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ABSTRACT

Zero-Shot Reinforcement Learning (ZSRL) trains agents to solve tasks that are
not explicitly encountered during training. While recent ZSRL methods demon-
strate impressive generalization capabilities, the interpretability of their zero-shot
behaviors remains largely unaddressed. This poses a challenge for real-world
deployment in safety-critical domains such as autonomous driving and assistive
robotics. In this paper, we propose a novel integration of Inverse Inverse Planning
(IIP)—a behavior modification technique inspired by narrative analogies in sto-
rytelling—into the ZSRL setting. Our approach enables users to remove specific
task-level intentions from a zero-shot policy without additional retraining. The
result is a modified agent whose behavior is easier to inspect, explain, and con-
trol. We demonstrate that IIP can selectively suppress undesired behaviors in new
tasks while preserving performance on the original task, offering a new direction
for interpretable and controllable generalization in ZSRL.

1 INTRODUCTION

Zero-Shot Reinforcement Learning (ZSRL) has emerged as a promising paradigm for training agents
that generalize to novel tasks without explicit fine-tuning (Touati et al., 2022; Jeen et al., 2024; Sun
et al., 2025). Such generalization is critical in real-world applications (e.g., autonomous vehicles),
where it is infeasible to anticipate every possible scenario during training (Levine et al., 2020; Dulac-
Arnold et al., 2021; Kiran et al., 2021). Despite recent advances, Deep Reinforcement Learning
(DRL) continues to suffer from a key limitation: its lack of interpretability. As noted by Glanois
et al. (2022) and Zahavy et al. (2016), policies learned by DRL are generally difficult to understand
due to the black-box nature of deep neural network architectures.

According to Glanois et al. (2022), existing work on interpretable RL falls into three main cate-
gories. The first focuses on interpretable transition models, which aim to learn human-readable
representations of environment dynamics, using probabilistic approaches such as decision trees and
graphical models (Degris et al., 2006; Kansky et al., 2017), physics-based or graph-based determin-
istic models (Scholz et al., 2014; Zhang et al., 2018), or structured neural networks (Li et al., 2015;
Battaglia et al., 2016; Finn et al., 2016). The second line of research seeks to develop interpretable
preference models, making reward functions more transparent by expressing them in the form of
decision trees (Srinivasan & Doshi-Velez, 2020), logical rules (Aksaray et al., 2016; Littman et al.,
2017; Li et al., 2017), finite-state machines or “reward machines” (Toro Icarte et al., 2019; Xu et al.,
2020; Gaon & Brafman, 2020), or Boolean algebra task compositions (Nangue Tasse et al., 2020).
The third direction, interpretable decision-making, attempts to make an agent’s policy itself more
interpretable, for example by learning directly interpretable policies (Ernst et al., 2005; Likmeta
et al., 2020), approximating black-box policies with simpler surrogates (Liu et al., 2018; Verma
et al., 2018), or incorporating interpretability through architectural design (Tang et al., 2020; Mott
et al., 2019; Annasamy & Sycara, 2019).

While these directions improve transparency at the model or task-specification level, none address
the challenge of making agents visually interpretable to humans. In particular, an agent’s raw be-
havior (e.g., performing a jump) should be readily understandable to observers without requiring
additional post-hoc explanation. A natural solution to this problem was proposed in the seminal
work ”Acting as Inverse Inverse Planning” (Chandra et al., 2023), which posits that agents should
behave in ways that maximize the probability that observers infer a specific intended goal. This
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approach, termed Inverse Inverse Planning (IIP), builds upon the framework of Inverse Planning
(IP) (Baker et al., 2009; Ullman et al., 2009; Tauber & Steyvers, 2011; Zhi-Xuan et al., 2020). In
IP, an observer infers an agent’s latent goal from its observed behavior by computing the posterior:
P (g | actions) ∝ P (actions | g)P (g), where g denotes a candidate goal. IP has been widely used in
cognitive science, human–robot interaction, and multi-agent systems to explain and predict behavior
through goal inference.

In contrast, IIP inverts the perspective: instead of observers inferring goals from behavior, agents
deliberately choose behaviors that maximize the probability that observers infer a desired goal. This
makes IIP a powerful tool for crafting interpretable and communicative behaviors (Chandra et al.,
2023).

Figure 1: Illustration of how IIP improves behavior realism and interpretability. Although ZSRL
agents can achieve high rewards (zone 1), their behaviors may appear ambiguous or physically
implausible to human observers. By removing latent components associated with undesirable be-
haviors (e.g., zone 2), IIP refines the task embedding to yield more natural and expressive motions
(zone 3). The mathematical formulation of πzIIP(s) is given in Eq. equation 2. Here, z denotes a
latent task embedding, as commonly used in ZSRL (Jeen et al., 2024). Note: IIPalgorithm refers to our
proposed method (see Appendix A.2), and B1 and B2 refer to the two behaviors, respectively.

To illustrate this motivation, Figure 1 contrasts the behavior of a zero-shot agent before and af-
ter applying IIP. While the original behavior achieves high rewards, it often appears ambiguous or
physically implausible. By modifying the task vector to suppress latent components tied to un-
desired behaviors, IIP yields behavior that is more natural, expressive, and aligned with human
expectations—enhancing interpretability and trust.

However, applying IIP in ZSRL is nontrivial. IIP requires optimizing agent behavior with respect to
the inverse planning model, which involves repeatedly computing posterior distributions over goals
and adjusting actions accordingly. This creates significant computational challenges, especially in
high-dimensional goal spaces. A naive implementation of IIP is thus computationally infeasible for
real-world RL agents.

To address this, we propose a lightweight reformulation of IIP tailored to ZSRL. In ZSRL, tasks
are defined via latent embeddings (Barreto et al., 2017; Touati & Ollivier, 2021; Touati et al., 2022;
Jeen et al., 2024; Sun et al., 2025), allowing agents to generalize without retraining. We reinterpret
goal inference in terms of these latent representations, avoiding the need to evaluate full posterior
distributions. Based on this reformulation, we introduce a bisection-based search procedure that
efficiently modifies the latent task vector to suppress undesired secondary goals. Concretely, we
refine the primary task vector by subtracting a scaled projection of the secondary task vector, with
the scaling factor tuned via bisection. This approach avoids combinatorial overhead while preserving
IIP’s interpretability and control benefits.
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Our key contributions are threefold. First, we introduce a post hoc IIP refinement procedure for pre-
trained ZSRL agents, which suppresses behaviors associated with undesired secondary tasks while
preserving competence on the primary task. Second, we evaluate IIP on the Metamotivo Humanoid
benchmark (Tirinzoni et al.), testing over 100 task pairs across 5 random seeds each. IIP reduces un-
intended behavior in 76% of cases while maintaining or improving primary task performance. Third,
we showcase novel applications of IIP, including removing boundary-violating behaviors, enhancing
narrative coherence in storytelling agents, and improving physical plausibility in humanoid anima-
tion. Overall, our experiments validate the core objective of IIP: modifying the task vector leads to
more interpretable and goal-aligned agent behavior—where the probability of inferring the intended
goal increases, and that of the unintended goal decreases.

2 RELATED WORK

2.1 ZERO-SHOT REINFORCEMENT LEARNING

Traditional Reinforcement Learning (RL) algorithms are primarily designed for online settings,
where agents continuously interact with the environment to gather experience and update their
policies. However, in many real-world applications—such as healthcare, autonomous driving, and
robotics—such interaction can be prohibitively expensive, risky, or altogether infeasible (Levine
et al., 2020; Fu et al., 2021). These limitations have motivated the development of ZSRL paradigms,
where the agent must learn from static datasets and generalize to unseen tasks or environments
without any additional online exploration (Touati et al., 2022; Jeen et al., 2024).

To address the challenge of generalization in RL, several lines of research have emerged. One such
direction is goal-conditioned RL, where policies are trained to reach a specified goal state from any
initial state (Eysenbach et al., 2022; Ma et al., 2022; Yang et al., 2023; Wang et al., 2023; Park
et al., 2023). Another is model-based RL, which aims to learn task-independent world models that
can generalize across tasks by capturing the underlying environment dynamics (Chua et al., 2018;
Hafner et al., 2020). Multi-task RL extends this by explicitly training agents on multiple related
tasks to encourage the emergence of generalizable behavior (He et al., 2023; Lan et al., 2023).
Finally, unsupervised skill discovery (USD) focuses on learning diverse and discriminative behaviors
in reward-free settings, thereby facilitating downstream adaptation to new tasks (Eysenbach et al.,
2018; Laskin et al., 2022). None of the above methods can achieve zero-shot generalization, as
explained in Sun et al. (2025).

Typical ZSRL algorithms rely on a number of architectural building blocks and training paradigms
that aim to support such generalization without online finetuning. These include successor repre-
sentations (Dayan (1993), Grimm et al. (2019)), universal function approximators (Schaul et al.,
2015), successor features (Barreto et al., 2017; Zhang et al., 2017; Borsa et al., 2018; Hansen et al.,
2019), and successor measures (Blier et al., 2021). These are commonly instantiated via either the
Universal Successor Features (USF) framework (Barreto et al., 2017) or Forward-Backward (FB)
architectures (Touati & Ollivier, 2021).

Successor features factorizes the value function into two components: a dynamics-dependent suc-
cessor representation and a reward-dependent weight vector. As the original paper puts it, “a good
representation for a state would be one that resembles the representations of its successors.” This
decoupling of environment dynamics from rewards allows the agent to generalize across tasks that
share the same dynamics but differ in reward functions. USF scales this concept to high-dimensional
environments by leveraging deep neural networks. It introduces a state embedding function ϕ(s) and
conditions predictions on a family of policies πz , approximated by πz(s) = argmaxa ψ(s, a, z)

⊤z,
where ψ(s, a, z) represents the successor feature. USFs are typically trained using temporal differ-
ence (TD) learning.

The FB framework uses two encoders: a forward dynamics encoder F (s, a, z) mapping state-action-
task tuples to a latent space, and a backward encoder B(s′) projecting the next state into the same
space. Training aligns F (s, a, z) ≈ B(s′), while action selection maximizes F (s, a, z)⊤z. A lim-
itation of FB is its tendency to choose out-of-distribution (OOD) actions, leading to unsafe behav-
ior. To mitigate this, Jeen et al. (2024) introduced Value-Conservative FB (VCFB) and Measure-
Conservative FB (MCFB), which penalize OOD actions via value regularization and visitation mea-
sures, respectively. Sun et al. (2025) extended FB to online unsupervised RL through Dual-Value
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FB (DVFB), which combines skill value QM = F (s, a, z)⊤z and exploration value QP , leveraging
RND and contrastive learning. A reward mapper later aligns external rewards with learned skills,
improving zero-shot adaptation.

2.2 INVERSE AND INVERSE-INVERSE PLANNING

Inverse Planning (IP) refers to the problem of inferring an agent’s latent goal given its observed
actions. This concept was first introduced by Baker et al. (2009), who proposed casting action
understanding as IP. Since then, IP has been applied to diverse domains, including analyzing social
interactions (Tauber & Steyvers, 2011; Ullman et al., 2009) and enabling machines to recognize
when humans fail to achieve their goals (Zhi-Xuan et al., 2020).

Once we can model how humans infer goals from behavior, the natural next step is to design agents
that choose actions to influence such inferences—what we call Inverse Inverse Planning (IIP). The
goal of IIP is for an agent to act in a way that causes an observer to infer a particular intended goal.
This flips the IP setup: rather than observing actions to infer goals, the agent selects actions to steer
the observer’s inferences.

The concept of IIP has roots in the graphics and vision communities. Durand et al. (2002) intro-
duced the notion of inverse-inverse rendering, where visual depiction (e.g., a painting) is seen as a
process of influencing an observer’s perception by optimizing over their inverse-rendering model.
Subsequently, Kukkonen (2014) proposed re-examining narratives from a Bayesian, probabilistic
perspective. This abstraction was further developed by Chandra et al. (2022), who proposed using
inverse-inverse rendering to generate visual illusions by modeling and manipulating human visual
inference. Building on this foundation, Chandra et al. (2023) introduced IIP in the context of story-
telling agents. Their framework enables agents to take actions not just for achieving task outcomes,
but to better align with an audience’s expectations and mental models. This leads to behavior that
is more interpretable and compelling from the observer’s perspective. A related application in RL
is explored by Strouse et al. (2019), who proposed a method for learning to either share or hide
intentions using information regularization. Their framework supports strategic behavior genera-
tion in cooperative and competitive multi-agent environments, without requiring explicit access to
the world model or direct modeling of other agents. These works collectively motivate the emerg-
ing field of IIP, which seeks to unify communication, intent modeling, and action selection into a
cohesive framework grounded in human-centered inference.

3 PRELIMINARY

3.1 REWARD-FREE MARKOV DECISION PROCESS

In unsupervised reinforcement learning, a reward-free Markov Decision Process (MDP) is defined
asM := (S,A, P, ρ0, γ), where S and A denote the state and action spaces, P : S × A → D(S)1

is the transition probability function mapping state-action pairs to distributions over next states,
ρ0 ∈ D(S) is the initial state distribution, and γ ∈ (0, 1) is the discount factor. The set of Markovian
policies is defined as Π := {π | π : S → D(A)}, where π(a | s) denotes the probability of taking
action a in state s. Given a reward function R : S × A → R, the state-action value function
under policy π is defined as Qπ

M(s, a) := E [
∑∞

t=0 γ
tR(st, at) | s0 = s, a0 = a, π] , where the

expectation is taken over trajectories generated by starting from the initial state-action pair (s0 =
s, a0 = a), and following the policy π thereafter. That is, at ∼ π(· | st), and st+1 ∼ P (· | st, at).
We use Pr(· | s0, a0, π) and E[· | s0, a0, π] to denote the probability and expectation over the
trajectory (st, at)t≥0 induced by executing policy π starting from the initial pair (s0, a0).

3.2 FORWARD–BACKWARD REPRESENTATION

The FB representation builds on the concept of the successor measure. The successor measure
captures the discounted cumulative occupancy of states st+1, conditioned on the initial pair (s0, a0)

1D(S) denotes the space of probability distributions over S.
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and policy π. Formally, it is defined as:

Mπ(s0, a0, X) :=

∞∑
t=0

γt Pr(st+1 ∈ X | s0, a0, π), ∀X ⊆ S. (1)

The FB representation approximates this measure using two learned functions: F : S × A × Z →
Rd, B : S → Rd, defined over a latent task space Z ⊆ Rd. The approximation satisfies:

Mπz

(s0, a0, X) ≈
∫
X

F (s0, a0, z)
⊤B(s) ρ(ds), ∀s0 ∈ S, a0 ∈ A, X ⊆ S, z ∈ Rd,

πz(s) ≈ argmax
a∈A

F (s, a, z)⊤z, ∀s ∈ S, z ∈ Rd.
(2)

When Equation 2 holds, the optimal action-value function for any reward can be directly com-
puted as: Q∗

r(s, a) = F (s, a, zr)
⊤zr, and the corresponding optimal policy is given by: πzr (s) =

argmaxa∈A F (s, a, zr)
⊤zr.. To obtain the embedding zr for any bounded reward function r :

S ×A → R, we define:
zr = E(s,a)∼ρ [r(s, a)B(s)] , (3)

where ρ is a fixed distribution over state-action pairs (e.g., the dataset distribution in offline RL). In
summary, the FB representation encodes a latent representation of tasks, allowing reward functions
to be embedded into vectors zr that define behavior. This enables efficient, planning-free policy
execution by composing the learned representations F , B, and the reward embedding zr.

3.3 INVERSE INVERSE PLANNING

IIP is a concept that arises from studies of storytelling and social cognition. Humans often inter-
pret others’ actions through Inverse Planning (IP)—that is, by inferring an agent’s goals based on
observed behavior using Bayesian reasoning: P (g | actions) ∝ P (actions | g)P (g), where g is a
goal hypothesis (e.g., “the robot is helpful”) entertained by an observer. IIP reverses this reasoning
process: instead of directly optimizing for rewards or goals, the agent selects behaviors that increase
the likelihood that an observer will infer a desired interpretation of its intent or values. For instance,
rather than taking the shortest path, an agent might deliberately choose a longer but more expressive
trajectory to reveal its intended goal or demonstrate cooperative intent as in Chandra et al. (2023).
This formulation captures the idea of performative behavior—where actions are chosen not only
for functional effectiveness but also for their interpretability to humans. IIP is especially relevant in
human-robot interaction, explainable AI, and multi-agent collaboration settings where modeling the
observer’s inferences is essential.

4 METHOD: COMBINING INVERSE INVERSE PLANNING WITH
FORWARD–BACKWARD PLANNING

Our method combines Forward–Backward (FB) embeddings with Inverse Inverse Planning (IIP) to
enable post hoc behavior shaping of pretrained zero-shot agents. Figure 2 provides an overview of
the IIP–FB pipeline. The process begins with a backward encoder that infers task vectors z1 and
z2 from offline trajectories for two tasks: the desired task and an undesired secondary task. These
are used to construct a candidate IIP vector: ziip = z1 − λz2, where λ controls the extent to which
undesired behaviors are suppressed. To find the optimal λ, we apply a bisection search that evalu-
ates rollouts from the policy πziip using two reward functions r1 and r2. The search continues until
the expected reward for the undesired task falls below a threshold, while preserving competence on
the desired task. This pipeline enables agents to maintain internal reward grounding (via z1) while
modifying outward behavior to align with audience-inferred goals, thereby improving interpretabil-
ity and controllability. See Appendix A.2 for full pseudocode.

5 EXPERIMENTS

We conduct four experiments to evaluate different aspects of our IIP method. First, we quantitatively
demonstrate that optimizing the latent task vector z in a secondary environment (Environment 2)

5
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Figure 2: Overview of the IIP–FB pipeline. We extract task vectors using FB reward inference,
optimize ziip via bisection (Stage I), and execute policies for goal inference (Stage II). (Snowflake
indicates frozen modules; thunder indicates the bisection update is fast and gradient-free.)

reliably reduces the corresponding reward, indicating that IIP can successfully discover a new task
embedding ziip that inverts unintended behaviors. The remaining experiments are qualitative: we (i)
remove unwanted behaviors to enforce stricter boundaries while maintaining task completion; (ii)
refine behavior to improve interpretability and storytelling—e.g., preventing sitting during walking
to suggest aversion to bugs and evoke emotional resonance; and (iii) enhance physical plausibility
by adjusting animations to appear biomechanically natural. Together, these results highlight IIP’s
ability to support reward suppression, behavior editing, narrative control, and motion realism.

5.1 QUANTITATIVE REWARD SUPPRESSION

We begin by quantitatively evaluating the ability of our method to suppress behaviors associated
with an undesired task. Specifically, we demonstrate that the final task vector zfinal

iip , produced by our
IIP pipeline, yields a reduced reward in Environment 2 compared to the initial vector z1, which is
inferred solely from the primary task. This suppression serves as a proxy for removing unwanted
behaviors from the agent’s policy. All experiments in this section and those that follow utilize the
pretrained humanoid agents provided by Metamotivo (Tirinzoni et al.), chosen for their high-fidelity
and naturalistic movement, which make them well-suited for nuanced behavioral analysis. Further
details on the Metamotivo environment are provided in Appendix A.3 (environment description),
Appendix A.5 (body-part specifications), and Appendix A.6 (reward formulations).

We constrain the Lagrange multiplier λ to lie within [λmin, λmax] = [−1, 1] to prevent excessive
deviations from the original task embedding, thereby preserving the overall behavior while allowing
sufficient flexibility for suppression. The threshold for behavior suppression in Environment 2 is
set to 50% of the initial reward, striking a balance between aggressive behavior removal and preser-
vation of agent competence. We set the tolerance parameter to 0.1 to allow early stopping once
sufficient suppression is achieved, thus improving computational efficiency. Finally, the maximum
number of optimization steps is capped at 100, which empirically provides sufficient iterations for
convergence in most task pairs without unnecessary overhead.

For each of the 46 predefined tasks in the Metamotivo benchmark, we randomly sample 3 other
tasks to act as secondary (undesired) tasks using a fixed seed of 42. Each resulting task pair is
evaluated over 5 random seeds (0–4), and we report: (i) the reward of the original task vector z1
in Environment 1 (i.e., the intended task setting); (ii) the reward of z1 in Environment 2 (i.e., the
undesired task setting); and (iii) the reward of the modified vector zfinal

iip in both environments. These
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metrics jointly assess the degree of reward suppression and task retention achieved through our
IIP optimization. As shown in Figure 3, we find that IIP preserves the original task’s reward in
Environment 1 in the majority of cases (65.2% of task pairs saw no drop), while suppressing reward
in Environment 2 in a significant fraction of relevant cases (76.5% of task pairs with non-zero
baseline reward in Environment 2 showed a reduction after IIP).

Figure 3: Scatter plots comparing mean rewards of z1 (x-axis) versus zfinal
iip (y-axis). Left: Envi-

ronment 1 (original task). Right: Environment 2 (undesired task). The dashed red line indicates
y = x (no change). Points above the line represent reward preservation or improvement, while
points below the line indicate degradation. IIP generally preserves performance in Environment 1
while suppressing reward in Environment 2.

In Table 1 and Table 2, we highlight representative task pairs based on the signed percent change in
Environment 2 reward: the best cases are those where IIP sharply reduces reward in Environment
2, whereas failure cases correspond to reward increases in Environment 2. In contrast, Table 3 and
Table 4 sort task pairs by the absolute percent change to surface the most impactful differences
regardless of direction—showcasing the most suppressed rewards (best absolute cases) as well as
the most amplified ones (failure absolute cases). The percentage ∆ is computed using the difference
in mean rewards between IIP and baseline z1: ∆ = 100 × IIP mean−z1 mean

|z1 mean| . Standard deviation
across 5 random seeds is shown in parentheses.

Table 1: Top-5 task pairs with strongest Environment 2 suppression (by % change). Rewards are
averaged over 5 seeds.

Task1 Task2 z1 Env 1 IIP Env 1 z1 Env 2 IIP Env 2 %∆ Env 2

sitonground move-ego-low-0-0 201.78(13.35) 52.48(44.14) 112.13(7.98) 26.75(19.17) -76.14
move-ego-low-90-2 move-ego-low-0-0 239.31(2.49) 150.83(37.45) 24.66(2.96) 9.22(4.61) -62.61
move-ego-low-0-2 move-ego-low-0-0 239.49(14.67) 162.83(35.96) 30.70(4.88) 13.43(3.89) -56.25
lieonground-down crawl-0.4-0-d 203.05(2.94) 103.78(30.73) 142.72(0.22) 64.29(19.94) -54.95
headstand move-ego-low-0-0 54.71(14.68) 72.75(11.69) 12.05(3.91) 5.72(1.75) -52.53

Table 2: Top-5 task pairs where IIP failed (Environment 2 reward increased by %). Rewards are
averaged over 5 seeds.

Task1 Task2 z1 Env 1 IIP Env 1 z1 Env 2 IIP Env 2 %∆ Env 2

raisearms-l-l move-ego-90-2 272.33(0.19) 273.08(0.11) 7.93(0.47) 50.73(5.06) +539.72
headstand move-ego-90-4 54.71(14.68) 35.24(12.86) 3.92(0.85) 9.75(0.66) +148.72
rotate-x–5-0.8 move-ego-90-2 22.24(4.07) 13.10(3.20) 5.77(0.65) 12.76(0.89) +121.14
lieonground-up move-ego-90-2 216.19(1.07) 177.86(7.23) 3.82(0.91) 7.86(0.60) +105.76
split-0.5 move-ego-90-2 251.20(3.19) 234.50(7.18) 6.90(1.57) 13.44(0.82) +94.78

The results demonstrate that IIP can effectively suppress secondary behaviors (as measured by
reward in Environment 2) in many task pairs. For top-performing pairs, we observe over 70%
reduction in Environment 2 reward, confirming IIP’s potential for targeted behavioral inhibition.
Nonetheless, several failure cases exist where IIP fails to suppress the undesired behavior and in-
stead amplifies it—sometimes by more than 500% in relative terms. These outliers suggest that
some task embeddings are highly entangled, making disentanglement via linear constraint-based
methods difficult. In particular, task pairs that share overlapping movement primitives or constraints
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Table 3: Top-5 task pairs with strongest Environment 2 suppression (by absolute reward drop).

Task1 Task2 z1 Env 1 IIP Env 1 z1 Env 2 IIP Env 2 ∆ Env 2

move-ego-low-90-2 move-ego-90-2 239.31(2.49) 141.87(5.55) 174.57(2.93) 87.19(1.70) -87.38
sitonground move-ego-low-0-0 201.78(13.35) 52.48(44.14) 112.13(7.98) 26.75(19.17) -85.38
lieonground-down crawl-0.4-0-d 203.05(2.94) 103.78(30.73) 142.72(0.22) 64.29(19.94) -78.43
crawl-0.4-0-d move-ego-low-0-0 218.88(12.18) 169.85(18.72) 142.74(8.28) 72.01(6.09) -70.73
move-ego-low-180-2 move-ego-90-2 105.25(5.20) 155.85(11.92) 136.02(2.26) 67.80(1.09) -68.22

Table 4: Top-5 task pairs where IIP amplified Environment 2 reward (by absolute increase).

Task1 Task2 z1 Env 1 IIP Env 1 z1 Env 2 IIP Env 2 ∆ Env 2

raisearms-l-l move-ego-90-2 272.33(0.19) 273.08(0.11) 7.93(0.47) 50.73(5.06) +42.80
crawl-0.5-0-u move-ego-low-0-0 108.26(5.00) 87.82(6.00) 65.30(0.81) 92.37(1.81) +27.07
crawl-0.4-0-u move-ego-low-0-0 108.70(4.52) 87.81(4.90) 65.32(0.64) 91.75(1.63) +26.43
crawl-0.5-2-u move-ego-low-0-0 16.02(5.50) 18.49(3.02) 70.64(3.77) 91.72(6.83) +21.08
crawl-0.4-2-u move-ego-low-0-0 15.66(5.75) 17.77(2.20) 70.55(3.62) 88.67(3.51) +18.12

(e.g., posture, joint angles, or locomotion direction) are more susceptible to these failures. Overall,
our findings highlight both the strengths and limitations of IIP. While it is generally robust, reliable
suppression in challenging cases may require a deeper understanding of task semantics and embed-
ding alignment, motivating future work on more expressive behavior shaping methods. Overall,
the quantitative results verify the central claim of IIP: task-vector modification consistently im-
proves interpretability and goal alignment, with increases in intended-goal inference and reductions
in unintended-goal attribution. Full results are included in Appendix A.4.

5.2 REMOVING UNWANTED BEHAVIORS FROM DEMONSTRATIONS

(a) IIP removes unnecessary hand-raising from origi-
nal jump behavior.
https://tinyurl.com/2dxpj6xk

(b) IIP removes unnecessary rotation from original
jump behavior, leading to a clean upward motion.
https://tinyurl.com/59umu5kz

(c) IIP prevents the agent from sitting, emphasizing
avoidance of ground contact.
https://tinyurl.com/bdfhju9u

(d) IIP lifts posture constraints, yielding expressive,
urgent arm motion.
https://tinyurl.com/u5re55wm

Figure 4: Inverse Inverse Planning (IIP) modifies latent goal embeddings to improve zero-shot gen-
eralization across diverse tasks.

As illustrated in Figure 4a, pretrained agents may learn to include stylistic or unnecessary behaviors
while completing a task. For example, in some environments, the agent may raise its arms when
jumping, even though this motion is irrelevant to the intended task objective. These extraneous
behaviors can reduce clarity, increase ambiguity for observers, or lead to misinterpretation of the
agent’s goal. Another example is shown in Figure 4b, where the agent performs an unnecessary
rotational motion during a jump. Through IIP, we can optimize the latent reward embedding to
discourage such rotation and generate a revised behavior that better aligns with the intended goal.
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5.3 SHAPING AGENT BEHAVIOR FOR NARRATIVE AND INTERPRETABILITY

In some cases, we wish to modify an agent’s behavior not merely for functionality, but to convey
a narrative or improve interpretability. Consider Figure 4c, where the original agent walks with
exaggerated knee bending and occasionally sits on the ground. If the desired narrative is to portray
the agent as being afraid of bugs on the ground, then sitting would contradict this interpretation.
Using IIP, we remove the undesired sitting behavior, resulting in a revised task embedding ziip that
produces a cautious walk—suggesting the agent is trying hard not to touch the ground. Another
example is shown in Figure 4d, where the original agent walks with a low center of gravity and
keeps its hands down. To depict the agent as hastily escaping from danger, we remove the behavior
that suppresses upward arm movement. The resulting behavior obtained via IIP conveys a more
frantic and expressive motion, better aligning with the intended narrative.

5.4 REFINING PHYSICAL PLAUSIBILITY OF AGENT MOTION

In Figure 5, under the constraints of human biomechanics and physical principles, we observed
several instances of unnatural motion. When guided by RL reward functions, the algorithm often
prioritizes maximizing the reward signal, which can easily disregard the natural dynamics of real-
world human motion. For instance, in Task1, the shin strikes the ground backward at an angle of
approximately 30 degrees to propel the body forward, while the slight swinging of the arms appears
unnatural and inconsistent with actual human motor patterns. Our method reversely applies the
behavior of “sit on ground” to relax the fixation of the limbs. This adjustment produces a gait that
conveys the impression of larger, more natural strides during locomotion. In summary, IIP helps
restore more interpretable and human-like motion patterns by reducing unnatural behaviors.

Figure 5: Original agent behavior (top) includes a motion of the humanoid robot during locomotion.
By applying IIP and removing the “sit on the ground” motion (middle), it can be observed that the
arms and legs exhibit more natural and fluid dynamics, more closely approximating authentic human
running behavior (bottom). https://tinyurl.com/47pvmeau

6 CONCLUSION

In this paper, we introduced a novel framework that efficiently integrates Inverse Inverse Planning
(IIP) with Zero-Shot Reinforcement Learning (ZSRL). Through extensive evaluations across diverse
task pairs, we demonstrated the effectiveness of our approach in resolving behavioral ambiguity and
enhancing policy generalization. Beyond performance gains, we also uncovered new applications of
IIP, including the ability to improve narrative coherence and physical plausibility in agent behaviors.
Future work may explore extending this framework to environments beyond humanoid control, as
well as integrating IIP with alternative policy learning architectures.
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REPRODUCIBILITY STATEMENT

All source code necessary to reproduce our results is available at https://tinyurl.com/
bddmx8h5. Detailed experimental setup is provided in Section 5.1, including hyperparameter
choices and evaluation protocols. Appendix A.3 outlines the environment configurations used in
our study, while Appendix A.6 describes the reward formulation and computation procedures.
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A APPENDIX

A.1 LLM USAGE

We utilized Large Language Models (LLMs), specifically ChatGPT, solely for polishing the writing
in our paper—such as improving grammar and clarity—and for adding documentation and com-
ments to our codebase. No part of the experimental design, algorithm development, or result analysis
was generated or influenced by ChatGPT.

A.2 ALGORITHMIC DETAILS

Algorithm 1 Inverse Inverse Planning (IIP) via Bisection

1: Input: Reward models rew model1, rew model2; Environments T1, T2; Target reward RT ;
Tolerance ϵ; Max steps N ; Bounds λmin, λmax

2: z1 ← rew model1.reward inference(T1)
3: z2 ← rew model2.reward inference(T2)
4: for i = 1 to N do
5: λ← (λmin + λmax)/2
6: zIIP ← z1 − λ · z2
7: R← Rollout(T2, zIIP) ▷ Collect rewards by rolling out in T2
8: if |R−RT | < ϵ then
9: break

10: else if R > RT then
11: λmin ← λ ▷ Not aggressive enough, shift lower bound up
12: else
13: λmax ← λ ▷ Too aggressive, shift upper bound down
14: end if
15: end for
16: Output: Final zIIP

A.3 ENVIRONMENT DESCRIPTION

In this section, we provide a brief overview of the Metamotivo Humanoid Environment (Tirinzoni
et al.). The environment is built upon the MuJoCo model of the SMPL agent (Luo et al., 2024;
2023; 2021), with modifications that make the joint ranges and motor controllers more biologi-
cally plausible. These improvements are inspired by the CMU humanoid specification used in the
dm control suite (Tunyasuvunakool et al., 2020).

The environment supports a wide range of motor control tasks that emphasize different physical
capabilities such as locomotion, balance, manipulation, and posture control. Table 5 summarizes
the main task categories and their naming conventions. The table is adapted from the original pa-
per (Tirinzoni et al.).

A.4 FULL RESULTS

In Table 6, we present the complete evaluation results of our experiments using pretrained Meta-
motivo agents. Each row presents results for a task pair, with IIP applied to influence behavior on
the secondary task. Reductions in Environment 2 reward—signifying effective suppression—are
highlighted in bold.

All values are averaged over 5 random seeds. Numbers in parentheses indicate standard deviation.
The percentage change (∆) is computed over the means:

∆ = 100× IIP mean− z1 mean
|z1 mean|

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Task formats and their corresponding behaviors in the Metamotivo Humanoid Environment.

Category Format Description
Locomotion move-ego-[low-]-[angle]-

[speed]
Move at a specified heading [an-
gle] and speed [speed]. The
”low-” prefix indicates low pos-
ture (pelvis constraint); absence
implies high posture (head con-
straint).

Standing move-ego-[low-]-0-0 Static standing pose. Same pos-
ture constraints as locomotion,
but with zero velocity.

Headstand headstand Inverted balance: head down,
feet up, with minimal velocity
and control effort.

Arm Rais-
ing

raisearms-[left pos]-[right pos] Raise arms to specified heights:
low, med, or high based on wrist
z-coordinates.

Rotation rotate-[axis]-[speed]-[height] Rotate around the x/y/z axis at
the desired angular speed, while
maintaining height and align-
ment.

Jump jump-[height] Reach a target vertical height
with sufficient upward velocity.

Ground
Poses

sitonground, lieonground-[dir],
split-[dist]

Sit, lie on ground ([dir]:
up/down), or perform splits
with a target foot distance
[dist].

Crawl crawl-[height]-[speed]-[facing] Crawl at specified height and
speed; [facing]: down (toward
floor) or up (toward sky).
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Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
Percent change (∆) is relative to z1.

Task1 Task2 z1 Env 1 IIP Env 1 %∆ Env 1 z1 Env 2 IIP Env 2 %∆ Env 2

move-ego-
0-0

crawl-0.4-0-
d

276.68
(0.34)

276.68
(0.34)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
0-0

move-ego-
90-4

276.68
(0.34)

278.21
(0.43)

0.55 11.38
(0.60)

11.69 (5.29) 2.72

move-ego-
0-0

headstand 276.68
(0.34)

276.68
(0.34)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
low-0-0

crawl-0.4-0-
d

189.23
(18.01)

189.23
(18.01)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
low-0-0

move-ego-
90-4

189.23
(18.01)

226.66
(30.77)

19.78 14.32
(1.81)

18.07 (9.43) 26.19

move-ego-
low-0-0

headstand 189.23
(18.01)

189.23
(18.01)

0.00 0.00
(0.00)

0.00 (0.00) NaN

headstand crawl-0.4-0-
d

54.71
(14.68)

54.18 (7.13) -0.97 1.05
(0.79)

0.55 (0.42) -47.62

headstand move-ego-
90-4

54.71
(14.68)

35.24
(12.86)

-35.59 3.92
(0.85)

9.75 (0.66) 148.72

headstand move-ego-
low-0-0

54.71
(14.68)

72.75
(11.69)

32.97 12.05
(3.91)

5.72 (1.75) -52.53

move-ego-
0-2

crawl-0.4-0-
d

261.85
(0.29)

261.85
(0.29)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
0-2

move-ego-
90-4

261.85
(0.29)

253.57
(0.80)

-3.16 106.08
(0.51)

56.08 (1.39) -47.13

move-ego-
0-2

move-ego-
low-0-0

261.85
(0.29)

264.61
(0.39)

1.05 2.89
(1.36)

1.58 (0.58) -45.33

move-ego-
0-4

crawl-0.4-0-
d

253.10
(0.80)

253.10
(0.80)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
0-4

move-ego-
90-4

253.10
(0.80)

231.92
(0.52)

-8.37 114.80
(1.53)

57.85 (0.55) -49.61

move-ego-
0-4

move-ego-
low-0-0

253.10
(0.80)

255.04
(0.41)

0.77 4.96
(0.82)

2.50 (0.40) -49.60

move-ego–
90-2

crawl-0.4-0-
d

217.31
(3.45)

217.31
(3.45)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego–
90-2

move-ego-
90-4

217.31
(3.45)

227.93
(2.56)

4.89 1.08
(0.05)

1.64 (0.20) 51.85

move-ego–
90-2

move-ego-
low-0-0

217.31
(3.45)

216.92
(4.71)

-0.18 2.24
(2.44)

1.53 (1.90) -31.70

move-ego–
90-4

crawl-0.4-0-
d

212.26
(2.75)

212.26
(2.75)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego–
90-4

move-ego-
90-4

212.26
(2.75)

205.15
(4.34)

-3.35 34.52
(3.35)

17.29 (1.61) -49.91

move-ego–
90-4

move-ego-
low-0-0

212.26
(2.75)

194.16
(3.86)

-8.53 3.07
(1.20)

1.55 (0.60) -49.51

move-ego-
90-2

crawl-0.4-0-
d

226.99
(2.15)

226.99
(2.15)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
90-2

move-ego-
90-4

226.99
(2.15)

205.53
(8.27)

-9.45 175.13
(0.95)

121.48
(4.39)

-30.63

move-ego-
90-2

move-ego-
low-0-0

226.99
(2.15)

237.40
(7.25)

4.59 12.94
(15.19)

8.82 (11.63) -31.84

move-ego-
90-4

crawl-0.4-0-
d

185.34
(2.95)

185.34
(2.95)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
90-4

move-ego-
90-2

185.34
(2.95)

129.68
(1.09)

-30.03 83.65
(2.56)

45.21 (1.15) -45.95

move-ego-
90-4

move-ego-
low-0-0

185.34
(2.95)

162.78
(1.36)

-12.17 3.55
(0.37)

3.58 (0.66) 0.85

move-ego-
180-2

crawl-0.4-0-
d

219.56
(2.26)

219.56
(2.26)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
180-2

move-ego-
90-2

219.56
(2.26)

245.15
(1.20)

11.66 109.71
(1.31)

77.57 (2.18) -29.30

move-ego-
180-2

move-ego-
low-0-0

219.56
(2.26)

244.17
(7.74)

11.21 12.15
(0.42)

5.84 (0.42) -51.93

move-ego-
180-4

crawl-0.4-0-
d

206.49
(0.97)

206.49
(0.97)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
180-4

move-ego-
90-2

206.49
(0.97)

184.61
(2.09)

-10.60 112.77
(1.15)

65.99 (1.19) -41.48

move-ego-
180-4

move-ego-
low-0-0

206.49
(0.97)

178.90
(9.01)

-13.36 8.71
(3.28)

4.39 (1.61) -49.60

move-ego-
low-0-2

crawl-0.4-0-
d

239.49
(14.67)

239.49
(14.67)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
low-0-2

move-ego-
90-2

239.49
(14.67)

189.77
(17.41)

-20.76 67.26
(6.48)

41.67 (0.63) -38.05

move-ego-
low-0-2

move-ego-
low-0-0

239.49
(14.67)

162.83
(35.96)

-32.01 30.70
(4.88)

13.43 (3.89) -56.25

Continued on next page
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Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
Percent change (∆) is relative to z1.

Task1 Task2 z1 Env 1 IIP Env 1 %∆ Env 1 z1 Env 2 IIP Env 2 %∆ Env 2

move-ego-
low–90-2

crawl-0.4-0-
d

241.15
(4.27)

241.15
(4.27)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
low–90-2

move-ego-
90-2

241.15
(4.27)

222.77
(6.49)

-7.62 3.16
(1.00)

3.45 (0.41) 9.18

move-ego-
low–90-2

move-ego-
low-0-0

241.15
(4.27)

122.85
(9.30)

-49.06 21.07
(2.23)

14.55 (8.97) -30.94

move-ego-
low-90-2

crawl-0.4-0-
d

239.31
(2.49)

239.31
(2.49)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
low-90-2

move-ego-
90-2

239.31
(2.49)

141.87
(5.55)

-40.72 174.57
(2.93)

87.19 (1.70) -50.05

move-ego-
low-90-2

move-ego-
low-0-0

239.31
(2.49)

150.83
(37.45)

-36.97 24.66
(2.96)

9.22 (4.61) -62.61

move-ego-
low-180-2

crawl-0.4-0-
d

105.25
(5.20)

105.25
(5.20)

0.00 0.00
(0.00)

0.00 (0.00) NaN

move-ego-
low-180-2

move-ego-
90-2

105.25
(5.20)

155.85
(11.92)

48.08 136.02
(2.26)

67.80 (1.09) -50.15

move-ego-
low-180-2

move-ego-
low-0-0

105.25
(5.20)

44.45
(19.06)

-57.77 11.40
(1.54)

6.46 (1.18) -43.33

jump-2 crawl-0.4-0-
d

39.00 (0.77) 39.00 (0.77) 0.00 0.00
(0.00)

0.00 (0.00) NaN

jump-2 move-ego-
90-2

39.00 (0.77) 37.91 (0.64) -2.79 53.34
(14.04)

26.83 (7.17) -49.70

jump-2 move-ego-
low-0-0

39.00 (0.77) 31.09 (1.33) -20.28 53.06
(2.51)

26.89 (2.16) -49.32

rotate-x–5-
0.8

crawl-0.4-0-
d

22.24 (4.07) 22.78 (2.52) 2.43 17.33
(1.70)

8.90 (0.77) -48.64

rotate-x–5-
0.8

move-ego-
90-2

22.24 (4.07) 13.10 (3.20) -41.10 5.77
(0.65)

12.76 (0.89) 121.14

rotate-x–5-
0.8

move-ego-
low-0-0

22.24 (4.07) 18.63 (4.86) -16.23 15.82
(3.95)

7.84 (1.96) -50.44

rotate-x-5-
0.8

crawl-0.4-0-
d

0.90 (0.88) 2.12 (1.74) 135.56 13.11
(13.44)

6.84 (7.17) -47.83

rotate-x-5-
0.8

move-ego-
90-2

0.90 (0.88) 0.90 (0.61) 0.00 17.50
(12.82)

14.40 (4.24) -17.71

rotate-x-5-
0.8

move-ego-
low-0-0

0.90 (0.88) 1.20 (1.38) 33.33 19.07
(15.53)

10.75 (9.88) -43.63

rotate-y–5-
0.8

crawl-0.4-0-
d

171.02
(16.23)

171.02
(16.23)

0.00 0.00
(0.00)

0.00 (0.00) NaN

rotate-y–5-
0.8

move-ego-
90-2

171.02
(16.23)

264.35
(3.40)

54.57 25.95
(2.07)

13.36 (1.24) -48.52

rotate-y–5-
0.8

move-ego-
low-0-0

171.02
(16.23)

244.61
(6.41)

43.03 69.36
(6.69)

34.14 (3.58) -50.78

rotate-y-5-
0.8

crawl-0.4-0-
d

145.96
(10.27)

145.96
(10.27)

0.00 0.00
(0.00)

0.00 (0.00) NaN

rotate-y-5-
0.8

move-ego-
90-2

145.96
(10.27)

252.02
(1.32)

72.66 64.40
(2.53)

32.18 (1.29) -50.03

rotate-y-5-
0.8

move-ego-
low-0-0

145.96
(10.27)

258.72
(1.45)

77.25 37.28
(1.83)

27.64 (1.74) -25.86

rotate-z–5-
0.8

crawl-0.4-0-
d

90.48
(13.77)

91.11
(14.75)

0.70 0.41
(0.28)

0.22 (0.12) -46.34

rotate-z–5-
0.8

move-ego-
90-2

90.48
(13.77)

84.88
(17.92)

-6.19 14.84
(1.92)

15.85 (2.21) 6.81

rotate-z–5-
0.8

move-ego-
low-0-0

90.48
(13.77)

92.50
(16.40)

2.23 2.93
(0.95)

2.11 (0.93) -27.99

rotate-z-5-
0.8

crawl-0.4-0-
d

134.40
(1.95)

134.40
(1.95)

0.00 0.15
(0.01)

0.15 (0.01) 0.00

rotate-z-5-
0.8

move-ego-
90-2

134.40
(1.95)

129.26
(1.12)

-3.82 11.99
(0.39)

10.80 (0.36) -9.92

rotate-z-5-
0.8

move-ego-
low-0-0

134.40
(1.95)

141.96
(3.00)

5.63 2.10
(0.95)

2.40 (0.98) 14.29

raisearms-l-
l

crawl-0.4-0-
d

272.33
(0.19)

272.33
(0.19)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-l-
l

move-ego-
90-2

272.33
(0.19)

273.08
(0.11)

0.28 7.93
(0.47)

50.73 (5.06) 539.72

raisearms-l-
l

move-ego-
low-0-0

272.33
(0.19)

272.33
(0.19)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-l-
m

crawl-0.4-0-
d

223.13
(37.29)

223.13
(37.29)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-l-
m

move-ego-
90-2

223.13
(37.29)

254.01
(7.09)

13.84 7.31
(0.64)

6.37 (3.66) -12.86

raisearms-l-
m

move-ego-
low-0-0

223.13
(37.29)

223.13
(37.29)

0.00 0.00
(0.00)

0.00 (0.00) NaN

Continued on next page
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Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
Percent change (∆) is relative to z1.

Task1 Task2 z1 Env 1 IIP Env 1 %∆ Env 1 z1 Env 2 IIP Env 2 %∆ Env 2

raisearms-l-
h

crawl-0.4-0-
d

230.75
(15.35)

230.75
(15.35)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-l-
h

move-ego-
90-2

230.75
(15.35)

254.26
(11.65)

10.19 34.69
(22.53)

18.11
(15.02)

-47.79

raisearms-l-
h

move-ego-
low-0-0

230.75
(15.35)

230.75
(15.35)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
m-l

crawl-0.4-0-
d

100.93
(33.41)

100.93
(33.41)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
m-l

move-ego-
90-2

100.93
(33.41)

80.59
(20.51)

-20.15 8.99
(1.65)

4.46 (0.82) -50.39

raisearms-
m-l

move-ego-
low-0-0

100.93
(33.41)

100.93
(33.41)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
m-m

crawl-0.4-0-
d

258.61
(15.60)

258.61
(15.60)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
m-m

move-ego-
90-2

258.61
(15.60)

262.61
(12.41)

1.55 10.53
(6.77)

5.27 (3.40) -49.95

raisearms-
m-m

move-ego-
low-0-0

258.61
(15.60)

258.61
(15.60)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
m-h

crawl-0.4-0-
d

180.80
(58.93)

180.80
(58.93)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
m-h

move-ego-
90-2

180.80
(58.93)

243.77
(26.47)

34.83 32.99
(16.97)

16.53 (8.50) -49.89

raisearms-
m-h

move-ego-
low-0-0

180.80
(58.93)

180.80
(58.93)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
h-l

crawl-0.4-0-
d

46.61 (2.47) 46.61 (2.47) 0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
h-l

move-ego-
90-2

46.61 (2.47) 47.46 (3.47) 1.82 28.54
(7.75)

16.45 (4.65) -42.36

raisearms-
h-l

move-ego-
low-0-0

46.61 (2.47) 46.61 (2.47) 0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
h-m

crawl-0.4-0-
d

132.29
(67.74)

132.29
(67.74)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
h-m

move-ego-
90-2

132.29
(67.74)

152.65
(35.98)

15.39 23.48
(20.17)

11.73
(10.07)

-50.04

raisearms-
h-m

move-ego-
low-0-0

132.29
(67.74)

132.29
(67.74)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
h-h

crawl-0.4-0-
d

229.12
(31.25)

229.12
(31.25)

0.00 0.00
(0.00)

0.00 (0.00) NaN

raisearms-
h-h

move-ego-
90-2

229.12
(31.25)

256.48
(6.88)

11.94 13.58
(2.59)

7.40 (1.72) -45.51

raisearms-
h-h

move-ego-
low-0-0

229.12
(31.25)

229.12
(31.25)

0.00 0.00
(0.00)

0.00 (0.00) NaN

crouch-0 crawl-0.4-0-
d

243.32
(4.23)

243.32
(4.23)

0.00 0.00
(0.00)

0.00 (0.00) NaN

crouch-0 move-ego-
90-2

243.32
(4.23)

248.32
(1.71)

2.05 19.94
(1.20)

12.59 (2.33) -36.86

crouch-0 move-ego-
low-0-0

243.32
(4.23)

236.62
(5.14)

-2.75 102.88
(0.27)

101.87
(1.46)

-0.98

sitonground crawl-0.4-0-
d

201.78
(13.35)

201.78
(13.35)

0.00 0.00
(0.00)

0.00 (0.00) NaN

sitonground move-ego-
90-2

201.78
(13.35)

217.28
(1.59)

7.68 7.73
(2.71)

8.88 (2.81) 14.88

sitonground move-ego-
low-0-0

201.78
(13.35)

52.48
(44.14)

-73.99 112.13
(7.98)

26.75
(19.17)

-76.14

lieonground-
up

crawl-0.4-0-
d

216.19
(1.07)

216.19
(1.07)

0.00 0.00
(0.00)

0.00 (0.00) NaN

lieonground-
up

move-ego-
90-2

216.19
(1.07)

177.86
(7.23)

-17.73 3.82
(0.91)

7.86 (0.60) 105.76

lieonground-
up

move-ego-
low-0-0

216.19
(1.07)

0.00 (0.00) -100.00 61.58
(0.66)

30.78 (0.31) -50.02

lieonground-
down

crawl-0.4-0-
d

203.05
(2.94)

103.78
(30.73)

-48.89 142.72
(0.22)

64.29
(19.94)

-54.95

lieonground-
down

move-ego-
90-2

203.05
(2.94)

215.02
(0.94)

5.90 2.88
(0.17)

4.98 (0.56) 72.92

lieonground-
down

move-ego-
low-0-0

203.05
(2.94)

194.56
(4.75)

-4.18 52.82
(0.79)

38.18 (1.56) -27.72

split-0.5 crawl-0.4-0-
d

251.20
(3.19)

251.20
(3.19)

0.00 0.00
(0.00)

0.00 (0.00) NaN

split-0.5 move-ego-
90-2

251.20
(3.19)

234.50
(7.18)

-6.65 6.90
(1.57)

13.44 (0.82) 94.78

split-0.5 move-ego-
low-0-0

251.20
(3.19)

180.68
(20.64)

-28.07 108.87
(0.22)

94.77 (6.85) -12.95

Continued on next page
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Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
Percent change (∆) is relative to z1.

Task1 Task2 z1 Env 1 IIP Env 1 %∆ Env 1 z1 Env 2 IIP Env 2 %∆ Env 2

split-1 crawl-0.4-0-
d

94.13
(27.83)

94.13
(27.83)

0.00 0.00
(0.00)

0.00 (0.00) NaN

split-1 move-ego-
90-2

94.13
(27.83)

56.11
(52.51)

-40.39 26.40
(16.74)

16.93 (5.42) -35.87

split-1 move-ego-
low-0-0

94.13
(27.83)

12.65
(15.86)

-86.56 107.55
(24.42)

63.64
(26.50)

-40.83

crawl-0.4-
0-u

crawl-0.4-0-
d

108.70
(4.52)

108.70
(4.52)

0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.4-
0-u

move-ego-
90-2

108.70
(4.52)

93.90 (5.57) -13.62 6.15
(0.16)

3.34 (0.30) -45.69

crawl-0.4-
0-u

move-ego-
low-0-0

108.70
(4.52)

87.81 (4.90) -19.22 65.32
(0.64)

91.75 (1.63) 40.46

crawl-0.4-
2-u

crawl-0.4-0-
d

15.66 (5.75) 15.66 (5.75) 0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.4-
2-u

move-ego-
90-2

15.66 (5.75) 13.10 (2.39) -16.35 5.97
(1.53)

4.50 (1.68) -24.62

crawl-0.4-
2-u

move-ego-
low-0-0

15.66 (5.75) 17.77 (2.20) 13.47 70.55
(3.62)

88.67 (3.51) 25.68

crawl-0.5-
0-u

crawl-0.4-0-
d

108.26
(5.00)

108.26
(5.00)

0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.5-
0-u

move-ego-
90-2

108.26
(5.00)

93.68 (5.36) -13.47 6.12
(0.17)

3.10 (0.09) -49.35

crawl-0.5-
0-u

move-ego-
low-0-0

108.26
(5.00)

87.82 (6.00) -18.88 65.30
(0.81)

92.37 (1.81) 41.45

crawl-0.5-
2-u

crawl-0.4-0-
d

16.02 (5.50) 16.02 (5.50) 0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.5-
2-u

move-ego-
90-2

16.02 (5.50) 12.25 (2.32) -23.53 6.09
(1.44)

5.12 (1.91) -15.93

crawl-0.5-
2-u

move-ego-
low-0-0

16.02 (5.50) 18.49 (3.02) 15.42 70.64
(3.77)

91.72 (6.83) 29.84

crawl-0.4-
0-d

crawl-0.5-2-
u

218.88
(12.18)

218.88
(12.18)

0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.4-
0-d

move-ego-
90-2

218.88
(12.18)

146.25
(29.70)

-33.18 6.73
(1.49)

5.40 (1.19) -19.76

crawl-0.4-
0-d

move-ego-
low-0-0

218.88
(12.18)

169.85
(18.72)

-22.40 142.74
(8.28)

72.01 (6.09) -49.55

crawl-0.4-
2-d

crawl-0.5-2-
u

10.81 (4.87) 10.81 (4.87) 0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.4-
2-d

move-ego-
90-2

10.81 (4.87) 17.04 (7.20) 57.63 5.97
(1.43)

4.43 (1.44) -25.80

crawl-0.4-
2-d

move-ego-
low-0-0

10.81 (4.87) 19.02 (4.67) 75.95 126.65
(45.26)

65.27
(18.68)

-48.46

crawl-0.5-
0-d

crawl-0.5-2-
u

156.95
(28.19)

156.95
(28.19)

0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.5-
0-d

move-ego-
90-2

156.95
(28.19)

152.07
(42.10)

-3.11 5.88
(0.53)

5.39 (2.35) -8.33

crawl-0.5-
0-d

move-ego-
low-0-0

156.95
(28.19)

123.45
(15.56)

-21.34 86.71
(14.81)

44.84 (8.85) -48.29

crawl-0.5-
2-d

crawl-0.5-2-
u

25.41
(11.08)

25.41
(11.08)

0.00 0.00
(0.00)

0.00 (0.00) NaN

crawl-0.5-
2-d

move-ego-
90-2

25.41
(11.08)

26.20
(20.26)

3.11 5.99
(3.73)

6.45 (1.81) 7.68

crawl-0.5-
2-d

move-ego-
low-0-0

25.41
(11.08)

25.13 (9.74) -1.10 83.29
(30.29)

45.65
(14.72)

-45.19

A.5 BODY SEGMENTS AND KINEMATIC VARIABLES

The environment’s reward signal is composed of a set of basic elements whose values are determined
by body-part descriptors and their temporal changes. The body is partitioned into the trunk and the
limbs, and four types of kinematic variables describe state changes.

Trunk Pelvis, Torso, Spine, Chest, Neck, Head.

Limbs L Hip, R Hip (left/right hip), L Knee, R Knee (left/right knee), L Ankle,
R Ankle (left/right ankle; cf. rewards.py:548--549), L Toe, R Toe (left/right
toe), L Thorax, R Thorax (left/right thorax), L Hand, R Hand (left/right hand),
L Shoulder, R Shoulder (left/right shoulder), L Elbow, R Elbow (left/right elbow),
L Wrist, R Wrist (left/right wrist).
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Kinematic variables pos (position), rot (orientation/rotation), vel (linear velocity), ang (an-
gular velocity).

Accordingly, all reward terms are constructed from the above body-part features and kinematic
variables. By specifying appropriate subsets of parts and change variables when defining the reward,
the agent is incentivized to realize the desired behaviors.

A.6 FORMULA DESCRIPTION

Behavior definitions. Each behavior S is composed of multiple action primitives. The following
formulas present the symbolic specification of each behavior; the corresponding textual descriptions
of the action primitives are summarized in Table 7.

LOCOMOTIONREWARD

Encourages a humanoid to move at a prescribed speed and heading. The reward comprises standing
height, torso uprightness, translational speed, and heading control, and supports egocentric targets
as well as low-posture locomotion.

SLocomotionReward =

{
ssmall control · sstand reward · sdont move, if move speed = 0

ssmall control · sstand reward · smove · sangle reward, if move speed ̸= 0

JUMPREWARD

Encourages the agent to jump to a specified height. Performance is assessed by combining head
height, torso uprightness, and upward velocity.

SJumpReward = sjumping · supright · sup velocity

HEADSTANDREWARD

Encourages execution of a headstand. Evaluation considers pelvis elevation, global body orientation,
foot placement, and verified head–ground contact.

SHeadstandReward = sheight reward·ssmall control·sheadstand·sdont move·sdont rotate·shigh left foot·shigh right foot·shigh head

ROTATIONREWARD

Encourages rotation about a specified axis at a target angular velocity. The objective aggregates
height maintenance, rotational speed, and whole-body alignment.

SRotationReward = smove · sheight reward · ssmall control · saligned

ARMSREWARD

Encourages raising the arms to designated heights. The criterion checks whether the left and right
hands reach predefined low, medium, and high bands.

SArmsReward = ssmall control · sstand reward · sdont move · sleft arm · sright arm

LIEDOWNREWARD

Encourages lying on the ground. Assessment inspects ground contact of key segments, chest orien-
tation, and overall body alignment.

SLieDownReward = ssmall control · sground reward · sdont move · sorient reward

SPLITREWARD

Encourages a split posture. Evaluation considers ankle separation distance, pelvic position, and head
height.

SSplitReward = shead rew · ssplit rew · spelvis pos · sdont move · ssmall control
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Table 7: Descriptions of sub-rewards s used in reward function definitions.

Sub-reward Description
ssmall control Penalizes large control inputs, encouraging smooth and small torques.

Helps reduce jitter and unnecessary energy consumption.
sstand reward Ensures proper head height and torso uprightness, encouraging the

agent to maintain a standing posture.
sdont move Rewards staying still when no movement is required by limiting hori-

zontal center-of-mass velocity. Prevents unnecessary swaying.
smove Encourages the center-of-mass velocity to match the target speed, and

aligns with a specified direction if given. Ensures proper forward mo-
tion.

sangle reward Measures alignment between current velocity direction and the target
direction. High reward when aligned, lower when deviating.

sjumping Rewards if the head height exceeds a desired jump threshold, ensuring
the jumping task is achieved.

supright Encourages torso uprightness, preventing excessive bending or collaps-
ing. Determined mainly by chest orientation.

sup velocity Encourages upward velocity of the center of mass or head, supporting
jumping and lifting motions.

sheight reward Ensures pelvis or body parts maintain a proper height range, discourag-
ing collapse or being too low.

sheadstand Encourages pelvis inversion aligned with a head-supported pose, form-
ing a headstand. Defined mainly by pelvis orientation.

sdont rotate Penalizes large angular velocities, encouraging stability and reducing
erratic spinning.

shigh left foot, shigh right foot Ensures the feet are lifted above the ground during specific poses (e.g.,
headstand). Prevents contact with the ground.

shigh head Keeps the head safely above ground level, avoiding collapse or head
contact with the floor.

saligned Encourages pelvis orientation to match the target axis. Important in
rotation tasks.

sleft arm, sright arm Ensures the arms are raised to specified height ranges (low, medium,
high, extended).

sground reward Encourages body parts to stay close to the ground, used in lying or prone
tasks.

sorient reward Ensures body geometry is oriented consistently with the target direction
(e.g., torso or limbs aligned).

ssplit rew Encourages the distance between legs to exceed a threshold, used in
split or straddle tasks.

spelvis pos Ensures pelvis position stays near the ground or within a proper height
range.

shead rew Encourages the head to stay at a reasonable height, avoiding collapse.
spelvis reward Keeps pelvis height within a desired range, important for sitting or

crouching tasks.
sknee reward Based on whether knees touch or avoid the ground. Controls knee sup-

port conditions.
salignment reward Measures alignment of multiple body parts’ orientations, encouraging

coordinated posture.
sarms Sub-reward derived from arm-related tasks (e.g., raising arms). Part of

ArmsReward.
slocomotion Sub-reward derived from locomotion-related tasks (e.g., speed, direc-

tion). Part of LocomotionReward.

SITONGROUNDREWARD

Encourages sitting on the ground or adopting a squat posture. The metric evaluates pelvic height,
head position, knee configuration, and torso uprightness.

SSitOnGroundReward = ssmall control · sstand reward · sdont move · spelvis reward · sknee reward
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While estimating the scalar parameter λ via the bisection method, we found that injecting the
representation z1 produced by the Locomotion task into the SitOnGround environment yielded a
reward of approximately 0.13. This behavior stems from seated–height constraints imposed by
stand reward and pelvis reward, which suppress the signal and induce premature conver-
gence of the bisection procedure. To address this, we ablated these two terms and defined a revised
objective, SitOnGround v2, which restored an informative optimization landscape; the bisection
iterations then proceeded to convergence, yielding λ = 1.

SSitOnGroundReward-v2 = ssmall control · sdont move · sknee reward

CRAWLREWARD

Encourages crawling at a specified body height and speed. The objective considers spinal height,
body orientation, translational speed, and angular alignment.

SCrawlReward =

{
sdont move · salignment reward, if move speed = 0

salignment reward · smove · sangle reward, if move speed ̸= 0

MOVEANDRAISEARMSREWARD

A composite task coupling locomotion with arm-raising. It internally combines LocomotionReward
and ArmsReward and modulates the locomotion coefficient based on arm posture.

SMoveAndRaiseArmsReward =
α sarms + β slocomotion

α+ β
, where α = arm coeff, β = loc coeff

22


	Introduction
	Related Work
	Zero-Shot Reinforcement Learning
	Inverse and Inverse-Inverse Planning

	Preliminary
	Reward-Free Markov Decision Process
	Forward–Backward Representation
	Inverse Inverse Planning

	Method: Combining Inverse Inverse Planning with Forward–Backward Planning
	Experiments
	Quantitative Reward Suppression
	Removing Unwanted Behaviors from Demonstrations
	Shaping Agent Behavior for Narrative and Interpretability
	Refining Physical Plausibility of Agent Motion

	Conclusion
	Appendix
	LLM Usage
	Algorithmic Details
	Environment Description
	Full Results
	Body Segments and Kinematic Variables
	Formula Description


