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Abstract

Generative models have become widely used001
in biomedical entity linking (BioEL) due to002
their excellent performance and efficient mem-003
ory usage. However, these models are usually004
trained only with positive samples—entities005
that match the input mention’s identifier—and006
do not explicitly learn from hard negative sam-007
ples, which are entities that look similar but008
have different meanings. To address this limi-009
tation, we introduce ANGEL (Learning from010
Negative Samples in Biomedical Generative011
Entity Linking), the first framework that trains012
generative BioEL models using negative sam-013
ples. Specifically, a generative model is ini-014
tially trained to generate positive entity names015
from the knowledge base for given input enti-016
ties. Subsequently, both correct and incorrect017
outputs are gathered from the model’s top-k018
predictions. Finally, the model is updated to019
prioritize the correct predictions through pref-020
erence optimization. Our models fine-tuned021
with ANGEL outperform the previous best022
baseline models by up to an average top-1 ac-023
curacy of 1.4% on five benchmarks. When024
incorporating our framework into pre-training,025
the performance improvement further increases026
to 1.7%, demonstrating its effectiveness in both027
the pre-training and fine-tuning stages. We will028
make our models and code publicly available029
upon acceptance.030

1 Introduction031

Biomedical entity linking (BioEL) involves align-032

ing entity mentions in text with standardized con-033

cepts from biomedical knowledge bases (KB) such034

as UMLS (Bodenreider, 2004) or MeSH (Lip-035

scomb, 2000). BioEL encounters significant chal-036

lenges due to the diverse and ambiguous nature037

of biomedical terminology, including synonyms,038

abbreviations, and terms that look similar but039

have different meanings. For instance, ‘ADHD’040

(CUI:C1263846, where CUI stands for Concept041
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Figure 1: Comparison of training approaches between
existing generative BioEL models and our ANGEL
method. The main limitation of current generative
BioEL methods is that they are trained only on positive
samples. This restricts their ability to distinguish be-
tween entity names that look similar but different mean-
ings depending on the context. Our ANGEL framework
addresses this issue by training the model to prefer posi-
tive samples over negative ones.

Unique ID) has synonyms such as hyperkinetic dis- 042

order and attention deficit hyperactivity disorder. 043

Additionally, ‘ADA’ can be mapped to either adeno- 044

sine deaminase (CUI:C1412179) or American Dia- 045

betes Association (CUI:C1705019) depending on 046

the context in which the entity appears. 047

Recent studies have focused on addressing 048

these challenges, broadly categorized into two ap- 049

proaches: similarity-based and generative BioEL. 050

Similarity-based models (Sung et al., 2020; Liu 051

et al., 2021; Lai et al., 2021; Bhowmik et al., 2021; 052

Agarwal et al., 2022) encode input mentions and 053

entities from KBs into the same vector space using 054

embedding models. They then calculate similar- 055

ity scores to identify the most similar entities for 056

each input entity. Although these approaches have 057
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achieved remarkable improvements, they require058

significant space to index and load embedding vec-059

tors for all candidate entities (De Cao et al., 2020).060

Furthermore, representing both the input and can-061

didate entities as single vectors using a bi-encoder062

can limit the quality of their representations, mak-063

ing it difficult to handle challenging cases.064

On the other hand, generative models (De Cao065

et al., 2020; Yuan et al., 2022b), built upon an066

encoder-decoder structure (Lewis et al., 2020; Raf-067

fel et al., 2020), directly generate the most likely068

entity name from the KB for the input entity. The069

output space is dynamically controlled through a070

constrained decoding strategy, ensuring that only071

entities from the target KB are generated. Genera-072

tive models offer several advantages over similarity-073

based models, including greater memory efficiency074

and higher performance. They eliminate the need075

to index large external embedding vectors, and076

their auto-regressive formulation effectively cross-077

encodes the input document and candidate entities.078

However, existing generative models are trained079

solely on positive samples and do not explicitly080

learn from negative samples. Despite their high081

performance, they encounter limitations when dis-082

tinguishing between biomedical entities with sim-083

ilar surface forms but different meanings. Al-084

though similarity-based models address this issue085

by incorporating negative samples through syn-086

onym marginalization (Sung et al., 2020) or con-087

trastive learning (Liu et al., 2021), applying these088

approaches to generative models is not straightfor-089

ward. Consequently, generative models may overfit090

to surface-level features, reducing the models’ abil-091

ity to generalize effectively across varied contexts,092

as illustrated in Figure 1.093

To harness the benefits of generative approaches094

while overcoming their limitation of not using neg-095

ative samples, we introduce a novel training frame-096

work, ANGEL. Our framework operates in two097

stages: positive-only training and negative-aware098

training. In the first stage, a generative model is099

trained to generate biomedical terms from the KB100

that share the same identifier as the given input101

entity. In the second stage, we gather both correct102

and incorrect outputs from the model’s top-k pre-103

dictions. The model is then updated to prioritize the104

correct predictions using the direct preference opti-105

mization (DPO) algorithm (Rafailov et al., 2024).106

Models trained on our ANGEL framework sig-107

nificantly outperform the previous best similarity-108

based and generative BioEL models, achieving an109

average accuracy improvement of 1.7% across five 110

datasets. Our contributions are as follows: 111

• We introduce ANGEL, the first-of-its-kind 112

training framework that utilizes negative sam- 113

ples in generative entity linking. ANGEL 114

overcomes the limitations of existing genera- 115

tive approaches by effectively employing neg- 116

ative samples during training. 117

• ANGEL is a versatile framework, demonstrat- 118

ing its applicability in both the pre-training 119

and fine-tuning phases, leading to perfor- 120

mance improvements at each stage. Addition- 121

ally, our method is model-agnostic, consis- 122

tently improving results across various back- 123

bone language models, with gains ranging 124

from 0.9% to 1.7%. 125

• Our best model, pre-trained and fine-tuned 126

with our framework, outperforms the previ- 127

ous best baseline model by 1.7% across five 128

benchmark datasets. 129

2 Related Work 130

2.1 Biomedical Entity Linking 131

Biomedical entity linking (BioEL), also known 132

as biomedical entity normalization, is a crucial 133

task because of its application in several down- 134

stream tasks in the biomedical domain, such as 135

literature search (Lee et al., 2016), knowledge ex- 136

traction (Li et al., 2016a; Xiang et al., 2021; Zhang 137

et al., 2023), knowledge graph alignment (Cohen 138

and Hersh, 2005; Lin et al., 2022), and automatic di- 139

agnosis (Shi et al., 2021; Yuan and Yu, 2024). Typi- 140

cally, it is assumed that the target mention is already 141

provided, and the task is solely to link this mention 142

to the appropriate entity name from the KB. End- 143

to-end BioEL (Zhou et al., 2021; Ujiie et al., 2021), 144

which also involves identifying mentions within a 145

sentence, is being actively researched, but this is 146

not our focus and will not be discussed in detail. 147

Traditional classification-based approaches 148

(Limsopatham and Collier, 2016a; Miftahutdinov 149

et al., 2019) employed a softmax layer for classifi- 150

cation, treating concepts as categorical variables 151

and thereby losing the detailed information of 152

concept names. Similarity-based (Sung et al., 153

2020; Liu et al., 2021; Lai et al., 2021; Zhang 154

et al., 2022) models have significantly improved 155

BioEL performance, which encodes mentions 156

and candidate entity names in the same vector 157
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space. They are characterized by high memory158

consumption due to the need to encode entities159

into pre-computed embeddings, posing scalability160

challenges with large datasets (De Cao et al.,161

2020). Several studies have integrated the concept162

of clustering into BioEL (Angell et al., 2021;163

Agarwal et al., 2022).164

2.2 Generative Entity Linking165

Generative models have become a powerful method166

for entity linking by overcoming the limitations167

of similarity-based models. The GENRE frame-168

work (De Cao et al., 2020) was the first to demon-169

strate this approach. To enhance precision and170

reduce memory usage, GENRE introduced a con-171

strained decoding method (Hokamp and Liu, 2017)172

using a prefix tree (trie), which restricts the output173

space to valid entity names. This technique also fa-174

cilitates easy updates to the set of entities, making175

the system highly adaptable to changes in the KB.176

In the biomedical field, notable examples of genera-177

tive models include GenBioEL (Yuan et al., 2022b)178

and BioBART (Yuan et al., 2022a). GenBioEL, in179

particular, is the first model to apply a generative180

model BART (Lewis et al., 2020) to BioEL, after181

pre-training it using UMLS. Additionally, several182

hybrid approaches, known as retrieve-and-generate183

methods, have been proposed (Xu et al., 2023; Lin184

et al., 2024). In these methods, a similarity-based185

model first retrieves the top-k candidates, which186

are then reranked using a generative model. Al-187

though generative approaches have shown high per-188

formance, their training has typically been limited189

to positive samples, as discussed in the introduc-190

tion section. In this study, we introduce the use of191

negative samples during training and demonstrate192

that this approach can significantly enhance the193

performance of generative models.194

3 Method195

3.1 Task Formulation196

Let D = {(xn, yn)}Nn=1 be a human-labeled197

dataset, where xn represents an input text and yn198

is the gold identifier defined in a KB denoted by E .199

Each xn contains a target entity mention mn along200

with its surrounding contextual information c−n and201

c+n , which represents the tokens before and after202

the entity mention xn, respectively. For simplicity,203

we will omit the subscript n. Our goal is to map204

each mention x to its corresponding identifier y∗205

from the set of entity names E as follows: 206

y∗ = F(argmaxe∈E pθ(e|x)), (1) 207

where F is a mapping function that converts enti- 208

ties to their identifiers, and θ represents the model 209

parameters. 210

Previous generative BioEL approaches train the 211

model to generate a synonym s ∈ S for the given 212

mention in an autoregressive manner as follows: 213

pθ(s | x,v) =
T∏
t=1

pθ(st | s<t,x,v), (2) 214

where S ⊂ E is the set of entity names (i.e., syn- 215

onyms) corresponding to the identifier y∗, and T 216

is the number of tokens of the synonym s and st 217

indicates the t-th token of the synonym. The pre- 218

fix prompt v to the decoder, represented as ‘[BOS] 219

m is’, is designed to make the decoder’s output 220

resemble a natural language sentence, which helps 221

to minimize discrepancies between language mod- 222

eling and fine-tuning on the BioEL task. The target 223

mention in the input is surrounded by the special 224

tokens, [ST] and [ET], as follows: 225

[BOS] c− [ST] m [ET] c+ [EOS], 226

where the special tokens [BOS] and [EOS] repre- 227

sent the ‘Begin Of Sentence’ and ‘End Of Sen- 228

tence,’ respectively. 229

As shown in Equation 2, existing models are 230

trained only to output synonyms corresponding to 231

the given mention (i.e., positive samples), with- 232

out learning from negative samples. In contrast, 233

we introduce a new method called negative-aware 234

training, which allows the model to learn by com- 235

paring both positive and negative samples, enhanc- 236

ing the model’s generalizability. We will describe 237

our framework in detail in the following sections. 238

3.2 ANGEL Framework 239

Our framework consists of two main stages: 240

positive-only training, which warms up the model 241

on target datasets, and negative-aware training, 242

which continuously improves the model by learn- 243

ing from negative samples (see Figure 2). 244

Positive-only Training In this initial stage, the 245

goal is to learn the morphological similarities 246

among synonyms. To achieve this, we train the 247

model to generate synonyms (i.e., positive sam- 248

ples) that are predefined in the KB, similar to 249
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Figure 2: Overview of our method ANGEL (Learning from Negative Samples in Biomedical Generative Entity
Linking). The core idea of ANGEL is to enhance both pre-training and fine-tuning by incorporating negative
samples, which are obtained either through TF-IDF similarity or the model’s top-k predictions. This approach helps
the model distinguish subtle differences between correct and incorrect entities.

traditional generative methods (see Equation 2).250

Our preliminary study indicated that using all syn-251

onyms, s ∈ S, was not effective. Also, relying252

solely on the top-1 synonym, as done in a previous253

study (Yuan et al., 2022b), may limit generalizabil-254

ity. Therefore, we select several of the most similar255

synonyms to the mention based on their TF-IDF256

similarity, which is calculated as follows:257

Ŝ = argsorts∈S(TFIDF(m, s)), (3)258

where TFIDF(·) returns similarity scores. We use259

the top-k subset Ŝk = Ŝ[: k] = {ŝ1, . . . , ŝk} as260

training instances for each mention.261

Negative-aware Training Although surface sim-262

ilarities are a useful feature for BioEL, over-relying263

on them can limit the model’s generalization abil-264

ity. To address this issue, we update the model265

using negative-aware training. First, we obtain the266

top-k predictions of the model for mentions in the267

training dataset. We then automatically construct268

a training dataset consisting of triplets: a mention 269

with context (if it exists), a correct prediction, and 270

an incorrect prediction. Among all pairs of correct 271

and incorrect predictions, we select only those pairs 272

where the incorrect prediction’s rank is higher than 273

the correct prediction’s rank. Particularly, when the 274

highest ranked entity is the correct one, we pair this 275

entity with the highest ranked incorrect entity to 276

preserve the model’s prior learning. Finally, using 277

this dataset D′, we then optimize the model with 278

the DPO algorithm. This maximizes the likelihood 279

of generating the correct prediction, ew, over the 280

incorrect prediction, el, defined as follows: 281

L(pθ; pref) = −E(x,ew,el)∼D′

[

log σ

(
β log

pθ(ew|x)
pref(ew|x)

− β log
pθ(el|x)
pref(el|x)

)]
,

(4) 282

where pθ is the generative model to be trained, pref 283

is the generative model that was trained in the pre- 284
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vious stage using positive-only training, σ is a sig-285

moid function, and β is a hyperparameter.286

Applying ANGEL in Pre-training Our frame-287

work is versatile, supporting not only fine-tuning288

with labeled datasets but also pre-training with the289

KB itself. Initially, we conduct positive-only train-290

ing using synonym lists defined in UMLS, the most291

extensive KB in the biomedical field. We gener-292

ate its surrounding contextual information automat-293

ically for each entity, using clause templates or294

definitions, as outlined in GenBioEL (Yuan et al.,295

2022b).1 We then use the TF-IDF similarity to296

identify the top synonym and set it as the target297

(Equation 3). For negative-aware training, using298

the model’s top-k predictions is impractical due to299

UMLS’s vastness, which includes over 3 million300

entities. Instead, we use entities with the highest301

TF-IDF similarity but different identifiers from the302

input mentions as negative samples. This approach303

significantly reduces computation, enabling effec-304

tive training across the entire UMLS.305

4 Experiments306

4.1 Datasets307

We utilized five popular BioEL benchmark datasets:308

NCBI-disease (Doğan et al., 2014), BC5CDR (Li309

et al., 2016b), COMETA (Basaldella et al., 2020),310

AskAPatient (Limsopatham and Collier, 2016b),311

and MedMentions (Mohan and Li, 2019), with the312

ST21pv subset used for MedMentions. Due to313

the lack of a test set in the AskAPatient dataset,314

we adhere to the 10-fold evaluation protocol out-315

lined by Limsopatham and Collier (2016b). Also,316

this dataset does not include context for the men-317

tions. In the following tables, NCBI-disease, AskA-318

Patient, and MedMentions are denoted as NCBI,319

AAP, and MM-ST21pv, respectively. Please refer320

to Appendix B for detailed dataset descriptions and321

statistics.322

4.2 Baseline Models323

We use top-performing similarity-based mod-324

els (Sung et al., 2020; Liu et al., 2021; Lai et al.,325

2021; Zhang et al., 2022) and generative mod-326

els (Lewis et al., 2020; Yuan et al., 2022a,b) as327

our baselines. To ensure a fair comparison with our328

model under identical experimental conditions, we329

replicate the following generative models and then330

1Detailed descriptions of data generation during the pre-
training stage are provided in Appendix A.

apply our ANGEL framework to them: (1) BART- 331

large (Lewis et al., 2020) is an encoder-decoder 332

language model pre-trained on a general-domain 333

corpus. (2) BioBART-large (Yuan et al., 2022a) is 334

the BART-large model continuously pre-trained on 335

a biomedical-domain corpus. (3) GenBioEL (Yuan 336

et al., 2022b) is initialized with the weights of the 337

BART-large model and then pre-trained specifically 338

for BioEL using UMLS. 339

In BioEL, several studies utilize retrieve-and- 340

generate methods (Xu et al., 2023; Lin et al., 2024). 341

This involves a similarity-based model retrieving 342

the top-k candidates from the KB, followed by a 343

generative model reranking these candidates. We 344

exclude these methods from our experiments to 345

focus on introducing a novel training method that 346

uses negative samples for generative entity link- 347

ing and demonstrating its effectiveness in a single 348

generative model. Future research could apply our 349

methodology to enhance the reranking process of 350

generative models. 351

4.3 Implementation Details 352

Our framework is applied to each of these mod- 353

els during fine-tuning, referred to as ANGELFT, 354

and during both pre-training and fine-tuning, re- 355

ferred to as ANGELPT+FT. For pre-training, we uti- 356

lized the 2020AA version of the UMLS database,2 357

which comprises 3.09M entities, of which 199K 358

concepts contain definitions. In the pre-training 359

phase, the model was trained for 5 epochs, with 360

checkpoints created every 500 steps. We selected 361

the best checkpoints based on the validation sets. 362

During fine-tuning on MM-ST21pv, we also used 363

the 2020AA version of UMLS because the 2017AA 364

version was not directly accessible. Please note that 365

the reported scores of baseline models were mea- 366

sured based on the 2017AA version of UMLS. For 367

determining the best hyperparameters in positive- 368

only training, we searched for the optimal learn- 369

ing rate within the range of 1e-5 to 3e-7 and ad- 370

justed the batch size between 8 and 16, follow- 371

ing the approach of Yuan et al. (2022b). For the 372

negative-aware training, we searched for the op- 373

timal learning rate from 2e-5 to 1e-6 and experi- 374

mented with batch sizes ranging from 16 to 64. In 375

pre-processing, following Yuan et al. (2022b), we 376

expanded abbreviations using AB3P (Sohn et al., 377

2008), lowercase texts, mark mention boundaries 378

with special tokens [ST] and [ET], and discard 379

2https://www.nlm.nih.gov/research/umls/
licensedcontent/umlsarchives04.html
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Model NCBI BC5CDR COMETA AAP MM-ST21pv Average

Similarity-based BioEL

BioSYN (Sung et al., 2020) 91.1 - 71.3 82.6 - -
SapBERT (Liu et al., 2021) 92.3 - 75.1 89.0 - -
ResCNN (Lai et al., 2021) 92.4 - 80.1 - 55.0 -
KRISSBERT (Zhang et al., 2022) 91.3 - - - 72.2 -

Generative BioEL (reported)

BART (Lewis et al., 2020) 90.2 92.5 80.7 88.8 71.5 84.7
BioBART (Yuan et al., 2022a) 89.9 93.3 81.8 89.4 71.8 85.2
GenBioEL (Yuan et al., 2022b) 91.9 93.3 81.4 89.3 - -

Generative BioEL (reproduced)

BART† (Lewis et al., 2020) 90.3 93.0 80.4 88.7 70.1 84.5
+ ANGELFT (Ours) 91.4 (+1.1) 93.6 (+0.6) 81.3 (+0.9) 89.5 (+0.8) 71.2 (+1.1) 85.4 (+0.9)

BioBART† (Yuan et al., 2022a) 89.4 93.5 81.3 89.3 71.3 85.0
+ ANGELFT (Ours) 91.9 (+2.5) 94.7 (+1.2) 82.2 (+0.9) 89.9 (+0.6) 73.4 (+2.1) 86.4 (+1.4)

GenBioEL† (Yuan et al., 2022b) 91.0 93.1 80.9 89.3 70.7 85.0
+ ANGELFT (Ours) 92.5 (+1.5) 94.4 (+1.3) 82.4 (+1.5) 89.9 (+0.6) 71.9 (+1.2) 86.2 (+1.2)
+ ANGELPT + FT (Ours) 92.8 (+1.8) 94.5 (+1.4) 82.8 (+1.9) 90.2 (+0.9) 73.3 (+2.6) 86.7 (+1.7)

Table 1: The top-1 accuracy of the models across the five BioEL datasets. The † symbol indicates that the results have
been reproduced. Our ANGEL framework is applied to generative BioEL models during fine-tuning (ANGELFT)
and both pre-training and fine-tuning (ANGELPT+FT). We exclude the performance of similarity-based models on
BC5CDR, as they were evaluated separately on the chemical and disease subsets, differing from our settings.

mentions that overlap or are missing from the tar-380

get KB. The best hyperparameter configurations381

are detailed in Appendix C. We used the source382

codes provided by Yuan et al. (2022b)3 and align-383

ment handbook (Tunstall et al., 2023)4. During pre-384

training stage, we trained our model using eight385

80G A100 GPUs for 12 hours. During fine-tuning386

stage, we used a single A100 GPU.387

4.4 Results388

Consistent with previous studies (Sung et al., 2020;389

Liu et al., 2021), we use accuracy at top-1 (Acc@1)390

as our evaluation metric. This metric measures the391

percentage of mentions where the model correctly392

ranks the gold standard identifier as the top choice.393

Table 1 demonstrates that our framework consis-394

tently improves the performance of generative mod-395

els. Specifically, our fine-tuning method (i.e., AN-396

GELFT) improves the Acc@1 scores of BART, Bio-397

BART, and GenBioEL by 0.9%, 1.4%, and 1.2%,398

respectively. When pre-training is also applied (i.e.,399

ANGELPT+FT) to GenBioEL, the improvement in-400

creases to 1.7%, underscoring the effectiveness of401

both pre-training and fine-tuning in ANGEL. Our402

best model (i.e., GenBioEL with ANGELPT+FT)403

outperforms all baseline models, whether they are404

3https://github.com/Yuanhy1997/GenBioEL
4https://github.com/huggingface/

alignment-handbook

similarity-based or generative BioEL models. 405

5 Analysis 406

5.1 Ablation Study 407

We conducted detailed analyses on our negative- 408

aware training. Additionally, the impact of the 409

number of synonyms in positive-only training is 410

provided in Appendix D. 411

Effect of Pre-training Table 2 highlights the ef- 412

fectiveness of ANGEL’s pre-training by compar- 413

ing other pre-training methods. BART, pre-trained 414

using a standard language modeling objective but 415

not specifically tailored for BioEL tasks, shows 416

the lowest performance. In contrast, GenBioEL, 417

pre-trained using synonyms from UMLS in a sim- 418

ilar manner to our positive-only training, initially 419

demonstrates a substantial performance advantage 420

over BART. However, this gap narrows consider- 421

ably after fine-tuning, to the point where it is no 422

longer statistically significant. When ANGEL’s 423

negative-aware training is applied to GenBioEL, 424

its performance improves significantly, achieving 425

gains of 16.6% on BC5CDR and 10.9% on AAP. 426

Even after fine-tuning, the performance gap re- 427

mains noticeable, with a difference of 1.4% on 428

BC5CDR and 0.9% on AAP. 429

6

https://github.com/Yuanhy1997/GenBioEL
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook


Model FT BC5CDR AAP

BART ✗ 0.8 15.6
GenBioEL ✗ 33.1 50.6

+ ANGEL (Ours) ✗ 49.7 61.5

BART ✓ 93.0 88.7
GenBioEL ✓ 93.1 89.3

+ ANGEL (Ours) ✓ 94.5 90.2

Table 2: The top-1 accuracy of models with different
pre-training strategies, along with the fine-tuned scores.
‘FT’ denotes fine-tuning, with ✗ representing pre-trained
models without fine-tuning, and ✓ indicating models
fine-tuned on human-annotated training sets.

Method BC5CDR AAP

ANGEL (Ours) 94.5 90.2

GenBioEL 93.1 (-1.4) 89.3 (-0.9)

Prediction-based el

⇒ TF-IDF-based el 94.4 (-0.1) 90.0 (-0.2)

pθ(el) > pθ(ew) Pairs
⇒ All Possible Pairs 94.0 (-0.5) 90.0 (-0.2)

el within Top-5
⇒ Top-10 Predictions 94.4 (-0.1) 89.9 (-0.3)

Table 3: The ablation study on positive (ew) and nega-
tive (el) pair selection during negative-aware fine-tuning.
‘⇒’ indicates a modification in our method, specifically
in the selection of either negative samples or pairs.

Selection of Positive and Negative Pairs Ta-430

ble 3 presents various methods for constructing431

positive-negative pairs in negative-aware training.432

We investigated the effects of three different as-433

pects: negative sampling techniques, the ranking434

of negative samples, and top-k selection, on the435

BC5CDR and AAP datasets. Notably, all three436

model variants significantly improved performance437

compared to the baseline GenBioEL model, high-438

lighting the effectiveness of our negative-aware439

training, irrespective of the specific techniques used440

for selecting positive-negative pairs. (1) First, when441

we modified our approach to extract negative sam-442

ples based on TF-IDF, similar to the method used443

during pre-training, performance declined by 0.1%444

on the BC5CDR and by 0.2% on the AAP. This in-445

dicates that our approach, which allows the model446

to learn from its errors, is more effective than rely-447

ing on TF-IDF similarity. While the TF-IDF-based448

method tends to select pairs where the positive449

and negative examples have similar surface forms,450

our error-driven approach enables the selection of451

more diverse negative samples without such con-452

straints. (2) Additionally, when we substituted our453
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Figure 3: In-depth evalution of GenBioEL and our AN-
GEL models based on the TF-IDF similarity between
the input mentions and gold-standard entities. The
NCBI-disease dataset was used. Further analysis is
provided in Appendix E.

negative selection method—where negative sam- 454

ples are ranked higher than positive ones—with an 455

approach that includes all positive-negative pairs 456

regardless of rank, the performance dropped by 457

0.5% on the BC5CDR and by 0.2% on the AAP. 458

(3) Finally, increasing the top-k selection from the 459

top-5 to the top-10 predictions resulted in a perfor- 460

mance decline of 0.1% on the BC5CDR and 0.3% 461

on the AAP. Increasing the top-k can indeed gather 462

more diverse negative samples; however, it may 463

also increase the collection of typical samples that 464

the model finds less confusing, potentially degrad- 465

ing performance. Therefore, maintaining a proper 466

balance between diversity and difficulty in sample 467

selection is crucial. 468

5.2 Error Analysis 469

We conducted an in-depth evaluation of the models 470

based on the similarity between the input mentions 471

and the gold-standard entities. Similarity was calcu- 472

lated using tri-gram TF-IDF, with the gold-standard 473

entity determined as the candidate synonym with 474

the highest similarity score to the input mention. 475

The similarity scores, ranging from 0 to 1.0, were 476

divided into five bins, and accuracy was measured 477

for each bin. As shown in Figure 3, errors pre- 478

dominantly occurred in the 0-0.2 and 0.2–0.4 bins. 479

This suggests that models tend to struggle when 480

the surface forms of the input mentions are not 481

closely aligned with those of the gold-standard en- 482

tities. Our method improves the generalizability 483

of the model, leading to an overall reduction in 484

GenBioEL’s errors across all bins, with particularly 485

notable improvements in cases of low similarity. 486
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... aggressive the same way someone with [ST] ASPD [ET] would be, except teenagers ...

1 ASP Anankastic personality disorder Antisocial personality disorder (disorder)*

2 Acquired immune deficiency syndrome (disorder) Borderline personality disorder Antisocial personality disorder*

3 Acquired immune deficiency syndrome Oppositional defiant disorder Borderline personality disorder (disorder)

4 Mesalazine Antisocial personality disorder* Obsessive compulsive disorder (disorder)

5 Cryopyrin associated periodic syndrome (disorder) Oppositional defiant disorder (disorder) Dissocial personality disorder*

... I switched from lantus to [ST] basaglar [ET] in january and ...

1 Beagle Linagliptin substance Insulin glargine substance*

2 Basiliximab sodium Benzodiazepine substance Insulin glargine*

3 Basiliximab substance Carisoprodol substance Insulin glulisine substance

4 Albiglutide Cariprazine Ulipristal substance

5 Albiglutide substance Benzocaine containing product Lansoprazole

… effects on amino acid (r-aminobutyric acid (GABA), [ST] glutamine [ET], aspartate and glutathione) levels …

1 Glutamine Glutamine L-glutamine

2 Glutamic acid* Glutamic acid* Glutamine

3 L-glutamine Glutamylmethionine D-glutamine

4 L-glutamic acid* Glutamylalanine Glutamic acids

5 Glutamic acids Glutaminic acids Glutamic acid*

(SNOMED CT:26665006)

Rank SapBERT GenBioEL ANGEL (Ours)

(SNOMED CT:411529005)

(MeSH:D018698)

Figure 4: The top 5 predictions from different BioEL models are presented. Entity names with correct identifiers
are highlighted in boldface with an asterisk. The first and second examples highlight the strengths of our model,
while the final example illustrates its limitations. For a detailed explanation, please refer to the main text.

However, significant challenges remain, as the ac-487

curacy of our model is only 34.2% in the 0–0.2 bin,488

highlighting the need for further improvement.489

5.3 Case Study490

Figure 4 illustrates the predictions of SapBERT,491

GenBioEL, and ANGEL. In the first example, the492

mention ‘ASPD’ is an abbreviation for ‘antisocial493

personality disorder’ (also known as ‘dissocial per-494

sonality disorder’). SapBERT incorrectly predicts495

‘ASP’ due to the similarity in surface form. Gen-496

BioEL struggles to distinguish between correct en-497

tity names and those containing the words ‘person-498

ality disorder’. In contrast, our model successfully499

identifies the correct entities, without being mis-500

led by false entity names that contain overlapping501

terms. The second example involves the mention502

‘basaglar,’ a biosimilar medication that contains in-503

sulin glargine, a long-acting insulin. The challenge504

here arises from the fact that product names can505

differ significantly from the biomedical terms used506

to describe their active ingredients. This discrep-507

ancy leads to failures in both SapBERT and Gen-508

BioEL, as they struggle to connect the brand name509

to its corresponding biomedical entity. Neverthe-510

less, our model successfully identifies the correct511

entity, showcasing its ability to handle such com-512

plex cases effectively. In the final example, our513

method was less effective. For the mention of ‘glu- 514

tamine,’ neither SapBERT nor GenBioEL identi- 515

fied the correct answer, but they did rank ‘Glutamic 516

acid,’ the correct entity, within the top 5 candidates. 517

Our model, however, ranked the correct answer 518

slightly lower. Consequently, while our model 519

shows a notable improvement in top-1 accuracy, 520

the increase in top-5 accuracy is relatively modest 521

in some datasets. The effectiveness of our method 522

also varies across different datasets. We discuss 523

this limitation in more detail in Appendix F, noting 524

that such cases are an area for further exploration. 525

6 Conclusions 526

In this study, we discussed the importance of nega- 527

tive samples in training generative BioEL models 528

and introduced ANGEL, the first framework in this 529

field to effectively incorporate negative-aware train- 530

ing into a generative model. Our models demon- 531

strated the ability to learn subtle distinctions be- 532

tween entities with similar surface forms and con- 533

texts. Experimental results showed that ANGEL 534

outperformed existing similarity-based and gener- 535

ative models, with notable performance improve- 536

ments of 0.9%, 1.4%, and 1.7% for BART, Bio- 537

BART, and GenBioEL, respectively, while achiev- 538

ing the best performance across five public BioEL 539

datasets. 540
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Limitations541

Our method is versatile and applicable to any542

generative model, but it has only been tested on543

encoder-decoder models and not on decoder-only544

models such as BioGPT (Luo et al., 2022). We545

plan to further investigate the effect of our method546

on these models. Additionally, it has not been547

tested on recent open-source large language models548

(LLMs) (Touvron et al., 2023; Chen et al., 2023).549

While we acknowledge that incorporating compar-550

isons with LLMs and further assessing the effec-551

tiveness of our approach would be an interesting552

direction, using LLMs for entity linking presents553

new challenges. The primary concern with larger554

models is their inefficiency, particularly regarding555

slower inference speeds and higher memory re-556

quirements, which may render them unsuitable for557

most real-world applications. This issue becomes558

particularly problematic in fields such as biomedi-559

cal information extraction, where processing mil-560

lions of publications to extract meaningful insights561

is essential.562

Our negative-aware training method may not563

be limited to a specific domain, yet we have only564

evaluated it on biomedical-domain datasets, which565

restricts the demonstration of its broad applicabil-566

ity. Nevertheless, we would like to emphasize the567

reasons for focusing on the biomedical domain.568

Biomedical entity linking has unique characteris-569

tics that differentiate it from other domains, mak-570

ing this problem both challenging and interesting.571

In general domains, ambiguity typically arises be-572

tween different types of entities (e.g., whether “Liv-573

erpool” refers to a city or a sports club). Simi-574

larly, in the biomedical domain, ambiguity exists575

between different types, such as whether “Ebola”576

in Figure 1 refers to a disease or a virus. Addi-577

tionally, biomedical entities often exhibit signifi-578

cant variations in their surface forms, even when579

they share the same identifier, i.e., they refer to the580

same entity. As shown in Figure 4, “Basaglar” can581

be expressed as other variations such as “insulin582

glargine substance” or “insulin glargine.” Further-583

more, terms like “substance” in the entity “insulin584

glargine substance” overlap with many other en-585

tities (e.g., “Basiliximab substance,” “Linagliptin586

substance,” “Benzodiazepine substance”), making587

the task even more complex. Therefore, distin-588

guishing between numerous candidates with simi-589

lar surface forms is especially crucial in biomedical590

entity linking. We believe that our method, which591

trains the model using negative samples with simi- 592

lar structures, is particularly well-suited to tackle 593

this challenge. However, exploring the applica- 594

tion of our approach in other domains would be a 595

valuable direction for future research. 596

Ethical Considerations 597

This study complies with ethical standards, ensur- 598

ing that all datasets and models adhere to their 599

respective licenses and usage terms. Biomedical 600

examples are included to illustrate the methodol- 601

ogy; however, they serve explanatory purposes and 602

may not fully represent real-world scenarios. While 603

the model achieves notable improvements, its limi- 604

tations in handling low-similarity cases underscore 605

the importance of rigorous validation prior to de- 606

ployment, especially in sensitive applications. To 607

minimize risks, the model is recommended as a ref- 608

erence tool rather than for direct decision-making 609

in critical contexts. 610
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A Details of Pre-training840

Our pre-training process follows the KB-Guided841

Pre-training strategy outlined in the GenBioEL842

framework (Yuan et al., 2022b). We define clause843

templates to generate synthetic training examples844

by incorporating synonyms and definitions from845

the KB. Specifically, we select pairs of synonyms846

sa and sb from the set S ⊂ E , along with a def-847

inition dy corresponding to the identifier y. The848

synonyms and definitions are integrated into one of849

the two predefined clause templates as follows:850

[BOS] [ST] sa [ET] is defined as dy [EOS]851

or852

[BOS] dy describes [ST] sa [ET] [EOS].853

The input for the decoder is “[BOS] sa is” and the854

output should be “sb [EOS]”. When no definitions855

are available in the KB, we construct dy using al-856

ternative synonyms. For concepts with only two857

synonyms, sa and sb are used as the synonyms,858

with dy being the same as sb. For concepts with859

only one synonym, sa, sb, and dy are the same,860

resulting in a straightforward sentence. This strat-861

egy effectively creates simulated contexts for the862

model to learn from, improving its ability to gener-863

alize to new entities not included in the downstream864

datasets. The complete list of templates used in this865

process is provided in Table A.866

B Datasets867

Table B presents the statistics of the five datasets868

used, along with their corresponding target knowl-869

edge bases.870

NCBI-disease (Doğan et al., 2014) The NCBI-871

disease dataset contains 793 PubMed abstracts872

annotated with 6,892 disease mentions that are873

mapped to 790 unique disease concepts using the874

MEDIC ontology (Davis et al., 2012). MEDIC is a875

medical dictionary that integrates disease concepts,876

synonyms, and definitions from both MeSH (Lip-877

scomb, 2000) and OMIM (Hamosh et al., 2004),878

encompassing a total of 9,700 unique disease en-879

tities. This dataset is primarily used for disease880

recognition and concept normalization tasks.881

BC5CDR (Li et al., 2016b) The BC5CDR882

dataset includes 1,500 PubMed abstracts with883

4,409 chemical entities, 5,818 disease entities, and884

3,116 chemical-disease interactions. All annotated885

Template

Encoder Side Decoder Side

sa < is defined as > dy

sa is sb

sa < is described as > dy

dy < are the definitions of > sa

dy < describe > sa

dy < define > sa

dy < are the synonyms of > sa

dy < indicate the same concept as > sa

sa < has synonyms such as > dy

sa < refers to the same concepts as > dy

dy < is > sa

dy < is the same as > sa

sa < is > dy

sa < is the same as > dy

Table A: The templates used for constructing pre-
training samples. sa is the input synonym, and sb is
the decoding target. dy includes contextual information
such as definitions and synonyms. Template words are
enclosed in < >.

entities are mapped to the MeSH ontology (Lip- 886

scomb, 2000), which is a subset of UMLS (Bo- 887

denreider, 2004). This dataset is widely used for 888

biomedical entity recognition and interaction stud- 889

ies. To fit the purpose of our study, we use only the 890

chemical and disease annotations and discard the 891

interaction annotations. 892

COMETA (Basaldella et al., 2020) COMETA 893

focuses on layman medical terminology, compiled 894

from four years of content across 68 health-related 895

subreddits. This dataset consists of 20,000 biomed- 896

ical entity mentions annotated with concepts from 897

SNOMED CT (Chang and Mostafa, 2021). It is 898

utilized for the normalization of consumer health 899

expressions into standardized medical terminolo- 900

gies. 901

AskAPatient (AAP) (Limsopatham and Collier, 902

2016b) The AskAPatient dataset contains 8,662 903

phrases from social media language, each mapped 904

to medical concepts from SNOMED CT (Chang 905

and Mostafa, 2021). This dataset does not include 906

contextual information, meaning that mentions are 907

disambiguated solely based on the phrases them- 908

selves. Since the AskAPatient dataset lacks a test 909

set, we employed a 10-fold cross-validation ap- 910

proach as outlined in the original paper by Lim- 911

sopatham and Collier (2016a). The statistics re- 912

ported are the averages across these folds. 913
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Dataset NCBI BC5CDR COMETA AAP MM-ST21pv

Entity types disease disease/chemical medical concepts medical concepts 21 UMLS types

Data Examples
Training 5,784 9,285 13,489 15,665 121,498
Validation 787 9,515 2,176 793 40,600
Test 960 9,654 4,350 866 39,922

KB statistics
Entity names 108,071 809,929 904,798 3,381 203,282
Identifiers 14,967 268,162 350,830 1,036 25,419

Table B: The statistics of the benchmark datasets and their corresponding KBs.

MM-ST21pv (Mohan and Li, 2019) The Med-914

Mentions dataset is a large-scale resource for915

biomedical entity recognition. The ST21pv subset916

includes 4,392 PubMed abstracts with over 200,000917

entity mentions linked to 21 selected UMLS seman-918

tic types. This dataset provides a comprehensive re-919

source for training and evaluating biomedical entity920

recognition systems. Unlike the original dataset,921

we use the 2020AA version of UMLS as the KBs922

because the 2017AA version of UMLS is not di-923

rectly accessible. This leads to some differences924

after preprocessing due to variations between ver-925

sions. Specifically, our dataset deviates from the926

original MedMentions dataset by 741 training sam-927

ples (0.6%), 284 validation samples (0.7%), and928

235 test samples (0.6%).929

C Hyperparameter Configurations930

Table C details the hyperparameters used for931

positive-only training and negative-aware training932

across the BioEL benchmark datasets. We search933

for the hyperparameter settings that are optimized934

for each dataset. We refer to the study of Yuan935

et al. (2022b) to determine the range of the hyper-936

parameters. During pre-training, we use the same937

hyperparameters as in GenBioEL. For positive-only938

training, we explore a range of training steps be-939

tween 20K and 40K, a learning rate between 2e-5940

and 3e-7, and batch sizes from 8 to 16, except dur-941

ing pre-training. During negative-aware training,942

we fix the β at 0.1, in accordance with the basic943

configuration of DPO, and search the hyperparam-944

eter space using a learning rate between 1e-5 and945

1e-6 and batch sizes ranging from 8 to 64.946

D The Number of Synonyms947

To evaluate the impact of incorporating multiple948

synonyms during fine-tuning, we conducted exper-949

iments by varying the number of synonyms asso-950

ciated with each mention, testing with 1, 3, and951
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Figure A: The ablation study to determine the optimal
number of synonyms. GenBioEL with ANGELPT was
fine-tuned in this experiment. The scores are generally
the highest when k = 3.

5 synonyms. As shown in Figure A, the average 952

performance improves when using three synonyms 953

compared to just one, but it declines when expand- 954

ing to five synonyms. When the number of avail- 955

able synonyms is less than the specified number 956

(e.g., fewer than 3 or 5 synonyms), all available 957

synonyms are used to ensure maximum diversity 958

in learning. Therefore, unlike GenBioEL, which 959

utilized only the top-1 synonym, our approach in- 960

corporated up to the top-3 synonyms per mention, 961

which proved to be optimal. 962

E Error Cases on COMETA 963

Similar to the analysis conducted on the NCBI- 964

disease dataset (Figure 3), Figure B shows that the 965

models in COMETA predominantly made the most 966

errors in the 0.0-0.2 bin, where the similarity be- 967

tween input mentions and gold-standard entities 968

is low. Our ANGEL framework improved Gen- 969

BioEL’s performance across all bins, resulting in 970

overall enhancement. Future work will necessi- 971

tate the development of more advanced methods to 972
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Pre-training Fine-tuning

NCBI BC5CDR COMETA AAP MM-ST21pv

Positive-only Training

Training Steps 80K 20K 30K 40K 30K 40K
Learning Rate 4e-5 3e-7 5e-6 5e-6 5e-6 2e-5
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 384 16 16 16 16 16
Adam ϵ 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8
Adam β (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999)
Warmup Steps 1,600 0 500 500 0 1,000
Attention Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Clipping Grad 0.1 0.1 0.1 0.1 0.1 0.1
Label Smoothing 0.1 0.1 0.1 0.1 0.1 0.1

Negative-aware Training

Epochs 5 1 1 1 1 1
Learning Rate 1e-5 1e-5 1e-5 5e-6 5e-6 5e-6
β(DPO) 0.1 0.1 0.1 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 1,024 64 16 64 8 64
Warmup Steps 100 100 100 100 100 100

Table C: The hyperparameters for positive-only training and negative-aware training.
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Figure B: In-depth evalution of GenBioEL and our AN-
GEL models based on the TF-IDF similarity between
the input mentions and gold-standard entities. The
COMETA dataset was used.

specifically address errors in low similarity ranges.973

F Top-5 Accuracy974

Table D presents our model’s top-1 and top-5 ac-975

curacy on the BC5CDR and AAP datasets. It976

compares the performance of our model in its977

baseline form (GenBioEL) and after fine-tuning978

(ANGELFT) and combined pre-training and fine-979

tuning (ANGELPT + FT). Our approach consis-980

tently boosts top-1 accuracy across all datasets,981

though the trends in top-5 accuracy are less uni-982

form. In BC5CDR, both top-1 and top-5 accu-983

racy show significant improvements: top-1 accu-984

racy rises by 1.4 percentage points (from 93.1% to985

Model BC5CDR AAP

Acc@1 Acc@5 Acc@1 Acc@5

GenBioEL 93.1 95.7 89.3 95.4
+ ANGELFT 94.4 96.5 89.5 94.7
+ ANGELPT + FT 94.5 96.8 90.2 95.2

Table D: Comparison of top-1 and top-5 accuracy be-
tween the baseline model and models trained with AN-
GEL method after fine-tuning and pre-training on the
BC5CDR and AAP datasets.

94.5%), and top-5 accuracy increases by 1.1 per- 986

centage points (from 95.7% to 96.8%). However, 987

the AAP dataset exhibits a different pattern. While 988

top-1 accuracy improves by 0.9 percentage points 989

(from 89.3% to 90.2%), top-5 accuracy slightly de- 990

clines: there is a 0.7 percentage points drop (from 991

95.4% to 94.7%) after fine-tuning and a 0.2 per- 992

centage points decrease (from 95.4% to 95.2%) 993

after combined pre-training and fine-tuning. This 994

decline in top-5 accuracy may be due to the AAP 995

dataset’s limited contextual information, forcing 996

the model to rely predominantly on the mention 997

form, making it more challenging to maintain high 998

accuracy across multiple predictions. Additionally, 999

the negative sampling strategy could unintention- 1000

ally bias the model toward optimizing top-1 accu- 1001

racy, thereby impacting top-5 performance. 1002

In conclusion, while our method consistently 1003

improves top-1 accuracy, the occasional slight de- 1004

creases in top-5 accuracy, as observed in the AAP 1005

dataset, underscore the need for further refinement 1006
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to maintain balanced accuracy across different rank-1007

ing levels. Future work should focus on training1008

strategies that preserve or enhance top-5 accuracy1009

alongside top-1 improvements.1010
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