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ABSTRACT

A major hurdle for developing effective ML systems in healthcare is access to the
right data at the right time. Many hospitals maintain several isolated patient data
management systems, often leading to incomplete datasets when developing ML
systems, severely impacting the clinical usability of prediction systems. Moreover,
Intensive Care Unit (ICU) stays are short due to considerable cost, leading to
(premature) transfers to the nursing ward, where real-time monitoring is often
non-existent. ML-powered predictive systems here are increasingly ineffective due
to data shortage, but patients still risk various complications. Our work addresses
this with a framework that combines pre-operative, operational, ICU, and lab-
test parameters. Additionally, we include high-resolution continuous vital sign
measurements originating from a non-intrusive hybrid nursing ward in our dataset.
Using this wearable data, we observe improved prediction accuracy for Surgical
Site Infection (SSI) after gastrointestinal surgery. Our work suggests a need for
hybrid monitoring after a patient’s ICU stay to further ML modeling in clinical
settings and a need for more problem-centric ML.

Introduction The Electronic Health Record (EHR) provides considerable administrative benefits;
moreover, the data can be used to improve patient treatment and predict clinical outcomes using ML.
Using this retrospective data, several datasets that contain readily available Intensive Care Unit (ICU)
data have been developed (Johnson et al., 2016; 2023; Thoral et al., 2021; Hyland, 2020; Rodemund
et al., 2023). Despite the increased popularity and usage of these datasets, retrospective data collection
has limits, as inclusion criteria and patient cohorts can vary. This means ML researchers are restricted
to predicting retrospectively defined endpoints (e.g., van de Water et al. (2024)). Additionally, many
clinically relevant endpoints are often unavailable, and data is often missing during crucial patient
health periods outside the ICU. We address this by using multi-modal data from the entire patient’s
stay (Figure 1).
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Figure 1: Schematic representation of patient journey.
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Figure 2: Data collection and processing pipeline. From left to right: 1) simplified time steps of
patient treatment process 2) patient monitors worn on nursing ward, 3) the respective PDMS involved
with data collection and storage, 4) the extraction pipeline that ingests data from the PDMS using
proprietary APIs, 5) on-premises Hadoop-based data lake 6) Spark-based transformation pipeline and
further preprocessing on compute cluster, 6) High-Performance Computing infrastructure used to
construct ML pipelines, perform patient analytics, and produce visualizations.

Table 1: Description of the collected data. Numeric variables are summarized by median [IQR].
Categorical variables are summarized by incidence (%).

Years collected 2022-2024 Surgery System†

Average data points per patient ≈ 500,000 Esophagus 42
Number of patients 780* proj. 1,000 Stomach 24
Age at admission (years) 62.0 [53.0, 70.5] Colorectal 395
Female 235 (30.1%) Liver 435
Complications Pancreas 187

Deep Surgical Site Infections (SSI-III) 138 (19.5%)
Of which occurred on nursing ward 108 (78.3%)

Time to SSI-III* (days) 8 [5, 10] Wearable data‡
Hospital death 24 (3.9%) Corsano Band 1 318

Hospital length of stay (days) 8 [6,12] Corsano Band 2 324
No. of variables ≈ 200 Core Device 660

*From the moment of intake.
†Patients can receive surgery for multiple systems.
‡ Due to logistic issues in data collection, not every patient has usable wearable data, see discussion.

Data collection Our work is based on a prospective study of visceral surgery patients; this type of
surgery is often applied after a cancer diagnosis. As many patients develop complications after leaving
the heavily monitored ICU or even after being discharged completely (Woelber et al., 2016), there are
limited opportunities to recognize these complications early. Our study creates a hybrid regular ward
where patients are monitored with wearable vital sign equipment. We use the Corsano Cardio Watch
1/2 (Blok et al., 2021), which monitors photoplethysmography (PPG) at 25-32 Hz, from which we
can compute a.o. heart pulse rate, blood oxygen saturation, respiration rate (Almarshad et al., 2022),
and the GreenTEG Core body temperature sensor (Verdel et al., 2021). This non-intrusive, continuous
monitoring can provide more information in a critical patient stay stage. Figure 2 demonstrates the
data collection and transformation pipeline.

Data characteristics Table 1 shows the currently included patient cohort in addition to the inclusion
of the retrospective data. The collected dataset contains wearable data in addition to clinical data,
allowing for real-time risk prediction modeling outside of critical care, and it is, to our best knowledge,
the biggest dataset that contains the combination of wearable and clinical modalities (Clifton et al.,
2014). We note that our dataset contains considerable amounts of datapoints, but also unique
dimensions. Despite our increased monitoring capacity, the dataset is sparse over time and could be
seen as a mix of time-series and event timeline

Experimental results As the study is still ongoing, we are expanding our cohort dynamically. The
primary endpoint of our study is the medically relevant SSI (McLean et al., 2023), a type of severe
infection. As the time series from the included subjects is sparse, e.g., ICU segments contain medical
scores such as SOFA, we decided to use a feature extraction pipeline with a non-deep model as these
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Table 2: The performance impact of feature sets. The full feature set was used in every experiment
(no feature selection). The ± symbol indicates standard deviation.

Feature set AUPRC AUROC
FClinical 39.1±11.4 71.9±7.0
FClinical∪Wearable 46.7±13.1 74.7±7.1

still tend to be competitive with DL models (Grinsztajn et al., 2022). Features are extracted using
TSFresh (Christ et al., 2018). XGBoost (Chen & Guestrin, 2016) resulted in the most accurate model
on extracted features when compared to LightGBM (Ke et al., 2017), Logistic Regression, Random
Forest and Gradient Boosting (Pedregosa et al., 2011). We compared the inclusion of the wearable
data over a nested 5-fold cross-validation, using 10 iterations of randomized hyperparameter tuning,
with 5 unique random seeds.

Discussion To improve prediction accuracy and usability of the model, online grouped time-step
generation can be used instead (e.g., Kuznetsova et al. (2023)); this should particularly highlight
the importance of wearable data. Data quality is crucial in life-dependent systems; during our study,
we recorded wearable signals on the ICU, allowing us to compare wearable data with clinical-grade
monitoring extensively. A clinical study should be considered if this results in an accurate decision
decision support system.

Conclusion Our work shows that, although access to digitalized EHR data has drastically increased,
we might still be missing an important piece of the puzzle. The medical domain is, therefore, in need
of specialized data collection techniques to bring accurate and reliable systems to practice. Generally,
we recommend that ML research spend more time on problem modeling and data collection to assess
missing dimensions.
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A DETAILED INCLUSION CRITERIA

Patients were included in the study with informed consent. Their age was 18 years or more. The
groups included in the study are: Visceral Surgical Major Resections in the Organ Systems of Liver,
Pancreas, Upper and Lower Gastrointestinal Tract according to several OPS groups. Intestine

• Small Intestine Resections: 5-454.0 to 5-545.y
• Reversal of a Double-Barreled Enterostomy: 5-465.0 to 5-465.y
• Restoration of Intestinal Continuity in Terminal Enterostomies: 5-466.0 to 5-466.y
• Partial Resection of the Colon: 5-455.0 to 5-455.y
• Total Colectomy, Variations: 5-456.0 to 5-456.y
• Rectum Resection with Sphincter Preservation: 5-484.0 to 5-484.y
• Rectum Resection without Sphincter Preservation: 5-485.0 to 5-485.y

Upper Gastrointestinal Tract:

• Partial Esophagectomy without Restoration of Continuity: 5-423.0 to 5-423.y
• Partial Esophagectomy with Restoration of Continuity: 5-424.0 to 5-424.y
• (Total) Esophagectomy without Restoration of Continuity: 5-425.0 to 5-425.y
• (Total) Esophagectomy with Restoration of Continuity: 5-426.0 to 5-426.y
• Atypical Partial Gastrectomy: 5-434.0 to 5-434.y
• Partial Gastrectomy (2/3 Resection): 5-435.0 to 5-435.y
• Subtotal Gastrectomy (4/5 Resection): 5-436.0 to 5-436.y
• (Total) Gastrectomy: With Esophagojejunostomy: 5-437.0 to 5-437.y
• (Total) Gastrectomy with Subtotal Esophagectomy: 5-438.0 to 5-438.y

Pancreas Surgery:

• Partial Resection of the Pancreas: 5-524.0 to 5-524.y
• (Total) Pancreatectomy: 5-525.0 to 5-525.y

Liver Surgery:

• Anatomical (Typical) Liver Resection: 5-502.0 to 5-502.y
• Atypical Resections: 5-501.0 to 5-501.y

The following groups of patients are excluded:

• Patients not capable of giving consent
• Patients who have undergone an organ transplant during the same stay
• Performance of an additional intraoperative hyperthermic chemotherapy (HiPEC)

B SYSTEMS

B.1 DEVICEHUB

Devicehub is a device-agnostic vital sign recording system (Brasier et al., 2020). It runs on gateways
that connect directly to wearable devices using bluetooth. It is developed by the company Leitwert1
which provides Software As A Service support for the product. In our study, it is used to persist data
collected using the Corsano2 Band 1 and 2 and GreenTEG Core3 devices

1https://www.leitwert.ch/technology/device-hub/ (accessed 16-02-2024)
2https://corsano.com/ (accessed 16-02-2024)
3https://shop.greenteg.com/core-body-temperature-monitor(accessed 16-02-2024)
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B.2 COPRA

COPRA PDMS (patient data management system)4 is an Electronic Health Record (EHR) system
solution. It enables users to analyze changes and repeated logins, automate the transfer of device
values, record billing-relevant data and nursing services, determine approval of the documentation,
and contrive drug administration and automated export transition. Features include medical history
analysis, prescription management, worklist optimization, case management, scalability, and support
SQL server and the .NET framework. The latest version is COPRA 6.

B.3 I.S.H.MED

i.s.h.med (old spelling IS-H*med)(Gell et al., 2003) is a clinical information system produced by
Oracle Cerner. SAP IS-H industry solution for healthcare facilities and thus results in a hospital
information system. The name comprises "IS" for SAP Industry Solution and "H" for Healthcare.
(Gell et al., 2003). According to the manufacturer, the software is in use in more than 500 hospitals
and operators.

B.4 HEALTH DATA PLATFORM

The Health Data Platform (HDP) (Nelde et al., 2023) is a central service that enables regulated access
to routine and research data from hospital patients. As of Q2 2022, the most important systems
developed for HDP include the hospital information system, laboratory information system, radiology
information system, and patient data management system for intensive care medicine. As a result
of this indexing, around 39 million diagnoses, 17 million procedures, and 666 million laboratory
values for 4 million patients with 14 million outpatient and inpatient cases, as well as other clinical
parameters, are available for evaluation by the HDP. The HDP harmonizes this data based on common
data models and international interoperability standards.5 .

C DETAILED DATA CHARACTERISTICS
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Figure 3: Age distribution of cases
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Figure 4: Birthdate of patients

4information adapted from https://discovery.hgdata.com/product/copra-pdms(accessed
16-02-2024)

5information adapted from https://health-data.charite.de/faq/start (accessed 16-02-
2024)
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Figure 5: Complication distribution of cases
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Figure 6: Intake distribution for cases

Table 3: Origin of the modalities recorded per patient. S: static data; T: time-series data

PDMS Table Description Type Pre-OP OP Post-OP Nursing ward Integrated*

REDCAP1 complications Complications including SSI. S ✓ ✓ ✓ ✓
register_export Study details and wearable intervals S ✓ ✓ ✓ ✓

ISHMED2

patient_details Basic statistics for patient S ✓ ✓
case Intake data and release dates for patients S ✓ ✓
lab_values Various lab measurements T ✓ ✓ ✓ ✓ ✓
procedure (Surgical) procedures S ✓ ✓ ✓
diagnosis Diagnosis details S ✓ ✓
movement Movement between wards T ✓ ✓ ✓ ✓ ✗

COPRA63

scores Common ICU scores and composite measurements T ✓ ✓
observation Vital sign observation and scores T ✓ ✓ ✓
medication Detailed medication history T ✓ ✓ ✓ ✓ ✗
fluid_balance Fluids going into/out of the patient T ✓ ✓ ✓
therapy Machines that the patient is connected to T ✓ ✓ ✗

DEVICEHUB4 corsano v1/v2 Real-time vital sign monitoring T ✓ ✓
greenteg core Real-time temperature monitoring T ✓ ✓

* Indicates the current
1 Study information
2 Features denoted as FGeneral
3 Features denoted as FICU
4 Features denoted as FWearable
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Table 4: Lab values and their counts

Full Name Name Unit Count

0 Alanin Aminotransferase alat U/l 20,571
1 Albumin alb g/l 7,512
2 Alkaline Phosphatase alp U/l 17,644
3 Amylase ams U/l 1,278
4 Partial Thromboplastin Time aptt sec 1,988
5 Aspartate Aminotransferase asat U/l 20,543
6 Antithrombin at % 2,777
7 Basophils baso /nl 6,287
8 Basophils Relative baso_rel % 5,869
9 Base Excess be mmol/l 62,886
10 Calcium ca mmol/l 35,945
11 Creatine Kinase ck U/l 1,248
12 Creatine Kinase MB ck_mb U/l 485
13 Chloride cl mmol/l 32,946
14 Carboxyhemoglobin cohb % 31,647
15 Creatinine cr mg/dl 1,184
16 C Reactive Protein crp mg/l 18,747
17 Cystatin C cys_c mg/l 171
18 D Dimer d_dim mg/l 90
19 Direct Bilirubin dbil mg/dl 2,053
20 Erythroblasts ebl /nl 4,239
21 Erythroblasts Relative ebl_rel % 159
22 Eosinophils eos /nl 6,296
23 Eosinophils Relative eos_rel % 5,886
24 Iron fe µmol/l 1,744
25 Ferritin fer µg/l 1,492
26 Fibrinogen fg g/l 3,239
27 Fraction of Inspired Oxygen fio2 % 32,257
28 Glutamate Dehydrogenase gdh U/l 1,094
29 Gamma Glutamyltransferase ggt U/l 19,848
30 Glucose glu mg/dl 44,628
31 Hemoglobin hb g/dl 31,776
32 Glycated Hemoglobin hba1c % 990
33 Bicarbonate hco3 mmol/l 63,286
34 Hematocrit hct % 31,641
35 High Density Lipoprotein hdl mg/dl 948
36 Deoxyhemoglobin hhb % 31,342
37 Haptoglobin hp g/l 207
38 Indirect Bilirubin ibil mg/dl 410
39 Immature Granulocytes ig /nl 6,258
40 Immature Granulocytes Relative ig_rel % 5,498
41 Immunoglobulin A iga g/l 245
42 Immunoglobulin E ige kU/l 30
43 Immunoglobulin G igg g/l 254
44 Immunoglobulin M igm g/l 242
45 International Normalized Ratio inr - 18,652
46 I/T Ratio it_ratio - 5,708
47 Potassium k mmol/l 49,699
48 Lactate lac mg/dl 31,151
49 Lactate Dehydrogenase ldh U/l 6,332
50 Low Density Lipoprotein ldl mg/dl 927
51 Lipase lps U/l 15,326
52 Lymphocytes lym /nl 6,302

Continued on next page
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Table 4: Lab values and their counts

Full Name Name Unit Count

53 Lymphocytes Relative lym_rel % 5,906
54 Mean Corpuscular Hemoglobin mch pg 25,594
55 Mean Corpuscular Hemoglobin Concentration mchc g/dl 25,560
56 Mean Corpuscular Volume mcv fl 25,573
57 Methemoglobin methb % 31,654
58 Magnesium mg mmol/l 3,719
59 Monocytes mono /nl 6,293
60 Monocytes Relative mono_rel % 5,898
61 Mean Platelet Volume mpv fl 25,087
62 Myelocytes myelo % 194
63 Sodium na mmol/l 49,369
64 Ammonia nh3 µmol/l 117
65 N Terminal Pro B Type Natriuretic Peptide nt_probnp ng/l 449
66 Oxyhemoglobin o2hb % 31,707
67 Phosphorus p mmol/l 92
68 Pseudocholinesterase pche kU/l 823
69 Carbon Dioxide Partial Pressure pco2 mmHg 31,590
70 Procalcitonin pct µg/l 2,738
71 Potential of Hydrogen ph - 33,107
72 Platelets plt /nl 25,568
73 Neutrophils pmn /nl 6,279
74 Neutrophils Relative pmn_rel % 5,460
75 Oxygen Partial Pressure po2 mmHg 31,672
76 Phosphate po4 mmol/l 5,277
77 Protein pro g/l 2,014
78 Prothrombin Time pt NaN 362
79 Quick Value quick % 18,237
80 Erythrocytes rbc /pl 25,582
81 Red Cell Distribution Width rdw % 25,517
82 Reticulocytes rtic /nl 1,998
83 Schistocytes schisto % 67
84 Oxygen Saturation so2 % 31,723
85 Temperature t °C 32,661
86 Total Bilirubin tbil mg/dl 50,847
87 Total Cholesterol tc mg/dl 1,275
88 Total Triglycerides tg mg/dl 1,396
89 Transferrin trans g/l 1,639
90 Thyroid Stimulating Hormone tsh mU/l 5,601
91 Urea urea mg/dl 19,535
92 25 OH Vitamin D3 vd25 nmol/l 310
93 Leukocytes wbc /nl 25,586

Table 5: ICU observations and and the amount

Name Count

0 bi_sofa 5,684
1 crea_sofa 5,684
2 fio2 452,963
3 gcs_sofa 5,684
4 height 1,273
5 hr 1,137,862

Continued on next page
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Table 5: ICU observations and and the amount

Name Count

6 hypo_sofa 5,684
7 pao2_sofa 5,684
8 rr 308,152
9 sao2 570,031
10 sofa 5,687
11 temp 373,436
12 thromb_sofa 5,684
13 vital_IBP 1,305,951
14 vital_NBP 750,909
15 weight 3,511

Table 6: ICU scores and the amount

Name Count

0 APACHE2 9,319
1 CO_Score_CAM_ICU 24,579
2 E-NRS 448
3 Frailty 575
4 GCS 52,327
5 NIHSS 208
6 P-RISK 30,928
7 Patient_Score_BSAS 8
8 Patient_Score_DDS8 4,518
9 Patient_Score_ICDSC 5,949
10 RASS 30,805
11 SAPS2 52,827
12 SOFA 21,595
13 Score_BPS 6,510
14 Score_Delir 13,073
15 Score_NAS 6,161
16 Score_SU_Neurostatus 6
17 TISS10 9,974

D MODEL EVALUATION

A double-nested cross-validation setup was used for all experiments. The hyperparameters can be seen
in Table 7. The model evaluation code is available at: https://github.com/rvandewater/
CASS-PROPEL.

Table 7: Used hyperparameter ranges for the XGBoost model used for all experiments.

Hyperparameter Range

learning_rate 0.005, 0.01, 0.1, 0.3, 0.5, 0.7, 1
colsample_bytree 0.1, 0.25, 0.5, 0.75, 1.0
n_estimators 50,100,250, 500, 750
min_child_weight 1,0.5
max_depth 3, 5, 10, 15

E EXTENDED SHAP VISUALIZATIONS
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Figure 7: SHAP values for 12-hour prediction aggregated over all folds and seeds. We show only the
50 most influential features (according to the SHAP calculation).
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Figure 8: SHAP values for 12-hour prediction aggregated over all folds and seeds. We show only the
50 most influential features (according to the SHAP calculation).
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