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Figure 1: A biologically-inspired foveated interface for deep vision models. A. Foveated sensing is
equivalent to uniform sampling on a magnified sensor manifold (Rovamo & Virsu, 1984). When the
manifold is divided along the vertical meridian and flattened, its relationship to the two hemispheres
of primary visual cortex is evident. B. Building hierarchical convolutional networks via uniform k-
nearest-neighbor (kNN) sampling on the sensor manifold. Our kernel mapping algorithm allows us
to perform kNN-convolution of a filter across the sensor manifold, yielding eccentricity-dependent
receptive field sizes. C. Building vision transformers (ViTs) from a kNN-convolution-based patchi-
fication of the sensor manifold. Low-rank adaptation of the early layers allows for successful adap-
tation of off-the-shelf foundation models, enabling high performing foveated ViT models.
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ABSTRACT

Human vision is foveated, with variable resolution peaking at the center of a
large field of view; this reflects an efficient trade-off for active sensing, allow-
ing eye-movements to bring different parts of the world into focus with other
parts of the world in context. In contrast, most computer vision systems encode
the visual world at a uniform resolution over space, raising computational chal-
lenges for processing full-field high-resolution image formats efficiently. We pro-
pose a biologically-inspired foveated sampling interface that reformats a variable-
resolution array of sensors into a uniformly dense, curved sensor manifold. Recep-
tive fields are defined as k-nearest-neighborhoods (kNNs) on the sensor manifold,
and we develop a novel kernel mapping technique to enable kNN-convolution. We
demonstrate two use cases: (1) a novel kNN-convolutional architecture that na-
tively learns features over foveated input, and (2) an integration of our foveated in-
terface into the vision foundation model DINOv3 via low-rank adaptation (LoRA).
These models maintain or improve accuracy compared to non-foveated counter-
parts, and open pathways for scalable active sensing and efficient modeling of
increasingly high-resolution visual data.

1 INTRODUCTION

Processing the visual world in its native high resolution poses serious computational challenges.
Notably, within deep learning, computer vision has typically simplified the problem by working
with low resolution images, with 224x224 being typical. As computer vision advances, processing
the native high-resolution of the world, while being sensitive to a large field-of-view, is a critical
goal that can enable key applications in robotics, self-driving cars, and broader scene processing.
For transformer-based architectures (Dosovitskiy et al., 2020), increasing resolution (i.e. image side
length) is a doubly quadratic cost; first, it is quadratic in the number of pixels produced, and second,
it is quadratic in the attention operation, where every image patch must attend to every other image
patch. Efficient solutions are thus a priority.

Here, we turn to the human visual system for inspiration, as it can process information at very high
resolutions near the center of gaze (the fovea), while simultaneously representing a very large field-
of-view (˜180°) with progressively lower resolution moving farther from the center of gaze. These
changes in acuity are attributed to the high density of both cone photoreceptors and retinal ganglion
cells (RGCs) in the fovea, and the progressively lower density of both as distance from the fovea
increases (Watson, 2014). Information from the retina is mapped to a uniform representation via the
thalamus into the primary visual cortex (V1), where more cortical area is dedicating to foveal vs.
peripheral regions (known as ”cortical magnification”; Daniel & Whitteridge (1961). Thus, not only
does the human visual system capture more detailed images at the fovea, but it also devotes more
cortical real-estate to processing information at the center of gaze.

Why is the human visual system foveated? Some back-of-the-envelope calculations provide some
intuition (details are provided in Figure S2). If we first assume that V1 were to dedicate as much
space to the full visual field as it normally does to central vision, this would result in the long-axis
of V1 expanding to 1.2 meters – approximately 25x its typical length – catastrophically increasing
both space and energy demands. If we instead assume a fixed amount of cortical real-estate with
the peak resolution throughout, only a 3◦ field-of-view would be possible, impairing broader visual
interactions with the world, such as navigation and detection. Thus, foveated sampling of the visual
environment provides a balanced solution to the trade-off between resolution, field-of-view, and
spatial efficiency, opting for high-resolution over a limited field-of-view, and lower resolutions over
larger fields-of-view, with a modest spatial and energetic cost.

2 PRIOR WORK

While foveated sensing is not a dominant approach in computer vision, it has historically received
substantial interest (Weiman & Chaikin, 1979; Javier Traver & Bernardino, 2010; Wang et al., 2021;
Da Costa et al., 2024; Jérémie et al., 2024). Generally, two forms of foveated sensing have been
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explored: a log-polar image model Weiman & Chaikin (1979); Javier Traver & Bernardino (2010);
Jérémie et al. (2024), which samples radius (eccentricity) logarithmically and selects an equal num-
ber of angular samples at each radius, and warped Cartesian approaches Basu & Licardie (1995);
Lukanov et al. (2021); Wang et al. (2021); Da Costa et al. (2024), which re-project log-polar images
back into Cartesian space to produce a warped image that over-represents the center of gaze. These
approaches share a common issue, derived from their attempt to produce a rectangular grid-like
foveated image. The result is locally anisotropic sampling (locally, the sampling rate differs with
respect to polar angle and radius), a non-biologically-plausible property that produces undesirable
warped receptive field shapes (Figures S4, S5). A notable exception is the recent model of Killick
et al. (2023); however, their approach requires the use of fixed Gaussian-derivative basis functions
in place of learned spatial kernels, and is thus not directly comparable to the other methods which
allow for end-to-end learning of both spatial and feature-based representations. Similarly, Cheung
et al. (2017) demonstrated the emergence of foveated sampling in a scenario where the sampling grid
was learned, but the irregular structure of the learned grid did not support convolutional processing.
We discuss these approaches in greater detail in Appendix 8.4. Last, some approaches have fore-
gone a consideration of foveated sensing, and have modeled foveated perceptual processing purely
at the architectural level, by focusing resources more on central vs. peripheral image content (Kerr
et al., 2025; Chuang et al., 2025), showing benefits in robotics applications. While promising, these
approaches leverage a discrete set of processing resolutions rather than a continuum, and are not
designed with sensing efficiency in mind. A foveated sensor can provide additional efficiency gains,
particularly in sim2real pipelines (Pinto & Gupta, 2016), where reducing the numbers of rays traced
can reduce both computational and memory-based resources. Overall, prior work has introduced a
variety of mechanisms for implementing foveation in computer vision models, but there is not yet
a general-purpose implementation that shows well-behaved and biologically-plausible visual field
sampling, that can be adopted across diverse architectures.

3 SUMMARY OF CONTRIBUTIONS

Here, we make three key contributions.

1. We introduce a new foveated sampling interface to deep vision models. Visual space is
sampled according to a mathematical model of the retino-cortical mapping (Rovamo &
Virsu, 1984), as shown in Figure 1A; our novel k-nearest-neighbor (kNN)-convolution and
kernel mapping method enables perceptual processing over this foveated input format. This
sampling interface draws on known characterizations of the primate visual system: cutting
this manifold on the long-axis – corresponding to the vertical meridian dividing left and
right visual fields – yields a strong first-order match to the retinotopic organization of hu-
man V1.

2. Second, we present a novel kNN-convolutional neural network that natively learns con-
volutional features over foveated input (Figure 1B). We train these models end-to-end,
while varying the degree of foveation, and demonstrate both biologically-plausible spa-
tial receptive field properties, and an advantage for intermediate foveation levels in image
classification compared to non-foveated control models.

3. Third, we show how to outfit a state-of-the-art pre-trained vision transformer with a foveated
sensing interface (Figure 1C). Our method uses the kNN-convolution to implement a foveated
patch embedding into an otherwise standard vision transformer, and we explore fine-tuning
protocols leveraging low-rank adaptation (LoRA) (Hu et al., 2021) to functionally inte-
grate the new sensor into the DINOv3 model. This model achieves high performance at a
reduced computational budget, beating a matched non-foveated variant with the same lim-
ited resource constraints, while unlocking possibilities for efficient active sampling in high
resolution settings.

4 A BIOLOGICALLY-INSPIRED FOVEATED INTERFACE

In standard computer vision models, the representation of the visual world is rectangular (the size of
the image), and the model can perform regular (i.e. convolutional) processing directly over the input
image using rectangular kernels or patches (e.g. 3x3 pixel) that evenly tile the activation map. This
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regular processing relies on the presence of a uniformly dense representation of the image, here, a
regular grid. However, we seek to sample points in a foveated manner where resolution depends only
on eccentricity – but not polar angle; this set of points can be reformatted into a uniformly dense,
but curved, manifold (Figure 1A). Thus, we introduce a foveated interface with two components.
First, we follow a mathematical model of the retino-cortical mapping introduced by Rovamo &
Virsu (1984) (discussed further in Appendix 8.1 and Figure S1E), that generates a foveated sensor
array and supports an equivalent uniformly dense V1-like representation, which we term the sensor
manifold. Second, we introduce a kNN-convolution operation, supported by a novel kernel mapping
technique, to support perceptual processing on the sensor manifold.

4.1 FOVEATED SAMPLING WITH A UNIFORMLY-DENSE SENSOR MANIFOLD

To achieve an even sampling of points on the 3D sensor manifold, we begin by sampling points lo-
cally isotropically in Cartesian visual space according to the cortical magnification function (CMF);
given the CMF M(r) = 1

r+a (see Figure S1A), we sample a range of radius (eccentricity) values
from the fovea to the periphery equally in the logarithmic dimension given by the CMF integral
(w = log(r + a); see Figure S1B,C). Second, we determine the number of equally spaced angular
samples to draw in a circle at each radius in order to preserve local isotropy; that is, to ensure that the
distance between neighboring angles is equal to the distance between neighboring radii at any given
point. This ensures locally consistent spacing (local isotropy) throughout the visual field, while
achieving magnification along the radial dimension (Figure S1D). Together, this sampling strategy
produces points that are approximately evenly distributed on the 3D sensor manifold. The ”com-
plex log” model of Schwartz (1980) can be used as an ideal ”flat” representation that allows for 2D
visualization of the entire sensor manifold–a cut is made along the vertical meridian, and the two
hemifields are flattened, mirroring the spatial organization of visual information in the hemispheres
of area V1 (Figure 1A, right; Figure S1E).

To control the degree of foveation in our models, we vary the a parameter in the CMF, corresponding
to the size of the fovea, or area of highest resolution (Schwartz, 1980): M(r) = 1

r+a . A small fovea
(small a) is indicative of strong foveation, whereas a proportionally large fovea (large a) corresponds
to weak foveation, approaching uniform sampling as a → ∞ (Figure 3A). As shown in Figure S1A-
C, a desired number of visual sampling radii are generated from equally spaced samples of the
integrated CMF (or log radius, log (r + a)), from the minimum to maximum value. For a given a,
we search over the number of radii nr that produces the closest match to a target number of samples
n, ensuring approximately matched resources across models (see Appendix 8.1 for further detail).

4.2 KERNEL MAPPING FOR KNN-CONVOLUTION ON THE SENSOR MANIFOLD

To perform perceptual processing on the sensor manifold, we specify spatial receptive fields as k-
nearest-neighborhoods (kNNs) around a set of output units tiled across the same manifold. To enable
convolutional weight-sharing across kNNs on the manifold, we introduce the kNN-convolution,
mediated by a novel kernel mapping technique, which maps a reference kernel (W ) – learned in a
standard Cartesian grid – into each neighborhood (Figure 2). A goal of this mapping is to achieve
convolutional kernels that are aligned across locations in visual space, such that a vertical orientation
filter detects vertical features across the entire image. To do so, we define a set of polar neighborhood
coordinates for each kNN, setting the radius r as the geodesic distance from the output unit on the
sensor manifold, and the polar angle θ as the polar angle in visual space, computed with respect to
the output unit (Figure 2, step 1). We then determine the Cartesian neighborhood coordinates using
the standard formulas x = r cos(θ), y = r sin(θ), achieving aligned visual angles (Figure 2, step 2);
these coordinates lie in the same frame as the learned reference kernels (W ). Finally, we spatially
sample the reference kernel with each neighborhood using the reference frame coordinates, shown
in Figure 2, step 3. Plotting kernels back into the flattened sensor space highlights their uniform
size on the sensor manifold; projecting the learned feature kernel back into visual space shows how
the learned filter is the same across visual space, with different visual field coverage depending on
eccentricity.

There is an additional choice of the native resolution of the reference kernel. For example, this can
be set at the same resolution of the kNNs (square side length s =

√
k), or at a higher-resolution

to better accommodate idiosyncratic spatial positions across kNNs (c.f. anti-aliasing). In practice,
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Figure 2: Kernel mapping procedure for the kNN-convolution operation. First, even k-sized neigh-
borhoods are defined in the sensor manifold (upper), along with their orientation in the visual input
(cartesian) space (lower). Second, kernels are transformed into a common cartesian reference frame,
and aligned to a common reference kernel. Third, we visualize the learned reference kernel across
different units in both the flattened representational space (top), and in visual space (bottom). These
show how the kernel is a fixed size in the sensor manifold, and orientionally-aligned in visual carte-
sian coordinates, while scaling with eccentricity.

we find that the latter choice leads to stronger performance (Figure S10). We make this our default,
using a square kernel of side length s = 2

√
k. Notably, while this does increase parameter count,

it is heavily constrained by the fixed spatial mapping, and each mapped kernel still uses the same
number of parameters as a standard 2D kernel of side length s =

√
k.

5 FOVEATED KNN-CNNS

Given this sensor interface, we next built a foveated convolutional architecture, which leverages
multiple layers of kNN-convolution operations, supporting hierarchical foveated feature learning.
Each layer’s activation map is formatted as a sensor manifold, with a particular resolution of evenly
spaced samples. The resolution of each layer decreases progressively through the network, as in
typical CNNs. Each layer defines the kNN centers for processing of the previous layer (Figure 1B).

To instantiate a particular foveated model architecture, we paralleled the choices of a simple AlexNet-
like (Krizhevsky et al., 2012) convolutional model, with 5 convolutional layers, 3 pooling layers, and
2 fully connected layers. The first convolutional layer uses a kernel size of 11 and stride of 4, the
second convolutional layer uses a kernel size of 5 and stride of 1, and the remaining convolutional
layers use a kernel size of 3 and stride of 1. Besides the initial sampling layer, downsampling is per-
formed strictly in (3x3) max pooling layers with stride 2, following the first and fourth convolutional
layers. Before the first fully connected layer, a global average pooling layer is used, as in ResNets
and other later architectures (He et al., 2016). Across convolutional layers, there are 96, 256, 384,
384, and 256 channels. We implement padding by extending the sampling outside the processing
field-of-view, labeling such units as padding units whose activation always maps to 0. In the forma-
tion of kNNs in the following layer, these padding units are then automatically selected as nearest
neighbors to appropriately pad the input; ”unit 2” in Figure 2 is an example unit whose receptive
field is padded. Finally, we add two fully-connected layers with 1024 units, use a ReLU nonlinearity,
and perform batch normalization after each nonlinearity, with a learned affine transformation (Ioffe
& Szegedy, 2015).

5.1 FOVEATED CNNS MATCH THE SPATIAL CHARACTERISTICS OF PRIMATE NEURAL
RECEPTIVE FIELDS

First, we demonstrate that this model architecture produces a strong match to the spatial characteris-
tics of primate neural receptive fields. In particular, receptive field mapping studies have consistently
demonstrated that primate receptive fields are larger the more peripheral they are, and the farther up
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(6.25% of original pixels)
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t

fovea=1° fovea=100°

Figure 3: Foveated kNN-CNNs account for the spatial characteristics of primate neural receptive
fields, and provide a performance advantage in ImageNet classification. A. Implementing variable
foveation via variability in the cortical magnification function (CMF). Given the CMF 1

r+a , we can
specify a continuum of foveation, where small a corresponds to strong foveation, and uniform sam-
pling is achieved as a → ∞. B. Left: human population receptive field (pRF) sizes, measured with
fMRI (Dumoulin & Wandell, 2008). Middle: receptive field (RF) sizes across layers in a foveated
model (a = 1). Right: RF sizes in a nearly uniformly sampling model (a = 100). C. Sampled
fixations for strong and weak foveation models, shown both as a sensor array in visual space, and
a (flat) sensor manifold in a V1-like space. D. ImageNet-1K results after training, mapping out
performance up to 20 random fixations. E. Highlight of performance across foveation levels at the
maximum of 20 fixations.

the hierachy they are (Dumoulin & Wandell, 2008; Motter, 2009). Data from V1-V3 in humans in
Figure 3A depict this phenomenon, showing a linear increase in ”population receptive field size”
(pRF) size with eccentricity, with an increase in both slope and intercept across hierarchical areas.

We characterized the spatial RF properties in each layer of our model, assessing both a foveated
(a = 1) and non-foveated (a = 100) variant. For each layer, we compute the RF diameter of
every feature map location by back-projecting receptive field neighborhoods through each preceding
layer until reaching the input layer. We then plot the RF diameter as a function of eccentricity
for each layer. As shown in Figure 3B, middle, we see an approximately linear increase in RF
size with eccentricity. This linear increase eventually plateaus for each layer once the receptive
field centers get far enough into the periphery to incorporate padding units beyond the field-of-
view, such that the RF does not continue to grow. Additionally, both the slope and intercept of RF
diameter by eccentricity functions increase with the hierarchical layer number. The dependence of
RF size on eccentricity, but not hierarchical layer, falls directly out of the foveated sampling, as it
is abolished when assessing the non-foveated variant, shown in Figure 3B, right. Further intuition
for the eccentricity-dependent size increase can be seen in Figure 2(right), showing example RFs
in the first layer on both the flat sensor manifold and visual space. In addition to explaining the
qualitative patterns of RF sizes across visual areas, foveated sampling allows us to account for the
precise shapes of primate receptive fields; we discuss this in Appendix 8.3.

5.2 FOVEATION IMPROVES KNN-CNN CLASSIFICATION ACCURACY

Next, we examine the consequences of foveation for perceptual performance in image classification.
Recall that the motivation behind foveation is that it is useful when operating over a much higher
resolution input than allowed by the sensor, as in the ambient light field in the real world. Here, we
simulated this scenario by giving kNN-CNNs a constrained ”pixel-budget” (64x64) to sample from
a 256x256 ”ambient” resolution, representing a 16-fold reduction in samples. Examples of foveated

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review at ICLR 2026

samples can be seen in Figure 3C. (Note that since these models were constrained to only sample
642 pixels, we replaced the stride of 4 in the first layer with a stride of 2, in order to prevent feature
map resolution from shrinking to 1 before the final convolutional layer.)

We perform experiments using the ImageNet dataset (Russakovsky et al., 2015). For more detailed
experimentation across hyperparameter variations, we also use a smaller custom ImageNet subset
which we refer to as ImageNet-100. This dataset consists of 100 random ImageNet categories,
and contains the same number of images as CIFAR-100 (500 training images per category, and 100
validation images per category); basic validations in result trends across datasets are shown in Figure
S6. To facilitate faster training, both datasets are re-sampled to a uniform maximum resolution of
256 for use with FFCV (Leclerc et al., 2023), unless otherwise mentioned. We train our models
using 4 random fixations drawn from a central area of the image; in our main experiments we use a
radius of 0.25 of the image size to define the fixation zone, however we also experiment with a larger
radius of 0.45 (Figure S9). Due to gradient accumulation, it is expensive to train on many fixations,
imposing a similar cost (and benefit in learning) to increasing the number of epochs. However,
as inference is computationally cheaper and thus more amenable to large numbers of fixations, we
allow for up to 20 random fixations during validation. We forego crops, as cropping is a form of
foveation that focuses perception on a restricted part of the image at higher resolution than would
otherwise be allowed; we examine this choice in Figure S8. Models performed a simple aggregation
of information across fixations by averaging the logits of each fixation. During training, the average
logits are used with the cross-entropy loss for supervised learning; during validation, these average
logits are used to generate top-1 and top-5 accuracies.

Plotting performance over the number of fixations (Figure 3D), we see that each model improves
significantly with increasing fixations, generally saturating in improvement by about 20 fixations.
Focusing in on the performance at the maximum 20 fixations (Figure 3E), we see an inverted U-
shaped function over the fovea size, with peak performance at an intermediate foveation level of
a = 1, beating out both more strongly foveated (a = 0.1) and more uniformly foveated models
(a = 1000). We discuss these results in further detail, along with a series of follow-up analyses,
in Appendix 8.5; briefly, it seems this degree of foveation is well suited to capture the center-bias
and scale-bias of the critical object content in these ImageNet images. These results demonstrate
the successful application of our foveated sensor and kNN-convolution, highlighting an example
performance benefit for foveation under resource constraints.

6 FOVEATED KNN VISION TRANSFORMERS

Last, we demonstrate that it is possible to apply a foveated interface to a vision transformer (ViT),
and offer a recipe for converting an off-the-shelf foundation model into a foveated variant using
low-rank adaptation (LoRA; Hu et al., 2021, see Figure 1C).

6.1 PATCHIFICATION THROUGH KNN-CONVOLUTION

The key to connecting the foveated interface to a transformer architecture is developing a suitable
patchification scheme. We leverage our kNN-convolution. Precisely, we define two foveated sam-
pling grids: 1) a sensor array, and 2) a patch-center array. Patches are defined as kNNs over the
sensor array, using distances on the sensor manifold as typical in the kNN-convolution. We choose
the length of the patch-center array to exactly match the number of patches in a baseline ViT, by con-
straining the set of a values to those that produce the desired number of patches; this procedure is
explained further in Appendix (8.8). For n = 64 patches, we determine 5 suitable a values (rounded
here to two decimal places): 0.03, 0.17, 0.82, 4.61, 115.63. We set the patch size k to the minimum
such that all sensor locations are included in at least one patch-center kNN; due to the circular nature
of kNNs, this induces a small degree of overlap, similar to the use of overlapping convolutions in
the Swin ViT (Liu et al., 2021). An example patchification scheme is shown in Figure 1C.

Broadly, this interface allows ViT architectures to process the image in a foveated manner, with more
tokens dedicated to the center of gaze and progressively less dedicated to the periphery, dependent on
the magnification parameter a. Compared to CNNs, the ViT architecture only requires a single kNN-
convolution for patch embedding, rather than one per layer, which allows for increased efficiency,
since the kNN-convolution introduces some overhead relative to 2D convolutions, overhead which
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is very minimal for a single convolution with a small feature map size, as in the patch embedding. If
the ViT is pre-trained, given the kNNs defined by the patchification, it is also possible to make use
of pre-trained patch embeddings as the reference kernel in kNN-convolution, which is then mapped
into the patches using the standard kernel mapping procedure (Figure 2).

6.2 ADAPTING A PRE-TRAINED VIT FOR FOVEATED PROCESSING

We next explore converting DINOv3 ViT-S(16) (Siméoni et al., 2025) into a foveated variant. In
pilot experiments, we determined a suitable strategy for adapting DINOv3 to work with foveated
inputs. This strategy uses LoRA (Hu et al., 2021) over the first half of the network, which sig-
nificantly reduces overfitting relative to full fine-tuning of the network, better retaining the visual
feature representations acquired during pre-training while adapting to the foveated inputs. We de-
scribe our process for determining this strategy, along with tuning analyses of the hyperparameter a,
in Appendix 8.7. We select a = 4.61, which achieves moderate foveation (Figure 1C).

We compare our model to three baselines. The first is a matched NonFov-KNN baseline, using
a = 115.6 to minimize foveation, while retaining the same patch embedding method. The second
is a uniform baseline, where the image has been downsampled to 64x64 to match the number of
pixels sampled by the foveated variant, and kernels are similarly downsampled from 16x16 to 8x8.
This allows the models to be closely matched in total GFLOPs, besides a small overhead of the
kernel mapping in KNN-convolution (Table 1). We find that applying the same LoRA finetuning
strategy allows this network to improve its performance modestly above its off-the-shelf perfor-
mance, allowing the network to adapt to the lower resolution (Figure S14. Additionally, we test
a matched log-polar baseline, in which images are sampled according to the Log-Polar foveation
model (Javier Traver & Bernardino, 2010) at the desired resolution, and then are otherwise pro-
cessed identically to the uniform baseline. Using IN-100, we tune the a parameter and select the
best performing model. Similarly, we find that the LoRA finetuning strategy improves performance
relative to frozen weights, and thus apply it identically to the other models (Figure S14. Models are
trained using 4 random fixations, and evaluated using 20, using an identical protocol to that used for
CNNs in the previous section. Results are reported in Table 1. We find that our foveated variant sig-
nificantly beats all three baselines, setting what is to our knowledge state-of-the-art performance on
IN-1K at a resolution of n ≤ 4096 pixels. This indicates that our method for foveation can improve
performance in resource-constrained ViTs.

Model IN-1K top-1 # Pixels/fix # Patches/fix GFLOPs/fix
Fov-kNN (a = 4.61) 0.741 4025 64 6.20
NonFov-kNN (a = 115.6) 0.724 4025 64 6.20
Uniform baseline 0.717 4096 64 6.11
Log-polar baseline (a = 4) 0.689 4096 64 6.11

Table 1: Performance comparison of different resource-constrained DINOv3 variants (”fix” is short-
hand for fixation), and GFLOPs are reported per image.

6.3 EFFICIENT SENSING AND PERCEPTION

Last, due to the sparsity of suitable high-resolution benchmarks, we demonstrate the possible effi-
ciency gains of foveated ViTs by performing an analysis of compute requirements for a hypothetical
scenario of processing high resolution images. First, we analyze the GFLOPs/image in DINOv3
(ViT-S(16)), breaking down the GFLOPs into attention-based processing, and non-attention-based
processing (Figure 4A). We define the image resolution in terms of the side length of a Cartesian
image (m =

√
n, where n is the number of samples taken in a resource-matched foveated model,

as researchers usually specify m rather than n. We find that, for m < 400, the cost of non-attention
operations (i.e. linear layers, nonlinearities, normalizations, etc.) outweighs the cost of attention-
based operations. However, for larger resolutions, the attention-based cost becomes enormous. We
perform an empirical big-O analysis by fitting a power law to each subset of FLOPs. Since image
resolution scales as O(m2), the non-attention (mostly linear) operations are approximately quadratic
(O(m1.76)), whereas the attention-based operations scale exactly with O(m4) due to their quadratic
dependence on sequence length (O(n2)). This demonstrates the difficulty of scaling transformers to
high-resolution inputs.
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Figure 4: Analyzing efficiency in ViT-S(16) from the lens of foveation. A. GFLOPs/image as a
function of image resolution, separately for attention and non-attention operations. Power laws are
fit to each curve as empirical O(m) analyses, where m =

√
n is the pixels per side of a square

image. B. GFLOPs/image as a function of the number of fixations, for different image resolutions.
C. Local sampling resolution (native pixels per sensor sample) as a function of eccentricity, varying
the resolution and foveation of the sensor. Reminder: a larger fovea corresponds to more weaker
foveation uniform processing. A horizontal line at 1 indicates sampling at the native resolution.

Next, we analyze the GFLOPs/image required to process n sensor locations, setting m =
√
n to

64, 128, 256. We envision a scenario where the native image resolution is
√
n = 1024, and we

can use foveation to achieve higher resolution in parts of the image, while retaining a much broader
context than would be afforded by uniform cropping. We compute GFLOPs/image over fixations
for each of these sensor resolutions, shown in Figure 4B, additionally plotting

√
n of 512 and 1024

for reference. We can see that even with many fixations, the lower resolutions are able to reduce
computational cost relative to processing a single full resolution image.

Finally, we plot the local sampling resolution (in native pixels per sample) as a function of eccen-
tricity (normalized radius) (Figure 4C). We see that, for strong foveation (smaller fovea parameter
a), sampling in the fovea can reach the native sampling resolution even at small n, but comes at
the cost of lower sampling resolution in the periphery. Overall, these plots illustrate the trade-off
between the degree of foveation, the number of fixations, the sensor resolution, and the overall com-
pute requirements; this trade-off can be optimized on a case-by-case basis. Notably, strong foveation
allows models to achieve a high peak resolution at a lower sampling resolution, while keeping the
same large field-of-view and computational demands as models with weaker foveation.

7 CONCLUSION

This work presents a novel foveated interface for deep vision models. Our locally isotropic sensor is
highly biologically-plausible, with hierarchical convolutional processing producing receptive fields
that mimic the spatial properties of primate visual areas V1-V4 (Motter, 2009). With our foveated
interface, we unlock a flexible pipeline for exploring resource constraints in deep vision models, by
controlling the degree of foveation, with uniform sampling being a special case (a → ∞). Moreover,
our foveated models hold strong promise for computational modeling of human vision, for both
scientific and technical (e.g. AR/VR) applications.

Notably, the work here is just a start in exploring foveated deep computer vision. Foveation is ex-
pected to shine even more in scenarios where higher resolution processing is demanded (Shi et al.,
2025), such as large field-of-view naturalistic scenes, or interaction with artificial or natural high-
resolution worlds. Moreover, restricting the number of samples can have an added efficiency com-
ponent in sim2real pipelines in which the foveated sensor can be used to directly control ray-tracing,
and thereby limit the required compute for rendering high-resolution scenes. To achieve human-like
visual efficiency via foveation, advances are needed both in mechanisms for active vision, as well as
saccadic integration – mechanisms that can be built upon our foveated interface in future work.
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USE OF LARGE LANGUAGE MODELS

We disclose use of Large Language Models (LLMs) in this work. LLMs were primarily used in the
research ideation process, and in the writing of code for the project, in a collaborative spirit with
the authors. LLMs were not used for writing of passages of this paper, and were used sparingly for
editing.

REPRODUCIBILITY

Code will be released on GitHub upon publication.
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Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3, August 2025.

D C Van Essen, W T Newsome, and J H Maunsell. The visual field representation in striate cortex
of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research,
24(5):429–448, 1984. doi: 10.1016/0042-6989(84)90041-5.

Binxu Wang, David Mayo, Arturo Deza, Andrei Barbu, and Colin Conwell. On the use of Cortical
Magnification and Saccades as Biological Proxies for Data Augmentation, December 2021.

Andrew B. Watson. A formula for human retinal ganglion cell receptive field density as a function
of visual field location. Journal of Vision, 14(7):15, June 2014. ISSN 1534-7362. doi: 10.1167/
14.7.15.

Carl F.R Weiman and George Chaikin. Logarithmic spiral grids for image processing and display.
Computer Graphics and Image Processing, 11(3):197–226, November 1979. ISSN 0146664X.
doi: 10.1016/0146-664X(79)90089-3.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review at ICLR 2026

8 APPENDIX

A. B. C.

E. F.D. Flattened sensor manifold
(Schwartz, 1980)

Sensor manifold
(Rovamo & Virsu, 1984)

Visual space

right visual field left visual field
left hemisphere right hemisphere

Figure S1: The relationship between cortical magnification and isotropic foveated sensing. A. The
cortical magnification function commonly used to account for the organization of retinotopic maps
in visual cortex (Van Essen et al., 1984; Schwartz, 1994). We set a = 2 and a field-of-view of 16
degrees. B. The integral of the CMF w, from 0 to r, yielding the ”cortical” dimension corresponding
to eccentricity. C. Sampling evenly along the domain of w and solving for the corresponding retinal
radius r to achieve foveated samples in visual space. D. Sensor locations in visual space arising from
isotropic foveated sampling. Given the radiall samples from C., the number of angular samples at
each radius is chosen to approximately satisfy local isotropy (see main text). E. Visual points from
D. mapped into the complex log model (Schwartz, 1980), which is a flat (2D), locally-isotropic
representation of visual space. Due to its meridional anisotropy, we can see that sampling is less
dense on the top and bottom of the maps, corresponding to the vertical meridian where cortical
magnification is maximally different from the horizontal meridian. F. Visual points from D. mapped
in the globally isotropic manifold of Rovamo & Virsu (1984). Due to its global isotropy, points are
approximately evenly spaced globally across the manifold.

8.1 DETAILED EXPLANATION OF FOVEATED SENSOR MANIFOLD

Formally, in visual space, we consider a polar coordinate system (r, θ) defined by eccentricity r,
and meridional angle θ which is directly sampled by the retina; we refer to the samples in this space
as the ”sensor array”. We then consider a mapping into the primary visual cortical area (V1), what
we refer to as the ”sensor manifold”, defined in cylindrical coordinates (ρ, z, ϕ): z corresponding to
the axis of rotation (in mm), ϕ corresponding to the angle of rotation (in radians), and ρ indicating
the distance of the cortical surface from the z axis (in mm). Rovamo & Virsu (1984) developed the
following equations for this mapping:

ρ = M(r) sin(w); z =

∫ w

0

[
M(r)2 − (dρ/dr)2

]0.5
dr; ϕ = θ

8.1.1 DETERMINING THE SAMPLING RESOLUTION

Typically, there is a desired number of samples to be made; for the sensor, we desire to match to
a target image resolution (n = h ∗ w), whereas for convolutional layers, we desire to match to a
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target feature map resolution, similarly (n = h∗w). Our sampling works by first selecting a number
of radii; the number of samples is then determined by selecting the number of angles in order to
preserve local isotropy at each unique radius. This means we do not have full control over the exact
number of samples. One option is to randomly introduce additional angular samples throughout
the sampling grid, introducing a mild degree of anisotropy in order to achieve a perfect match in
number of samples. The other option is to select the number of radii that produces the closest match
to the desired number of sampling points. In practice, we found that the latter option worked better
in spite of having less parameters; given that it also produces more isotropic sampling, we consider
this the preferable option. Thus, our sensor and kNN-convolution layers always have at most the
same number of units as the corresponding image or CNN layer, respectively, and sometimes less.
The result of this can also be viewed in terms of equal surface area and sampling density on the
sensor manifold, despite different shapes (Figure 3C).

8.2 TRADE-OFFS IN RESOLUTION, FIELD-OF-VIEW, AND PROCESSING RESOURCES
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Figure S2: Illustration of trade-offs inherent to foveated vision. A. Cortical magnification function
(CMF) from LeVay et al. (1985), used in our calculations, along with an equal area-under-the-
curve uniform CMF. The uniform magnification is comparable to 19.9◦ in the standard CMF, thus
affording intermediate-peripheral vision across the visual field for equal V1 size. B. Assuming
uniform cortical magnification equivalent to the central value (12.5 mm/deg), we solve for the length
of V1 by integration, and indicate lines corresponding to matched V1 area and the allowable field-
of-view under this uniform magnification.

8.3 ACCOUNTING FOR THE SHAPES OF PRIMATE NEURAL RECEPTIVE FIELDS

In the main text, we demonstrate that our foveated kNN-CNN accounts for the progressive increase
in RF size with eccentricity in primate neural receptive fields. Here, we demonstrate that it also
accounts for their shapes. We plot the data of Motter (2009) in Figure S3D. On the left, we see a
contour plot of a V4 neuron’s visual responses, showing the characteristic non-Gaussian shape, with
an elongation of contours along the radial dimension. In the middle, this neuron’s response profile
is re-plotted as contours on the V1-like surface, demonstrating that the visual response pattern arises
from approximately circular (or isotropic Gaussian) sampling on the V1-like surface. On the right,
the isotropy is plotted by characterizing the ratio of short vs. long axis ratios in a bivariate anisotropic
Gaussian fit over all measured neurons. The density of this distribution is heavily concentrated on
a ratio of 1, demonstrating approximate isotropy with no systematic deviations from it. We refer
the reader to Motter (2009) for further detail. In Figure S3E., we replicate these analyses in our
foveated (a = 1) model. Given that our model is based on hierarchical isotropic sampling on the
V1-like sensor manifold, it is no surprise that the receptive field properties follow the same trend as
the macaque V4 neurons.
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Macaque V4 spatial RF in visual space

Motter, 2009

Macaque V4 RF on sensor (V1) manifold Macacque V4 RF aspect ratio

Model layer 3 RF on sensor manifoldModel layer 3 RF in visual space 

A.

B. Model layer 3 RF aspect ratio

Figure S3: kNN-CNN produces biological receptive field properties. A. Macaque V4 spatial RF
from Motter (2009), plotted in visual (left) and sensor manifold space (middle). On the right, a
histogram of aspect ratio is plotted across three model fitting orientations (see Motter (2009) for
further detail). B. Example aggregated spatial receptive field from a unit in layer 3, plotting in visual
space (left) and sensor manifold space (middle). On the right, a histogram of aspect ratio is plotted

8.4 PRIOR FOVEATED SENSORS

Cortical magnification and the complex logarithmic mapping function In this section, we dis-
cuss in detail prior work developing foveated sensors, and the issues inherent to them which we aim
to address in the present work. Such work dates back at least to the pioneering work of Schwartz
(1977; 1980), who demonstrated that a logarithmic mapping function could produce accurate fits
of cortical magnification, mapping representation across the visual field to representation across
primary visual cortex (V1). In key work, Daniel & Whitteridge (1961) defined the cortical magnifi-
cation factor (CMF) as the amount of cortical space spanned by a fixed amount of retinal (or visual)
space, finding that the CMF decreases sharply with eccentricity, but is roughly constant at all points
in the visual field of constant eccentricity. This is known as isotropic cortical magnification, as the
sampling rate is the same at a given point regardless of which direction it is measured. The search
for a locally isotropic mapping function well matched to the empirical CMF, which is well fit by a
function M(r) = 1

r+a (Van Essen et al., 1984, see Figure S1A.), led Schwartz to develop the com-
plex logarithmic mapping model of V1 cortical magnification: w = log z + a, where z = x+ iy is
the complex plane, and whose derivative is the cortical magnification function (Figure S1E). Along
the horizontal meridian, this has the desired CMF M(r) = 1

r+a , however, while the CMF is locally
isotropic, it does exhibit a meridional anisotropy, in which the the CMF along the vertical merid-
ian is maximally different from that along the horizontal meridian, reaching a theoretical maximum
ratio of

√
(2) at r = a, at odds with empirical data (Himmelberg et al., 2023).

The log-polar image model As seen in Figure S1, the complex log model leads to a sensor man-
ifold that is curved and disjointed at the vertical meridian, making computer vision applications
difficult. A simplified version of this logarithmic mapping approach was thus developed, known
as the log-polar mapping. This approach produces a grid-like image output, by simplifying the
complex log log z + a = log reiθ + a as two dimensions of log r + a and θ, where independent
sampling can be done along each dimension. However, since an equal number of angles is selected
at each radius, the resolution along the angular dimension is highly eccentricity-dependent, and this
depends on the value of a. If a = 0, this approach would be correct, since log(reiθ) = log(r) + iθ,
that is, the complex plane of r and θ, matching the approach first developed by (Weiman & Chaikin,
1979). However, the log has a singularity at a = 0, and thus cannot be used in practice to model
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foveal eccentricities. Setting a > 0 removes the foveal singularity, but grid-sampling then intro-
duces anisotropy. As a result, circular receptive fields drawn on a log-polar image with a > 0 can
have very different shapes across various eccentricities. As r increases, the aspect ratio of receptive
fields increases in the tangential direction; for reasonably large values of a (which can be helpful
in not oversampling low to medium resolution images), this results in highly elongated peripheral
receptive fields, in stark disagreement with empirical data (Motter, 2009). Thus, there is an inherent
trade-off: at small values of a, the foveal magnification becomes extreme, but anisotropy is less se-
vere, whereas at larger values of a, the foveal magnification becomes more realistic, but anisotropy
becomes more severe.

D. F.E.

A. B. C.

Figure S4: The log-polar image approach is anisotropic and introduces oversampling and warped
receptive fields. A. The log-polar sensor manifold is a regular rectangular (here, square) grid of polar
angle and log radius. B. The visual sampling induced by equally spaced points in the sensor man-
ifold. Inset: illustration of anisotropy. dr indicates the distance between neighboring radii, while
dθ indicates the distance (arc length) between neighboring angles. C. The ratio dr/dθ is computed
locally at each value of r and plotted, for a ∈ [0.001, 1, 1000]. The dashed line corresponds to
isotropic sampling. D. Illustration of log-polar foveation. Left: a target image with a central fixation
point (red dot). Center: log-polar transformed image with a = 0.1. Right: log-polar transformed
image with a = 1000. E. Visual receptive fields corresponding to circular samples on the sensor
manifold.

Warped Cartesian approaches Basu & Licardie (1995) introduced a related foveated sensing
approach, also based on the complex logarithm (Schwartz, 1980), that yields a warped Cartesian
image. However, as they note, this approach also leads to anisotropies in the periphery. A similar
approach was used in recent deep learning approaches by Wang et al. (2021) and Da Costa et al.
(2024), which both define a magnification function that depends only on eccentricity, though dif-
fering slightly from that inherent to the complex log. However, all of these models can be grouped
into the family of warped cartesian image sensors, which show radially elongated receptive fields in
the periphery. We illustrate the anisotropy and warping of receptive fields in Figure S5. Addition-
ally, these models do not have a corresponding cortical space that can be mapped to visual cortex,
foregoing some of the possible benefits in spatially relating activations in the model directly to brain
responses.
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A. B. C.

D. E. F.

Figure S5: Warped Cartesian foveated sensors also introduce anisotropic sampling. Here, we use
the sensor described in (Wang et al., 2021). A. Sensor locations. B. Target image with central
fixation point (red circle). C. Warped Cartesian foveated image. D. Local anisotropy sampling
plotted across the visual field. For this approach, at each point in the visual field, we sample k =
1000 (of 2502) nearest pixel neighbors. Then, we subject the pixel location matrix X to an SVD to
find the variance explained by the two principal directions of variance. Given XTX = UΣV , the
variance explained by the first and second component are the squared entries of the diagonal matrix
Σ, i.e. σ2

1 and σ2
2 . We then compute the local anisotropy index as σ2

1/σ
2
2 . E. Local anisotropy as

computed in D., plotted as a scatter plot against the visual field radius. F. Receptive fields drawn as
circles in the foveated image space, projected back into visual coordinates.

Log-Fibonacci sensor Killick et al. (2023) introduce a foveated sensor that is most similar to ours,
in that no attempt is made to wrangle the sensor outputs into an image, producing instead a point-
cloud output that is designed to be input to a non-euclidean neural network. However, their model
deviates from explicitly modeling cortical magnification in favor of simplicity. Their approach takes
advantage of the golden ratio, to achieve sample packing that is approximately uniform within circles
in retinal space, as in the seeds of a sunflower. However, while this sensor approach may be a
reasonable choice for foveated computer vision, it does not have an associated cortical space, and
thus has limited utility in modeling cortical organization, and is more difficult to tune, since it has
multiple relevant hyperparameters. Additionally, the authors use structured Gaussian derivative-
based filters for processing receptive fields encoded in this sensor space. This is expected to work
well in the low to medium data regimes, but in the high data (non-foveated) regime where they were
introduced, they were shown to perform worse than standard filters (Jacobsen et al., 2016). This
low-data regime is that which was tested by (Killick et al., 2023). Thus, it is unclear how well their
approach would scale with increasing data. It would be possible to combine their sensor with our
kernel mapping approach, however this is beyond the scope of our paper.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review at ICLR 2026

8.5 EXPLORING PERFORMANCE IN KNN-CNNS

To better understand our main kNN-CNN results, we performed a series of follow-up analyses. Since
it is computationally expensive to run many analyses, we first validate the use of a smaller subset
of ImageNet, ImageNet-100, shown in Figure S6B. We find a similar pattern of validation accuracy
across foveation levels, with peak performance for the intermediate foveation level of a = 1. Here,
we additionally assess generalization by comparing accuracy on validation images with that on a
matched subset of training images tested after training without data augmentation (”train-match-
val”). First, examining ImageNet-1K, we find that more uniformly sampling models tend to overfit
the data more, reflected by the increase in train-match-val accuracy without a corresponding increase
in validation accuracy; this is seen particularly strongly for a smaller number of fixations. We see the
same effect in ImageNet-100, albeit with a greater degree of overfitting. This suggests that foveation
allows our models to avoid overfitting on less relevant background information, supporting stronger
generalization.
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Figure S6: Comparing performance for IN-1K and IN-100. For both A. and B., we plot performance
as a function of the fovea diameter hyperparameter, when evaluated on either validation images, or
a matched size sample of training images evaluated without data augmentation. Columns show
evaluations using either 1, 4, or 20 fixations, using standard mean-logit aggregation across fixations.
A. IN-1K results. B. IN-100 results.

We next explored the hypothesis that increasing performance for intermediate foveation reflected an
optimal sampling resolution effect: strong-intermediate foveation works best because it samples
near the native resolution in the fovea, neither more (oversampling), nor less (undersampling). One
prediction of this account is that decreasing the native resolution of the incoming signal, while
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keeping the sampling resolution the same, should shift the accuracy x fovea curves downward (due
to less effective resolution), but more importantly, rightward due to a better match of more weakly
foveated models (models with larger fovea parameter a). Thus, we trained a set of matched models
using images that were first resampled at a resolution of 64x64, which we call the native resolution.
In Figure S7, we find that both predictions are validated, with performance decreasing overall, but
more for more heavily foveated models (i.e., a = 0.1 vs. a = 1000). However, the advantage for
weakly foveated models remains, suggesting that the optimal sampling resolution effect does not
fully explain the observed pattern of results.
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Figure S7: Assessing the effect of native image resolution on foveated recognition performance.
In the main experiments, we use a native resolution of 256. Here, we plot accuracy using a native
resolution of 64 (left) or 256 (middle; standard). On right, we take the difference of the results, for
each foveation level.

Our next hypothesis was that the foveation advantage reflects a central bias of relevant content,
where models with uniform sampling struggle to focus on the central information compared to
foveated models. To better understand this, we tested models that incorporate a different form
of foveation that could allow for better focus on central information: smaller crops. In our main
experiments, we use full-size image crops, but here, we compare with models trained and evaluated
using smaller crops of a fraction of 0.2 of the image area; for a 256x256 image, this corresponds to a
114x114 crop. Results are shown in Figure S8. We find that smaller crops lead to worse performance
for a single fixation, whereas for the maximum 20 fixations, performance is identical for foveated
models, but enhanced for models with more uniform sampling. This suggests that the more uniform
models are able to benefit from foveation through cropping, which provides enhanced accuracy over
many fixations. However, a large field-of-view provides many real world benefits; here, we capture
one of such benefits, which is better performance for a smaller number of fixations.

Last, we explore sampling with a larger fixation zone, using a radius of 0.45 in place of the original
radius of 0.25. Interestingly, for large crops, we actually find improved performance for a larger
fixation zone, at odds with predictions of the central bias hypothesis.
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B. 20 fixations
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Figure S8: Assessing the effect of fixation crop area on foveated recognition performance. In the
main experiment, we set the crop area to the full image size. Here, we additionally test a reduced
fraction of the image area (0.2). We plot accuracy using the crop area of 0.2 (left) or 1.0 (middle;
standard). On right, we take the difference of the results, for each foveation level.
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B. Crop area = 0.2
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Figure S9: Assessing the effect of fixation zone size on foveated recognition performance. In the
main experiment, we use a circular fixation zone with a radius of 0.25 of the total image diameter.
Here, we compare models trained using a larger fixation zone parameterized by a radius of 0.45. In
A., we assess models trained with the standard large crop area (1.0). In B., we assess models trained
with the smaller crop area (0.2). In each subpanel, we plot accuracy using the larger fixation zone
of 0.45 (left) and standard fixation zone of 0.25 (middle). On right, we take the difference of the
results, for each foveation level.
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8.6 HIGHER RESOLUTION REFERENCE FILTERS IMPROVE KNN-CNN PERFORMANCE

A. C.

B.

1x filter resolution 
(11x11)

2x filter resolution 
(22x22)

k=121 (11x11)

Figure S10: Higher reference filter resolution improves performance. A. Standard filter resolution
for a k = 121 kernel (11x11). B. Double filter resolution for a k = 121 kernel (22x22). C.
ImageNet-1k performance for foveated kNN-CNN models with 2x and 1x filter resolution, along
with a matched CNN.
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8.7 ADAPTING DINOV3

We explore a variety of methods for adapting DINOv3 to take foveated inputs, comparing to a frozen
baseline. Here, to facilitate many experiments, we use the IN-100 dataset as in our hyperparameter
explorations of KNN-CNN models. We first note that the frozen baseline performance is signifi-
cantly reduced relative to the off-the-shelf non-foveated variant operating at a typical 224x224 reso-
lution with 16x16 patch size (93%). Next, we finetune DINOv3 end-to-end, including the foveated
patch embeddings. Relative to a frozen backbone, this leads to a significant improvement in valida-
tion accuracy, but also a large degree of overfitting (Figure S11A, top). Next, we explore fine-tuning
only the first half of the ViT (first 6 layers, indexed as 0-5), along with the patch embedding. This
performs similarly, albeit somewhat worse than full fine-tuning. Next, we explore low-rank adap-
tation (Hu et al., 2021), a method for adapting weight matrices using two low-rank matrices that
has been widely successful in preventing overfitting when fine-tuning models on smaller datasets
than the original pre-training dataset. LoRA uses the following equation to re-parameterize weight
matrices W into low-rank adaptable matrices Ŵ , using two low rank matrices A and B:

Ŵ = W +
α

r
∗ (BA) (1)

Where Ŵ and W are of shape (dout, din), A is of shape (r, din) and B is of shape (dout, r). We set
r = 8 and r = α unless otherwise specified. We adapt all weight matrices within a given transformer
layer, and explore adapting different combinations of layers.

We find that LoRA over the first half of the network, along with the patch embedding, leads to a
significant improvement in validation accuracy (Figure S11A, bottom), along with a large reduction
in overfitting. We find that adapting the first half of the network performs best of other strategies
we test, including adapting the whole network, only earlier layers, and only the latter half of the
network (Figure S11B).
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Figure S11: Results adapting DINOv3 to process a foveated tokenization (a = 1) on ImageNet-
100, using different strategies. A. Comparing end-to-end finetuning, with early layer finetuning, and
early-layer LoRA, for train and val accuracy. Early-layer LoRA training leads to superior general-
ization and less overfitting. B. Comparing a range of LoRA recipes, varying which layers are subject
to adaptation. Adapting the patch embedding and first 6 layers produces the best performance in this
setting, with significantly worse performance adapting only the first layer or only the late layers.

8.8 PERFORMANCE AS A FUNCTION OF FOVEATION DEGREE

Next, we examine the dependence of performance on the foveation parameter a. Due to the small
number of patches, the inability to exactly determine the number of samples at a given foveation
parameter (a) can lead to a large percent difference in patch count across models. Thus, rather than
choose a directly, here, we constrain the set of a values to those which produce exactly the desired
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Figure S12: Determining a set of fovea values that produce the exact desired number of patches. A.
Resulting n (here, number of patches) across different combinations of fovea (a) and # of sampling
radii; note: the # of radii is specified, and the number of sampling points is determined in order to
satisfy local isotropy given the particular a value, so it is not fully controllable. B. Percent difference
in produced n vs. actual n. Here, since n is small, the percent difference can be very large. However,
by finding the intercepts of each curve, we can specify a set of fovea values that satisfy a perfect
match to the desired n. Note: we specify a single a per model, so the number of pixels is not exactly
matched across models, however the percent difference is much smaller since the desired n is much
larger (4096 in our main experiments); for the pixel sampling array, we set the # of radii to the value
that most closely matches the target n, while not exceeding it.

number of patches. For n = 64 patches, we determine 4 suitable a values (rounded here to two
decimal places): (0.17, 0.82, 4.61, 115.63), as shown in Figure S12.

We plot the results in Figure S13, using IN-100. We find smaller effects here than with the AlexNet-
like CNNs, and a peak performance using a = 4 rather than a = 1. However, we see a similar
inverted U-shaped curve, suggesting again that an intermediate level of foveation is ideal.
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Figure S13: Foveated DINOv3 performance on IN-100 as a function of the foveation parameter a.
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8.9 COMPARISON TO LOG-POLAR AND UNIFORM BASELINES

Here, we compare our foveated ViT to matched log-polar and uniform baselines, trained identically,
as in the main text. Here, we use IN-100 and explore different fine-tuning strategies for the baseline
models, as just done for our model. We find that LoRA improves performance above frozen training
(and end-to-end training, for log-polar), so we use the LoRA strategy in the IN-1K-trained models
presented in the main text.
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Figure S14: Comparing our foveated manifold ViT with a uniform baseline (A.) and a log-polar
baseline (B.), with the ViT adapted with LoRA (patch embedding + first 6 layers, as in the main
strategy used for the foveated manifold model), fine-tuned end-to-end, or frozen.
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