
RAD-TTS: Parallel Flow-Based TTS with Robust Alignment Learning and
Diverse Synthesis

Kevin Shih 1 Rafael Valle 1 Rohan Badlani 1 Adrian Łańcucki 1 Wei Ping 1 Bryan Catanzaro 1

Abstract
This work introduces a predominantly parallel,
end-to-end TTS model based on normalizing
flows. It extends prior parallel approaches by ad-
ditionally modeling speech rhythm as a separate
generative distribution to facilitate variable token
duration during inference. We further propose
a robust framework for the on-line extraction of
speech-text alignments – a critical yet highly un-
stable learning problem in end-to-end TTS frame-
works. Our experiments demonstrate that our pro-
posed techniques yield improved alignment qual-
ity, better output diversity compared to controlled
baselines.

1. Introduction
While speech synthesis is most naturally modeled sequen-
tially in a fully autoregressive manner (Wang et al., 2017;
Valle et al., 2020), training and inference speeds scale poorly
with the sequence length. Furthermore, a single poorly pre-
dicted audio frame in a fully autoregressive model can catas-
trophically impact all subsequent inference steps, prohibit-
ing its use for inferring long sequences. Recent works (Kim
et al., 2020; Miao et al., 2020; Peng et al., 2020) have pre-
sented increasingly parallel solutions to address these con-
cern. They first determine the duration of each phoneme
in the input text, then use a generative, parallel architec-
ture to sample and decode each mel-spectrogram frame in
parallel rather than sequentially. However, parallel architec-
tures present challenges of their own. The following work
proposes RAD-TTS: a text-to-speech (TTS) framework fea-
turing robust alignment learning and diverse synthesis. We
propose a stable and unsupervised alignment-learning frame-
work applicable to virtually any TTS framework, as well
as a generative phoneme-duration model to ensure diverse
output in parallel TTS architectures.

*Equal contribution 1NVIDIA. Correspondence to: Kevin Shih
<kshih@nvidia.com>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

Learning unsupervised audio-text alignment is difficult, es-
pecially in parallel architectures. Some works use off-the-
shelf forced aligners (Ren et al., 2020), while other opt to
distill the attention from an autoregressive model (or forced
aligner) into a parallel architecture in an expensive two-stage
process (Peng et al., 2020; Ren et al., 2019; Łańcucki, 2020),
which makes the training even more expensive. Obtaining
alignments from an external aligner has severe limitations,
as it requires finding or training an external aligner for every
language and alphabet and requires near-perfect text nor-
malization. Most related to our work is Glow-TTS (Kim
et al., 2020), which proposes an aligning mechanism in a
normalizing flow framework. Our work extends their align-
ment setup to be more generally applicable to arbitrary TTS
frameworks, as well as with improved stability.

We further tackle the limited synthesis diversity in parallel
TTS architectures. These architectures first determine the
durations of each phoneme. Then, a parallel architecture
maps the phonemes, replicated time-wise based on their pre-
dicted durations, to corresponding Mel-spectrogram frames.
Even if the latter parallel architecture is generative, the
phoneme prediction is typically deterministic. This limits
diversity in output as a lot of the variability is dependent on
speech rhythm. Even flow-based ones such as Glow-TTS
use deterministic regression models to infer the duration.
As such, we propose to use a separate generative model only
for token durations. Our results demonstrate more diverse
inference results in comparison to a fixed-duration baseline.

In summary, our work proposes 1) a rapidly converging
alignment learning framework incorporating the forward
algorithm and priors, and 2) Generative duration modeling
to ensure diverse samples in parallel TTS architectures.

2. Method
We aim to construct a generative model for sampling mel-
spectrograms given text and speaker information. We ex-
tend prior bipartite-flow TTS methods (Kim et al., 2020;
Miao et al., 2020) with a more robust alignment learning
mechanism (2.2.1) and generative duration modeling (2.3).
We formulate our setup as follows: consider an audio clip
of human speech represented as a mel-spectrogram tensor

Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis

K, EY, K

Phoneme Flow

(K, 1), (EY, 3), (K, 1)

K, EY, EY, EY, K

Mel Decoder Flow

Expand

M
el

 S
pe

ct
ro

gr
am

Figure 1. Simplified inference pipeline for the proposed model.
The phoneme flow first samples from Pdur() to attain per-phoneme
durations (A), which are then used to prepare the input to the
parallel Mel-Decoder flow that models Pmel()

X ∈ RCmel×T , where T is the number of mel-frames over
the temporal axis, and Cmel is the number of bands or di-
mensions per frame. Next, let Φ ∈ RCtxt×N be a tensor of
embedded text sequence of length N , and A ∈ RN×T be
a matrix of temporal alignment between the audio clip and
the text (see Fig. 2). Finally, let ξ be a vector that encodes
speaker-specific characteristics. We model the conditional
distribution:

P (X,A|Φ, ξ) = Pmel(X|Φ, ξ,A)Pdur(A|Φ, ξ) (1)

such that we can sample both mel-spectrogram frames and
their durations at inference time while maintaining a par-
allel architecture for modeling Pmel. An overview of this
pipeline is shown in Fig. 1.

2.1. Normalizing Flows

We begin with a overview of normalizing flows as applied
to mel-decoding in TTS. Let pX(x) represent the unknown
likelihood function for each mel-frame (Pmel() with condi-
tionals omitted for brevity). We wish to model the distribu-
tion such that each time step x ∈ X can be sampled i.i.d.
from a standard Normal. To achieve this, we fit an invertible
function g such that z = g−1(x) and define z such that
z ∼ N (0, I). Using the change of variables function:

pX(x) = pZ(z)

∣∣∣∣ detJ(g(z))

∣∣∣∣−1

, (2)

where J is the Jacobian of the invertible transformation, and
pZ(z) is the Gaussian likelihood function N (z; 0, I). Our
resulting maximum log-likelihood objective with respect to
data samples x is written as:

log pX(x) = log pZ(g−1(x))+log

∣∣∣∣detJ(g−1(x))

∣∣∣∣, (3)

where we achieve exact MLE by finding the parameters for
g that maximize the right-hand-side. Inference is performed
by: z ∼ N (0, I) and x = g(z).

2.2. Mel Decoder Architecture

Our mel-decoder model, which we will continue to denote
as g, models only Pmel() in Eq. 1, though a similar for-
mulation is used to model Pdur() as we will show later
on. The decoder allows us to sample latent vectors z for
each time step i.i.d. from a Gaussian prior, and map them
to plausible-sounding mel-frames x. This transformation
needs to be invertible to satisfy the change of variables
requirement, and its behavior needs to be conditioned on
text Φ, speaker ξ, and alignment A information. Follow-
ing prior works (Kingma & Dhariwal, 2018; Dinh et al.,
2014; 2016), we construct g as a composition of invertible
functions, specifically:

X = g(Z; Φ, ξ,A) = g1 ◦ g2 . . . gK−1 ◦ gK(Z; Φ, ξ,A)

(4)

Z = g−1
K ◦ g

−1
K−1 . . . g

−1
2 ◦ g−1

1 (X; Φ, ξ,A) (5)

Note that X is the entire mel-spectrogram sequence for
any audio clip and Z is its corresponding projection into
the latent domain with the same dimensions as X , and
z ∼ N (0, I) for each z ∈ Z. Each compositional unit
gk(X; Φ, ξ,A) is an invertible network layer of g, hence-
forth referred to as a step of flow.

As with previous works (Kim et al., 2020; Miao et al., 2020;
Prenger et al., 2019), we use a Glow-based (Kingma &
Dhariwal, 2018) bipartite-flow architecture, where each step
of flow is a 1×1 invertible convolution (Kingma & Dhariwal,
2018) paired with an affine coupling layer (Dinh et al., 2016).
Detailed descriptions provided in the Appendix.

2.2.1. UNSUPERVISED ALIGNMENT LEARNING

We devise an unsupervised learning approach that learns the
alignment between text and speech rapidly without depend-
ing on external aligners.The alignment converges rapidly
towards a usable state in a few thousand iterations (roughly
ten-twenty minutes into training). In order to learn to align
X with Φ, we combine the Viterbi and forward-backward al-
gorithms used in Hidden Markov Models (HMMs) (Rabiner,
1990) in order to learn hard and soft alignments, respectively.
Let Asoft ∈ RN×T be the alignment matrix between text
Φ and mel-frames X of lengths N and T respectively, such
that every column ofAsoft is normalized to a probability dis-
tribution. Sample alignment matrices are shown in Figure 2.
Our goal is to extract monotonic, binarized alignment matri-
ces Ahard such that for every frame the probability mass is
concentrated on a single symbol, and

∑T
j=1Ahard,i,j yields

a vector of durations of every symbol.

Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis

(a) Soft alignment Asoft (b) Beta-binomial Prior (c) Asoft w/ Prior (d) Hard alignment Ahard

Figure 2. Visualizations of the alignment attention matrices A. The vertical axis represents text tokens from bottom to top. The horizontal
axis represents mel-frames from left to right. Fig. 2a shows the baseline soft attention map. Fig. 2c combines Fig. 2a with Fig. 2b to
penalize alignments straying too far from the diagonal. Fig. 2d is the most likely monotonic alignment extracted from Fig. 2c with Viterbi.

Extracting Asoft : Similar to Glow-TTS, the soft align-
ment distribution is based on the learned pairwise affinity
between all text tokens φ ∈ Φ and mel-frames x ∈ X ,
which is then normalized with softmax across the text di-
mension:

Di,j = distL2(φenci , xencj), (6)

Asoft = softmax(−D,dim = 0). (7)

Here, xenc and φenc are encoded variants of x and φ, each
using a 2-3 layer 1D CNNs. We found that simple transfor-
mations with limited receptive fields produced best results.
Conversely, expensive, wide receptive field transformations
resulted in instabilities.

The forward-backwards algorithm maximizes the likeli-
hood of hidden states given observations. We consider
only with the forward probabilities. Text is defined as the
hidden state and the mel as the observation to maximize
P (S(Φ)|X), considering all valid monotonic assignments
to sequences s ∈ S(Φ) where a specific sequence might
look like: s : {s1 =φ1, s2 =φ2, . . . sT =φN}. A mono-
tonic sequence s ∈ S must be such that 1. It starts and ends
at the first and last text tokens respectively; 2. It uses each
text token φn at least once; 3. The sequence can advance by
0 or 1 text token for every advancement of mel-frame.

The likelihood of all valid monotonic alignments is:

P (S(Φ) | X) =
∑

s∈S(Φ)

T∏
t=1

P (st | xt). (8)

which is efficiently implemented using the PyTorch CTC
loss module (see Appendix).

Beta-Binomial Alignment Prior: We accelerate the align-
ment learning using a cigar-shaped diagonal prior that pro-
motes the elements on a near-diagonal path formulated using
a Beta-Binomial distribution. While formulated differently,
it is conceptually similar to the guided attention loss used in
(Tachibana et al., 2018), and we believe model training ben-
efits from virtually any reasonable diagonal-shaped prior.
It can be visualized in Fig. 2b with details given in the
Appendix.

ExtractingAhard : Alignments generated through duration
prediction are discrete. It is therefore necessary to condition
the model g on the binarized alignment matrix Ahard to
avoid creating a train-test domain gap. We achieve this using
the Viterbi algorithm while applying the same constraints
for a monotonic alignment as stated above. This gives us
the most likely monotonic alignment from the distribution
over monotonic paths defined by Asoft .

As the Viterbi algorithm is not differentiable, training g
conditioned on Ahard would mean that alignment-learning
attention mechanism would receive no gradients from g.
Similar to (Kim et al., 2020), we further enforce that Asoft

matches Ahard as much as possible by minimizing their
KL-divergence: Lbin = Ahard � logAsoft .

2.3. Generative Duration Modeling Pdur

Recent parallel TTS architectures use deterministic regres-
sion models to predict durations of lexical units. This limits
the amount of diversity achievable during inference in com-
parison to generative autoregressive models (Valle et al.,
2020), where the duration is jointly sampled with other
speech characteristics. We address this with a separate nor-
malizing flow model solely for modeling Pdur() in Eq. 1.
It can be constructed using either another bi-partite flow
for full parallelism, or an autoregressive flow similar to the
architecture in (Valle et al., 2020).

2.4. Training Schedule

Our model uses a training schedule to account for the evolv-
ing reliability of extracted alignments. Let Lalign be the
minimization of the log likelihood of (8). Lmel and Ldur

minimize (3) with respect to the decoder flow and phoneme
flow respectively. The training begins with the loss function
L = Lmel + λ1Lalign, with the corresponding changes
applied at given steps:

• [0, 6k): Use Asoft for the alignment matrix.
• [6k, 18k): start using Viterbi Ahard instead of Asoft ,
• [18k, end): add binarization term λ2Lbin to the loss.

Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis

The duration predictor shares text embeddings with the de-
coder flow model, but is otherwise fundamentally disjoint
and converges rapidly. Thus Ldur is applied once the de-
coder has converged and its weights frozen.

3. Experiments
We investigate the achieved diversity, as well as how the
beta-binomial prior influences training stability and align-
ment quality. For the sake of comparison with prior work,
we perform the bulk of our experiments training only on
the LJ speech dataset (LJ) (Ito et al., 2017). We use a
sampling rate of 22 050 Hz and mel-spectrograms with 80
bins using Librosa’s (McFee et al., 2015) mel filter de-
faults. We apply the STFT with a FFT size of 1024, win-
dow size of 1024 samples and hop size of 256 samples
(∼ 12ms). We use the normalized transcriptions provided
in LJ and convert all unambiguous words to phoneme, keep-
ing ambiguous words as graphemes. We use the public
WaveGlow model (NVIDIA, 2021) trained on LJ for con-
verting mel-spectrograms to waveforms, setting σ=0.9
and denoising strength 0.01 during inference. For infer-
ence from our model, we sample zdur ∼ N (0, σ=.7) and
zmel ∼ Ntrunc(0, σ = {0.5, 0.667}), where the latter uses
a truncated Normal with truncation at 1.1σ. Mean opinion
score and pronunciation error analysis are in the appendix.

3.1. Convergence Rate

In order to compare convergence rate, especially early in
the training, we turn to the mean mel-cepstral distance
(MCD) (Kubichek, 1993). It compares synthesized mel-
spectrograms with the ground truth, aligned temporarily
with dynamic time warping (DTW), and so offers more con-
sistency for cross-model comparisons. While MCD-DTW
cannot replace a human subjective quality evaluation of the
converged model, it is a reasonable approximation of the
audio quality in the early phases of training.

We compare the model with a beta-binomial prior with two
baselines: a) a no-prior baseline, and b) boolean baseline
prior obtained by thresholding the betabinomial distribution
at 1× 10−7, setting values to 0 below and defining a uni-
form prior for values above the threshold. This is a strong
baseline since it retains cigar shape of the Beta-Binomial.
Figure 3 shows MCD-DTW and alignment error. Having
any reasonable prior improves both measures, but we note
that full beta-binomial prior appears to converge fastest.

3.2. Phoneme Duration Distribution

We compare samples and phoneme duration predictions
from a deterministic model (Glow-TTS), a test-time dropout
model (DP-Dropout-0.5) inspired by its use for output vari-
ability in Tacotron2 (Shen et al., 2018), a bi-partite normal-

0 0.5 1 1.5 2

·104

101.4

101.6

Iteration

M
C

D
-D

T
W

betabinomial

boolean

no prior

Figure 3. The influence of alignment priors during initial 20k steps
of training measured by (top) DTW-aligned mel-cepstral distortion,
and (bottom) alignment error w.r.t. 10 manually annotated samples

K L AY1 M AH0 T
Phoneme

0.06

0.12

0.17

0.23

0.29

Du
ra

tio
n(

s)

DPFP = 0.5
DPFP = 1.0
DPFA = 0.5
DPFA = 1.0
DP Dropout 0.5
Glow-TTS

Figure 4. Phoneme-level duration distributions for the word Cli-
mate with 95% confidence intervals obtained from 100 samples
collected from different models conditioned on the phrase Climate
change knows no borders. Explicit generative models (shades
of green and blue) provide high diversity in speech rhythm by
adjusting σ, whereas test-time dropout (yellow) provides limited
variability.

izing flow (DPFP) and an autoregressive normalizing flow
(DPFA). We compute the empirical duration distribution
over the word Climate in the phrase Climate change knows
no borders by sampling each model 100 times. We resample
whenever the minimum duration is smaller than 25ms and
the maximum duration is larger than 300ms.

Figure 4 plots the distribution of phoneme durations, with
the proposed architectures producing the most variability.
The deterministic baseline cannot synthesize speech with
variable prosody. The DP-Dropout-0.5 model produces
limited variance and is not as intuitively adjustable as is the
σ scaling in proper generative modeling.

4. Conclusion
We resolve the output diversity issue in parallel TTS ar-
chitectures by proposing a dedicated generative flow for
phoneme duration modeling. Further, our proposed end-
to-end alignment architecture extends that of prior works
to achieve better convergence rates and better synthesized
sample quality as measured on our controlled architecture.

Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis

References
Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear

independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. arXiv preprint arXiv:1605.08803,
2016.

Ito, K. et al. The LJ speech dataset, 2017.

Kim, J., Kim, S., Kong, J., and Yoon, S. Glow-tts: A gen-
erative flow for text-to-speech via monotonic alignment
search. In Advances in Neural Information Processing
Systems, 2020.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in neural
information processing systems, 2018.

Kubichek, R. Mel-cepstral distance measure for objective
speech quality assessment. In Proceedings of IEEE Pa-
cific Rim Conference on Communications Computers and
Signal Processing, volume 1, pp. 125–128 vol.1, 1993.
doi: 10.1109/PACRIM.1993.407206.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar,
M., Battenberg, E., and Nieto, O. librosa: Audio and
music signal analysis in python. In Proceedings of the
14th python in science conference, volume 8, pp. 18–25.
Citeseer, 2015.

Miao, C., Liang, S., Chen, M., Ma, J., Wang, S., and Xiao,
J. Flow-tts: A non-autoregressive network for text to
speech based on flow. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2020.

NVIDIA. Waveglow. https://github.com/
NVIDIA/waveglow, 2021.

Peng, K., Ping, W., Song, Z., and Zhao, K. Non-
autoregressive neural text-to-speech. In International
Conference on Machine Learning, pp. 7586–7598.
PMLR, 2020.

Prenger, R., Valle, R., and Catanzaro, B. Waveglow: A
flow-based generative network for speech synthesis. In
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019.

Rabiner, L. R. A Tutorial on Hidden Markov Models and Se-
lected Applications in Speech Recognition, pp. 267–296.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1990. ISBN 1558601244.

Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., and
Liu, T.-Y. Fastspeech: Fast, robust and controllable text to
speech. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems, volume 32,
pp. 3171–3180. Curran Associates, Inc., 2019.

Ren, Y., Hu, C., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y.
Fastspeech 2: Fast and high-quality end-to-end text-to-
speech. arXiv preprint arXiv:2006.04558, 2020.

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N.,
Yang, Z., Chen, Z., Zhang, Y., Wang, Y., Skerrv-Ryan,
R., Saurous, R. A., Agiomvrgiannakis, Y., and Wu, Y.
Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4779–4783, 2018. doi: 10.1109/ICASSP.
2018.8461368.

Tachibana, H., Uenoyama, K., and Aihara, S. Efficiently
trainable text-to-speech system based on deep convolu-
tional networks with guided attention. In 2018 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 4784–4788. IEEE, 2018.

Valle, R., Shih, K., Prenger, R., and Catanzaro, B. Flowtron:
an autoregressive flow-based generative network for text-
to-speech synthesis. arXiv preprint arXiv:2005.05957,
2020.

Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J.,
Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio, S., Le,
Q., Agiomyrgiannakis, Y., Clark, R., and Saurous, R. A.
Tacotron: Towards end-to-end speech synthesis. 2017.
URL https://arxiv.org/abs/1703.10135.

Łańcucki, A. Fastpitch: Parallel text-to-speech with pitch
prediction, 2020.

A. Appendix
A.1. Speech Quality (MOS)

We subjectively compare RAD-TTS samples with Glow-
TTS by collecting Mean Opinion Scores (MOS) on utter-
ances from the LJ speech dataset(Ito et al., 2017). Glow-
TTS-Blank denotes a variant of Glow-TTS with blank to-
kens interspersed between all phonemes. RAD-TTS models
are trained on LJ with and without the Beta-Binomial atten-
tion prior.

We crowd-sourced MOS tests on Amazon Mechanical Turk
(Table 1). Raters first pass a sinusoid-counting hearing test
for eligibility. They then rate 10 randomly assigned samples
from the LJ Test set. Pleasantness and naturalness are rated

https://github.com/NVIDIA/waveglow
https://github.com/NVIDIA/waveglow
https://arxiv.org/abs/1703.10135

Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis

on a five-point scale. Over 480 scores were collected per
model and each rater was exposed to exactly one model.

Overall, we demonstrate that the inclusion of the prior does
improve subjective quality. Compared to the most similar
GlowTTS, our overall quality is a bit worse, likely due to
our architecture being much larger and therefore less data-
efficient on LJSpeech.

Model Prior MOS

RAD-TTS (σ=.667) 3.40± 0.10
RAD-TTS (σ=.667) X 3.49± 0.10
Ground Truth (LJ) 4.11± 0.07
Glow-TTS-Blank (σ=.667) 3.79± 0.09
Glow-TTS (σ=.667) 3.56± 0.10

Table 1. MOS pleasantness and naturalness results along with 95%
confidence intervals.

A.2. Attention Errors

We perform attention error analysis (Peng et al., 2020) on
a challenging 100-sentence test set with dates, acronyms,
URLs, repeated words, proper nouns, and foreign words in
Table 2. Evaluation was performed by manually listening
for errors, and may not be directly comparable to previ-
ously reported numbers (see bottom bracket in Table 2).
As such, we further re-evaluate Glow-TTS at their default
σ-level (0.667), which we find to be similar to our model
with both augmentation and prior. Overall, again we see
a small improvement incorporating the prior. Our model
makes fewer attention/pronunciation errors compared to the
original Glow-TTS model, though their blank-interleaved
variant performs best by a wide margin.

A.3. Model architecture

Our bi-partite model is architecture a series of flow steps,
each comprising one affine coupling layer and one 1 × 1
invertible convolution. Affine Coupling Layer: Coupling
layers (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018)
are a family of invertible transformations wherein one split
of the input data is used to infer scale and translation param-
eters to affine transform the rest, as described in Algorithm 1.

Algorithm 1 Affine Coupling Layer f−1
coupling(x; context)

input x, context
output s, t,x′

xa,xb = SPLIT(x)
(s, t) = fparam(xa, context)
x′

b = s� xb + t
x′ = CONCAT(xa,x

′
b)

Model Prior Skip Repeat Mispron. Total

RAD-TTS (σ=.5) 7 0 6 13
RAD-TTS (σ=.5) X 5 0 7 12
Glow-TTS-Blank (σ=.667) 1 0 5 6
Glow-TTS (σ=.667) 4 0 19 23
Glow-TTS(σ=.333) (Kim et al., 2020) 1 0 3 4
ParaNet (Peng et al., 2020) 0 2 4 6

Table 2. Attention error counts on the manually-evaluated Paranet
100-sentence test set. One or more mispronunciations, skips, and
repeats count as a single mistake per utterance. Bottom bracket re-
sults taken directly from publications and may differ in evaluation
criteria.

Here fparam() is an arbitrary function that predicts the
affine parameters s, b to be applied to the remaining chan-
nels xb. In addition to the inputs xa, the parameter pre-
diction is critically conditioned on the context, which is a
Cctx×T (same temporal dimension asX as is necessary for
parallel processing of each frame) matrix containing com-
bining information for Φ, ξ,A. The described procedure is
fully invertible with respect to the transformation on x.

The context matrix is setup as follows: The alignment A,
visualized in Fig. 2, gives us the number of mel-frames that
each φ ∈ Φ should last. We expand the text columns by
their corresponding durations by computing ΦA = ΦA,
where Φ and A are Ctxt ×N and N × T respectively. The
speaker embedding vector ξ corresponding to the current
speaker is then replicated and concatenated to each column.
This provides us with a Cctx × T matrix that temporally
aligns text information with the mel-spectrogram frames, as
well as providing speaker-dependent information.

1x1 Invertible Convolution: As the affine coupling layer
always performs the same split, it is necessary to mix up the
channels in between applications to ensure every channel is
eventually transformed. This can be performed using a fixed
permutation matrix (Dinh et al., 2014) to explicitly permute
the channel ordering, or to use an invertible, learnable linear
transformation W as proposed in (Kingma & Dhariwal,
2018). For our input of 80-dimensional mel spectrograms,
W would correspond to a learnable 80× 80 matrix, applied
as a kernel-size 1 convolution over X . Its formulation and
corresponding log determinant are given as:

f−1
conv = Wx (9)

log |det(J(f−1
conv(x)))| = log |detW | (10)

In practice, we use the LU decomposition trick from
(Kingma & Dhariwal, 2018) to accelerate the log deter-
minant computation by storing W as upper and lower trian-
gular matrices. While this significantly accelerates training,
it has a minor effect on convergence rates.

Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis

A.4. Compositional Normalizing Flow loss

Taking into the compositional breakdown of g() into K
steps, the log-determinant term given in eq. (3) is expanded
as:

log

∣∣∣∣ detJ(g−1(x))

∣∣∣∣ =

K∑
k=1

(log〈|sk|,1〉+ log |detW k|)

(11)

A.5. Beta-Binomial Prior Formulation

We use the beta-binomial distribution which is discrete with
a finite support, and probability mass function

fB(k, α, β) =

(
N

k

)
B(k + α)B(N − k + β)

B(α, β)
(12)

for k = {0, . . . , N}, where α and β are hyperparameters of
the beta function B(·, ·). We use the beta-binomial distribu-
tion to construct a 2D cigar-shaped prior over the diagonal
of Asoft, which widens in the center of the matrix, and
narrows towards the corners. For every column of Asoft

representing P (Φ | X=xt), we incorporate the prior to
attain the posterior:

Pposterior(Φ=φk | X=xt) =

P (Φ=φk | X=xt)� fB(k, ωt, ω(T − t+ 1)) (13)

for k = {0, . . . , N}, where ω is the scaling factor control-
ling the width: lower the ω, wider is the width of the prior.

A.6. CTC Formulation

Generic HMM Formulation: Let λ = (A,B, π) be the
parameters of an HMM: A the state transition matrix, B the
emission probability matrix, and π the vector of initial state
probabilities. Denote by bi(j) the emission probability of
symbol j in the ith state.

For an observation sequence O = {O1, . . . , On}, the prob-
ability of such sequence can be computed recursively (Ra-
biner, 1990)

α1(i) = πibi(Oi) 1 ≤ i ≤ N, (14)

αt+1(j) =

 N∑
j=1

αt(i)aij

 bj(Ot+1)

for 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N.

(15)

The final probability is the sum of final forward variables
over all states

P (O | λ) =

N∑
i=1

αT (i). (16)

CTC imposes several constraints on this general formulation.
Let

The quick brown fox

be a sample transcription of an input audio signal. In CTC,
it is being interleaved with blank tokens ∅, giving raise to
the sequence of observations

O = {∅,T, ∅,h, ∅,e, . . . ,f, ∅,o, ∅,x, ∅).

In CTC, initial state probabilities π are not modeled. The
state-transition matrix A is sparse and allows only a handful
of monotonic transitions from neighboring states, giving
raise to the recursive formulation of Eq. (15) in CTC

αt(s) =

[αt−1(s) + αt−1(s− 2)] bt(Os)

if Os = ∅ or Os = Os−2,

[αt−1(s) + αt−1(s− 2) + αt−1(s− 1)] bt(Os)

otherwise .
(17)

It tells that a transition can occur only to the same (αt−1(s)),
or a subsequent state (αt−1(s− 1)), and blank states can be
skipped altogether (αt−1(s−2)). The conditionOs = Os−2

ensures that when there are repeated letters (e.g., in the
word Anna), the blank state has to be visited in order to
later differentiate between both occurrences of the repeated
letter.

When using CTC, the speech recognition model outputs
an emission probability matrix B ∈ R|V |×T , where
|V | denotes the size of the vocabulary with the blank
symbol (and so the number of states), and T is the number
of outputs proportional to the number of input audio
frames. Every column in B is normalized to a probability
distribution.

Calculating Asoft : In RAD-TTS, the alignment matrix
Asoft ∈ RN×T can be interpreted similarly to B, as a
series of column-wise emission probability distributions
over possible N input symbol (states) for each of T audio
frames. To ensure monotonicity of alignment, we build a
surrogate transcript with a sequence of unique states

{s1, s2, . . . , sN}

which, upon passing to CTC loss, is being converted to

O = {∅, s1, ∅, s2, . . . , ∅, sN , ∅}.

As in CTC, we do not model initial probabilities π. In order
to account for the blank symbol state, we add a row toAsoft[

Asoft

ε

]
,

Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis

where ε denotes a constant blank probability for every frame.
We set to a tiny, non-zero value, to prevent numerical insta-
bility. The recursive formulation from Eq. (17) can now be
broken down into two cases:

1. Ot = ∅ (odd positions in the transcript denoted 2k+1).

From bt(∅) = 0 it follows that αt(2k + 1) = 0.

2. Ot 6= ∅ (even positions in the transcript denoted 2k).

The surrogate sequence has unique states and Ot 6= ∅.
It follows thatOt 6= Ot−2, and the first case of Eq. (17)
is not possible. Because αt−1(2k − 1) = 0, we have

αt(2k) = [αt−1(2k) + αt−1(2k − 2)] bt(Os).

Thus, with negligible blank probability and under the im-
posed monotonicity constraint, Eq. (17) effectively reduces
to Eq. (15) from the original formulation for calculating
forward variables.

In practice, setting the blank emission probability ε to be
roughly the value of the largest of the initial activations
significantly improves convergence rates. The reasoning be-
hind this is that it relaxes the monotonic constraint, allowing
the objective function to construct paths while optionally
skipping over some text tokens, notably ones that have not
been sufficiently trained on during early iterations. As train-
ing proceeds, the probabilities of the skipped text token
increases, despite the existence of the blank tokens, allow-
ing us to extract clean monotonic alignments.

Example Implementation:
class ForwardSumLoss(torch.nn.Module):

def __init__(self, blank_logprob=-1):
super(ForwardSumLoss, self).__init__()
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.blank_logprob = blank_logprob
self.CTCLoss = nn.CTCLoss(zero_infinity=True)

def forward(self, attn_logprob, text_lens, mel_lens):
"""
Args:

attn_logprob: batch x 1 x max(mel_lens) x max(text_lens)
batched tensor of attention log
probabilities, padded to length
of longest sequence in each dimension

text_lens: batch-D vector of length of
each text sequence

mel_lens: batch-D vector of length of
each mel sequence

"""
The CTC loss module assumes the existence of a blank token
that can be optionally inserted anywhere in the sequence for
a fixed probability.
A row must be added to the attention matrix to account for this
attn_logprob_pd = F.pad(input=attn_logprob,

pad=(1, 0, 0, 0, 0, 0, 0, 0),
value=self.blank_logprob)

cost_total = 0.0
for-loop over batch because of variable-length
sequences
for bid in range(attn_logprob.shape[0]):

construct the target sequence. Every
text token is mapped to a unique sequence number,
thereby ensuring the monotonicity constraint
target_seq = torch.arange(1, text_lens[bid]+1)
target_seq=target_seq.unsqueeze(0)

curr_logprob = attn_logprob_pd[bid].permute(1, 0, 2)
curr_log_prob = curr_logprob[:mel_lens[bid],:,:text_lens[bid]+1]
curr_logprob = self.log_softmax(curr_logprob[None])[0]
cost = self.CTCLoss(curr_logprob,

target_seq,
input_lengths=mel_lens[bid:bid+1],
target_lengths=text_lens[bid:bid+1])

cost_total += cost
average cost over batch
cost_total = cost_total/attn_logprob.shape[0]
return cost_total

