintain 392

efficiency while preserving answer fidelity, and 393

are used to guide the budget and step parameters 394
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Reasoning Models Game24 Sorting32 Gsm8k Hellaswag Math
Cost Eff Cost Eff Cost Eff Cost Eff Cost Eff

Baseline(QwQ) 2837 0.33 4825 0.19 820 1.02 1300 0.48 2502 0.28
Qwen3-32B 2101 0.42 3221 0.25 1043 0.92 1202 0.52 2366 0.35
DeepSeek-R1-Distill-Qwen-32B 2390 0.36 3093 0.21 1010 0.93 1078 0.48 1831 0.40
DeepSeek-R1-Distill-Llama-70B 1581 0.56 2691 0.23 803 1.13 1096 0.53 1456 0.47
Qwen3-30B-MOE 2440 0.39 2468 0.29 956 0.99 1280 0.46 1476 0.48
DeepSeek-R1 1626 0.57 3166 0.23 953 1.00 1294 0.51 1582 0.44

Table 4: Evaluation of our prompting strategy across various RLMs and benchmarks. Shown are ACC (accuracy),
Cost (average token consumption), and Efficient (accuracy per 1000 tokens). The results shows that our method
consistently yields higher efficiency across different reasoning models, indicating its broad applicability.

Figure 4: Conducted on the GSM8K dataset, this experiment determines the optimal token budget and step count
for the following models: (a) Deepseek-R1-Distill-Qwen-32B; (b) Deepseek-R1-Distill-Llama-70B; (c) QwQ-32B;
(d) Qwen3-32B. Results indicate that each model has its own specific token budget and step count.

adopted in our final combined prompt strategy.395

To fully exploit the strengths of each technique,396

we propose the combined prompt strategy that in-397

tegrates Keep Concise and Step Count.398

4.3.2 Stronger LLM399

As shown in Table 4, our prompting strategy ex-400

hibits strong generalization across a variety of401

RLMs, including models from the Qwen series402

(Qwen3-32B, Qwen3-30B-MOE)(Qwen3, 2025),403

DeepSeek-R1(DeepSeek-AI et al., 2025) variants.404

We observe that applying our combined405

prompting strategy across different models con-406

sistently achieves the highest token savings,407

demonstrating its generality and effectiveness.408

Notably, models such as Deepseek-R1-Distill-409

Qwen-32B and Deepseek-R1-Distill-Llama-70B410

achieve 70.9% and 64.4% token savings respec-411

tively—substantially outperforming any single412

strategy. This indicates that our method is model-413

agnostic and does not rely on specific architectural414

features or training pipelines. Even smaller models415

like QwQ-32B benefit significantly 47.3% savings,416

reinforcing the robustness and transferability of 417

our strategy. 418

4.3.3 Weaker LLM 419

As shown in Table 5, we evaluate the performance 420

of several weaker language models on reasoning 421

tasks. The Qwen2.5-1.5B model fine-tuned with 422

our TEPO method achieves a favorable trade-off 423

between accuracy and token efficiency compared 424

to both the base model and the distillation-based 425

DeepSeek-R1-Distill-Qwen-1.5B. 426

Further insights can be drawn from the training 427

dynamics shown in Figure 5. As reinforcement 428

learning progresses, the model’s output length 429

steadily decreases—dropping from over 100 to un- 430

der 60 tokens—while the average reward increases 431

consistently. 432

The improvement in GSM8k is particularly no- 433

table, where TEPO reduces cost to 309 tokens 434

while maintaining competitive accuracy. Although 435

accuracy on Sorting32 remains zero for all models, 436

this indicates the inherent difficulty of this sym- 437

bolic reasoning task for smaller-scale models. 438
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Weaker Models Game24 Sorting32 Gsm8k Hellaswag Math
ACC Cost ACC Cost ACC Cost ACC Cost ACC Cost

DeepSeek-R1-Distill-Qwen-1.5B 0.68 2015 0 1571 0.71 602 0.48 806 0.56 3027
Qwen2.5-1.5B 0.62 2305 0 1068 0.62 376 0.40 452 0.40 683
Qwen2.5-1.5B-TEPO 0.65 663 0 738 0.64 309 0.43 386 0.45 581

Table 5: Evaluation of weaker language models on reasoning benchmarks.The Qwen2.5-1.5B model fine-tuned via
TEPO achieves consistently better accuracy and lower token cost across all tasks. For the Sorting32 task, all small
models exhibit zero accuracy that indicates the relative difficulty of the task for models of this scale.

Ablation Setting Gsm8k Math Hellaswag MMLUPro
ACC I/T O/T ACC I/T O/T ACC I/T O/T ACC I/T O/T

Ours w/o tepo 0.85 482 593 0.60 486 2256 0.46 676 1355 0.37 141 789
Ours w/o prompt 0.82 208 824 0.62 120 2833 0.52 574 1440 0.33 196 1160
Ours 0.84 403 417 0.70 518 1984 0.50 676 1181 0.38 361 721

Table 6: Ablation study evaluating the impact of TEPO and prompt strategy on both in-domain tasks (Gsm8k, Math,
Hellaswag) and out-of-domain task (MMLUPro). We report accuracy (ACC), input tokens (I/T), and output tokens
(O/T). The full system consistently achieves favorable accuracy while significantly reducing token consumption,
demonstrating strong generalization even on unseen domains.

4.3.4 LLM Router439

As shown in Table 7, we compare the F1-scores440

of different routing strategies across three bench-441

marks: GSM8K, Hellaswag, and Math. Our pro-442

posed router consistently outperforms the random443

baseline and also slightly surpasses the Small LLM444

Router across all tasks. Specifically, our router out-445

perform the Small LLM Router and Random.446

These results demonstrate that our router is more447

effective at distinguishing between simple and448

complex questions, leading to more appropriate449

model selection and improved efficiency down-450

stream.

Routing Strategy Gsm8k Hellaswag Math
Random 0.559 0.447 0.429
Small LLM Router 0.687 0.512 0.465
Ours Router 0.694 0.526 0.472

Table 7: F1-score evaluation of different routing strate-
gies. Our proposed router consistently achieves higher
F1-scores that demonstrates its effectiveness in distin-
guishing between simple and complex questions.

451

4.4 Ablation Study452

As shown in Table 6, we conduct an ablation study453

to assess the contributions of TEPO and our custom454

prompt strategy on both in-domain (GSM8K, Math,455

HellaSwag) and out-of-domain (MMLU-Pro) rea-456

soning tasks.457

Removing the TEPO component yields a mod-458

est gain in Gsm8k accuracy from 0.84 to 0.85 but459

inflates token usage by over 20%. Omitting the460

Figure 5: Reinforcement-learning dynamics: as train-
ing progresses, the model’s output length (yellow axis)
steadily contracts, while the reward (blue axis) consis-
tently rises.

prompt strategy cuts Math accuracy from 0.70 to 461

0.62 and drives token consumption up sharply. In 462

contrast, our full method maintains high accuracy 463

with balanced token costs, illustrating the comple- 464

mentary benefits of TEPO and prompt design. 465

5 Conclusion 466

This paper introduces LTMG, a token-efficient rea- 467

soning framework that combines prompt design 468

and reinforcement learning. Experiments on bench- 469

marks show that our method achieves competitive 470

efficiency while reducing output token usage by 471

up to 50%. The prompt strategy generalizes well 472

across diverse LLMs, and TEPO further improves 473

the efficiency of smaller models. Overall, LTMG 474

provides a scalable, cost-effective framework for 475

enabling efficient reasoning in language models. 476
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Limitations477

We acknowledge three limitations in our study.478

First, reinforcement learning is only applied to479

relatively small models (1.5B parameters); apply-480

ing GRPO to larger models may further improve481

performance, but also poses significant training482

cost and stability challenges.483

Secondly, our routing and prompting strategies484

are designed and evaluated under a fixed routing485

backbone and task types. Adapting these strategies486

to more diverse tasks (multi-hop QA, code gener-487

ation) or dynamic router-controller architectures488

remains an open direction for future work.489

Lastly, our experiments are conducted exclu-490

sively on English datasets. For other languages491

such as Chinese, the behavior of tokenization and492

generation may differ significantly due to linguistic493

and token structure differences, potentially affect-494

ing both accuracy and token efficiency.495

Potential Risks496

Although our framework aims to reduce token us-497

age via output length control, excessive compres-498

sion may omit critical reasoning steps. This can499

result in incorrect answers or shortcut behaviors,500

particularly in multi-step or mathematical reason-501

ing tasks. A balance between brevity and reasoning502

completeness must be maintained.503

The effectiveness of our system heavily depends504

on the router’s ability to assess question difficulty.505

Misclassification could lead to complex tasks being506

assigned to weak models, reducing answer quality.507

If the router is biased or poorly calibrated, it may508

introduce systemic errors in downstream inference.509
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A Algorithm696

Algorithm 1 explains how we determine the token697

range. Prior work(Garrachón Ruiz et al., 2024)698

predicted the budget with a large model, and then699

concatenated the resulting budget tokens into the700

prompt template. Our approach derives it by ana-701

lyzing historical usage data.

Algorithm 1 Token Range Analysis
Global constant: max_tokens
Input: Answer records D = {(ti, ri)}Ni=1, where

ti ∈ N is token count, ri ∈ {true, false}
Output: Average token usages: µcorr for correct

answers, µwrong for wrong answers, µall for
all valid answers

1: Initialize: Scorr ← 0, Ccorr ← 0 Swrong ←
0, Cwrong ← 0

2: for (ti, ri) ∈ D do
3: if ti = max_tokens then

continue
4: end if
5: if ri = true then
6: Scorr += ti, Ccorr += 1
7: else
8: Swrong += ti, Cwrong += 1
9: end if

10: end for
11: µcorr ← Scorr/Ccorr

12: µwrong ← Swrong/Cwrong

13: µall ← (Scorr + Swrong) / (Ccorr + Cwrong)
14: return µcorr, µwrong, µall =0

702
Algorithm 2 and Algorithm 3 illustrate the pro-703

cess we use to select the optimal step and token704

budget.705

Algorithm 4 describes how we determine our706

vocabulary. Prior approaches built it via rule-based707

statistical counting, our method leverages a large708

language model to analyze and select the vocabu-709

lary.710

Algorithm 5 presents our strategy for selecting711

the routing threshold: by tuning this threshold, we712

achieve the highest F1 score.713

B Implementation714

In this appendix, we provide supplementary experi-715

mental details and supporting information omit-716

ted from the main text. Specifically, we cover717

Algorithm 2 Token Estimation

Input: Budget range [µwrong, µcorr] with step size
∆ = 100; evaluation set D = {ci}ni=1; model
M; prompt template Prompt(c, b)

Output: Optimal budget b⋆

1: Initialize: results← [ ]
2: for all b = µwrong, µwrong +∆, . . . , µcorr do
3: Cb ← 0, Tb ← 0
4: for all c ∈ D do
5: P ← Prompt(c, b)
6: (r, t)←M(P ) {r ∈ {0, 1}, t ∈ N}
7: Cb += r, Tb += t
8: end for
9: αb ← Cb/n, τb ← Tb/n

10: Append (b, αb, τb) to results
11: end for
12: Let τmin ← min{τb | (b, αb, τb) ∈ results}
13: B ← {(b, αb) | (b, αb, τb) ∈ results, τb =

τmin}
14: b⋆ ← argmax(b,αb)∈B αb

15: return b⋆ =0

Algorithm 3 Step Estimation

Input: Candidate steps S = {3, 4, 5, 6, 7}; eval-
uation set D = {ci}ni=1; model M; prompt
template Prompt(c, k)

Output: Optimal step k⋆

1: Initialize: results← [ ]
2: for all k ∈ S do
3: Ck ← 0, Tk ← 0
4: for all c ∈ D do
5: P ← Prompt(c, k)
6: (r, t)←M(P ) {r ∈ {0, 1}, t ∈ N}
7: Ck += r, Tk += t
8: end for
9: αk ← Ck/n, Tk ← Tk/n

10: Append (k, αk, Tk) to results
11: end for
12: Let Tmin ← min{Tk | (k, αk, Tk) ∈ results}
13: K ← {(k, αk) | (k, αk, Tk) ∈ results, Tk =

Tmin}
14: k⋆ ← argmax(k,αk)∈K αk

15: return k⋆ =0

dataset statistics and partitioning, prompt templates 718

and parameter configurations, and the experimen- 719

tal environment along with hyperparameter set- 720

tings. These materials are intended to enhance 721
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Algorithm 4 Vocabulary Estimation

Input: Historical responses D = {ci}Ni=1; model
M; prompt template Promptvocab(c); refine-
ment template Promptrefine(V )

Output: Final vocabulary V ⋆

1: Vraw ← ∅
2: for all c ∈ D do
3: P ← Promptvocab(c)
4: W ←M(P ) {W is token list}
5: Vraw ← Vraw ∪ set(W )
6: end for
7: P ′ ← Promptrefine(Vraw)
8: V ⋆ ← set

(
M(P ′)

)
9: return V ⋆ =0

Algorithm 5 Threshold Search over τ ∈ [0, 10]

Input: Dataset D = {(di, ci)}Ni=1, di ∈ [0, 10]
router score, ci ∈ {0, 1} ground-truth: 0=diffi-
cult, 1=easy

Output: Best threshold τ∗

1: Extract all ground-truth labels: Labels ←
[ ci ]

N
i=1

2: Initialize bestF1← 0, τ∗ ← null
3: for τ = 0 to 10 do
4: Preds← []
5: for all (di, ci) ∈ D do
6: if di ≥ τ Append 0 to Preds
7: else Append 1 to Preds
8: end for
9: F1← F1(Labels, Preds)

10: if F1 > bestF1 then
11: bestF1← F1, τ∗ ← τ
12: end if
13: end for
14: return τ∗ =0

reproducibility and give readers deeper insight into722

the key steps of our model training and evaluation.723

B.1 Dataset Statistics724

The Grade School Math 8K (Cobbe et al., 2021)725

dataset contains approximately 8,500 problems fo-726

cused on elementary to middle-school–level word727

math. Each problem comes with a detailed step-728

by-step solution, making it ideal for evaluating a729

model’s arithmetic reasoning and chain-of-thought730

capabilities.731

The 2024 AIME (American Invitational Mathe-732

matics Examination)(Examination, 2024) question 733

bank includes around 2,500 challenging algebra 734

and combinatorics problems. It tests a model’s 735

problem-solving ability and mathematical expres- 736

siveness in high-difficulty competition settings. 737

The professional version of the Multi-domain 738

Language Understanding benchmark (Hendrycks 739

et al., 2021a) covers about 57 disciplines (includ- 740

ing STEM, social sciences, and humanities) with 741

roughly 20,000 multiple-choice questions. It as- 742

sesses a model’s knowledge and reasoning in aca- 743

demic and professional domains. 744

CEVAL is a Chinese professional evaluation 745

set(Hendrycks et al., 2021a) containing around 746

13,000 multiple-choice questions drawn from li- 747

censure exams in fields like science, medicine, and 748

law. It specifically measures a large model’s un- 749

derstanding and application of specialized Chinese 750

professional knowledge. 751

Math500 is a subset of high-level math prob- 752

lems(Hendrycks et al., 2021b) consisting of about 753

500 high-school and competition-grade questions 754

spanning algebra, geometry, number theory, and 755

more. It evaluates a model’s advanced reasoning 756

and formal expression skills on difficult math tasks. 757

HellaSWAG is a commonsense reasoning 758

dataset(Zellers et al., 2019) with roughly 70,000 759

multiple-choice questions, each offering four pos- 760

sible endings. It probes a model’s understanding 761

of everyday physical and causal scenarios, known 762

for its highly deceptive distractors. 763

Sorting32 is a synthetic sequence manipulation 764

task(Besta et al., 2024) with about 5,000 problems 765

requiring a model to sort sequences of up to 32 ele- 766

ments according to specified rules (e.g., ascending 767

order or custom patterns). It measures algorithmic 768

thinking and structured data processing. 769

Game24 is The “24-point” game dataset (Yao 770

et al., 2023) featuring around problems in which 771

the model must use the four basic arithmetic oper- 772

ations to combine four given numbers into 24. It 773

tests a model’s elementary arithmetic operations 774

and search strategy integration. 775

B.2 Model and Prompt Settings 776

We evaluate six representative models. QwQ- 777

32B(QwQ-32B, 2025) is built on Qwen2.5- 778

32B-Instruct(Qwen et al., 2025) and has been 779

instruction-tuned on general QA data. Qwen3- 780
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32B(QwQ-32B, 2025) is the official instruction-781

tuned release of the Qwen3-32B series. DS-R1-782

Qwen-32B and DS-R1-Llama-70B are both dis-783

tilled via the DeepSeek-R1(DeepSeek-AI et al.,784

2025) recipe—with GRPO fine-tuning applied to785

Qwen2.5-32B and Llama-70B, respectively—to786

compress model size while retaining reasoning787

ability. Qwen3-30B-MOE augments Qwen3-30B788

with a Mixture-of-Experts layer to sparsely activate789

parameters. Finally, DeepSeek-R1 is the distilled790

Llama-70B model produced by the DeepSeek-R1791

pipeline without any additional prompt tuning,792

serving as a compact baseline optimized for ef-793

ficient reasoning.794

For each model, we designed a dedicated prompt795

template. RouterLLM:You are an expert question796

classifier. Please evaluate the following question797

and assign a difficulty score from 1 to 10. Weak-798

erLLM: Please strictly follow the XML format799

below and adhere to the following constraints:800

<reasoning> </reasoning> <answer> </answer>801

StrongerLLM:Our combined Prompt. bannde-802

vocab-prompt ["Alright", "Okay", "Let me", "Al-803

ternatively", "maybe", "so", "Wait", "but", "Hmm",804

"however", "therefore", "next", "first", "should",805

"also", "yet", "that", "moreover", "meanwhile", "al-806

though", "despite", "hence", "yeah", "in addiction",807

"for example", "such as", "etc", "because"] token-808

budget-prompt "Answer the question within budget809

tokens" prompt-vocab "When answering the fol-810

lowing question, please avoid using any of these811

words or phrases: vocab" step-prompt "Present812

your solution in descending step order, starting813

from Step step down to Step 1. Label each step ex-814

actly as “Step X: . . . ”." concise-prompt = "Answer815

the question in concise"816

B.3 Experimental Setup817

For reinforcement learning, we assembled a train-818

ing corpus by concatenating the training splits of819

GSM8K, Math500, and HellaSWAG into a sin-820

gle set of 80,000 examples. After fine-tuning on821

this combined dataset, we evaluated out-of-domain822

generalization by measuring performance on the823

MMLU-Pro test set.824

For the routing component, we use a RLM as a825

router. In head-to-head tests, this stronger model826

achieves a higher F1 score than a lighter-weight827

counterpart, indicating its superior ability to rec-828

ognize the intrinsic complexity of a question. We 829

quantify “complexity” via three heuristics in de- 830

scending order of priority: 831

Numeric count: the number of numeric values 832

appearing in the question (more numbers higher 833

complexity). Sentence breaks: the number of peri- 834

ods (.) in the text, which correlates with the number 835

of reasoning steps. Question length: the overall 836

character length, used as a secondary tiebreaker. 837

For the router module, we use QwQ-32B(QwQ- 838

32B, 2025) as the default model for routing deci- 839

sions. We modify the model’s prompt template 840

to avoid long thinking and set the sampling tem- 841

perature to 0.1 to ensure deterministic and stable 842

routing decisions. 843

For the weaker LLM, we adopt the Qwen2.5- 844

1.5B-Instruct(Qwen et al., 2025) model from the 845

Tongyi Qianwen series as our base model for exper- 846

imentation. To further enhance performance, we 847

apply the GRPO reinforcement learning method. 848

The model is trained on approximately 80,000 849

samples for 2 epochs, with a learning rate of 5e-6 850

and a maximum generation length of 128 tokens 851

to encourage concise output. All reinforcement 852

learning experiments are conducted on a cluster of 853

8 NVIDIA RTX 4090D GPUs, with a total training 854

time of approximately 2 hours. 855

For the reasoning phase, we use VLLM’s(Kwon 856

et al., 2023) official default settings—temperature 857

0.7 and no maximum token cap—so that the model 858

can generate full, uninterrupted answers without 859

being cut off by external constraints, thereby pre- 860

serving accuracy. 861
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