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ABSTRACT

Urban time series forecasting is crucial for smart city development and is key to
sustainable urban management. Although urban time series models (UTSMs) are
effective in general forecasting, they often overlook low-frequency events, such
as emergencies and holidays, leading to degraded performance in practical appli-
cations. In this paper, we first investigate how UTSMs handle these infrequent
patterns from a neural perspective. Based on our findings, we propose Pattern
Neuron guided Training (PN-Train), a novel training method that features (i)
a perturbation-based detector to identify neurons responsible for low-frequency
patterns in UTSMs, and (ii) a fine-tuning mechanism that enhances these neu-
rons without compromising representation learning on high-frequency patterns.
Empirical results demonstrate that PN-Train considerably improves forecast-
ing accuracy for low-frequency events while maintaining high performance for
high-frequency events.

1 INTRODUCTION

Recent advancements in urban time series models (UTSMs) have significantly improved forecast-
ing accuracy, facilitating smart city applications such as optimizing metropolitan transit, managing
pedestrian flow, and enhancing resource allocation for ride-hailing services (Yao et al., 2018; Wu
et al., 2020; Ji et al., 2022). While deep learning models (Bai et al., 2020; Wu et al., 2019; Gao
et al., 2023) have shown great promise in urban time series forecasting, existing models focus on
capturing cross-variable and temporal dependencies to enhance overall accuracy. However, their per-
formance degrades in many real-world scenarios, especially when forecasting low-frequency events
such as extreme weather, emergencies, holidays and etc (Lee et al., 2022; Lee & Ko, 2024). Accurate
forecasting of these events is critical for effective resource management, enabling ride-hailing com-
panies to adjust fleet sizes and service frequencies, and allowing transit systems to modify schedules,
thereby optimizing operations and reducing costs during periods of fluctuating demand (Geng et al.,
2019; Park et al., 2020; Jiang et al., 2023).
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Figure 1: Examples of high-frequency patterns
during weekdays and weekends, contrasted with
low-frequency patterns on holidays.

Urban time series data exhibits distinct pat-
terns for high- and low-frequency events (Lee
et al., 2019; Wang et al., 2019). As the exam-
ple illustrated in Figure 1, while patterns within
each category remain consistent, significant
differences exist between holiday, weekday,
and weekend patterns. Specifically, weekdays
and weekends represent high-frequency pat-
terns, occurring regularly throughout the year,
whereas holidays are low-frequency, spanning
fewer than 15 days, or approximately 4% of the
year. Deep learning models often struggle to
predict low-frequency events, such as holidays
in the example, largely due to their bias toward
majority patterns and the scarcity of data for
these rare occurrences. Several studies have at-
tempted to improve holiday forecasting, e.g., using exponential-growth models (Wang et al., 2019)
and support vector regression (Luo et al., 2019). More recently, deep learning models have in-
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troduced memory architectures for retrieving patterns from a pattern bank (Lee et al., 2022; Li
et al., 2022) and dynamic positional embeddings to implicitly capture various patterns (Shao et al.,
2022; Liu et al., 2023), leading to enhanced forecasting accuracy. However, despite improved fore-
casting accuracy, understanding the underlying mechanisms through which these models capture
low-frequency patterns at the neuron level remains unexplored.

In this paper, inspired by the knowledge neurons in large language models (LLMs) (Dai et al., 2022;
Zhao et al., 2024), we investigate two fundamental questions: (1) Do neurons associated with low-
frequency patterns exist in UTSMs? (2) If so, how can we enhance the representation learning of
these neurons to improve urban time series forecasting?

To answer these questions, we perform an in-depth analysis of UTSMs at the neuron level. First, we
introduce a Pattern Neuron Detector (PND), which identifies pattern neurons, i.e., neurons strongly
correlated with low-frequency patterns, using a perturbation-based approach. This method evalu-
ates neuron importance by measuring the impact of perturbations on the model’s output features.
Next, we employ a Pattern Neuron Verifier (PNV) to quantify how these neurons impact forecasting
performance by deactivating them, so as to confirm that neurons specifically tied to certain pat-
terns indeed exist in UTSMs. Based on our findings, we propose Pattern Neuron Guided Training
(PN-Train), a novel training method that detects these pattern neurons and fine-tunes them using
a Pattern Neuron Optimizer (PNO) to improve forecasting for low-frequency patterns while main-
taining performance for high-frequency patterns. We summarize our main contributions as follows:

• We conduct the first investigation into neurons associated with low-frequency patterns in
urban time series models (UTSMs) and confirm their existence.

• We introduce PN-Train, a pattern neuron-guided training method for urban time series
forecasting, which effectively detects these neurons using a perturbation-based detector.

• We propose a fine-tuning mechanism that enhances the representation learning of detected
pattern neurons, significantly improving forecasting accuracy.

• Extensive experiments demonstrate that PN-Train significantly improves the forecasting
accuracy of state-of-the-art methods across real-world datasets.

2 PRELIMINARIES

Urban Time Series Forecasting (UTSF) UTSF aims to forecast future time series data using
sensor readings collected from urban environments. The objective is to predict H future values
xτ :τ+H at each time step τ , using a learnable model, UTSM, which leverages a look-back window
of L past observations xτ−L:τ . Additionally, auxiliary features E, such as the time of day, day of the
week, holiday indicators, and etc., are incorporated to enhance the forecasting process. Formally, the
prediction task can be formulated as x̂τ :τ+H = UTSM(xτ−L:τ , E). To ensure accurate forecasting,
the UTSM model is typically trained using the Mean Absolute Error (MAE) loss function, defined
as L = 1

H

∑H
h=1 ∥x̂τ+h − xτ+h∥1.

Pattern Neurons In a neural network, individual neurons contribute differently to the representa-
tion and memorization of various patterns. Let I(hi, p) denote the influence of neuron hi on pattern
p. A pattern neuron can then be defined as a neuron with a strong influence on a specific pattern,
namely I(hi, p) is high for the particular pattern p.

3 PN-TRAIN

In this section, we introduce PN-Train, a training method designed to enhance urban time series
forecasting for low-frequency patterns by identifying and fine-tuning the pattern neurons associated
with these patterns in the UTSM. The overall architecture of PN-Train is illustrated in Figure 2.

3.1 PATTERN NEURON DETECTOR FOR URBAN TIME SERIES MODELS

Typically, Urban Time Series Models (UTSMs) are designed to capture patterns from historical
data (Zhou et al., 2020; Liu et al., 2020; 2022). While they can effectively learn frequent patterns
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Figure 2: The architecture of PN-Train, which consists of four components: Urban Time Series
Model (UTSM) captures time series patterns from historical data; Pattern Neuron Detector (PND)
identifies neurons associated with specific patterns, such as low-frequency samples; Pattern Neuron
Verifier (PNV) validates the detected neurons; and Pattern Neuron Optimizer (PNO) fine-tunes the
UTSM at the neuron level. LX represents the X-th linear layer in the UTSM.

thanks to sufficient training data, the distribution of patterns is often imbalanced in practice (Luo
et al., 2019; Lee & Ko, 2024). In particular, high-frequency events like weekdays and weekends are
well-represented, making them easier to learn. In contrast, low-frequency events, such as holidays,
have fewer training samples, which results in reduced forecasting performance (Krawczyk, 2016;
Smyl et al., 2023). We hypothesize that some neurons in UTSMs are already tuned to capture low-
frequency patterns based on past encounters with these events. To test this hypothesis, we introduce
a Pattern Neuron Detector (PND) to identify neurons linked to low-frequency patterns.

Neurons in UTSMs UTSMs nowadays are effective at learning patterns from historical data, and a
key component of these models is the linear layer, which is central to pattern learning and memoriza-
tion (Geva et al., 2021; Dai et al., 2022). In this work, we focus on a transformer-based UTSM (Liu
et al., 2023), which employs both linear layers and self-attention layers to model temporal cor-
relations (patterns over time) and spatial correlations (relationships across urban locations). The
detection of pattern neurons in the UTSM is carried out using our proposed Pattern Neuron Detector
(PND), which can be applied to both linear layers and self-attention layers as introduced below.

Pattern Neuron Detector (PND) Inspired by Knowledge Neurons (Tang et al., 2024; Zhao et al.,
2024) in large language models (LLMs), which identify neurons with high activation values, we
define pattern neurons in Urban Time Series Models (UTSMs) whose contributions to forecasting
targets are significant in the perturbation assessment. Specifically, the influence hk

i of the k-th neuron
at the i-th layer can be quantified by comparing the model outputs when the neuron is deactivated:

I(hk
i |xp) =

∥∥UTSM(xp,W )− UTSM(xp,W \wk
i )
∥∥
1
, (1)

where xp represents an input with the pattern p, W and wk
i denote the weights of the UTSM and

the weights of the neurons respectively, and UTSM(xp,W \wk
i ) represents the model output with

only neuron hk
i deactivated.

As UTSMs contain a large number of neurons, deactivating each neuron individually is impractical.
Previous study (Zhao et al., 2024) has shown that neurons linked to specific patterns often exhibit
high feature activation values. This suggests that the neuron activation values can serve as strong
indicators of their importance in capturing corresponding patterns. Therefore, we devise an attribute
score Attrp to quantify the influence of the k-th neuron for a specific pattern p given an input xp

with this pattern:

Attrp(hk
i | xp) =

∥∥∥∥∥∑
s,t

f(xp,wk
i )s,t,:

∥∥∥∥∥
1

, (2)
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Algorithm 1: Pattern Neuron Guided Training Method
Input: The urban time series model UTSM ; the training dataset Dtrain and validation dataset
Dval; the size of the detection sample B, and the size of the fine-tuning sample R; and the
learning rates for training, α1, and fine-tuning, α2.

Output: The fine-tuned urban time series model UTSM

// Process fine-tuning samples and training samples
1 Dfinetune ← RandomSample({x ∈ Dtrain | x is a low-frequency sample}, R)
2 Dtrain’ ← Dtrain \ Dfinetune
// Train the urban time series model

3 repeat
4 Randomly select a batch of instances S from Dtrain’
5 Optimize UTSM using AdamW with a learning rate of α1 on batch S.
6 until met the stopping criteria;
// Select detection samples and detect the pattern neurons

7 Ddetect ← RandomSample({x ∈ Dtrain | x is a low-frequency sample}, B)
8 N pl ← PND(UTSM , Ddetect)
// Fine-tune the detected pattern neurons

9 ŷ← UTSM(Dfinetune,N p)
10 L ← MAE(ŷ,y)
11 Optimize pattern neurons N p using AdamW with a learning rate α2.
// Return the fine-tuned UTSM

12 return UTSM

where s and t represent spatial and temporal dimensions respectively, and f(xp,wk
i ) is the function

to generate the activation values for the k-th neuron at the i-th layer.

To detect pattern neurons, we focus on samples that exhibit the patterns of interest. Specifically, for
identifying pattern neurons associated with low-frequency patterns pl, e.g., holidays, we use a set of
samples {x1, x2, . . . , xB}, where B is the number of samples used for detection, and define pattern
neurons as neurons whose attribute scores are high across all the B samples:

N pl =

B⋂
b=1

{
nk
i | rank(Attrp(hk

i | x
pl

b )) ≤ ϵN, ∀i, k
}

(3)

where rank(·) gives the rank of the attribution score in descending order for the k-th neuron at the i-
th layer, ϵ is a predefined threshold that determines the fraction of candidate pattern neurons among
all the N neurons in the UTSM given a sample xpl

b .

Notably, such a detection process can be easily applied to self-attention layers, where the query Q,
key K, and value V are the weights of the attention function:

Attention(x) = softmax
(
Q(x)K(x)⊤√

d

)
V (x),

Q(x) = f(x,WQ), K(x) = f(x,WK), V (x) = f(x,WV ).

(4)

In particular, the attribution scores for these layers can be obtained via Equation 2 using f(x,WQ),
f(x,WK), and f(x,WV ) respectively as the function f(xp,wk

i ).

3.2 PATTERN NEURON VERIFICATION AND OPTIMIZATION

In this section, we answer the two key research questions: (1) Do pattern neurons exist for low-
frequency patterns? (2) Can optimizing these pattern neurons improve the performance of UTSMs?
To answer these, we employ a Pattern Neuron Verifier (PNV) to validate the existence of pattern
neurons and devise a Pattern Neuron Optimizer (PNO) to enhance UTSM performance by fine-
tuning the detected pattern neurons.

4
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Pattern Neuron Verifier (PNV) To validate the existence of pattern neurons associated with low-
frequency patterns, we deactivate the neurons identified by the PND and observe the effect on UTSM
predictions. For comparison, we also deactivate a set of randomly selected neurons while ensuring
that the number of randomly deactivated neurons matches that of the identified pattern neurons. By
measuring the difference in forecasting accuracy, we can then confirm the importance of pattern
neurons. Particularly, if the prediction error increases significantly without pattern neurons, the
importance of these neurons to forecasting can be validated:

D∑
d=1

∥yd − UTSM(xd,W \wpattern)∥1 ≫
D∑

d=1

∥yd − UTSM(xd,W \wrandom)∥1 , (5)

where yd represents the ground truth for the low-frequency sample xd, and D is the number of
verification samples.

Pattern Neuron Optimizer (PNO). If pattern neurons are confirmed to exist, the next step is to
determine whether optimizing these neurons can enhance urban time series forecasting. To achieve
this, we propose a fine-tuning mechanism designed specifically to optimize the detected pattern
neurons. The objective of PNO is to minimize this loss while improving forecasting accuracy for
low-frequency events, and the loss function is defined as:

L(ŷ,y | θwpattern) =
1

R

R∑
r=1

∥ŷr − yr∥1 , (6)

where θwpattern represents the parameters associated with the pattern neurons, ŷr and yr denote the
prediction and ground truth for the fine-tuning sample xr respectively, and R is the total number of
samples used for fine-tuning. The PN-Train training algorithm is outlined in Algorithm 1.

4 EXPERIMENTS

In this section, we evaluate the capability of our proposed PN-Train by designing experiments to
address the following questions: RQ1: Does PN-Train successfully detect the Pattern Neurons?
RQ2: How does PN-Train perform in comparison to baseline methods across various urban sce-
narios by optimizing the detected Pattern Neurons? RQ3: How does the pattern neuron detector
perform compared to existing neuron detection methods? RQ4: How do the Pattern Neurons in
different UTSM components affect forecasting results? RQ5: How does PN-Train perform under
various hyperparameters?

4.1 EXPERIMENT SETTINGS

Datasets We perform experiments on two real-world datasets from two urban scenarios: Metro-
Traffic (Hogue, 2019) and Pedestrian (Fang et al., 2024). Metro-Traffic contains hourly westbound
traffic volumes on Interstate 94 between Minneapolis and St. Paul, MN from 2012 to 2018, including
63 holidays. Pedestrian comprises hourly pedestrian counts from 48 sensors in Melbourne from
2019 to 2022, covering 52 holidays. Detailed dataset statistics are provided in Appendix A.1.

Baselines We evaluate PN-Train against seven commonly used URSMs, categorized as fol-
lows: the traditional time series model Historical Average (HA), graph-based models including
STGCN (Yu et al., 2018), GWNET (Wu et al., 2019), AGCRN (Bai et al., 2020), and TESTAM (Lee &
Ko, 2024), and graph-free models including STID (Shao et al., 2022), STWA (Cirstea et al., 2022),
and STAEformer (Liu et al., 2023). Detailed baseline descriptions are in Appendix A.2.

Implementation Details All experiments are conducted using PyTorch (Paszke et al., 2019) on a
single NVIDIA A100 80GB GPU. The look-back window L and forecasting horizon H are both set
to 12. The selective ratio ϵ is 0.5, with a pattern neuron detection sample length B of 30 and a fine-
tuning sample length R of 10. We split the dataset chronologically into training, validation, and test
sets in a 6:2:2 ratio. Fine-tuning samples are randomly selected from the holiday data in the training
set and are excluded from training. Detection samples are randomly selected from the validation set,

5
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while test samples are used for verification. We employ STAEformer (Liu et al., 2023) as our UTSM.
During training, the UTSM is optimized using the AdamW optimizer (Loshchilov & Hutter, 2019)
with a learning rate α1 of 0.001. Early stopping is applied with a patience of 20 epochs, and the
maximum number of epochs is set to 300. For pattern neuron optimization, the UTSM is fine-tuned
using the same optimizer with a learning rate α2 of 0.002 for one epoch. Further implementation
details can be found in Appendix A.3, while important notations and their parameter settings are
in Appendix A.4. The model is evaluated using MAE, RMSE, and WMAPE, with more details in
Appendix A.5.

4.2 MAIN RESULTS

Validation of Pattern Neurons To address RQ1 and validate the existence of Pattern Neurons,
we use PND to detect them and PNV to evaluate PN-Train’s performance under neuron deacti-
vation 1. Original leaves all neurons active, D-PN deactivates pattern neurons associated with
holidays as identified by PND, and D-Random deactivates the same number of neurons randomly.

Table 1: Pattern neuron verification via neuron deactivation. Lower MAE, RMSE, and WMAPE
values indicate better prediction accuracy. † denotes statistically worse results.

Model

Metro-Traffic (Deactivate ratio 8.77%)

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

Original 446.04 846.75 16.36% 208.84 339.77 6.19% 220.00 379.14 6.58%
D-Random 492.29 833.99 18.05% 263.34 380.46 7.80% 274.11 413.12 8.19%

D-PN 663.46† 1046.40† 24.33%† 474.02† 586.01† 14.04%† 482.93† 615.44† 14.43%†

Model

Pedestrian (Deactivate ratio 9.77%)

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

Original 109.01 259.79 29.31% 78.82 196.39 21.70% 80.45 200.33 22.12%
D-Random 116.99 264.03 31.46% 91.75 210.79 25.26% 93.12 214.01 25.60%

D-PN 194.53† 370.80† 52.31%† 174.92† 321.45† 48.15%† 175.98† 324.31† 48.38%†

The results confirm the existence of Pattern Neurons, and PND successfully detects them. Deac-
tivating the neurons identified by PND (D-PN) leads to a significant performance drop compared
to the Original, with MAE increasing by 48.75% for the Metro-Traffic dataset and 78.46% for
the Pedestrian dataset for holiday samples. In contrast, randomly deactivating an equivalent number
of neurons (D-Random) causes much smaller degradation: 10.37% for Metro-Traffic and 7.32%
for Pedestrian. This stark difference in performance suggests that the neurons detected by PND are
indeed closely associated with the patterns of interest, i.e., holidays.

The findings also show that holiday pattern neurons constitute a small fraction of the entire UTSM,
comprising 8.77% in the Metro-Traffic dataset and 9.77% in the Pedestrian dataset. Despite their
small number, deactivating these pattern neurons significantly degrades performance. Notably, de-
activating neurons associated with low-frequency patterns also negatively impacts the performance
of non-holiday patterns. This occurs because the pattern neurons include those that capture general
time series knowledge, as they were selected based on their high influence on overall forecasting
accuracy. The variation in deactivation ratios between the two datasets demonstrates that our PND
can dynamically select neurons based on the data, as it identifies pattern neurons by focusing on
those with consistently high attribution scores across all detection samples.

Overall Performance We report the results of PN-Train with baselines in Table 2 to answer
the RQ2. The findings confirm that optimizing the Pattern Neurons improves urban time series
forecasting. PN-Train achieves the best overall performance across both the Metro-Traffic and
Pedestrian datasets.

By fine-tuning the holiday pattern neurons, PN-Train consistently outperforms PN-Train * on
both datasets, as it enhances the model’s ability to capture holiday patterns. While excluding holiday
samples during training causes PN-Train * to underperform its base UTSM (STAEformer) in
the Metro-Traffic dataset, fine-tuning the holiday pattern neurons offsets this and improves forecast-
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Table 2: Comparison with baselines on Metro-Traffic and Pedestrian datasets. Lower MAE, RMSE,
and WMAPE indicate better prediction accuracy. * denotes PN-Train without PNO. Best results
are in bold, and second-best are underlined. PN-Train employs STAEformer as its UTSM.

Method Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

M
et

ro
-T

ra
ffi

c

HA 1652.11 2027.66 59.50% 2301.77 2762.69 65.15% 2271.20 2732.54 64.88%
STGCN (Yu et al., 2018) 460.97 739.63 16.91% 289.85 501.33 8.58% 297.90 515.02 8.90%
GWNet (Wu et al., 2019) 534.76 832.13 19.61% 347.50 582.90 10.29% 356.31 596.97 10.64%
AGCRN (Bai et al., 2020) 453.23 738.60 16.62% 280.41 496.75 8.31% 288.54 510.71 8.62%
STID (Shao et al., 2022) 586.90 1031.50 21.52% 216.09 346.81 6.40% 233.54 405.81 6.98%
STWA (Cirstea et al., 2022) 521.02 820.57 19.11% 355.63 619.28 10.53% 364.36 630.61 10.89%

STAEformer (Liu et al., 2023) 443.23 821.42 16.25% 210.41 343.01 6.23% 221.37 379.29 6.62%
TESTAM (Lee & Ko, 2024) 486.89 857.99 17.86% 335.05 555.09 9.92% 342.19 572.94 10.22%

PN-Train * 446.04 846.75 16.35% 208.84 339.77 6.19% 220.00 379.14 6.58%
PN-Train 430.40 816.50 15.78% 203.62 332.15 6.03% 214.29 369.46 6.40%

Pe
de

st
ri

an

HA 208.49 388.17 64.48% 255.12 471.08 83.46% 253.24 468.01 82.69%
STGCN (Yu et al., 2018) 120.75 258.53 32.47% 101.61 214.32 27.97% 102.65 216.95 28.22%
GWNet (Wu et al., 2019) 119.77 267.48 32.21% 113.69 245.87 31.30% 114.02 247.09 31.35%
AGCRN (Bai et al., 2020) 118.48 267.32 31.86% 108.22 245.55 29.79% 108.78 246.78 29.91%
STID (Shao et al., 2022) 116.42 263.79 31.31% 85.32 206.36 23.49% 87.00 209.87 23.92%
STWA (Cirstea et al., 2022) 114.18 261.03 30.70% 106.62 234.88 29.35% 106.90 236.13 29.39%

STAEformer (Liu et al., 2023) 115.24 273.64 30.99% 82.23 202.73 22.64% 84.02 207.19 23.10%
TESTAM (Lee & Ko, 2024) 103.79 257.10 27.91% 94.04 219.46 25.89% 94.57 221.67 26.00%

PN-Train * 109.01 259.79 29.31% 78.82 196.39 21.70% 80.45 200.33 22.12%
PN-Train 106.11 253.86 28.54% 78.35 194.72 21.57% 79.85 198.38 21.95%

ing performance. This is because optimizing the holiday neurons helps the network better represent
holidays than training on a mix of low-frequency holiday and high-frequency non-holiday sam-
ples. In contrast, with more frequent holidays in the Pedestrian dataset, excluding some holiday
samples can actually improve accuracy by removing noisy outliers. Nevertheless, fine-tuning the
pattern neurons further enhances PN-Train *, as holiday events, though more frequent, are still
low-frequency overall and may not be fully captured during initial training.

Additionally, fine-tuning the Pattern Neurons not only improves performance on holiday samples
but also enhances non-holiday and overall performance. This is because these neurons also memo-
rize general time series knowledge, such as level and trend (Brockwell et al., 2016), and optimizing
them strengthens the model’s representation learning of general time series. Although TESTAM per-
forms well on holiday samples in the Pedestrian dataset by leveraging different experts, its overall
performance is limited by the routing mechanism. In contrast, PN-Train addresses low holiday
performance at the neuron level without degrading non-holiday performance, leading to better re-
sults across all scenarios.

4.3 MODEL ANALYSIS

Study on Pattern Neuron Detector We further assess our proposed PND by comparing it with
recent neuron detection techniques to address RQ3. Specifically, we evaluate the following variants
of PN-Train, including: w/o PND: excludes the PND; w GD: replaces PND with the gradient-
based detector from (Chen et al., 2024). w FD: replaces PND with the perturbation-based detector
from (Zhao et al., 2024). The results are shown in Table 3.

The results confirm the importance of neuron detection. Performance drops significantly without it,
as fine-tuning all parameters in the UTSM based on low-frequency patterns leads to overfitting. In
contrast, UTSMs with neuron detection, i.e., w GD, w FD, and PN-Train, effectively identify and
fine-tune only the pattern neurons, preventing overfitting and preserving the model’s generalization
capability.

The results also reveal that perturbation-based detectors outperform gradient-based methods in urban
time series forecasting, as they directly measure how changes impact predictions, offering clearer
insights into neuron importance. While gradient-based methods capture sensitivity to parameter
changes, they fall short in demonstrating a neuron’s overall impact on forecasting accuracy. Our
proposed PND is a finer-grained perturbation-based detector that evaluates how changes affect pre-
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Table 3: Results of PN-Train with different neuron detection techniques.

Model

Metro-Traffic

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

w/o PND 1082.46 1444.20 60.80% 1294.44 1664.49 38.34% 1284.47 1654.78 38.39%
w GD 438.32 826.83 16.07% 206.84 335.71 6.13% 217.73 373.58 6.51%
w FD 434.76 825.71 15.94% 204.52 333.76 6.05% 215.36 371.80 6.44%

PN-Train 430.40 816.50 15.78% 203.62 332.15 6.03% 214.29 369.46 6.40%

Model

Pedestrian

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

w/o PND 238.24 426.90 64.06% 225.54 378.80 62.09% 226.23 381.56 62.20%
w GD 108.27 256.64 29.12% 79.94 196.20 22.01% 81.48 199.94 22.40%
w FD 107.55 256.26 28.92% 78.93 195.39 21.73% 80.48 199.16 22.13%

PN-Train 106.11 253.86 28.54% 78.35 194.72 21.57% 79.85 198.38 21.95%

dictions at each linear layer in the UTSM, rather than focusing only on attention scores and feed-
forward layers as in w FD. This allows PND to achieve the best performance.

Ablation Study We design the following variants to answer RQ4 by evaluating the effectiveness
of the pattern neuron optimizer (PNO) on different transformer-based UTSM components, includ-
ing: w/o PNO: excludes the PNO in PN-Train; w/o SD: omits optimization of pattern neurons in
the spatial transformer; w/o TD: omits optimization of pattern neurons in temporal transformer; w/o
AD: omits optimization of pattern neurons in self-attention mechanism; w/o FD: omits optimization
of pattern neurons in the feed-forward layer.
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(a) Ablation study on Metro-Traffic dataset.
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(b) Ablation study on Pedestrian dataset.

Figure 3: Ablation study results.

The results presented in Figure 3 confirm that the proposed PNO significantly enhances forecast-
ing performance. Across both datasets, the absence of PNO leads to a notable decline in accuracy,
particularly in holiday scenarios. Fine-tuning the Pattern Neurons across all UTSM components
proves crucial, as each component addresses a distinct aspect of the data: the spatial transformer
learns spatial correlations, the temporal transformer captures temporal patterns, the attention mech-
anism refines short-term dependencies, and the feed-forward layer enhances long-term memory.
PN-Train fine-tunes Pattern Neurons in all components, consistently outperforming its variants
and highlighting the importance of identifying and fine-tuning Pattern Neurons across the entire
model.

Pattern Neuron Visualization To address RQ3, we conducted a deeper analysis of neurons across
various UTSM layers by visualizing attribution scores for holiday patterns in the Traffic dataset, as
shown in Figure 4.
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(a) Visualization of detection sample #3 for Metro-Traffic dataset.
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(b) Visualization of detection sample #13 for Metro-Traffic dataset.

Figure 4: Visualization of neuron importance, i.e., normalized attribution scores, across USTM
layers. LX represents the X-th linear layer in the transformer. TQ, TK, TV, TF, and TS represent
neurons in the temporal transformer’s query, key, value, first linear layer, and second linear layer,
respectively, while SQ, SK, SV, SL, and SF denote the same in the spatial transformer. Pattern
Neurons are highlighted in yellow.

The results show that neurons with high attribution scores consistently appear in similar positions,
identifying specific holiday neurons that can be detected with a small number of samples. The
number of holiday neurons varies between the temporal and spatial transformers, with more concen-
trated in the query and key components, emphasizing the role of attention mechanisms in detecting
low-frequency patterns like holidays. Furthermore, the distribution of pattern neurons across layers
reflects a hierarchical structure, where shallow layers capture general patterns and middle layers
refine lower-level features. The visualization of neuron importance for low- and high-frequency
patterns, as well as for the Pedestrian dataset, can be found in Appendix A.6.

Hyperparameter Study We investigate the effects of hyperparameters in PN-Train to address
RQ5. Specifically, we examine three key hyperparameters: the selection ratio (ϵ), the number of
detection samples (B), and the number of fine-tuning samples (R). From Figure 5, we observe:
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Figure 5: Hyperparameter study on Metro-Traffic dataset.

There is a trade-off between holiday and non-holiday performance. When ϵ = 1, all neurons in the
UTSM are fine-tuned. Increasing ϵ from 0 to 0.7 improves holiday performance, but non-holiday
performance declines as ϵ increases from 0.5 to 0.7. This occurs because, with a larger ϵ, too many
Pattern Neurons, including those responsible for general time series knowledge, are detected and
fine-tuned, leading to overfitting the UTSM to holiday patterns. We opt for ϵ = 0.5 as it provides
the best balance between holiday and non-holiday performance.
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A detection sample size of B = 30 is sufficient to identify the Pattern Neurons. Increasing the
number of detection samples reduces the number of neurons associated with low-frequency patterns
being selected, as we only detect neurons with high attribution scores across all detection samples.
Consequently, using a larger number of detection samples may cause certain pattern neurons to go
undetected due to slight variations in holiday patterns.

PN-Train achieves the best performance when R = 10, indicating that fine-tuning specific neu-
rons associated with low-frequency patterns is low-cost, requiring only a few samples to boost per-
formance for both low- and high-frequency patterns.

5 RELATED WORK

Urban Time Series Forecasting Urban time series forecasting is a crucial aspect of smart city
development, with various urban time series models (UTSMs) designed to support a wide range of
applications. Initial efforts relied on conventional time series models, such as Autoregressive In-
tegrated Moving Average (ARIMA) (Williams & Hoel, 2003; Tran et al., 2015) and Holt-Winters
methods (de Assis et al., 2013; Brügner, 2017). However, these approaches often fail to capture the
complex patterns inherent in urban data. Recently, deep learning-based models, including graph-
based (Zheng et al., 2020; Wu et al., 2019; Bai et al., 2020; Wu et al., 2020) and graph-free ap-
proaches (Deng et al., 2021; Shao et al., 2022; Liu et al., 2023), have gained prominence due to
their ability to learn non-linear relationships more effectively. While these methods improve overall
performance, they often overlook low-frequency patterns in urban time series, particularly when the
sample size is insufficient to train deep models Krawczyk (2016); Lee & Ko (2024). Furthermore,
existing research has not examined UTSMs at the component level. In this study, we focus on in-
vestigating UTSMs, and based on our findings, we design PN-Train to address low-frequency
patterns at the neuron level to improve forecasting accuracy.

Neuron Interpretability Neuron interpretability has gained significant attention for explaining
neural networks across various applications, from visual (Bau et al., 2017; Mu & Andreas, 2020) to
language models (Bau et al., 2019; Xin et al., 2019; Dalvi et al., 2020). Recent studies (Dai et al.,
2022; Wang et al., 2022) have demonstrated that certain neurons in large language models (LLMs)
capture knowledge-specific contexts. To detect these knowledge neurons, techniques can be grouped
into three categories: gradient-based methods (Dai et al., 2022; Chen et al., 2024), which identify the
neurons with high attribution scores from the integrated gradients as knowledge neurons; entropy-
based activation analysis (Tang et al., 2024), which identifies neurons with low activation probabil-
ity entropy as knowledge neurons; and perturbation-based difference evaluation (Zhao et al., 2024),
which detects knowledge neurons by measuring differences in feature representations between acti-
vated and deactivated states. Recent works (Tang et al., 2024; Zhao et al., 2024) also demonstrate
that neuron-level manipulation can enhance model capabilities. However, neuron interpretability re-
mains largely unexplored in the context of urban time series data. In this work, we interpret neurons
in UTSMs using a finer-grained perturbation-based technique, revealing how these models capture
low-frequency patterns in urban time series forecasting.

6 CONCLUSION

We introduced PN-Train, a novel training method that incorporates a perturbation-based neu-
ron detector to confirm the existence of pattern neurons associated with distinct patterns in urban
time series data. Building on this, we proposed a pattern neuron optimizer that focuses on fine-
tuning these neurons to enhance forecasting for low-frequency patterns, such as holidays. Our
experiments demonstrate that fine-tuning a small subset of neurons, i.e., less than 10% of the to-
tal parameters, can significantly improve forecasting accuracy for low-frequency patterns. We also
observed that in transformer-based urban time series models, the key and query components play
a crucial role in capturing patterns. Additionally, optimizing these pattern neurons enhances fore-
casting for high-frequency patterns, such as non-holidays, as they capture essential underlying time
series knowledge. PN-Train surpasses previous baselines in forecasting accuracy for both low-
and high-frequency events, contributing to overall performance improvements. Given that neuron-
level investigations have received limited attention in time series analysis, we hope our findings
provide a fresh perspective and inspire further exploration of time series models at the neuron level.
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A APPENDIX

A.1 DATASET DETAILS

Table A.1 provides a summary of the statistical information for the two real-world datasets, Metro-
Traffic (Hogue, 2019) and Pedestrian (Fang et al., 2024). This includes the time span of each dataset,
the selected frequency and sensor size, as well as the number of weekdays, weekends, and holidays
within the time span.

Table A.1: Statistics of the datasets.

Dataset Time Span Frequency Sensor Size Weekdays Weekends Holidays
Metro-Traffic 10/02/2012 - 30/09/2018 1 hour 1 1,731 694 63

Pedestrian 11/02/2019 - 31/10/2022 1 hour 48 971 388 52

A.2 BASELINES

To thoroughly evaluate our model, we compare PN-Train with several widely used urban time
series models (UTSMs), including the following:

• HA is a traditional time series model that forecasts future values by averaging historical data for
corresponding time slots.

• STGCN (Yu et al., 2018) is a graph-based UTSM that employs graph convolution networks to
capture spatial dependencies among citywide sensors and uses a 1D convolution network to model
temporal dependencies.

• GWNET (Wu et al., 2019) enhances STGCN by introducing a self-adaptive graph neural network to
learn dynamic spatial dependencies and uses stacked dilated causal convolutions to model tempo-
ral patterns.

• AGCRN (Bai et al., 2020) is a graph-based model that captures region-specific spatio-temporal
correlations through an adaptive graph convolutional recurrent network.

• STID (Shao et al., 2022) is a graph-free UTSM that encodes spatial and temporal identities using
an embedding layer and applies Multi-Layer Perceptrons to learn spatio-temporal correlations in
urban time series data.

• STWA (Cirstea et al., 2022) is a graph-free urban traffic series model (UTSM) that employs
location- and time-specific parameters to enable a spatio-temporal aware attention mechanism.
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• STAEformer (Liu et al., 2023) improves upon STID by introducing spatio-temporal adaptive
embeddings, allowing the vanilla transformer to learn dynamic spatio-temporal correlations more
effectively.

• TESTAM (Lee & Ko, 2024) is a graph-based UTSM that captures dynamic spatial relationships
through an adaptive graph-based attention mechanism and employs a mixture of experts to capture
both regular and irregular patterns in urban time series.

A.3 EXPERIMENTAL SETUP

All experiments were conducted on an NVIDIA A100 80GB GPU and repeated three times. We
used the AdamW optimizer Loshchilov & Hutter (2019) with a 0.001 learning rate, early stopping
with a patience of 20 epochs, and a maximum of 300 epochs. The batch size was 32, with a look-
back window (L) of 12 and a forecast horizon (H) of 12. Implemented in PyTorch (Paszke et al.,
2019), our method used the official code for all baselines. STAEformer (Liu et al., 2023) served as
our UTSM, with all other parameters the same as the original model.

A.4 NOTATIONS

In this section, we present a table of important notations in Table A.2.

Table A.2: Table of important notations in PN-Train.

Notation Description Parameter
L Look-back window 12
H Forecast horizon 12

Attrp Attribution score for pattern p -
ϵ Selective ratio for neurons with high attribution scores 0.5
B Sample sizes for pattern neuron detection 30
D Sample sizes for pattern neuron verification -
R Sample sizes for pattern neuron optimization 10

A.5 METRIC DETAILS

We evaluate performance using three metrics, each assessing the model from a different perspective:
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Weighted Mean Absolute
Percentage Error (WMAPE). MAE measures the average L1 distance between predicted values and
the ground truth, making it less sensitive to outliers. RMSE, as the square root of the average L2
distance, gives more weight to outliers. WMAPE evaluates accuracy based on percentage errors,
which is scale-independent.

MAE =
1

ξ

ξ∑
i=1

∣∣ŷi − yi
∣∣ ,RMSE =

√√√√1

ξ

ξ∑
i=1

(ŷi − yi)
2
,WMAPE =

∑ξ
i=1

∣∣ŷi − yi
∣∣∑ξ

i=1 |yi|
(7)

where ŷi and yi denote the predicted values and ground truth, and ξ is the total number of samples.

A.6 PATTERN NEURON VISUALIZATION

We further visualize pattern neurons for both low- and high-frequency patterns. Specifically, we
visualize holiday, non-holiday, and holiday-specific neurons on the Metro-Traffic dataset in Fig-
ure A.1. The results confirm our assumption that holiday-related neurons include those specific to
low-frequency events, which do not contribute to high-frequency events, as well as those that learn
general time series features useful for both low- and high-frequency patterns. Additionally, pattern
neurons are primarily located in the transformer’s query and key components, which are responsible
for capturing patterns.
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(a) Visualization of Holiday Neurons for Metro-Traffic dataset.
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(b) Visualization of Non-Holiday Neurons for Metro-Traffic dataset.
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(c) Visualization of Holiday-Specific Neurons for Metro-Traffic dataset.
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(d) Visualization of General Neurons for Metro-Traffic dataset.

Figure A.1: Visualization of neuron importance, i.e., normalized attribution scores, across USTM
layers for Traffic dataset. TQ, TK, TV, TF, and TS represent neurons in the temporal transformer’s
query, key, value, first linear layer, and second linear layer, respectively, while SQ, SK, SV, SL, and
SF denote the same in the spatial transformer. Pattern Neurons are highlighted in yellow.

Furthermore, in Figure A.2, we visualize pattern neurons for the holiday pattern on the Pedestrian
dataset. Similar to the holiday neurons in the Metro-Traffic dataset discussed in the main paper, we
observe that high attribution scores consistently appear in similar positions, with the query and key
components playing a crucial role in emphasizing holiday patterns.
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(a) Visualization of detection sample #1 for Pedestrian dataset.
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(b) Visualization of detection sample #2 for Pedestrian dataset.
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(c) Visualization of detection sample #3 for Pedestrian dataset.
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(d) Visualization of detection sample #4 for Pedestrian dataset.

Figure A.2: Visualization of neuron importance, i.e., normalized attribution scores, across USTM
layers for Pedestrian dataset. Pattern Neurons are highlighted in yellow.
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