

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTROLLING ZERO-SHOT AGENTS VIA INVERSE INVERSE PLANNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Zero-Shot Reinforcement Learning (ZSRL) trains agents to solve tasks that are not explicitly encountered during training. While recent ZSRL methods demonstrate impressive generalization capabilities, the interpretability of their zero-shot behaviors remains largely unaddressed. This poses a challenge for real-world deployment in safety-critical domains such as autonomous driving and assistive robotics. In this paper, we propose a novel integration of *Inverse Inverse Planning* (IIP)—a behavior modification technique inspired by narrative analogies in storytelling—into the ZSRL setting. Our approach enables users to remove specific task-level intentions from a zero-shot policy without additional retraining. The result is a modified agent whose behavior is easier to inspect, explain, and control. We demonstrate that IIP can selectively suppress undesired behaviors in new tasks while preserving performance on the original task, offering a new direction for interpretable and controllable generalization in ZSRL.

1 INTRODUCTION

Zero-Shot Reinforcement Learning (ZSRL) has emerged as a promising paradigm for training agents that generalize to novel tasks without explicit fine-tuning (Touati et al., 2022; Jeen et al., 2024; Sun et al., 2025). Such generalization is critical in real-world applications (e.g., autonomous vehicles), where it is infeasible to anticipate every possible scenario during training (Levine et al., 2020; Dulac-Arnold et al., 2021; Kiran et al., 2021). Despite recent advances, Deep Reinforcement Learning (DRL) continues to suffer from a key limitation: its lack of interpretability. As noted by Glanois et al. (2022) and Zahavy et al. (2016), policies learned by DRL are generally difficult to understand due to the black-box nature of deep neural network architectures.

According to Glanois et al. (2022), existing work on interpretable RL falls into three main categories. The first focuses on *interpretable transition models*, which aim to learn human-readable representations of environment dynamics, using probabilistic approaches such as decision trees and graphical models (Degris et al., 2006; Kansky et al., 2017), physics-based or graph-based deterministic models (Scholz et al., 2014; Zhang et al., 2018), or structured neural networks (Li et al., 2015; Battaglia et al., 2016; Finn et al., 2016). The second line of research seeks to develop *interpretable preference models*, making reward functions more transparent by expressing them in the form of decision trees (Srinivasan & Doshi-Velez, 2020), logical rules (Aksaray et al., 2016; Littman et al., 2017; Li et al., 2017), finite-state machines or “reward machines” (Toro Icarte et al., 2019; Xu et al., 2020; Gaon & Brafman, 2020), or Boolean algebra task compositions (Nangue Tasse et al., 2020). The third direction, *interpretable decision-making*, attempts to make an agent’s policy itself more interpretable, for example by learning directly interpretable policies (Ernst et al., 2005; Likmeta et al., 2020), approximating black-box policies with simpler surrogates (Liu et al., 2018; Verma et al., 2018), or incorporating interpretability through architectural design (Tang et al., 2020; Mott et al., 2019; Annasamy & Sycara, 2019).

While these directions improve transparency at the model or task-specification level, none address the challenge of making agents *visually interpretable* to humans. In particular, an agent’s raw behavior (e.g., performing a jump) should be readily understandable to observers without requiring additional post-hoc explanation. A natural solution to this problem was proposed in the seminal work “Acting as Inverse Inverse Planning” (Chandra et al., 2023), which posits that agents should behave in ways that maximize the probability that observers infer a specific intended goal. This

approach, termed **Inverse Inverse Planning (IIP)**, builds upon the framework of **Inverse Planning (IP)** (Baker et al., 2009; Ullman et al., 2009; Tauber & Steyvers, 2011; Zhi-Xuan et al., 2020). In IP, an observer infers an agent’s latent goal from its observed behavior by computing the posterior: $P(g | \text{actions}) \propto P(\text{actions} | g) P(g)$, where g denotes a candidate goal. IP has been widely used in cognitive science, human–robot interaction, and multi-agent systems to explain and predict behavior through goal inference.

In contrast, IIP inverts the perspective: instead of observers inferring goals from behavior, agents deliberately choose behaviors that maximize the probability that observers infer a desired goal. This makes IIP a powerful tool for crafting interpretable and communicative behaviors (Chandra et al., 2023).

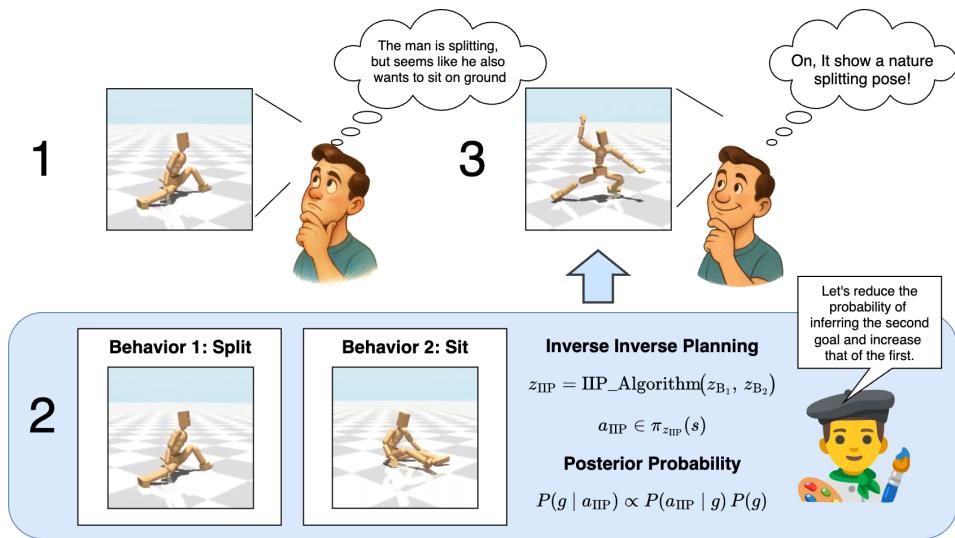


Figure 1: Illustration of how IIP improves behavior realism and interpretability. Although ZSRL agents can achieve high rewards (zone 1), their behaviors may appear ambiguous or physically implausible to human observers. By removing latent components associated with undesirable behaviors (e.g., zone 2), IIP refines the task embedding to yield more natural and expressive motions (zone 3). The mathematical formulation of $\pi_{z_{\text{IIP}}}(s)$ is given in Eq. equation 2. Here, z denotes a latent task embedding, as commonly used in ZSRL (Jeen et al., 2024). *Note:* IIP_{algorithm} refers to our proposed method (see Appendix A.2), and B_1 and B_2 refer to the two behaviors, respectively.

To illustrate this motivation, Figure 1 contrasts the behavior of a zero-shot agent before and after applying IIP. While the original behavior achieves high rewards, it often appears ambiguous or physically implausible. By modifying the task vector to suppress latent components tied to undesired behaviors, IIP yields behavior that is more natural, expressive, and aligned with human expectations—enhancing interpretability and trust.

However, applying IIP in ZSRL is nontrivial. IIP requires optimizing agent behavior with respect to the inverse planning model, which involves repeatedly computing posterior distributions over goals and adjusting actions accordingly. This creates significant computational challenges, especially in high-dimensional goal spaces. A naive implementation of IIP is thus computationally infeasible for real-world RL agents.

To address this, we propose a **lightweight reformulation of IIP** tailored to ZSRL. In ZSRL, tasks are defined via *latent embeddings* (Barreto et al., 2017; Touati & Ollivier, 2021; Touati et al., 2022; Jeen et al., 2024; Sun et al., 2025), allowing agents to generalize without retraining. We reinterpret goal inference in terms of these latent representations, avoiding the need to evaluate full posterior distributions. Based on this reformulation, we introduce a **bisection-based search procedure** that efficiently modifies the latent task vector to suppress undesired secondary goals. Concretely, we refine the primary task vector by subtracting a scaled projection of the secondary task vector, with the scaling factor tuned via bisection. This approach avoids combinatorial overhead while preserving IIP’s interpretability and control benefits.

108 Our key contributions are threefold. First, we introduce a post hoc IIP refinement procedure for pre-
 109 trained ZSRL agents, which suppresses behaviors associated with undesired secondary tasks while
 110 preserving competence on the primary task. Second, we evaluate IIP on the Metamotivo Humanoid
 111 benchmark (Tirinzoni et al.), testing over 100 task pairs across 5 random seeds each. IIP reduces un-
 112 intended behavior in 76% of cases while maintaining or improving primary task performance. Third,
 113 we showcase novel applications of IIP, including removing boundary-violating behaviors, enhancing
 114 narrative coherence in storytelling agents, and improving physical plausibility in humanoid anima-
 115 tion. Overall, our experiments validate the core objective of IIP: modifying the task vector leads to
 116 more interpretable and goal-aligned agent behavior—where the probability of inferring the intended
 117 goal increases, and that of the unintended goal decreases.

118

119 2 RELATED WORK

120

121 2.1 ZERO-SHOT REINFORCEMENT LEARNING

122

123 Traditional Reinforcement Learning (RL) algorithms are primarily designed for online settings,
 124 where agents continuously interact with the environment to gather experience and update their
 125 policies. However, in many real-world applications—such as healthcare, autonomous driving, and
 126 robotics—such interaction can be prohibitively expensive, risky, or altogether infeasible (Levine
 127 et al., 2020; Fu et al., 2021). These limitations have motivated the development of ZSRL paradigms,
 128 where the agent must learn from static datasets and generalize to unseen tasks or environments
 129 without any additional online exploration (Touati et al., 2022; Jeen et al., 2024).

130

131 To address the challenge of generalization in RL, several lines of research have emerged. One such
 132 direction is *goal-conditioned RL*, where policies are trained to reach a specified goal state from any
 133 initial state (Eysenbach et al., 2022; Ma et al., 2022; Yang et al., 2023; Wang et al., 2023; Park
 134 et al., 2023). Another is *model-based RL*, which aims to learn task-independent world models that
 135 can generalize across tasks by capturing the underlying environment dynamics (Chua et al., 2018;
 136 Hafner et al., 2020). *Multi-task RL* extends this by explicitly training agents on multiple related
 137 tasks to encourage the emergence of generalizable behavior (He et al., 2023; Lan et al., 2023).
 138 Finally, *unsupervised skill discovery (USD)* focuses on learning diverse and discriminative behaviors
 139 in reward-free settings, thereby facilitating downstream adaptation to new tasks (Eysenbach et al.,
 140 2018; Laskin et al., 2022). None of the above methods can achieve zero-shot generalization, as
 141 explained in Sun et al. (2025).

142

143 Typical ZSRL algorithms rely on a number of architectural building blocks and training paradigms
 144 that aim to support such generalization without online finetuning. These include *successor repre-
 145 sentations* (Dayan (1993), Grimm et al. (2019)), *universal function approximators* (Schaul et al.,
 146 2015), *successor features* (Barreto et al., 2017; Zhang et al., 2017; Borsa et al., 2018; Hansen et al.,
 147 2019), and *successor measures* (Blier et al., 2021). These are commonly instantiated via either the
 148 *Universal Successor Features (USF)* framework (Barreto et al., 2017) or *Forward-Backward (FB)*
 149 architectures (Touati & Ollivier, 2021).

150

151 Successor features factorizes the value function into two components: a dynamics-dependent suc-
 152 cessor representation and a reward-dependent weight vector. As the original paper puts it, “a good
 153 representation for a state would be one that resembles the representations of its successors.” This
 154 decoupling of environment dynamics from rewards allows the agent to generalize across tasks that
 155 share the same dynamics but differ in reward functions. USF scales this concept to high-dimensional
 156 environments by leveraging deep neural networks. It introduces a state embedding function $\phi(s)$ and
 157 conditions predictions on a family of policies π_z , approximated by $\pi_z(s) = \arg \max_a \psi(s, a, z)^\top z$,
 158 where $\psi(s, a, z)$ represents the successor feature. USFs are typically trained using temporal differ-
 159 ence (TD) learning.

160

161 The FB framework uses two encoders: a forward dynamics encoder $F(s, a, z)$ mapping state-action-
 162 task tuples to a latent space, and a backward encoder $B(s')$ projecting the next state into the same
 163 space. Training aligns $F(s, a, z) \approx B(s')$, while action selection maximizes $F(s, a, z)^\top z$. A lim-
 164 itation of FB is its tendency to choose out-of-distribution (OOD) actions, leading to unsafe behav-
 165 ior. To mitigate this, Jeen et al. (2024) introduced *Value-Conservative FB (VCFB)* and *Measure-
 166 Conservative FB (MCFB)*, which penalize OOD actions via value regularization and visitation mea-
 167 sures, respectively. Sun et al. (2025) extended FB to online unsupervised RL through *Dual-Value*

162 *FB (DVFB)*, which combines skill value $Q_M = F(s, a, z)^\top z$ and exploration value Q_P , leveraging
 163 RND and contrastive learning. A reward mapper later aligns external rewards with learned skills,
 164 improving zero-shot adaptation.

166 **2.2 INVERSE AND INVERSE-INVERSE PLANNING**

168 Inverse Planning (IP) refers to the problem of inferring an agent’s latent goal given its observed
 169 actions. This concept was first introduced by Baker et al. (2009), who proposed casting action
 170 understanding as IP. Since then, IP has been applied to diverse domains, including analyzing social
 171 interactions (Tauber & Steyvers, 2011; Ullman et al., 2009) and enabling machines to recognize
 172 when humans fail to achieve their goals (Zhi-Xuan et al., 2020).

173 Once we can model how humans infer goals from behavior, the natural next step is to design agents
 174 that choose actions to influence such inferences—what we call *Inverse Inverse Planning (IIP)*. The
 175 goal of IIP is for an agent to act in a way that causes an observer to infer a particular intended goal.
 176 This flips the IP setup: rather than observing actions to infer goals, the agent selects actions to steer
 177 the observer’s inferences.

178 The concept of IIP has roots in the graphics and vision communities. Durand et al. (2002) intro-
 179 duced the notion of *inverse-inverse rendering*, where visual depiction (e.g., a painting) is seen as a
 180 process of influencing an observer’s perception by optimizing over their inverse-rendering model.
 181 Subsequently, Kukkonen (2014) proposed re-examining narratives from a Bayesian, probabilistic
 182 perspective. This abstraction was further developed by Chandra et al. (2022), who proposed using
 183 inverse-inverse rendering to generate visual illusions by modeling and manipulating human visual
 184 inference. Building on this foundation, Chandra et al. (2023) introduced IIP in the context of story-
 185 telling agents. Their framework enables agents to take actions not just for achieving task outcomes,
 186 but to better align with an audience’s expectations and mental models. This leads to behavior that
 187 is more interpretable and compelling from the observer’s perspective. A related application in RL
 188 is explored by Strouse et al. (2019), who proposed a method for learning to either share or hide
 189 intentions using information regularization. Their framework supports strategic behavior genera-
 190 tion in cooperative and competitive multi-agent environments, without requiring explicit access to
 191 the world model or direct modeling of other agents. These works collectively motivate the emerg-
 192 ing field of IIP, which seeks to unify communication, intent modeling, and action selection into a
 193 cohesive framework grounded in human-centered inference.

194 **3 PRELIMINARY**

197 **3.1 REWARD-FREE MARKOV DECISION PROCESS**

199 In unsupervised reinforcement learning, a *reward-free* Markov Decision Process (MDP) is defined
 200 as $\mathcal{M} := (\mathcal{S}, \mathcal{A}, P, \rho_0, \gamma)$, where \mathcal{S} and \mathcal{A} denote the state and action spaces, $P : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{D}(\mathcal{S})^1$
 201 is the transition probability function mapping state-action pairs to distributions over next states,
 202 $\rho_0 \in \mathcal{D}(\mathcal{S})$ is the initial state distribution, and $\gamma \in (0, 1)$ is the discount factor. The set of Markovian
 203 policies is defined as $\Pi := \{\pi \mid \pi : \mathcal{S} \rightarrow \mathcal{D}(\mathcal{A})\}$, where $\pi(a \mid s)$ denotes the probability of taking
 204 action a in state s . Given a reward function $R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, the state-action value function
 205 under policy π is defined as $Q_{\mathcal{M}}^{\pi}(s, a) := \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \mid s_0 = s, a_0 = a, \pi]$, where the
 206 expectation is taken over trajectories generated by starting from the initial state-action pair $(s_0 =$
 207 $s, a_0 = a)$, and following the policy π thereafter. That is, $a_t \sim \pi(\cdot \mid s_t)$, and $s_{t+1} \sim P(\cdot \mid s_t, a_t)$.
 208 We use $\Pr(\cdot \mid s_0, a_0, \pi)$ and $\mathbb{E}[\cdot \mid s_0, a_0, \pi]$ to denote the probability and expectation over the
 209 trajectory $(s_t, a_t)_{t \geq 0}$ induced by executing policy π starting from the initial pair (s_0, a_0) .

210 **3.2 FORWARD–BACKWARD REPRESENTATION**

212 The FB representation builds on the concept of the *successor measure*. The successor measure
 213 captures the discounted cumulative occupancy of states s_{t+1} , conditioned on the initial pair (s_0, a_0)

215 ¹ $\mathcal{D}(\mathcal{S})$ denotes the space of probability distributions over \mathcal{S} .

216 and policy π . Formally, it is defined as:
 217

$$218 \quad 219 \quad 220 \quad \mathcal{M}^\pi(s_0, a_0, X) := \sum_{t=0}^{\infty} \gamma^t \Pr(s_{t+1} \in X \mid s_0, a_0, \pi), \quad \forall X \subseteq \mathcal{S}. \quad (1)$$

221 The FB representation approximates this measure using two learned functions: $F : \mathcal{S} \times \mathcal{A} \times Z \rightarrow$
 222 \mathbb{R}^d , $B : \mathcal{S} \rightarrow \mathbb{R}^d$, defined over a latent task space $Z \subseteq \mathbb{R}^d$. The approximation satisfies:
 223

$$224 \quad 225 \quad 226 \quad 227 \quad \begin{cases} M^{\pi^z}(s_0, a_0, X) \approx \int_X F(s_0, a_0, z)^\top B(s) \rho(ds), & \forall s_0 \in \mathcal{S}, a_0 \in \mathcal{A}, X \subseteq \mathcal{S}, z \in \mathbb{R}^d, \\ \pi_z(s) \approx \arg \max_{a \in \mathcal{A}} F(s, a, z)^\top z, & \forall s \in \mathcal{S}, z \in \mathbb{R}^d. \end{cases} \quad (2)$$

228 When Equation 2 holds, the optimal action-value function for any reward can be directly com-
 229 puted as: $Q_r^*(s, a) = F(s, a, z_r)^\top z_r$, and the corresponding optimal policy is given by: $\pi_{z_r}(s) =$
 230 $\arg \max_{a \in \mathcal{A}} F(s, a, z_r)^\top z_r$. To obtain the embedding z_r for any bounded reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, we define:
 231

$$232 \quad z_r = \mathbb{E}_{(s,a) \sim \rho} [r(s, a) B(s)], \quad (3)$$

233 where ρ is a fixed distribution over state-action pairs (e.g., the dataset distribution in offline RL). In
 234 summary, the FB representation encodes a *latent representation of tasks*, allowing reward functions
 235 to be embedded into vectors z_r that define behavior. This enables efficient, planning-free policy
 236 execution by composing the learned representations F , B , and the reward embedding z_r .
 237

238 3.3 INVERSE INVERSE PLANNING

239 IIP is a concept that arises from studies of storytelling and social cognition. Humans often inter-
 240 pret others' actions through *Inverse Planning (IP)*—that is, by inferring an agent's goals based on
 241 observed behavior using Bayesian reasoning: $P(g \mid \text{actions}) \propto P(\text{actions} \mid g)P(g)$, where g is a
 242 goal hypothesis (e.g., “the robot is helpful”) entertained by an observer. IIP reverses this reasoning
 243 process: instead of directly optimizing for rewards or goals, the agent selects behaviors that increase
 244 the likelihood that an observer will infer a *desired interpretation* of its intent or values. For instance,
 245 rather than taking the shortest path, an agent might deliberately choose a longer but more expressive
 246 trajectory to reveal its intended goal or demonstrate cooperative intent as in Chandra et al. (2023).
 247 This formulation captures the idea of *performative behavior*—where actions are chosen not only
 248 for functional effectiveness but also for their interpretability to humans. IIP is especially relevant in
 249 human-robot interaction, explainable AI, and multi-agent collaboration settings where modeling the
 250 observer's inferences is essential.
 251

252 4 METHOD: COMBINING INVERSE INVERSE PLANNING WITH 253 FORWARD–BACKWARD PLANNING

254 Our method combines Forward–Backward (FB) embeddings with Inverse Inverse Planning (IIP) to
 255 enable post hoc behavior shaping of pretrained zero-shot agents. Figure 2 provides an overview of
 256 the IIP–FB pipeline. The process begins with a **backward encoder** that infers task vectors z_1 and
 257 z_2 from offline trajectories for two tasks: the *desired* task and an *undesired* secondary task. These
 258 are used to construct a candidate IIP vector: $z_{\text{iip}} = z_1 - \lambda z_2$, where λ controls the extent to which
 259 undesired behaviors are suppressed. To find the optimal λ , we apply a bisection search that eval-
 260 uates rollouts from the policy $\pi_{z_{\text{iip}}}$ using two reward functions r_1 and r_2 . The search continues until
 261 the expected reward for the undesired task falls below a threshold, while preserving competence on
 262 the desired task. This pipeline enables agents to maintain internal reward grounding (via z_1) while
 263 modifying outward behavior to align with audience-inferred goals, thereby improving interpretabil-
 264 ity and controllability. See Appendix A.2 for full pseudocode.
 265

266 5 EXPERIMENTS

267 We conduct four experiments to evaluate different aspects of our IIP method. First, we quantitatively
 268 demonstrate that optimizing the latent task vector z in a secondary environment (Environment 2)

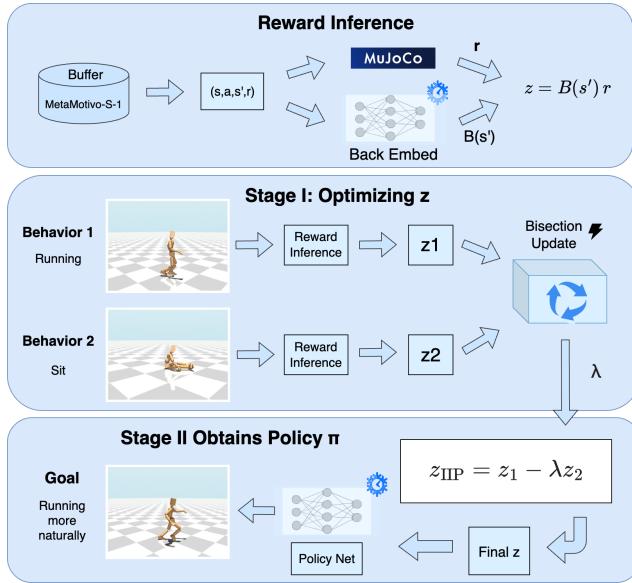


Figure 2: Overview of the IIP-FB pipeline. We extract task vectors using FB reward inference, optimize z_{iip} via bisection (Stage I), and execute policies for goal inference (Stage II). (Snowflake indicates frozen modules; thunder indicates the bisection update is fast and gradient-free.)

reliably reduces the corresponding reward, indicating that IIP can successfully discover a new task embedding z_{iip} that inverts unintended behaviors. The remaining experiments are qualitative: we (i) remove unwanted behaviors to enforce stricter boundaries while maintaining task completion; (ii) refine behavior to improve interpretability and storytelling—e.g., preventing sitting during walking to suggest aversion to bugs and evoke emotional resonance; and (iii) enhance physical plausibility by adjusting animations to appear biomechanically natural. Together, these results highlight IIP’s ability to support reward suppression, behavior editing, narrative control, and motion realism.

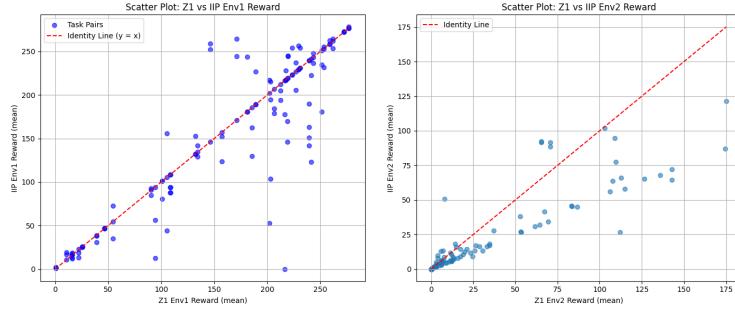
5.1 QUANTITATIVE REWARD SUPPRESSION

We begin by quantitatively evaluating the ability of our method to suppress behaviors associated with an undesired task. Specifically, we demonstrate that the final task vector $z_{\text{iip}}^{\text{final}}$, produced by our IIP pipeline, yields a reduced reward in Environment 2 compared to the initial vector z_1 , which is inferred solely from the primary task. This suppression serves as a proxy for removing unwanted behaviors from the agent’s policy. All experiments in this section and those that follow utilize the pretrained humanoid agents provided by Metamotivo (Tirinzoni et al.), chosen for their high-fidelity and naturalistic movement, which make them well-suited for nuanced behavioral analysis. Further details on the Metamotivo environment are provided in Appendix A.3 (environment description), Appendix A.5 (body-part specifications), and Appendix A.6 (reward formulations).

We constrain the Lagrange multiplier λ to lie within $[\lambda_{\min}, \lambda_{\max}] = [-1, 1]$ to prevent excessive deviations from the original task embedding, thereby preserving the overall behavior while allowing sufficient flexibility for suppression. The threshold for behavior suppression in Environment 2 is set to 50% of the initial reward, striking a balance between aggressive behavior removal and preservation of agent competence. We set the tolerance parameter to 0.1 to allow early stopping once sufficient suppression is achieved, thus improving computational efficiency. Finally, the maximum number of optimization steps is capped at 100, which empirically provides sufficient iterations for convergence in most task pairs without unnecessary overhead.

For each of the 46 predefined tasks in the Metamotivo benchmark, we randomly sample 3 other tasks to act as secondary (undesired) tasks using a fixed seed of 42. Each resulting task pair is evaluated over 5 random seeds (0–4), and we report: (i) the reward of the original task vector z_1 in Environment 1 (i.e., the intended task setting); (ii) the reward of z_1 in Environment 2 (i.e., the undesired task setting); and (iii) the reward of the modified vector $z_{\text{iip}}^{\text{final}}$ in both environments. These

324 metrics jointly assess the degree of reward suppression and task retention achieved through our
 325 IIP optimization. As shown in Figure 3, we find that IIP preserves the original task’s reward in
 326 Environment 1 in the majority of cases (**65.2%** of task pairs saw no drop), while suppressing reward
 327 in Environment 2 in a significant fraction of relevant cases (**76.5%** of task pairs with non-zero
 328 baseline reward in Environment 2 showed a reduction after IIP).



340
 341 Figure 3: Scatter plots comparing mean rewards of z_1 (x-axis) versus $z_{\text{IIP}}^{\text{final}}$ (y-axis). **Left:** Envi-
 342 ronment 1 (original task). **Right:** Environment 2 (undesired task). The dashed red line indicates
 343 $y = x$ (no change). Points above the line represent reward preservation or improvement, while
 344 points below the line indicate degradation. IIP generally preserves performance in Environment 1
 345 while suppressing reward in Environment 2.

346 In Table 1 and Table 2, we highlight representative task pairs based on the signed percent change in
 347 Environment 2 reward: the best cases are those where IIP sharply reduces reward in Environment
 348 2, whereas failure cases correspond to reward increases in Environment 2. In contrast, Table 3 and
 349 Table 4 sort task pairs by the absolute percent change to surface the most impactful differences
 350 regardless of direction—showcasing the most suppressed rewards (best absolute cases) as well as
 351 the most amplified ones (failure absolute cases). The percentage Δ is computed using the difference
 352 in mean rewards between IIP and baseline z_1 : $\Delta = 100 \times \frac{\text{IIP.mean} - z_1.\text{mean}}{|z_1.\text{mean}|}$. Standard deviation
 353 across 5 random seeds is shown in parentheses.

354 Table 1: Top-5 task pairs with strongest Environment 2 suppression (by % change). Rewards are
 355 averaged over 5 seeds.

Task1	Task2	z_1 Env 1	IIP Env 1	z_1 Env 2	IIP Env 2	% Δ Env 2
sitonground	move-ego-low-0-0	201.78(13.35)	52.48(44.14)	112.13(7.98)	26.75(19.17)	-76.14
move-ego-low-90-2	move-ego-low-0-0	239.31(2.49)	150.83(37.45)	24.66(2.96)	9.22(4.61)	-62.61
move-ego-low-0-2	move-ego-low-0-0	239.49(14.67)	162.83(35.96)	30.70(4.88)	13.43(3.89)	-56.25
lieonground-down	crawl-0.4-0-d	203.05(2.94)	103.78(30.73)	142.72(0.22)	64.29(19.94)	-54.95
headstand	move-ego-low-0-0	54.71(14.68)	72.75(11.69)	12.05(3.91)	5.72(1.75)	-52.53

363 Table 2: Top-5 task pairs where IIP failed (Environment 2 reward increased by %). Rewards are
 364 averaged over 5 seeds.

Task1	Task2	z_1 Env 1	IIP Env 1	z_1 Env 2	IIP Env 2	% Δ Env 2
raisearms-l-l	move-ego-90-2	272.33(0.19)	273.08(0.11)	7.93(0.47)	50.73(5.06)	+539.72
headstand	move-ego-90-4	54.71(14.68)	35.24(12.86)	3.92(0.85)	9.75(0.66)	+148.72
rotate-x-5-0.8	move-ego-90-2	22.24(4.07)	13.10(3.20)	5.77(0.65)	12.76(0.89)	+121.14
lieonground-up	move-ego-90-2	216.19(1.07)	177.86(7.23)	3.82(0.91)	7.86(0.60)	+105.76
split-0.5	move-ego-90-2	251.20(3.19)	234.50(7.18)	6.90(1.57)	13.44(0.82)	+94.78

372 The results demonstrate that IIP can effectively suppress secondary behaviors (as measured by
 373 reward in Environment 2) in many task pairs. For top-performing pairs, we observe over 70%
 374 reduction in Environment 2 reward, confirming IIP’s potential for targeted behavioral inhibition.
 375 Nonetheless, several *failure cases* exist where IIP fails to suppress the undesired behavior and in-
 376 stead *amplifies* it—sometimes by more than 500% in relative terms. These outliers suggest that
 377 some task embeddings are highly entangled, making disentanglement via linear constraint-based
 methods difficult. In particular, task pairs that share overlapping movement primitives or constraints

378 Table 3: Top-5 task pairs with strongest Environment 2 suppression (by absolute reward drop).
379

380 Task1	381 Task2	382 z_1 Env 1	383 IIP Env 1	384 z_1 Env 2	385 IIP Env 2	386 Δ Env 2
move-ego-low-90-2	move-ego-90-2	239.31(2.49)	141.87(5.55)	174.57(2.93)	87.19(1.70)	-87.38
sitonground	move-ego-low-0-0	201.78(13.35)	52.48(44.14)	112.13(7.98)	26.75(19.17)	-85.38
lieonground-down	crawl-0.4-0-d	203.05(2.94)	103.78(30.73)	142.72(0.22)	64.29(19.94)	-78.43
crawl-0.4-0-d	move-ego-low-0-0	218.88(12.18)	169.85(18.72)	142.74(8.28)	72.01(6.09)	-70.73
move-ego-low-180-2	move-ego-90-2	105.25(5.20)	155.85(11.92)	136.02(2.26)	67.80(1.09)	-68.22

385

386

387

Table 4: Top-5 task pairs where IIP amplified Environment 2 reward (by absolute increase).

388 Task1	389 Task2	390 z_1 Env 1	391 IIP Env 1	392 z_1 Env 2	393 IIP Env 2	394 Δ Env 2
raisearms-l-1	move-ego-90-2	272.33(0.19)	273.08(0.11)	7.93(0.47)	50.73(5.06)	+42.80
crawl-0.5-0-u	move-ego-low-0-0	108.26(5.00)	87.82(6.00)	65.30(0.81)	92.37(1.81)	+27.07
crawl-0.4-0-u	move-ego-low-0-0	108.70(4.52)	87.81(4.90)	65.32(0.64)	91.75(1.63)	+26.43
crawl-0.5-2-u	move-ego-low-0-0	16.02(5.50)	18.49(3.02)	70.64(3.77)	91.72(6.83)	+21.08
crawl-0.4-2-u	move-ego-low-0-0	15.66(5.75)	17.77(2.20)	70.55(3.62)	88.67(3.51)	+18.12

395

(e.g., posture, joint angles, or locomotion direction) are more susceptible to these failures. Overall, our findings highlight both the strengths and limitations of IIP. While it is generally robust, reliable suppression in challenging cases may require a deeper understanding of task semantics and embedding alignment, motivating future work on more expressive behavior shaping methods. Overall, the quantitative results verify the central claim of IIP: task-vector modification consistently improves interpretability and goal alignment, with increases in intended-goal inference and reductions in unintended-goal attribution. Full results are included in Appendix A.4.

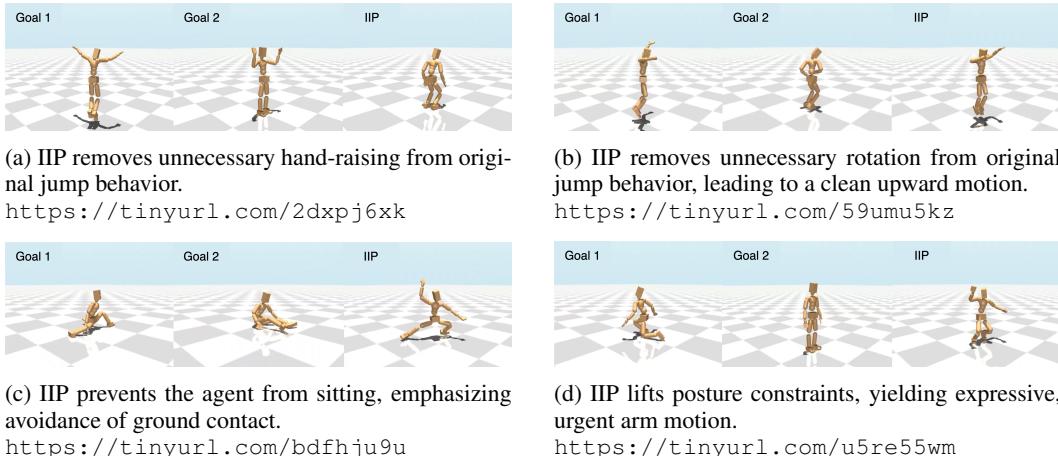
402

403

404 5.2 REMOVING UNWANTED BEHAVIORS FROM DEMONSTRATIONS

405

406



422

423

Figure 4: Inverse Inverse Planning (IIP) modifies latent goal embeddings to improve zero-shot generalization across diverse tasks.

424

425

426

427

428

429

430

431

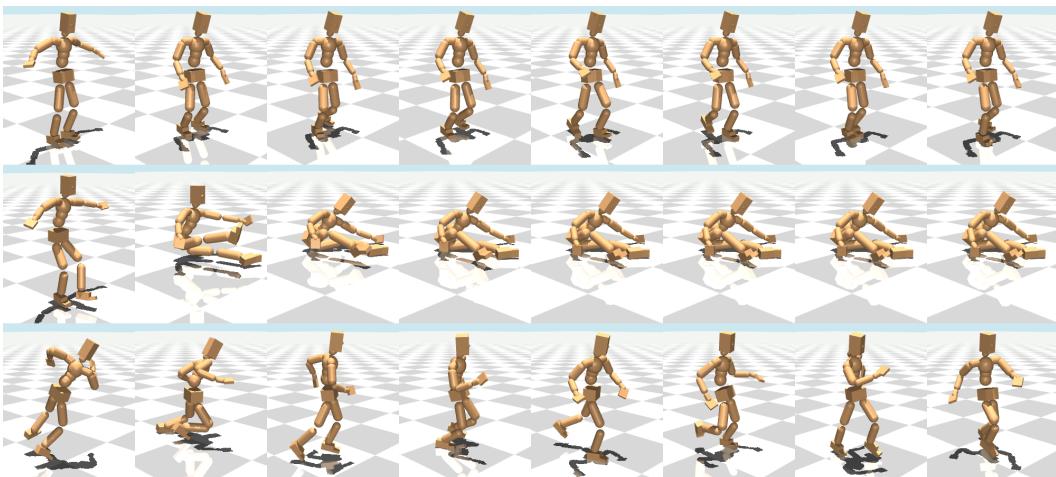
As illustrated in Figure 4a, pretrained agents may learn to include stylistic or unnecessary behaviors while completing a task. For example, in some environments, the agent may raise its arms when jumping, even though this motion is irrelevant to the intended task objective. These extraneous behaviors can reduce clarity, increase ambiguity for observers, or lead to misinterpretation of the agent’s goal. Another example is shown in Figure 4b, where the agent performs an unnecessary rotational motion during a jump. Through IIP, we can optimize the latent reward embedding to discourage such rotation and generate a revised behavior that better aligns with the intended goal.

432 5.3 SHAPING AGENT BEHAVIOR FOR NARRATIVE AND INTERPRETABILITY
433

434 In some cases, we wish to modify an agent’s behavior not merely for functionality, but to convey
435 a narrative or improve interpretability. Consider Figure 4c, where the original agent walks with
436 exaggerated knee bending and occasionally sits on the ground. If the desired narrative is to portray
437 the agent as being afraid of bugs on the ground, then sitting would contradict this interpretation.
438 Using IIP, we remove the undesired sitting behavior, resulting in a revised task embedding z_{iip} that
439 produces a cautious walk—suggesting the agent is trying hard not to touch the ground. Another
440 example is shown in Figure 4d, where the original agent walks with a low center of gravity and
441 keeps its hands down. To depict the agent as hastily escaping from danger, we remove the behavior
442 that suppresses upward arm movement. The resulting behavior obtained via IIP conveys a more
443 frantic and expressive motion, better aligning with the intended narrative.
444

445 5.4 REFINING PHYSICAL PLAUSIBILITY OF AGENT MOTION
446

447 In Figure 5, under the constraints of human biomechanics and physical principles, we observed
448 several instances of unnatural motion. When guided by RL reward functions, the algorithm often
449 prioritizes maximizing the reward signal, which can easily disregard the natural dynamics of real-
450 world human motion. For instance, in Task₁, the shin strikes the ground backward at an angle of
451 approximately 30 degrees to propel the body forward, while the slight swinging of the arms appears
452 unnatural and inconsistent with actual human motor patterns. Our method reversely applies the
453 behavior of “sit on ground” to relax the fixation of the limbs. This adjustment produces a gait that
454 conveys the impression of larger, more natural strides during locomotion. In summary, IIP helps
455 restore more interpretable and human-like motion patterns by reducing unnatural behaviors.
456



472 Figure 5: Original agent behavior (top) includes a motion of the humanoid robot during locomotion.
473 By applying IIP and removing the “sit on the ground” motion (middle), it can be observed that the
474 arms and legs exhibit more natural and fluid dynamics, more closely approximating authentic human
475 running behavior (bottom). <https://tinyurl.com/47pvmean>

476 477 6 CONCLUSION
478

480 In this paper, we introduced a novel framework that efficiently integrates Inverse Inverse Planning
481 (IIP) with Zero-Shot Reinforcement Learning (ZSRL). Through extensive evaluations across diverse
482 task pairs, we demonstrated the effectiveness of our approach in resolving behavioral ambiguity and
483 enhancing policy generalization. Beyond performance gains, we also uncovered new applications of
484 IIP, including the ability to improve narrative coherence and physical plausibility in agent behaviors.
485 Future work may explore extending this framework to environments beyond humanoid control, as
486 well as integrating IIP with alternative policy learning architectures.
487

486 REPRODUCIBILITY STATEMENT
487488 All source code necessary to reproduce our results is available at <https://tinyurl.com/bddmx8h5>. Detailed experimental setup is provided in Section 5.1, including hyperparameter
489 choices and evaluation protocols. Appendix A.3 outlines the environment configurations used in
490 our study, while Appendix A.6 describes the reward formulation and computation procedures.
491493 REFERENCES
494495 Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for robust
496 satisfaction of signal temporal logic specifications. In *2016 IEEE 55th Conference on Decision
497 and Control (CDC)*, pp. 6565–6570. IEEE, 2016.498 Raghuram Mandyam Annasamy and Katia Sycara. Towards better interpretability in deep q-
499 networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 4561–
500 4569, 2019.502 Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. Action understanding as inverse planning.
503 *Cognition*, 113(3):329–349, 2009. ISSN 0010-0277. doi: <https://doi.org/10.1016/j.cognition.2009.07.005>. URL <https://www.sciencedirect.com/science/article/pii/S0010027709001607>. Reinforcement learning and higher cognition.506 André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
507 and David Silver. Successor features for transfer in reinforcement learning. *Advances in neural
508 information processing systems*, 30, 2017.510 Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
511 for learning about objects, relations and physics. *Advances in neural information processing
512 systems*, 29, 2016.514 Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
515 values: A mathematical viewpoint. *arXiv preprint arXiv:2101.07123*, 2021.516 Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado Van Hasselt,
517 David Silver, and Tom Schaul. Universal successor features approximators. *arXiv preprint
518 arXiv:1812.07626*, 2018.520 Kartik Chandra, Tzu-Mao Li, Joshua Tenenbaum, and Jonathan Ragan-Kelley. Designing percep-
521 tual puzzles by differentiating probabilistic programs. In *ACM SIGGRAPH 2022 Conference
522 Proceedings*, pp. 1–9, 2022.524 Kartik Chandra, Tzu-Mao Li, Joshua Tenenbaum, and Jonathan Ragan-Kelley. Acting as inverse
525 inverse planning. In *Special Interest Group on Computer Graphics and Interactive Techniques
526 Conference Conference Proceedings, SIGGRAPH '23*, pp. 1–12. ACM, July 2023. doi: 10.1145/
527 3588432.3591510. URL <http://dx.doi.org/10.1145/3588432.3591510>.528 Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
529 ing in a handful of trials using probabilistic dynamics models. *Advances in neural information
530 processing systems*, 31, 2018.531 Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
532 tion. *Neural computation*, 5(4):613–624, 1993.534 Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Learning the structure of factored
535 markov decision processes in reinforcement learning problems. In *Proceedings of the 23rd inter-
536 national conference on Machine learning*, pp. 257–264, 2006.538 Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
539 and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
540 analysis. *Machine Learning*, 110(9):2419–2468, 2021.

540 Frédo Durand, Maneesh Agrawala, Bruce Gooch, Victoria Interrante, Victor Ostromoukhov, and
 541 Denis Zorin. Perceptual and artistic principles for effective computer depiction. *SIGGRAPH*
 542 *2002 Course# 13 Notes*, 2002.

543

544 Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. *Journal of Machine Learning Research*, 6, 2005.

545

546 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
 547 Learning skills without a reward function. *arXiv preprint arXiv:1802.06070*, 2018.

548

549 Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
 550 as goal-conditioned reinforcement learning. *Advances in Neural Information Processing Systems*, 35:35603–35620, 2022.

551

552 Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
 553 through video prediction. *Advances in neural information processing systems*, 29, 2016.

554

555 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 556 data-driven reinforcement learning, 2021. URL <https://arxiv.org/abs/2004.07219>.

557

558 Maor Gaon and Ronen Brafman. Reinforcement learning with non-markovian rewards. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 3980–3987, 2020.

559

560 Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong Liu.
 561 A survey on interpretable reinforcement learning, 2022. URL <https://arxiv.org/abs/2112.13112>.

562

563 Christopher Grimm, Irina Higgins, Andre Barreto, Denis Teplyashin, Markus Wulfmeier, Tim Her-
 564 tweck, Raia Hadsell, and Satinder Singh. Disentangled cumulants help successor representations
 565 transfer to new tasks. *arXiv preprint arXiv:1911.10866*, 2019.

566

567 Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
 568 crete world models. *arXiv preprint arXiv:2010.02193*, 2020.

569

570 Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
 571 Volodymyr Mnih. Fast task inference with variational intrinsic successor features. *arXiv preprint*
arXiv:1906.05030, 2019.

572

573 Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
 574 long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
 575 learning. *Advances in neural information processing systems*, 36:64896–64917, 2023.

576

577 Scott Jeen, Tom Bewley, and Jonathan M. Cullen. Zero-shot reinforcement learning from low quality
 578 data, 2024. URL <https://arxiv.org/abs/2309.15178>.

579

580 Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou,
 581 Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks: Zero-
 582 shot transfer with a generative causal model of intuitive physics. In *International conference on*
583 machine learning, pp. 1809–1818. PMLR, 2017.

584

585 B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
 586 mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. *IEEE*
587 transactions on intelligent transportation systems, 23(6):4909–4926, 2021.

588

589 Karin Kukkonen. Bayesian narrative: Probability, plot and the shape of the fictional world. *Anglia*,
 590 132(4):720–739, 2014.

591

592 Siming Lan, Rui Zhang, Qi Yi, Jiaming Guo, Shaohui Peng, Yunkai Gao, Fan Wu, Ruizhi Chen,
 593 Zidong Du, Xing Hu, et al. Contrastive modules with temporal attention for multi-task reinforce-
 594 ment learning. *Advances in Neural Information Processing Systems*, 36:36507–36523, 2023.

595

596 Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
 597 Unsupervised reinforcement learning with contrastive intrinsic control. *Advances in Neural In-*
598 formation Processing Systems, 35:34478–34491, 2022.

594 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
 595 torial, review, and perspectives on open problems, 2020. URL <https://arxiv.org/abs/2005.01643>.

596

597 Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards.
 598 In *2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 3834–
 599 3839. IEEE, 2017.

600

601 Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
 602 networks. *arXiv preprint arXiv:1511.05493*, 2015.

603

604 Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, and
 605 Danilo Romano. Combining reinforcement learning with rule-based controllers for transparent
 606 and general decision-making in autonomous driving. *Robotics and Autonomous Systems*, 131:103568, 2020.

607

608 Michael L Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James MacGlashan.
 609 Environment-independent task specifications via gltl. *arXiv preprint arXiv:1704.04341*, 2017.

610

611 Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement
 612 learning with linear model u-trees. In *Joint European Conference on Machine Learning and
 Knowledge Discovery in Databases*, pp. 414–429. Springer, 2018.

613

614 Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani. Dynamics-regulated kinematic policy for
 615 egocentric pose estimation. In *Advances in Neural Information Processing Systems*, 2021.

616

617 Zhengyi Luo, Jinkun Cao, Alexander W. Winkler, Kris Kitani, and Weipeng Xu. Perpetual humanoid
 618 control for real-time simulated avatars. In *International Conference on Computer Vision (ICCV)*,
 2023.

619

620 Zhengyi Luo, Jinkun Cao, Josh Merel, Alexander Winkler, Jing Huang, Kris M. Kitani, and Weipeng
 621 Xu. Universal humanoid motion representations for physics-based control. In *The Twelfth Inter-
 national Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=OrOd8Px002>.

623

624 Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. How far i’ll go: Offline goal-
 625 conditioned reinforcement learning via f -advantage regression. *arXiv preprint arXiv:2206.03023*,
 626 2022.

627

628 Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende.
 629 Towards interpretable reinforcement learning using attention augmented agents. *Advances in
 neural information processing systems*, 32, 2019.

630

631 Geraud Nangue Tasse, Steven James, and Benjamin Rosman. A boolean task algebra for reinforce-
 632 ment learning. *Advances in Neural Information Processing Systems*, 33:9497–9507, 2020.

633

634 Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
 635 conditioned rl with latent states as actions. *Advances in Neural Information Processing Systems*,
 36:34866–34891, 2023.

636

637 Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
 638 tors. In *International conference on machine learning*, pp. 1312–1320. PMLR, 2015.

639

640 Jonathan Scholz, Martin Levihn, Charles Isbell, and David Wingate. A physics-based model prior
 641 for object-oriented mdps. In *International Conference on Machine Learning*, pp. 1089–1097.
 642 PMLR, 2014.

643

644 Srivatsan Srinivasan and Finale Doshi-Velez. Interpretable batch irl to extract clinician goals in
 645 icu hypotension management. *AMIA Summits on Translational Science Proceedings*, 2020:636,
 2020.

646

647 DJ Strouse, Max Kleiman-Weiner, Josh Tenenbaum, Matt Botvinick, and David Schwab. Learning
 648 to share and hide intentions using information regularization, 2019. URL <https://arxiv.org/abs/1808.02093>.

648 Jingbo Sun, Songjun Tu, qichao Zhang, Haoran Li, Xin Liu, Yaran Chen, Ke Chen, and Dongbin
 649 Zhao. Unsupervised zero-shot reinforcement learning via dual-value forward-backward repre-
 650 sentation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 651 <https://openreview.net/forum?id=0QnKnt4110>.

652 Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-interpretable agents. In *Proceed-
 653 ings of the 2020 genetic and evolutionary computation conference*, pp. 414–424, 2020.

654

655 Sean Tauber and Mark Steyvers. Using inverse planning and theory of mind for social goal inference.
 656 In *Proceedings of the annual meeting of the cognitive science society*, volume 33, 2011.

657

658 Andrea Tirinzoni, Ahmed Touati, Jesse Farnbrother, Mateusz Guzek, Anssi Kanervisto, Yingchen
 659 Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behav-
 660 ioral foundation models.

661

662 Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and Sheila
 663 McIlraith. Learning reward machines for partially observable reinforcement learning. *Advances
 664 in neural information processing systems*, 32, 2019.

665 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards, 2021. URL
 666 <https://arxiv.org/abs/2103.07945>.

667 Ahmed Touati, Jérémie Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
 668 *arXiv preprint arXiv:2209.14935*, 2022.

669

670 Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
 671 Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
 672 continuous control. *Software Impacts*, 6:100022, 2020.

673

674 Tomer Ullman, Chris Baker, Owen Macindoe, Owain Evans, Noah Goodman, and Joshua Tenen-
 675 baum. Help or hinder: Bayesian models of social goal inference. *Advances in neural information
 676 processing systems*, 22, 2009.

677

678 Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
 679 Programmatically interpretable reinforcement learning. In *International conference on machine
 680 learning*, pp. 5045–5054. PMLR, 2018.

681

682 Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
 683 ment learning via quasimetric learning. In *International Conference on Machine Learning*, pp.
 684 36411–36430. PMLR, 2023.

685

686 Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
 687 Joint inference of reward machines and policies for reinforcement learning. In *Proceedings of
 688 the International Conference on Automated Planning and Scheduling*, volume 30, pp. 590–598,
 689 2020.

690

691 Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential
 692 for unseen goal generalization of offline goal-conditioned rl? In *International Conference on
 693 Machine Learning*, pp. 39543–39571. PMLR, 2023.

694

695 Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns. In
 696 *International conference on machine learning*, pp. 1899–1908. PMLR, 2016.

697

698 Amy Zhang, Sainbayar Sukhbaatar, Adam Lerer, Arthur Szlam, and Rob Fergus. Composable
 699 planning with attributes. In *International Conference on Machine Learning*, pp. 5842–5851.
 700 Pmlr, 2018.

701

702 Jingwei Zhang, Jost Tobias Springenberg, Jostch Boedecker, and Wolfram Burgard. Deep rein-
 703 forcement learning with successor features for navigation across similar environments. In *2017
 704 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 2371–2378.
 705 IEEE, 2017.

706

707 Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh Tenenbaum, and Vikash Mansinghka. Online
 708 bayesian goal inference for boundedly rational planning agents. *Advances in neural information
 709 processing systems*, 33:19238–19250, 2020.

A APPENDIX

A.1 LLM USAGE

We utilized Large Language Models (LLMs), specifically ChatGPT, solely for polishing the writing in our paper—such as improving grammar and clarity—and for adding documentation and comments to our codebase. No part of the experimental design, algorithm development, or result analysis was generated or influenced by ChatGPT.

A.2 ALGORITHMIC DETAILS

Algorithm 1 Inverse Inverse Planning (IIP) via Bisection

```

1: Input: Reward models  $\text{rew\_model}_1, \text{rew\_model}_2$ ; Environments  $T_1, T_2$ ; Target reward  $R_T$ ;  

   Tolerance  $\epsilon$ ; Max steps  $N$ ; Bounds  $\lambda_{\min}, \lambda_{\max}$ 
2:  $z_1 \leftarrow \text{rew\_model}_1.\text{reward\_inference}(T_1)$ 
3:  $z_2 \leftarrow \text{rew\_model}_2.\text{reward\_inference}(T_2)$ 
4: for  $i = 1$  to  $N$  do
5:    $\lambda \leftarrow (\lambda_{\min} + \lambda_{\max})/2$ 
6:    $z_{\text{IP}} \leftarrow z_1 - \lambda \cdot z_2$ 
7:    $R \leftarrow \text{Rollout}(T_2, z_{\text{IP}})$                                  $\triangleright$  Collect rewards by rolling out in  $T_2$ 
8:   if  $|R - R_T| < \epsilon$  then
9:     break
10:   else if  $R > R_T$  then
11:      $\lambda_{\min} \leftarrow \lambda$                                  $\triangleright$  Not aggressive enough, shift lower bound up
12:   else
13:      $\lambda_{\max} \leftarrow \lambda$                                  $\triangleright$  Too aggressive, shift upper bound down
14:   end if
15: end for
16: Output: Final  $z_{\text{IP}}$ 

```

A.3 ENVIRONMENT DESCRIPTION

In this section, we provide a brief overview of the Metamotivo Humanoid Environment (Tirinzoni et al.). The environment is built upon the MuJoCo model of the SMPL agent (Luo et al., 2024; 2023; 2021), with modifications that make the joint ranges and motor controllers more biologically plausible. These improvements are inspired by the CMU humanoid specification used in the dm_control suite (Tunyasuvunakool et al., 2020).

The environment supports a wide range of motor control tasks that emphasize different physical capabilities such as locomotion, balance, manipulation, and posture control. Table 5 summarizes the main task categories and their naming conventions. The table is adapted from the original paper (Tirinzoni et al.).

A.4 FULL RESULTS

In Table 6, we present the complete evaluation results of our experiments using pretrained Metamotivo agents. Each row presents results for a task pair, with IIP applied to influence behavior on the secondary task. Reductions in Environment 2 reward—signifying effective suppression—are highlighted in **bold**.

All values are averaged over 5 random seeds. Numbers in parentheses indicate standard deviation. The percentage change (Δ) is computed over the means:

$$\Delta = 100 \times \frac{\text{IIP_mean} - z_1\text{-mean}}{|z_1\text{-mean}|}$$

756
757
758
759
760
761
762
763
764
765
766
767
768
769

Table 5: Task formats and their corresponding behaviors in the Metamotivo Humanoid Environment.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Category	Format	Description
Locomotion	move-ego-[low-]-[angle]-[speed]	Move at a specified heading [angle] and speed [speed]. The "low-" prefix indicates low posture (pelvis constraint); absence implies high posture (head constraint).
Standing	move-ego-[low-]-0-0	Static standing pose. Same posture constraints as locomotion, but with zero velocity.
Headstand	headstand	Inverted balance: head down, feet up, with minimal velocity and control effort.
Arm Raising	raisearms-[left_pos]-[right_pos]	Raise arms to specified heights: low, med, or high based on wrist z-coordinates.
Rotation	rotate-[axis]-[speed]-[height]	Rotate around the x/y/z axis at the desired angular speed, while maintaining height and alignment.
Jump	jump-[height]	Reach a target vertical height with sufficient upward velocity.
Ground Poses	sitonground, lieonground-[dir], split-[dist]	Sit, lie on ground ([dir]: up/down), or perform splits with a target foot distance [dist].
Crawl	crawl-[height]-[speed]-[facing]	Crawl at specified height and speed; [facing]: down (toward floor) or up (toward sky).

810 Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
 811 Percent change (Δ) is relative to z_1 .

812

813	Task1	Task2	z_1 Env 1	IIP Env 1	% Δ Env 1	z_1 Env 2	IIP Env 2	% Δ Env 2
814	move-ego-0-0	crawl-0.4-0-d	276.68 (0.34)	276.68 (0.34)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
815	move-ego-0-0	move-ego-90-4	276.68 (0.34)	278.21 (0.43)	0.55 (11.38)	11.38 (0.60)	11.69 (5.29)	2.72
816	move-ego-0-0	headstand	276.68 (0.34)	276.68 (0.34)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
817	move-ego-0-0	crawl-0.4-0-low-0-0	276.68 (0.34)	189.23 (18.01)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
818	move-ego-0-0	move-ego-90-4	189.23 (18.01)	226.66 (30.77)	19.78 (14.32)	14.32 (1.81)	18.07 (9.43)	26.19
819	move-ego-0-0	headstand	189.23 (18.01)	189.23 (18.01)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
820	move-ego-0-0	crawl-0.4-0-headstand	54.71 (14.68)	54.18 (7.13)	-0.97 (1.05)	1.05 (0.79)	0.55 (0.42)	-47.62
821	move-ego-0-0	move-ego-90-4	54.71 (14.68)	35.24 (12.86)	-35.59 (3.92)	3.92 (0.85)	9.75 (0.66)	148.72
822	move-ego-0-0	headstand	54.71 (14.68)	54.71 (14.68)	32.97 (12.05)	12.05 (3.91)	5.72 (1.75)	-52.53
823	move-ego-0-0	crawl-0.4-0-low-0-0	261.85 (0.29)	261.85 (0.29)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
824	move-ego-0-0	move-ego-90-4	261.85 (0.29)	253.57 (0.80)	-3.16 (106.08)	106.08 (0.51)	56.08 (1.39)	-47.13
825	move-ego-0-0	headstand	261.85 (0.29)	54.71 (0.80)	72.75 (11.69)	11.69 (14.68)	5.72 (1.75)	-52.53
826	move-ego-0-2	crawl-0.4-0-d	261.85 (0.29)	261.85 (0.29)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
827	move-ego-0-2	move-ego-90-4	261.85 (0.29)	261.85 (0.29)	-3.16 (253.57)	253.57 (0.80)	56.08 (1.39)	-47.13
828	move-ego-0-2	headstand	261.85 (0.29)	54.71 (0.80)	72.75 (11.69)	11.69 (14.68)	5.72 (1.75)	-52.53
829	move-ego-0-2	crawl-0.4-0-low-0-0	261.85 (0.29)	264.61 (0.39)	1.05 (2.89)	2.89 (1.36)	1.58 (0.58)	-45.33
830	move-ego-0-4	crawl-0.4-0-d	253.10 (0.80)	253.10 (0.80)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
831	move-ego-0-4	move-ego-90-4	253.10 (0.80)	231.92 (0.80)	-8.37 (114.80)	114.80 (0.00)	57.85 (0.55)	-49.61
832	move-ego-0-4	headstand	253.10 (0.80)	54.71 (0.80)	72.75 (11.69)	11.69 (14.68)	5.72 (1.75)	-52.53
833	move-ego-0-4	crawl-0.4-0-low-0-0	253.10 (0.80)	255.04 (0.41)	0.77 (4.96)	4.96 (0.82)	2.50 (0.40)	-49.60
834	move-ego-0-4	move-ego-90-2	253.10 (0.80)	217.31 (3.45)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
835	move-ego-0-4	headstand	217.31 (0.80)	217.31 (3.45)	4.89 (3.45)	3.45 (0.00)	1.64 (0.20)	51.85
836	move-ego-0-4	crawl-0.4-0-90-2	217.31 (0.80)	227.93 (2.56)	4.89 (2.56)	2.56 (0.05)	1.64 (0.20)	51.85
837	move-ego-0-4	move-ego-90-2	217.31 (0.80)	216.92 (4.71)	-0.18 (2.24)	2.24 (2.44)	1.53 (1.90)	-31.70
838	move-ego-0-4	headstand	217.31 (0.80)	212.26 (4.71)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
839	move-ego-0-4	crawl-0.4-0-90-4	212.26 (0.80)	212.26 (2.75)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
840	move-ego-0-4	move-ego-90-4	212.26 (0.80)	212.26 (2.75)	-3.35 (34.52)	34.52 (3.35)	17.29 (1.61)	-49.91
841	move-ego-0-4	headstand	212.26 (0.80)	212.26 (2.75)	-8.53 (3.07)	3.07 (1.20)	1.55 (0.60)	-49.51
842	move-ego-0-4	crawl-0.4-0-90-2	212.26 (0.80)	226.99 (2.15)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
843	move-ego-0-4	move-ego-90-2	226.99 (0.80)	205.53 (2.15)	-9.45 (175.13)	175.13 (15.19)	121.48 (14.39)	-30.63
844	move-ego-0-4	headstand	205.53 (0.80)	205.53 (2.15)	-9.45 (175.13)	175.13 (15.19)	121.48 (14.39)	-30.63
845	move-ego-0-4	crawl-0.4-0-low-0-0	205.53 (0.80)	226.99 (2.15)	4.59 (12.94)	12.94 (15.19)	8.82 (11.63)	-31.84
846	move-ego-0-4	move-ego-90-2	205.53 (0.80)	185.34 (2.15)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
847	move-ego-0-4	headstand	185.34 (0.80)	185.34 (2.15)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
848	move-ego-0-4	crawl-0.4-0-90-4	185.34 (0.80)	129.68 (2.26)	-30.03 (83.65)	83.65 (2.56)	45.21 (1.15)	-45.95
849	move-ego-0-4	move-ego-90-4	129.68 (0.80)	162.78 (2.26)	-12.17 (3.55)	3.55 (0.37)	3.58 (0.66)	0.85
850	move-ego-0-4	headstand	162.78 (0.80)	162.78 (2.26)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
851	move-ego-0-4	crawl-0.4-0-180-2	162.78 (0.80)	219.56 (2.26)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
852	move-ego-0-4	move-ego-180-2	219.56 (0.80)	245.15 (2.26)	11.66 (109.71)	109.71 (1.31)	77.57 (2.18)	-29.30
853	move-ego-0-4	headstand	245.15 (0.80)	244.17 (2.26)	11.21 (12.15)	12.15 (1.15)	5.84 (0.42)	-51.93
854	move-ego-0-4	crawl-0.4-0-180-4	244.17 (0.80)	206.49 (2.26)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
855	move-ego-0-4	move-ego-180-4	206.49 (0.80)	206.49 (0.97)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
856	move-ego-0-4	headstand	206.49 (0.80)	206.49 (0.97)	-10.60 (112.77)	112.77 (1.15)	65.99 (1.19)	-41.48
857	move-ego-0-4	crawl-0.4-0-180-4	206.49 (0.80)	178.90 (0.97)	-13.36 (8.71)	8.71 (3.28)	4.39 (1.61)	-49.60
858	move-ego-0-4	move-ego-180-4	178.90 (0.80)	239.49 (0.97)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
859	move-ego-0-4	headstand	239.49 (0.80)	239.49 (0.97)	-10.60 (112.77)	112.77 (1.15)	65.99 (1.19)	-41.48
860	move-ego-0-4	crawl-0.4-0-180-4	239.49 (0.80)	189.77 (0.97)	-20.76 (67.26)	67.26 (1.15)	41.67 (0.63)	-38.05
861	move-ego-0-4	move-ego-180-4	189.77 (0.80)	162.83 (0.97)	-32.01 (30.70)	30.70 (4.88)	13.43 (3.89)	-56.25
862	move-ego-0-4	headstand	162.83 (0.80)	162.83 (0.97)	-32.01 (30.70)	30.70 (4.88)	13.43 (3.89)	-56.25
863	move-ego-0-4	crawl-0.4-0-180-2	162.83 (0.80)	239.49 (0.97)	-32.01 (30.70)	30.70 (4.88)	13.43 (3.89)	-56.25

Continued on next page

864 Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
 865 Percent change (Δ) is relative to z_1 .

866

867	Task1	Task2	z_1 Env 1	IIP Env 1	% Δ Env 1	z_1 Env 2	IIP Env 2	% Δ Env 2
868	move-ego-low-90-2	crawl-0.4-0-d	241.15 (4.27)	241.15 (4.27)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
869	move-ego-low-90-2	move-ego-90-2	241.15 (4.27)	222.77 (6.49)	-7.62 (1.00)	3.16 (1.00)	3.45 (0.41)	9.18
870	move-ego-low-90-2	move-ego-low-0-0	241.15 (4.27)	122.85 (9.30)	-49.06 (2.23)	21.07 (2.23)	14.55 (8.97)	-30.94
871	move-ego-low-90-2	crawl-0.4-0-d	239.31 (2.49)	239.31 (2.49)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
872	move-ego-low-90-2	move-ego-90-2	239.31 (2.49)	141.87 (5.55)	-40.72 (2.93)	174.57 (2.93)	87.19 (1.70)	-50.05
873	move-ego-low-90-2	move-ego-low-0-0	239.31 (2.49)	150.83 (37.45)	-36.97 (2.96)	24.66 (2.96)	9.22 (4.61)	-62.61
874	move-ego-low-180-2	crawl-0.4-0-d	105.25 (5.20)	105.25 (5.20)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
875	move-ego-low-180-2	move-ego-90-2	105.25 (5.20)	155.85 (11.92)	48.08 (2.26)	136.02 (2.26)	67.80 (1.09)	-50.15
876	move-ego-low-180-2	move-ego-low-0-0	105.25 (5.20)	44.45 (19.06)	-57.77 (1.54)	11.40 (1.54)	6.46 (1.18)	-43.33
877	jump-2	crawl-0.4-0-d	39.00 (0.77)	39.00 (0.77)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
878	jump-2	move-ego-90-2	39.00 (0.77)	37.91 (0.64)	-2.79 (14.04)	53.34 (14.04)	26.83 (7.17)	-49.70
879	jump-2	move-ego-low-0-0	39.00 (0.77)	31.09 (1.33)	-20.28 (2.51)	53.06 (2.51)	26.89 (2.16)	-49.32
880	rotate-x-5-0.8	crawl-0.4-0-d	22.24 (4.07)	22.78 (2.52)	2.43 (1.70)	17.33 (1.70)	8.90 (0.77)	-48.64
881	rotate-x-5-0.8	move-ego-90-2	22.24 (4.07)	13.10 (3.20)	-41.10 (0.65)	5.77 (0.65)	12.76 (0.89)	121.14
882	rotate-x-5-0.8	move-ego-low-0-0	22.24 (4.07)	18.63 (4.86)	-16.23 (3.95)	15.82 (3.95)	7.84 (1.96)	-50.44
883	rotate-x-5-0.8	crawl-0.4-0-d	0.90 (0.88)	2.12 (1.74)	135.56 (13.44)	13.11 (13.44)	6.84 (7.17)	-47.83
884	rotate-x-5-0.8	move-ego-90-2	0.90 (0.88)	0.90 (0.61)	0.00 (0.00)	17.50 (12.82)	14.40 (4.24)	-17.71
885	rotate-x-5-0.8	move-ego-low-0-0	0.90 (0.88)	1.20 (1.38)	33.33 (15.53)	19.07 (15.53)	10.75 (9.88)	-43.63
886	rotate-y-5-0.8	crawl-0.4-0-d	171.02 (16.23)	171.02 (16.23)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
887	rotate-y-5-0.8	move-ego-90-2	171.02 (16.23)	264.35 (3.40)	54.57 (2.07)	25.95 (2.07)	13.36 (1.24)	-48.52
888	rotate-y-5-0.8	move-ego-low-0-0	171.02 (16.23)	244.61 (6.41)	43.03 (6.69)	69.36 (6.69)	34.14 (3.58)	-50.78
889	rotate-y-5-0.8	crawl-0.4-0-d	145.96 (10.27)	145.96 (10.27)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
890	rotate-y-5-0.8	move-ego-90-2	145.96 (10.27)	252.02 (10.27)	72.66 (10.27)	64.40 (10.27)	32.18 (1.29)	-50.03
891	rotate-y-5-0.8	move-ego-low-0-0	145.96 (10.27)	258.72 (1.45)	77.25 (1.83)	37.28 (1.83)	27.64 (1.74)	-25.86
892	rotate-z-5-0.8	crawl-0.4-0-d	90.48 (13.77)	91.11 (14.75)	0.70 (0.28)	0.41 (0.28)	0.22 (0.12)	-46.34
893	rotate-z-5-0.8	move-ego-90-2	90.48 (13.77)	84.88 (1.32)	-6.19 (2.53)	14.84 (2.53)	15.85 (2.21)	6.81
894	rotate-z-5-0.8	move-ego-low-0-0	90.48 (13.77)	129.26 (1.12)	-3.82 (0.39)	11.99 (0.39)	10.80 (0.36)	-9.92
895	rotate-z-5-0.8	crawl-0.4-0-d	134.40 (1.95)	134.40 (1.95)	0.00 (0.01)	0.15 (0.01)	0.15 (0.01)	0.00
896	rotate-z-5-0.8	move-ego-90-2	134.40 (1.95)	141.96 (1.95)	5.63 (0.95)	2.10 (0.95)	2.40 (0.98)	14.29
897	rotate-z-5-0.8	move-ego-low-0-0	134.40 (1.95)	272.33 (3.00)	0.00 (0.95)	0.00 (0.95)	0.00 (0.00)	NaN
898	raisearms-l-1	crawl-0.4-0-d	272.33 (0.19)	272.33 (0.19)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
899	raisearms-l-1	move-ego-90-2	272.33 (0.19)	273.08 (0.11)	0.28 (0.47)	7.93 (0.47)	50.73 (5.06)	539.72
900	raisearms-l-1	move-ego-low-0-0	272.33 (0.19)	254.01 (0.11)	13.84 (0.64)	7.31 (0.64)	6.37 (3.66)	-12.86
901	raisearms-l-1	crawl-0.4-0-d	223.13 (37.29)	223.13 (37.29)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN
902	raisearms-l-1	move-ego-90-2	223.13 (37.29)	223.13 (7.09)	0.00 (0.64)	0.00 (0.64)	0.00 (0.00)	NaN
903	raisearms-l-1	move-ego-low-0-0	223.13 (37.29)	223.13 (37.29)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	NaN

916

917

Continued on next page

918 Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
 919 Percent change (Δ) is relative to z_1 .
 920

921 Task1	922 Task2	923 z_1 Env 1	924 IIP Env 1	925 $\% \Delta$ Env 1	926 z_1 Env 2	927 IIP Env 2	928 $\% \Delta$ Env 2
922 raisearms-l-h	923 crawl-0.4-0-d	924 230.75 (15.35)	925 230.75 (15.35)	926 0.00 (0.00)	927 0.00 (0.00)	928 0.00 (0.00)	929 NaN
923 raisearms-l-h	924 move-ego-90-2	925 230.75 (15.35)	926 230.75 (15.35)	927 10.19 (11.65)	928 34.69 (22.53)	929 18.11 (15.02)	930 -47.79
924 raisearms-l-h	925 move-ego-low-0-0	926 230.75 (15.35)	927 230.75 (15.35)	928 0.00 (0.00)	929 0.00 (0.00)	930 0.00 (0.00)	931 NaN
925 raisearms-l-h	926 crawl-0.4-0-d	927 100.93 (33.41)	928 100.93 (33.41)	929 0.00 (0.00)	930 0.00 (0.00)	931 0.00 (0.00)	932 NaN
926 raisearms-m-l	927 move-ego-90-2	928 100.93 (33.41)	929 80.59 (20.51)	930 -20.15 (1.65)	931 8.99 (1.65)	932 4.46 (0.82)	933 -50.39
927 raisearms-m-l	928 move-ego-low-0-0	929 100.93 (33.41)	930 100.93 (33.41)	931 0.00 (0.00)	932 0.00 (0.00)	933 0.00 (0.00)	934 NaN
928 raisearms-m-l	929 crawl-0.4-0-d	930 258.61 (15.60)	931 258.61 (15.60)	932 0.00 (0.00)	933 0.00 (0.00)	934 0.00 (0.00)	935 NaN
929 raisearms-m-m	930 move-ego-90-2	931 258.61 (15.60)	932 262.61 (12.41)	933 1.55 (6.77)	934 10.53 (6.77)	935 5.27 (3.40)	936 -49.95
930 raisearms-m-m	931 move-ego-low-0-0	932 258.61 (15.60)	933 258.61 (15.60)	934 0.00 (0.00)	935 0.00 (0.00)	936 0.00 (0.00)	937 NaN
931 raisearms-m-m	932 crawl-0.4-0-d	933 180.80 (58.93)	934 180.80 (58.93)	935 0.00 (0.00)	936 0.00 (0.00)	937 0.00 (0.00)	938 NaN
932 raisearms-m-m	933 move-ego-90-2	934 180.80 (58.93)	935 243.77 (26.47)	936 34.83 (16.97)	937 32.99 (16.97)	938 16.53 (8.50)	939 -49.89
933 raisearms-m-h	934 move-ego-low-0-0	935 180.80 (58.93)	936 180.80 (58.93)	937 0.00 (0.00)	938 0.00 (0.00)	939 0.00 (0.00)	940 NaN
934 raisearms-m-h	935 crawl-0.4-0-d	936 46.61 (2.47)	937 46.61 (2.47)	938 0.00 (0.00)	939 0.00 (0.00)	940 0.00 (0.00)	941 NaN
935 raisearms-m-h	936 move-ego-90-2	937 46.61 (2.47)	938 47.46 (3.47)	939 1.82 (7.75)	940 28.54 (7.75)	941 16.45 (4.65)	942 -42.36
936 raisearms-h-l	937 move-ego-low-0-0	938 46.61 (2.47)	939 46.61 (2.47)	940 0.00 (0.00)	941 0.00 (0.00)	942 0.00 (0.00)	943 NaN
937 raisearms-h-l	938 crawl-0.4-0-d	939 132.29 (67.74)	940 132.29 (67.74)	941 0.00 (0.00)	942 0.00 (0.00)	943 0.00 (0.00)	944 NaN
938 raisearms-h-l	939 move-ego-90-2	940 132.29 (67.74)	941 152.65 (35.98)	942 15.39 (20.17)	943 23.48 (10.07)	944 11.73 (10.07)	945 -50.04
939 raisearms-h-m	940 move-ego-low-0-0	941 132.29 (67.74)	942 132.29 (67.74)	943 0.00 (0.00)	944 0.00 (0.00)	945 0.00 (0.00)	946 NaN
940 raisearms-h-m	941 crawl-0.4-0-d	942 229.12 (31.25)	943 229.12 (31.25)	944 0.00 (0.00)	945 0.00 (0.00)	946 0.00 (0.00)	947 NaN
941 raisearms-h-m	942 move-ego-90-2	943 229.12 (31.25)	944 256.48 (6.88)	945 11.94 (2.59)	946 13.58 (2.59)	947 7.40 (1.72)	948 -45.51
942 raisearms-h-m	943 move-ego-low-0-0	944 229.12 (31.25)	945 229.12 (31.25)	946 0.00 (0.00)	947 0.00 (0.00)	948 0.00 (0.00)	949 NaN
943 raisearms-h-m	944 crawl-0.4-0-d	945 229.12 (31.25)	946 243.32 (4.23)	947 0.00 (0.00)	948 0.00 (0.00)	949 0.00 (0.00)	950 NaN
944 raisearms-h-m	945 move-ego-90-2	946 243.32 (4.23)	947 248.32 (4.23)	948 2.05 (4.23)	949 19.94 (4.23)	950 12.59 (2.33)	951 -36.86
945 raisearms-h-m	946 move-ego-low-0-0	947 243.32 (4.23)	948 243.32 (4.23)	949 -2.75 (5.14)	950 102.88 (0.27)	951 101.87 (1.46)	952 -0.98
946 raisearms-h-m	947 crawl-0.4-0-d	948 201.78 (13.35)	949 201.78 (13.35)	950 0.00 (0.00)	951 0.00 (0.00)	952 0.00 (0.00)	953 NaN
947 raisearms-h-m	948 move-ego-90-2	949 201.78 (13.35)	950 201.78 (13.35)	951 0.00 (0.00)	952 0.00 (0.00)	953 0.00 (0.00)	954 NaN
948 raisearms-h-m	949 move-ego-low-0-0	950 201.78 (13.35)	951 201.78 (13.35)	952 0.00 (0.00)	953 0.00 (0.00)	954 0.00 (0.00)	955 NaN
949 raisearms-h-m	950 crawl-0.4-0-d	951 201.78 (13.35)	952 201.78 (13.35)	953 0.00 (0.00)	954 0.00 (0.00)	955 0.00 (0.00)	956 NaN
950 raisearms-h-m	951 move-ego-90-2	952 201.78 (13.35)	953 217.28 (1.59)	954 7.68 (1.59)	955 7.73 (2.71)	956 8.88 (2.81)	957 14.88
951 raisearms-h-m	952 move-ego-low-0-0	953 201.78 (13.35)	954 52.48 (44.14)	955 -73.99 (44.14)	956 112.13 (7.98)	957 26.75 (19.17)	958 -76.14
952 raisearms-h-m	953 crawl-0.4-0-d	954 216.19 (1.07)	955 216.19 (1.07)	956 0.00 (0.00)	957 0.00 (0.00)	958 0.00 (0.00)	959 NaN
953 raisearms-h-m	954 move-ego-90-2	955 216.19 (1.07)	956 177.86 (1.07)	957 -17.73 (1.07)	958 3.82 (0.91)	959 7.86 (0.60)	960 105.76
954 raisearms-h-m	955 move-ego-low-0-0	956 216.19 (1.07)	957 0.00 (0.00)	958 -100.00 (0.94)	959 61.58 (0.17)	960 30.78 (0.31)	961 -50.02
955 raisearms-h-m	956 crawl-0.4-0-d	957 216.19 (1.07)	958 203.05 (2.94)	959 -48.89 (2.94)	960 142.72 (0.22)	961 64.29 (19.94)	962 -54.95
956 raisearms-h-m	957 move-ego-90-2	958 216.19 (1.07)	959 203.05 (2.94)	960 5.90 (2.94)	961 2.88 (0.91)	962 4.98 (0.56)	963 72.92
957 raisearms-h-m	958 move-ego-low-0-0	959 216.19 (1.07)	960 215.02 (2.94)	961 -4.18 (2.94)	962 52.82 (0.79)	963 38.18 (1.56)	964 -27.72
958 raisearms-h-m	959 crawl-0.4-0-d	960 216.19 (1.07)	961 194.56 (4.75)	962 -6.65 (4.75)	963 6.90 (1.57)	964 13.44 (0.82)	965 94.78
959 raisearms-h-m	960 move-ego-90-2	961 216.19 (1.07)	962 251.20 (3.19)	963 0.00 (0.00)	964 0.00 (0.00)	965 0.00 (0.00)	966 NaN
960 raisearms-h-m	961 move-ego-low-0-0	962 216.19 (1.07)	963 251.20 (3.19)	964 -28.07 (3.19)	965 108.87 (0.22)	966 94.77 (6.85)	967 -12.95
961 raisearms-h-m	962 crawl-0.4-0-d	963 216.19 (1.07)	964 180.68 (7.18)	965 -28.07 (7.18)	966 108.87 (1.57)	967 94.77 (6.85)	968 NaN
962 raisearms-h-m	963 move-ego-90-2	964 216.19 (1.07)	965 251.20 (3.19)	966 -6.65 (3.19)	967 6.90 (0.00)	968 13.44 (0.82)	969 94.78
963 raisearms-h-m	964 move-ego-low-0-0	965 216.19 (1.07)	966 180.68 (20.64)	967 -28.07 (20.64)	968 108.87 (0.22)	969 94.77 (6.85)	970 -12.95

Continued on next page

972 Table 6: Full evaluation results for all task pairs. Rewards are shown as mean (std) over 5 seeds.
 973 Percent change (Δ) is relative to z_1 .

975 Task1	976 Task2	977 z_1 Env 1	978 IIP Env 1	979 $\% \Delta$ Env 1	980 z_1 Env 2	981 IIP Env 2	982 $\% \Delta$ Env 2
983 split-1	984 crawl-0.4-0-d	985 94.13 (27.83)	986 94.13 (27.83)	987 0.00 (0.00)	988 0.00 (0.00)	989 0.00 (0.00)	990 NaN
991 split-1	992 move-ego-90-2	993 94.13 (27.83)	994 56.11 (52.51)	995 -40.39 (16.74)	996 26.40 (24.42)	997 16.93 (5.42)	998 -35.87
999 split-1	1000 move-ego-low-0-0	1001 94.13 (27.83)	1002 12.65 (15.86)	1003 -86.56 (24.42)	1004 107.55 (26.50)	1005 63.64	1006 -40.83
1007 crawl-0.4-0-u	1008 crawl-0.4-0-d	1009 108.70 (4.52)	1010 108.70 (4.52)	1011 0.00 (0.00)	1012 0.00 (0.00)	1013 0.00 (0.00)	1014 NaN
1015 crawl-0.4-0-u	1016 move-ego-90-2	1017 108.70 (4.52)	1018 93.90 (5.57)	1019 -13.62 (0.16)	1020 6.15 (0.16)	1021 3.34 (0.30)	1022 -45.69
1023 crawl-0.4-0-u	1024 move-ego-low-0-0	1025 108.70 (4.52)	1026 87.81 (4.90)	1027 -19.22 (0.64)	1028 65.32	1029 91.75 (1.63)	1030 40.46
1031 crawl-0.4-0-u	1032 move-ego-90-2	1033 15.66 (5.75)	1034 15.66 (5.75)	1035 0.00 (0.00)	1036 0.00 (0.00)	1037 0.00 (0.00)	1038 NaN
1039 crawl-0.4-0-u	1040 move-ego-low-0-0	1041 15.66 (5.75)	1042 13.10 (2.39)	1043 -16.35 (1.53)	1044 5.97	1045 4.50 (1.68)	1046 -24.62
1047 crawl-0.4-0-u	1048 move-ego-90-2	1049 15.66 (5.75)	1050 17.77 (2.20)	1051 13.47 (3.62)	1052 70.55	1053 88.67 (3.51)	1054 25.68
1055 crawl-0.5-0-u	1056 move-ego-90-2	1057 108.26 (5.00)	1058 108.26 (5.00)	1059 0.00 (0.00)	1060 0.00 (0.00)	1061 0.00 (0.00)	1062 NaN
1064 crawl-0.5-0-u	1065 move-ego-low-0-0	1066 108.26 (5.00)	1067 93.68 (5.36)	1068 -13.47 (0.17)	1069 6.12 (0.17)	1070 3.10 (0.09)	1071 -49.35
1073 crawl-0.5-0-u	1074 move-ego-90-2	1075 108.26 (5.00)	1076 87.82 (6.00)	1077 -18.88 (0.81)	1078 65.30 (0.81)	1079 92.37 (1.81)	1080 41.45
1083 crawl-0.5-0-u	1084 move-ego-low-0-0	1085 16.02 (5.50)	1086 16.02 (5.50)	1087 0.00 (0.00)	1088 0.00 (0.00)	1089 0.00 (0.00)	1090 NaN
1093 crawl-0.5-0-u	1094 move-ego-90-2	1095 16.02 (5.50)	1096 12.25 (2.32)	1097 -23.53 (1.44)	1098 6.09 (1.44)	1099 5.12 (1.91)	1100 -15.93
1103 crawl-0.5-0-u	1104 move-ego-90-2	1105 16.02 (5.50)	1106 18.49 (3.02)	1107 15.42 (3.77)	1108 70.64	1109 91.72 (6.83)	1110 29.84
1113 crawl-0.4-0-u	1114 move-ego-low-0-0	1115 218.88 (12.18)	1116 218.88 (12.18)	1117 0.00 (0.00)	1118 0.00 (0.00)	1119 0.00 (0.00)	1120 NaN
1123 crawl-0.4-0-u	1124 move-ego-90-2	1125 218.88 (12.18)	1126 146.25 (29.70)	1127 -33.18 (1.49)	1128 6.73 (1.49)	1129 5.40 (1.19)	1130 -19.76
1133 crawl-0.4-0-u	1134 move-ego-low-0-0	1135 218.88 (12.18)	1136 169.85 (18.72)	1137 -22.40 (8.28)	1138 142.74 (8.28)	1139 72.01 (6.09)	1140 -49.55
1143 crawl-0.4-0-u	1144 crawl-0.5-2-0-d	1145 10.81 (4.87)	1146 10.81 (4.87)	1147 0.00 (0.00)	1148 0.00 (0.00)	1149 0.00 (0.00)	1150 NaN
1153 crawl-0.4-0-u	1154 move-ego-90-2	1155 10.81 (4.87)	1156 17.04 (7.20)	1157 57.63 (1.43)	1158 5.97 (1.43)	1159 4.43 (1.44)	1160 -25.80
1163 crawl-0.4-0-u	1164 move-ego-low-0-0	1165 10.81 (4.87)	1166 19.02 (4.67)	1167 75.95 (45.26)	1168 126.65 (45.26)	1169 65.27 (18.68)	1170 -48.46
1173 crawl-0.5-0-u	1174 move-ego-90-2	1175 156.95 (28.19)	1176 156.95 (28.19)	1177 0.00 (0.00)	1178 0.00 (0.00)	1179 0.00 (0.00)	1180 NaN
1183 crawl-0.5-0-u	1184 move-ego-90-2	1185 156.95 (28.19)	1186 152.07 (42.10)	1187 -3.11 (0.53)	1188 5.88 (0.53)	1189 5.39 (2.35)	1190 -8.33
1193 crawl-0.5-0-u	1194 move-ego-low-0-0	1195 156.95 (28.19)	1196 123.45 (15.56)	1197 -21.34 (14.81)	1198 86.71 (14.81)	1199 44.84 (8.85)	1200 -48.29
1203 crawl-0.5-0-u	1204 move-ego-90-2	1205 25.41 (11.08)	1206 25.41 (11.08)	1207 0.00 (0.00)	1208 0.00 (0.00)	1209 0.00 (0.00)	1210 NaN
1213 crawl-0.5-0-u	1214 move-ego-90-2	1215 25.41 (11.08)	1216 26.20 (20.26)	1217 3.11 (3.73)	1218 5.99 (3.73)	1219 6.45 (1.81)	1220 7.68
1223 crawl-0.5-0-u	1224 move-ego-90-2	1225 25.41 (11.08)	1226 25.13 (9.74)	1227 -1.10 (30.29)	1228 83.29 (30.29)	1229 45.65 (14.72)	1230 -45.19

1015 A.5 BODY SEGMENTS AND KINEMATIC VARIABLES

1016 The environment’s reward signal is composed of a set of basic elements whose values are determined
 1017 by body-part descriptors and their temporal changes. The body is partitioned into the *trunk* and the
 1018 *limbs*, and four types of kinematic variables describe state changes.

1019
 1020 **Trunk** Pelvis, Torso, Spine, Chest, Neck, Head.

1021 **Limbs** L_Hip, R_Hip (left/right hip), L_Knee, R_Knee (left/right knee), L_Ankle,
 1022 R_Ankle (left/right ankle; cf. `rewards.py`:548–549), L_Toe, R_Toe (left/right
 1023 toe), L_Thorax, R_Thorax (left/right thorax), L_Hand, R_Hand (left/right hand),
 1024 L_Shoulder, R_Shoulder (left/right shoulder), L_Elbow, R_Elbow (left/right elbow),
 1025 L_Wrist, R_Wrist (left/right wrist).

1026 **Kinematic variables** `pos` (position), `rot` (orientation/rotation), `vel` (linear velocity), `ang` (angular velocity).
 1027
 1028

1029 Accordingly, all reward terms are constructed from the above body-part features and kinematic
 1030 variables. By specifying appropriate subsets of parts and change variables when defining the reward,
 1031 the agent is incentivized to realize the desired behaviors.

1032
 1033 **A.6 FORMULA DESCRIPTION**
 1034

1035 **Behavior definitions.** Each behavior S is composed of multiple action primitives. The following
 1036 formulas present the symbolic specification of each behavior; the corresponding textual descriptions
 1037 of the action primitives are summarized in Table 7.

1038 **LOCOMOTIONREWARD**
 1039

1040 Encourages a humanoid to move at a prescribed speed and heading. The reward comprises standing
 1041 height, torso uprightness, translational speed, and heading control, and supports egocentric targets
 1042 as well as low-posture locomotion.

1043
 1044
$$S_{\text{LocomotionReward}} = \begin{cases} s_{\text{small_control}} \cdot s_{\text{stand_reward}} \cdot s_{\text{dont_move}}, & \text{if } move_speed = 0 \\ s_{\text{small_control}} \cdot s_{\text{stand_reward}} \cdot s_{\text{move}} \cdot s_{\text{angle_reward}}, & \text{if } move_speed \neq 0 \end{cases}$$

 1045
 1046

1047 **JUMPREWARD**
 1048

1049 Encourages the agent to jump to a specified height. Performance is assessed by combining head
 1050 height, torso uprightness, and upward velocity.

1051
$$S_{\text{JumpReward}} = s_{\text{jumping}} \cdot s_{\text{upright}} \cdot s_{\text{up_velocity}}$$

 1052

1053 **HEADSTANDREWARD**

1054 Encourages execution of a headstand. Evaluation considers pelvis elevation, global body orientation,
 1055 foot placement, and verified head-ground contact.

1056
 1057
$$S_{\text{HeadstandReward}} = s_{\text{height_reward}} \cdot s_{\text{small_control}} \cdot s_{\text{headstand}} \cdot s_{\text{dont_move}} \cdot s_{\text{dont_rotate}} \cdot s_{\text{high_left_foot}} \cdot s_{\text{high_right_foot}} \cdot s_{\text{high_head}}$$

 1058

1059 **ROTATIONREWARD**

1060 Encourages rotation about a specified axis at a target angular velocity. The objective aggregates
 1061 height maintenance, rotational speed, and whole-body alignment.

1062
 1063
$$S_{\text{RotationReward}} = s_{\text{move}} \cdot s_{\text{height_reward}} \cdot s_{\text{small_control}} \cdot s_{\text{aligned}}$$

1064 **ARMSREWARD**

1065 Encourages raising the arms to designated heights. The criterion checks whether the left and right
 1066 hands reach predefined low, medium, and high bands.

1067
 1068
$$S_{\text{ArmsReward}} = s_{\text{small_control}} \cdot s_{\text{stand_reward}} \cdot s_{\text{dont_move}} \cdot s_{\text{left_arm}} \cdot s_{\text{right_arm}}$$

1069
 1070 **LIEDOWNREWARD**

1071 Encourages lying on the ground. Assessment inspects ground contact of key segments, chest orientation,
 1072 and overall body alignment.

1073
 1074
$$S_{\text{LieDownReward}} = s_{\text{small_control}} \cdot s_{\text{ground_reward}} \cdot s_{\text{dont_move}} \cdot s_{\text{orient_reward}}$$

1075
 1076 **SPLITREWARD**

1077 Encourages a split posture. Evaluation considers ankle separation distance, pelvic position, and head
 1078 height.

1079
 1080
$$S_{\text{SplitReward}} = s_{\text{head_rew}} \cdot s_{\text{split_rew}} \cdot s_{\text{pelvis_pos}} \cdot s_{\text{dont_move}} \cdot s_{\text{small_control}}$$

1080
1081Table 7: Descriptions of sub-rewards s used in reward function definitions.1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Sub-reward	Description
$s_{\text{small_control}}$	Penalizes large control inputs, encouraging smooth and small torques. Helps reduce jitter and unnecessary energy consumption.
$s_{\text{stand_reward}}$	Ensures proper head height and torso uprightness, encouraging the agent to maintain a standing posture.
$s_{\text{dont_move}}$	Rewards staying still when no movement is required by limiting horizontal center-of-mass velocity. Prevents unnecessary swaying.
s_{move}	Encourages the center-of-mass velocity to match the target speed, and aligns with a specified direction if given. Ensures proper forward motion.
$s_{\text{angle_reward}}$	Measures alignment between current velocity direction and the target direction. High reward when aligned, lower when deviating.
s_{jumping}	Rewards if the head height exceeds a desired jump threshold, ensuring the jumping task is achieved.
s_{upright}	Encourages torso uprightness, preventing excessive bending or collapsing. Determined mainly by chest orientation.
$s_{\text{up_velocity}}$	Encourages upward velocity of the center of mass or head, supporting jumping and lifting motions.
$s_{\text{height_reward}}$	Ensures pelvis or body parts maintain a proper height range, discouraging collapse or being too low.
$s_{\text{headstand}}$	Encourages pelvis inversion aligned with a head-supported pose, forming a headstand. Defined mainly by pelvis orientation.
$s_{\text{dont_rotate}}$	Penalizes large angular velocities, encouraging stability and reducing erratic spinning.
$s_{\text{high_left_foot}}, s_{\text{high_right_foot}}$	Ensures the feet are lifted above the ground during specific poses (e.g., headstand). Prevents contact with the ground.
$s_{\text{high_head}}$	Keeps the head safely above ground level, avoiding collapse or head contact with the floor.
s_{aligned}	Encourages pelvis orientation to match the target axis. Important in rotation tasks.
$s_{\text{left_arm}}, s_{\text{right_arm}}$	Ensures the arms are raised to specified height ranges (low, medium, high, extended).
$s_{\text{ground_reward}}$	Encourages body parts to stay close to the ground, used in lying or prone tasks.
$s_{\text{orient_reward}}$	Ensures body geometry is oriented consistently with the target direction (e.g., torso or limbs aligned).
$s_{\text{split_rew}}$	Encourages the distance between legs to exceed a threshold, used in split or straddle tasks.
$s_{\text{pelvis_pos}}$	Ensures pelvis position stays near the ground or within a proper height range.
$s_{\text{head_rew}}$	Encourages the head to stay at a reasonable height, avoiding collapse.
$s_{\text{pelvis_reward}}$	Keeps pelvis height within a desired range, important for sitting or crouching tasks.
$s_{\text{knee_reward}}$	Based on whether knees touch or avoid the ground. Controls knee support conditions.
$s_{\text{alignment_reward}}$	Measures alignment of multiple body parts' orientations, encouraging coordinated posture.
s_{arms}	Sub-reward derived from arm-related tasks (e.g., raising arms). Part of ArmsReward.
$s_{\text{locomotion}}$	Sub-reward derived from locomotion-related tasks (e.g., speed, direction). Part of LocomotionReward.

SITONGROUNDREWARD

Encourages sitting on the ground or adopting a squat posture. The metric evaluates pelvic height, head position, knee configuration, and torso uprightness.

$$S_{\text{SitOnGroundReward}} = s_{\text{small_control}} \cdot s_{\text{stand_reward}} \cdot s_{\text{dont_move}} \cdot s_{\text{pelvis_reward}} \cdot s_{\text{knee_reward}}$$

1134 While estimating the scalar parameter λ via the bisection method, we found that injecting the
 1135 representation z_1 produced by the *Locomotion* task into the *SitOnGround* environment yielded a
 1136 reward of approximately 0.13. This behavior stems from seated-height constraints imposed by
 1137 `stand_reward` and `pelvis_reward`, which suppress the signal and induce premature conver-
 1138 gence of the bisection procedure. To address this, we ablated these two terms and defined a revised
 1139 objective, *SitOnGround v2*, which restored an informative optimization landscape; the bisection
 1140 iterations then proceeded to convergence, yielding $\lambda = 1$.

1141

1142
$$S_{\text{SitOnGroundReward-v2}} = s_{\text{small_control}} \cdot s_{\text{dont_move}} \cdot s_{\text{knee_reward}}$$

1143

1144 **CRAWLREWARD**

1145

1146 Encourages crawling at a specified body height and speed. The objective considers spinal height,
 1147 body orientation, translational speed, and angular alignment.

1148
$$S_{\text{CrawlReward}} = \begin{cases} s_{\text{dont_move}} \cdot s_{\text{alignment_reward}}, & \text{if } move_speed = 0 \\ s_{\text{alignment_reward}} \cdot s_{\text{move}} \cdot s_{\text{angle_reward}}, & \text{if } move_speed \neq 0 \end{cases}$$

1149

1150 **MOVEANDRAISEARMSREWARD**

1151

1152 A composite task coupling locomotion with arm-raising. It internally combines *LocomotionReward*
 1153 and *ArmsReward* and modulates the locomotion coefficient based on arm posture.

1154
$$S_{\text{MoveAndRaiseArmsReward}} = \frac{\alpha s_{\text{arms}} + \beta s_{\text{locomotion}}}{\alpha + \beta}, \quad \text{where } \alpha = \text{arm_coeff}, \beta = \text{loc_coeff}$$

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187