Reinforcement Learning Finetunes Small Subnetworks
in Large Language Models

Sagnik Mukherjee Lifan Yuan Dilek Hakkani-Tiir Hao Peng
University of Illinois Urbana-Champaign
{sagnikm3,lifan4,dilek,haopeng}@illinois.edu

Abstract

Reinforcement learning (RL) yields substantial improvements in large language
models’ (LLMs) downstream task performance and alignment with human val-
ues. Surprisingly, such large gains result from updating only a small subnetwork
comprising just 5%-30% of the parameters, with the rest effectively unchanged.
We refer to this phenomenon as parameter update sparsity induced by RL. It is
observed across all 7 widely-used RL algorithms (e.g., PPO, GRPO, DPO) and all
10 LLMs from different families in our experiments. This sparsity occurs without
any explicit sparsity-promoting regularizations or architectural constraints. Fine-
tuning the subnetwork alone recovers the test accuracy, and, remarkably, produces
a model nearly identical to the one obtained via full finetuning. The subnetworks
from different random seeds, training data, and even RL algorithms show substan-
tially greater overlap than expected by chance. Our analysis suggests that this
sparsity is not due to updating only a subset of layers; instead, nearly all parameter
matrices receive similarly sparse updates. Moreover, the updates to almost all
parameter matrices are nearly full-rank, suggesting RL updates a small subset of
parameters that nevertheless span almost the full subspaces that the parameter
matrices can represent. We conjecture that the this update sparsity can be primarily
attributed to training on data that is near the policy distribution; techniques that
encourage the policy to remain close to the pretrained model, such as the KL
regularization and gradient clipping, have limited impact. Our code is available at
https://github.com/SagnikMukherjee/sparsity_in_rl.

1 Introduction

Reinforcement learning (RL) (Sutton et al.| [1998; |Ouyang et al., 2022; Ziegler et al., [2020; Rama-
murthy et al., {2023} |Sun et al., [2024} |[Zhou et al., [2025)) is an important post-pretraining stage for
adapting large language models (LLMs) to solving complex reasoning problems (Lightman et al.|
2023 'Wang et al.l |2025ajc; (Cui et al., [2025), alignment with human values (Ouyang et al., [2022;
Bai et al.||2022; Dai et al.,|2023)), and adherence to safety protocols (Mu et al., 2024; [Huang et al.|
2024} Zhang et al.,|2024} |Duan et al., 2024)). Since these desired behaviors often differ significantly
from those of the pretrained model (Ouyang et al., [2022; Bai et al., 2022} OpenAl, [2024)), it is often
assumed that achieving them requires substantial changes to the model’s parameters and therefore
full finetuning is widely applied during RL (Cui et al., [2025} |HuggingFacel| 2025} [Liu et al., 2025b;
Pan et al., 2025} |Zeng et al., 2025).

RL-induced parameter update sparsity in LLMs: RL updates only a small subnetwork of a
pretrained large language model, leaving the rest of the parameters effectively unchanged.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/SagnikMukherjee/sparsity_in_rl

Sparsity Comparison: SFT vs RL

87.54 & SFT
. R

80

60

Sparsity (%)

20

2 1 KPPO‘ . (GRVO\ (\qo\ o8 \S’\“‘Pm
u e

0) 0)
,388 ©F 3708 (P
T Larme

2B
gur e 3

Deeps® W

Figure 1: Comparison in accumulated gradients in the SFT stage vs RL stage for popular released
checkpoints. SFT stage has accumulated much denser updates, while RL is mostly sparse.

While RL with full finetuning is allowed to update all parameters, does it actually do so? This paper
presents surprising findings and answers this question in the negative. Finding|[T]is observed in all 7
widely-used RL algorithms studied, namely PPO (Schulman et al.,|2017b), GRPO (Shao et al.,[2024),
ORPO (Hong et al., 2024), KTO (Ethayarajh et al., | 2024)), DPO (Rafailov et al.;2023), SimPO (Meng
et al.,[2024)) and PRIME (Cui et al.| 2025)), as well as supervised finetuning with rejection sampling
(Xiong et al.| [2025)), and 10 models in our experiments, with the subnetworks consisting of as little as
5% of the model parameters in some cases (§3)). It emerges without any explicit sparsity-promoting
regularization, architectural constraint, or use of parameter-efficient training or pruning methods.
Moreover, we observe a strong consistency among the subnetworks emerged under different random
seeds, training data and its order, and even different RL algorithms, suggesting that the pretrained
model contains a partially transferable structure that is consistent across varied training conditions

().

Interestingly, our experiments with PRIME suggest that approximately 20% of the parameters are
consistently updated and make up the subnetwork. An additional 8% receive non-zero gradients
during training that cancel out, while the remaining ~70% parameters remain untouched throughout
the entire training process. This observation motivates us to articulate the following conjecture:

Effective Subnetwork

Fine-tuning only the subnetwork identified at the end of

RL training, with all other parameters frozen, produces

a model that is nearly identical to the original model Canceled out Updates
that has undergone full finetuning, both in test accuracy

and in parameter values.

More formally, let ¢, denote the parameters after full Untouched
RL finetuning from the initial model 6;,;. Define a binary

mask m € {0, 1}1% where m; = 1 if (fini — Orun)s # 0 Figure 2: In PRIME, 72% parameters
and 0 otherwise. We finetune a second model from 0;,;; on are never updated, 8% have gradients
the same data with the same hyperparameters and number canceling each other out, and 20% con-
of gradient updates, but, at each step, mask the gradients stitute the subnetwork that is consistently
as m ©® Vg L(0) right before the parameter update, so that updated (§6)

only the identified subnetwork receives non-zero gradients.

Let Oy, denote the resulting parameters of this subnetwork finetuning process. Conjecture 1 states
that Oy, = Ory. We provide supporting evidence for the conjecture on PRIME and DPO in §El

We find that the updates of RL finetuning do not concentrate in specific layers or components of
the transformer. Instead, nearly all parameter matrices receive similarly sparse updates (§3). An
exception is the layer normalization layers, which receives little to no updates. Moreover, despite the
sparsity in the updates, they are almost always full-rank. This suggests that, instead of forcing the

updates to reside in a low-rank subspace as in LoRA (Hu et al., 2022), RL full finetuning updates
a small subset of parameters that nevertheless span almost the full subspaces that the parameter
matrices can represent.

To better understand the potential reasons for this phenomenon, we conduct a series of experiments
in §6] The results indicate that a primary factor is training on data that is near the policy distribution
through, e.g., on-policy RL or performing supervised finetuning (SFT) on the same data before RL
(Wang et al., [2024a; |Cui et al., 2025)). Intuitively, it requires less change to the policy distribution
when the model learns on a sequence sampled from a distribution close to itself. In contrast, SFT often
involves distribution shifts (Zhang et al., [2025) and densely updates the models in our experiments
(§3). Other factors like KL-divergence regularization towards the reference model, gradient clipping
(as used in PPO, GRPO, and PRIME), online vs. offline RL, all have limited impact on the sparsity
of accumulated updates.

Our findings have important implications for the RL fine-tuning stage of LLMs. They suggest that
when RL fine-tuning is performed on data closely aligned with the current policy, as is typical in
practice, optimization concentrates primarily on a small, consistently active subnetwork, leaving
most other parameters effectively inert. Conjecture [I| goes beyond the lottery ticket hypothesis
(LTH) (Frankle and Carbinl 2019): not only can the subnetwork, finetuned in isolation, match the
performance of the full model in performance as posited by LTH, we show that it also converges to
an effectively identical model. These results offer fresh evidence supporting recent findings that RL
better preserves the pretrained capabilities compared to SFT (Chu et al. 2025} Setlur et al.| 2025)),
potentially by updating substantially fewer parameters. They also open up new possibilities for more
efficient RL training methods that explicitly leverage this update sparsity (Chen et al., 2022).

2 Related work and Background

2.1 Related Work

The Lottery Ticket Hypothesis (LTH; [Frankle and Carbinl 2019)) posited that dense neural networks
contain sparse subnetworks capable of matching the performance of the full model when trained
in isolation. Subsequent extensions to LLMs identified task-specific subnetworks that mitigate
catastrophic forgetting without retraining entire models (Panda et al.l 2024; Panigrahi et al.| 2023}
Yadav et al., [2023)). Related efforts further discovered sparse subnetworks in pretrained language
models crucial for encoding specific knowledge (Marks et al., [2025; Bayazit et al.| 2024} Liu et al.|
2022)). Recent works have also explored exploiting the winning lotteries to improve training efficiency
(Chen et al.}[2022)). While our observation is closely related to LTH, it differs in three core dimensions:
(1) LTH identifies winning tickets by pruning, while we study subnetwork that naturally emerge; (2)
LTH showed that the final model’s performance can be reproduced, we show that, in addition to the
performance, the exact same model can almost be recovered; (3) LTH focuses on models trained
from scratch, while we focus on finetuning from pretrained LLM:s.

Sparse training methods exhibit notable benefits in RL efficiency (Graesser et al.| 2022} |Sidahmed
et al., [2024} [Sokar et al., 2022} Tan et al.,|2023} |[Davelouis et al.| [2025). Recent studies also employ
Low-Rank Adaptation (LoRA) (Hu et al.| 2022)) in RL and have achieved competitive performance
alongside significantly reduced computational overhead (Sidahmed et al., 2024; Wang et al., 2025b).
In contrast to approaches like LoRA that explicitly constrain updates to a small number of parameters,
we find that fine-tuning the naturally emerging subnetwork can match or even surpass the performance
of full-model finetuning. Moreover, despite its sparsity, the updates are nearly full-rank.

2.2 Background

We briefly introduce key concepts and notations to be used in onward discussion.

The sparsity of parameter updates. Let #°, 9! € R™ denote the model parameters before and after
finetuning, respectively. We define the update sparsity as sparsity(6°, 6) := 1 — ||0* — 6°|| | /n,
where ||-||, counts the number of non-zero elements. It is important to clarify that even the update
01 — 6 is sparse, it does not imply that the finetuned model 6; is sparse. Since no sparsity is assumed
for 6y, a sparse update can still result in a dense 6, if 6 is dense.

Table 1: Parameter update sparsity across different RL algorithms. We report sparsity for a suite of
open models from Hugging Face. For all models, at least 68.5%—and often much more—of the
parameters remain unchanged after RL.

Algo. Init Model RL Model Update Sparsity On-Policy KL Online
DPO Llama-3.1-Tulu-3-8B-SFT Llama-3.1-Tulu-3-8B-DP0 81.4 X X
Llama-3.1-Tulu-3-70B-SFT Llama-3.1-Tulu-3-70B-DPO 95.2 X X
GRPO deepseek-math-7b-instruct| deepseek-math-7b-rl 68.5
DeepSeek v3 base DeepSeek-R1-Zero 86.0
ORPO mistral-7B-v0.1 mistral-orpo-beta 76.9 X X X
KTO Eurus-7b-sft Eurus-7b-kto 96.0 X X
Llama-3-Base-8B-SFT Llama-3-Base-8B-SFT-KTO 81.2 X X
PPO mistral-7b-sft math-shepherd-mistral-7b-rl 80.8
SimPO Meta-Llama-3-8B-Instruct Llama-3-Instruct-8B-SimP0 86.5 X X X
PRIME Eurus-2-7b-sft Eurus-2-7B-PRIME 71.0 X

Unless otherwise specified, we follow standard practice and consider two bfloat16 values as equal
when their absolute difference does not exceed 105, to account for numerical precision limits All
models in our experiments are in the bfloat16 data type. Sparsity with different tolerance values
can be found in Table [6]in the Appendices.

Learning from in-distribution data. We use “in-distribution” to refer to training on data drawn from
a distribution that closely matches the current policy. An example is on-policy RL with, e.g., PPO,
GRPO, and PRIME, which sample data online from the evolving policy during training. Another way
to achieve in-distribution RL is to perform SFT on the same data used for subsequent RL, so that the
policy adapts to the data distribution before RL. This is a common practice in off-policy methods like
DPO and KTO. On-policy methods inherently train on in-distribution data, and off-policy methods
can also do so when the training data closely matches the policy distribution. As we will show later
in §6] training on in-distribution data is a primary reason for the update sparsity in RL.

KL-divergence regularization and gradient clipping in RL. Two widely adopted techniques to
keep the policy from deviating too far from the reference model are KL-divergence regularization and
gradient clipping. KL regularization (Schulman et al., 2017a), formally computed as Dxy.(7q || 7rref) =

E, [log ;‘ff(&é))} , constrains policy shifts. Gradient clipping further stabilizes training by bounding

the update norm. Both are widely used in algorithms such as PPO, GRPO, and PRIME. In §6] we
show that, counterintuitively, both have limited impact on the update sparsity.

3 RL Induces Sparse but Full-rank Updates; SFT Induces Dense Ones

This section aims to answer the following research question

RQ1: To what extent does RL induce sparse parameter updates and where in the model do these
updates occur? How does SFT compare?

Setup. To answer this question, we analyze publicly released model checkpoints on Hugging Face
released by the authors. With the exception of models where RL is applied directly to the pretrained
base model (e.g., DeepSeek-R1-Zero), most models follow a conventional three-stage pipeline:
pretraining, supervised fine-tuning (SFT), and RL. We analyze both the RL and SFT stages by
measuring the update sparsity between model checkpoints before and after RL or SFT fine-tuning.
Our experiments cover Tulu 8B/70B (Lambert et al.,2025), Eurus 7B (Yuan et al.,[2025} Cui et al.|
2025)), DeepSeek Math 7B (Shao et al.| 2024)), and KTO/SimPO models (Meng et al., 2024)).

Results. As shown in Table (1] for all RL-finetuned models, 68.5%—-96.0% of parameters remain
unchanged after RL. This trend holds across different RL algorithms and model families. Particularly,
Deepseek-R1-Zero presents a update sparsity of 86.0%, regardless of directly training from the
pretrained base model, namely RL-Zero (DeepSeek-Al et al., |2025)), and large-scale training for over
8K steps. Although exact training configurations are not always available, we observe that within the
same model family, larger models tend to show higher sparsity. Importantly, all of these models are

'E.g., PyTorch uses 10> as the default tolerance for gradient checking.

https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT
https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO
https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT
https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO
https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct
https://huggingface.co/deepseek-ai/deepseek-math-7b-rl
https://huggingface.co/deepseek-ai/DeepSeek-V3-Base
https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/kaist-ai/mistral-orpo-beta
https://huggingface.co/openbmb/Eurus-7b-sft
https://huggingface.co/openbmb/Eurus-7b-kto
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO
https://huggingface.co/peiyi9979/mistral-7b-sft
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-rl
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-SimPO
https://huggingface.co/PRIME-RL/Eurus-2-7B-SFT
https://huggingface.co/PRIME-RL/Eurus-2-7B-PRIME
https://docs.pytorch.org/docs/stable/generated/torch.autograd.gradcheck.gradcheck.html

Layerwise Sparsity (DPO) Layerwise Sparsity (PRIME)

Sparsity (%)
Sparsity (%)

0 5 10

20 25

5 15
Layer Index Layer Index

—e— Average Sparsity Q ——K =V ——0 —=— MLP Layer Normalization

Figure 3: Layerwise and per-parameter-matrix update sparsity for DPO (left) and PRIME (right).
All layers are similarly sparsely updated, with the only exception of the layer normalization layers,
which receive little to no updates.

trained using full finetuning without any sparsity-promoting regularization techniques or constraints.
This suggests that the update sparsity emerges naturally.

In contrast, Figure[I|shows that SFT induces dense updates (only 6%-15% sparsity). These results
offer fresh evidence supporting recent findings that RL better preserves the pretrained capabilities
than SFT (Chu et al., [2025} [Setlur et al., [2025)), possibly by updating substantially fewer parameters.

RL leads to consistently sparse parameter updates (often >70% sparsity) while SFT produces
dense updates. This sparsity emerges without regularizations or architectural constraints.

Almost all transformer layers receive similarly
sparse updates. We next examine how parameter
updates in RL are distributed across the model lay-
ers and individual parameter matrices (e.g., Q, K, V
projections), based on DPO and PRIME models. If

Table 2: Mean ranks of update matrices, as a
percentage of maximum possible rank across
models after RL finetuning.

. Model and Algo. Update Rank (%
updates were concentrated in a subset of layers or odel and A'go pdate Rank (%)
modules, one could exploit that structure for enhanc- Tulu 8B (DPO) 99.8
ing the efficiency (Pan et al., 2024). Figure E] shows [Eurus 7B (PRIME) 99.5
layerwise and per-matrix sparsity across the mod- []ama-3 8B (KTO) 992
els. The "Average Sparsity" is over each transformer DeepSeek Math 7B (GRPO) 994

layer, while others correspond to specific parameter
matrices. We observe that parameter updates are distributed across different matrices rather than
localized to specific ones. Except for consistently high sparsity in layer normalization layers, most
layers exhibit similar sparsity levels. Our results show that sparsity is relatively even across the model.
This suggests that recovering the behavior of the fully finetuned model requires updating all layers,
albeit with only a subset of parameters in each.

Updates are sparse but full-rank. Given the sparsity of RL-induced updates, a natural question is
whether these updates are also low-rank. This distinction between low-rank and sparse updates is
important: the former would imply that finetuning operates within a subspace, while the latter implies
that a small subset of parameters (that can span the full parameter space) are selected to finetune.
Notably, while the updates are sparse, a closer inspection reveals that they are nearly full rank (Tab
[2). To compute rank, we calculate the average rank of individual update matrices across all layers.
We further examine the rank of the update for each layer and parameter matrix, and find that most are
full-rank throughout the model. These findings suggest that RL updates are localized to a subset of
the parameters that almost span the full subspaces that the parameter matrices can represent, instead
of residing in a low-rank subspace.

All layers and parameter matrices receive similarly sparse but full-rank updates. While layer
normalization parameters are almost never updated.

https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO
https://huggingface.co/PRIME-RL/Eurus-2-7B-PRIME
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO
https://huggingface.co/deepseek-ai/deepseek-math-7b-rl

4 Finetuning the Subnetwork Alone Can Reproduce the Full-finetuned Model

Since RL primarily fine-tunes a small subnetwork, we investigate two research questions inspired by
but extending beyond the Lottery Ticket Hypothesis (LTH):

RQ2: Can finetuning the subnetwork in isolation recover the performance of the full-finetuned
model?

RQ3: Can subnetwork-only finetuning also recover the exact parameter values produced by full
RL finetuning? This section answers both in the positive.

Setup. We follow the procedure described in §1|to obtain two models: one with full finetuning
Oru, and another finetuned on the same data and hyperparameters but updating only the subnet-
work 6y, We experiment on two very different algorithms DPO, an off-policy algorithm using
implicit outcome rewards, and PRIME, an on-policy one with process reward models, to ensure
that our conclusion can generalize. We implement DPO with Open-Instruct and PRIME with
verl. The exact hyperparameter choices for both can be found in Appendix [B] For evaluation,
we choose a subset of tasks reported in the original papers for both. For DPO we choose the
LSAT (Wang et al. [2022)), LogiQA (Liu et al., 2021) splits from AGIEval (Zhong et al., [2024]),
Math split of MMLU Pro (Wang et al.l [2024b). For PRIME, we report results on the MATH500
(Hendrycks et al.,|2021) benchmark across difficulty levels. For evaluation in DPO we use olmes
Results. In DPO, 94.0% Weights train_loss

are same between Oy, and Og,; it is . T Tuluz PO Subnet Finetuning) = Tulu 0RO

90.5% for PRIME. Notably, for both AN

DPO and PRIME, 6, and 0, are
100% identical when using a toler- 06
ance of 10~* instead of the default
10~°, indicating that the two models
converge to nearly identical param- 05

eter values. As shown in Tables 32 I
and 3B} Oy, matches or outperforms vt P

O on all tasks across both algo-
rithms. These results suggest that
the parameters outside the subnetwork
play little role in the optimization pro-
cess, and freezing them has a negligi-
ble or even beneficial impact on the model’s performance. We further observe that the training loss
is consistently lower in the subnetwork finetuning setting than full finetuning (Fig.). They also
provide supporting evidence for our Conjecture[I]in §I] This finding opens up new possibilities for
more efficient RL training methods that explicitly leverage this update sparsity (Chen et al.| [2022)).

500 1k 1.5k 2k

Figure 4: Training loss for training DPO with subnetwork
finetuning and full finetuning. Training the subnetwork in
isolation consistently causes train loss to be lower.

Table 3: Test set performance of Oy and 6y, trained with DPO and PRIME. Training only the
subnetwork (fy,,) can achieve better performance than full finetuning (fg,y). Lvl. indicates the
difficulty levels of MATHS00.

(a) DPO (b) PRIME

Task Gﬁ.l] Gsub A Lvl. 0fu11 qub A

AGIEval LSAT-AR 213 248 +3.5 1 93.0 93.0 +0.0
AGIEval LSAT-LR 53.1 547 +1.6 2 85.6 85.6 +0.0
AGIEval LogiQA-en 43.5 455 +2.0 3 829 838 +0.9
GPQA 32.8 328 +0.0 4 71.1 742 +3.1
MMLU Pro Math 50.8 51.6 +0.8 5 403 455 +52
Avg 403 419 +1.6 Overall 698 722 +24

*Open-Instruct: https://github.com/allenai/open-instruct; verl: https://github.com/
volcengine/verl/; olmes: https://github.com/allenai/olmes/

https://github.com/allenai/open-instruct
https://github.com/volcengine/verl/
https://github.com/volcengine/verl/
https://github.com/allenai/olmes/

Table 4: Subnetwork overlap varying random seeds, training data, and RL algorithms. Despite these
changes, subnetworks show non-trivial overlap compared to random-guessing baselines.

Variation Axis Setting Random RL Subnetwork Sparsity
Seed Ty: 42 01: 36.7 01: 60.5 63.3
To: 123 09: 36.7 02: 60.6 63.3
Data 7Z1: Tulu Data 01: 14.6 01: 26.7 63.3
Z>: PRIME Data 05: 36.7 09: 67.1 85.4
Z,: DPO 01:23.0 01: 59.1 87.1
Seed + Data+ Algo. 7 "bRIME 0y: 129 02: 33.2 77.0

5 Consistency of Subnetworks Across Seeds, Data, and Algorithms

This section aims to answer the following research question:

RQ4: How consistent is the RL-updated subnetwork under varying training conditions such as
random seed, training data, RL algorithm, and even all of them?

If the subnetwork remains largely consistent across these variations, it would suggest that the
identified subnetwork is not merely an artifact of specific training configuration but a generalizable
and transferable structure of the pretrained model.

Setup. To quantify the similarity between two subnetworks, we define an overlap metric. Let s;
and s, denote the sparsity levels of two models, and let Z; and Z5 be the sets of indices of the
updated parameters. The size of the common subnetwork is given by |Z; N Z;|. One-sided overlap
is then 0y = |71 N Zs|/|Z1| = |71 N Zz|/(1 — s1), which quantifies the proportion of Z; that is
covered by the subnetwork 7, i.e., how well Z, captures the parameters updated in Z;. Similarly,
02 = |ZT1NZ5|/(1—s2) quantifies how well Z; captures the parameters updated in Z,. We compare the
observed overlaps 01 and 0- against a random guessing baseline, where a subnetwork is constructed
by uniformly selecting the same number of parameters as identified by RL (Appendix [E)).

We evaluate three settings: (1) varying the random seed alone, (2) varying the training data alone,
and (3) changing the seed, data, and the RL algorithm altogether as a stress test. We conduct
controlled experiments and all factors not under investigation are the same. Unless otherwise
mentioned, all ablations were done with a batch size of 32, trained for one epoch with the base
model Tulu-3-8B-SFT. When varying the training data, we switch between the Tulu preference
datase and the PRIME rollout datase{’] To adapt the rollout dataset to DPO format, we select
only positive samples, and pair it with a randomly sampled negative one. When varying the RL
algorithm, we train a DPO model initialized from PRIME-RL/Eurus-2-7B-SFT and compare it to
the PRIME-RL/Eurus-2-7B-PRIME model.

Results. Table [4] reports our observed overlap. Despite changes in initialization, the resulting
subnetworks show substantial overlap—well above the random baseline. For instance, varying the
random seed yields overlaps of 0; = 60.5% and 0, = 60.6%. Similar consistency is observed when
the training dataset is varied. Even under a stress test, where the data, seed, and RL algorithm are all
changed, we still observe notable overlaps of 59.1% and 33.2%. These findings indicate the presence
of a subnetwork that is at least partially transferrable to other different settings.

For a given base model, we observe substantially higher subnetwork overlap than random guessing
across different seeds, training data, and RL algorithms. This suggests the potential of a consistent
and at least partially transferrable subnetwork structure across these different training settings.

While the observed subnetwork overlap across seeds, datasets, and training algorithms falls short of
100%, it suggests that partial subnetwork reuse may still offer practical utility. In particular, partial
subnetwork reuse could reduce redundant computation across repeated RL runs, such as those in
hyperparameter sweeps or ablation studies, by partially reusing the subnetworks. In addition, one

allenai/llama-3. 1-tulu-3-8b-preference-mixture
4PRIME-RL/Eurus-2-Rollout. It has model generations for math datasets alongside a label for correctness

https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT

might be able to reuse part of the subnetwork identified by a cheaper algorithm like DPO and reuse it
in more expensive ones like PPO, greatly reducing the training cost without sacrificing performance.

6 Why Do the Subnetworks Emerge?

This section answers investigates the following research question:

RQS: What factors contribute to the update sparsity observed in RL ﬁnetuning.ﬂ
We investigate the following factors: gradient
clipping, KL regularization towards a reference ™" o e o0
policy, performing SFT prior to RL, and the e

number of RL update steps. Our investigation 8% /\—W
suggests that the dominating factor is how close

the training data distribution is to the policy’s, _ «*
i.e., whether the training data is in-distribution. =
Another important factor is the total number of ao%

gradient updates.
Gradient clipping and KL regularization. As ._/_\/\/\/_/\/\
discussed in gradient clipping and KL reg-

ularization are commonly used to keep the pol- ° * M0 Global Step
icy from deviating too far away from a refer- Figure 5: Update sparsity of intermediate check-
ence model. Since both mechanisms explicitly points of a training run of PRIME. We observe that
suppress large parameter updates, they are nat- with more training the sparsity slowly decays.
ural candidates for contributing factors to the

observed update sparsity. To test their impact, we train a GRPO variant using Qwen-2.5-7B-Instruct,
comparing models with and without these regularization terms. We find that both configurations
exhibit comparable sparsity levels, suggesting that neither gradient clipping nor KL regularization
is a primary driver of the update sparsity. In our experiments, the GRPO variant trained with KL
regularization achieved a sparsity of 69.8%, while the variant trained without KL regularization
reached 68.8%. Further, SimPO removes the KL term by dropping the base policy normalization in

DPO, and as reported in [T SimPO also produces sparse updates, providing further negative evidence
for KL.

250 300 350

Performing SFT before RL. A common de-

sign choice is to perform SFT on the same data 30l
as the subsequent RL |Ouyang et al.| (2022).
However, as shown in Table m our findings ¥ 2-57
extend to models such as DeepSeek-R1-Zero, .§ 2.0l
which forgoes SFT entirely yet still exhibit 2 '
high update sparsity. This suggests that SFT 2 1.5
is not a main contributing factor to the update 5
o . 5 1.0f
sparsity in RL finetuning. L
Training duration. It is intuitive that with 031
more gradient steps, a model is expected to T e e e et et e B e
drift more from the base model. Figure 3] R I O AT N (R
shows how update sparsity changes during Steps

the training of PRIME. As training progresses,

update sparsity gradually decreases but even- Figure 6: Percentage of updated weights that are
tually shows signs of convergence to around outside the final subnetwork across training steps
80%. Notably, DeepSeek-R1-Zero under-

>We conjecture that, for the sake of illustration, if one were to perform backpropagation manually on paper
with unlimited numerical precision, the resulting parameter updates would be dense. In practice, however,
modern computers rely on floating-point arithmetic with limited precision. As a result, updates with very small
magnitudes (e.g., absolute values below 10~%°) cannot be represented and are effectively discarded, hence the
empirically observed sparsity of the parameter updates. Importantly, such near-zero updates appear to have
negligible impact on model performance, as strong results have been achieved without them. The equivalent
question we address in this section is: What factors contribute to these near-zero parameter updates during RL
fine-tuning?

goes 8K training steps (numbers from Figure 2 in DeepSeek-Al et al.|(2025)) using GRPO, over 20 x
more than PRIME, but shows a comparable update sparsity (86%). Therefore, we conjecture that
training duration’s impact on update sparsity is more prominent during early training but gradually
decreases as training progresses.

Figure[6]shows the percentage of updated parameters (relative to model size) that lie outside the final
subnetwork. This proportion increases during the early stages of training but steadily declines in
later stages. This trend suggests that some parameters outside the final subnetwork receive non-zero
gradient updates that cancel out. Overall, about 8.5% of parameters that are ever updated during
training fall outside the final subnetwork.

While it is possible, though less likely, that all models we study, including DeepSeek-R1-Zero
(86.0% update sparsity after 8K steps), are severely undertrained, and that the observed update
sparsity would diminish with substantially more training. Nonetheless, we question the practicality
of this hypothesis since it runs counter to the RL literature arguing against overtraining to prevent
overfitting and improve generalization |Fu et al.|(2019).

Training on in-distribution data. Intuitively, when gradients are computed on sequences that the pol-
icy already assigns high probabilities to, little update to the parameters would be needed. We evaluated
two scenarios: (1) rejection sampling, and (2) DPO on out-of-distribution data by not performing SFT
prior to RL. Since we’ve already learned from §3|that DPO with in-distribution data induces sparse
updates while SFT (with out-of-distribution data) induces dense ones, this additional experiment can
serve as a control group to isolate the factor of training on in- vs. out-of-distribution data.

As shown in Table[5] Our experiments reveal that SFT on in-distribution data produces sparse updates,
while DPO with out-of-distribution data produces dense ones. Specifically, performing SFT with
Qwen/Qwen2.5-Math-7B on rejection sampled in-distribution data yields around 90.0% update
sparsity. This is reinforced by the examination of a previous work: RAFT++ (Xiong et al.,[2024),
which performs supervised finetuning with iterative rejection sampling, yields an update sparsity of
69.4%. In contrast, DPO on out-of-distribution data produces dense updates in zephyr-7b-beta
models, with a 6.8% update sparsity. These findings suggest that training on in-distribution data
could be a major driver of update sparsity in not only RL, but also SFT.

We conjecture that training on in-distribution data could be a reason of update sparsity; KL-
divergence regularization and gradient clipping have limited impact.

Table 5: RFT indicates rejection-sampling fine-tuning (Touvron et al., 2023; Dong et al., 2023)), and
RAFT++ is iterative RFT A comparative analysis across SFT and DPO as well as in- vs out-of-
distribution training shows that in-distribution consistently produces sparse updates.

Model Method Sparsity (%) SFT/RL In-Dist
Qwen2.5-Math-7B RFT 91.2 SFT
Qwen2.5-Math-7B RAFT++ 69.4 SFT
Llama-3.1-8B-SFT SFT 6.8 SFT X
Llama-3.1-8B-SFT DPO 6.8 RL X
Zephyr-7b-Beta DPO 7.7 RL X
Llama-3.1-8B-DPO DPO 81.4 RL

7 Limitations and Future Work

Because RL is computationally demanding, we choose to vary one factor at a time; yet the observed
sparsity may actually result from complex interactions among many, an avenue future work should ex-
amine. Further, fully controlled experiments are computationally prohibitive, and we thus sometimes
resort to resort to public checkpoints. While our experiments focus on language models, it would be
interesting to explore the same questions for multimodal and diffusion models. Subsequent research
could investigate methods for early identification of the sparse subnetwork and ways to leverage
its structure for more efficient learning. Finally, our empirical findings invite a deeper theoretical

https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

analysis, with the goal of uncovering theoretical explanations for the update sparsity in RL. Lastly,
while our observations generally hold, there are confounders (for eg. |Liu et al.[(2025a))). However the
confounding reason is not trivial and is worth exploring as part of future work. Further to the best of
our observations this phenomenon is largely applicable to all RL settings.

8 Conclusion

Our study reveals that RL finetuning in LLMs updates only a sparse subnetwork constituting ap-
proximately 5%-30% of total parameters, leaving the rest unchanged. This sparsity emerges without
explicit spasity promoting techniques such as regularization or structural constraints. Crucially,
finetuning just this subnetwork in isolation reproduces the full model’s performance, aligning closely
with original parameter values. For a given base model across different seeds, datasets and learning
algorithms, a non-trivial portion of the subnetwork remains the same. Our findings highlight that
learning from in-distribution samples while training is a key driver of this phenomenon, pointing
towards more efficient and effective training strategies in RL-based finetuning of LLMs.

9 Acknowledgments

We would like to thank Pavan Jayasinha, Cheng Wang, Abdul Waheed, Shivanshu Shekhar, Alexander
Schwing, Gabriel Stanovsky, Roy Schwartz and Gokhan Tur for their valuable feedbacks and
suggestions. Further we extend our gratitude to the members of ConvAl and Alta lab groups at UIUC
for their thoughtful remarks on our draft. This research used the Delta advanced computing and data
resource which is supported by the National Science Foundation (award OAC 2005572) and the State
of Illinois. Delta is a joint effort of the University of Illinois Urbana-Champaign and its National
Center for Supercomputing Applications.

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, and Antoine Bosselut. Discovering
knowledge-critical subnetworks in pretrained language models, 2024. URL https://arxiv,
org/abs/2310.03084.

Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang. Coarsening the
granularity: Towards structurally sparse lottery tickets, 2022. URL https://arxiv.org/abs/
2202.04736.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, 1l generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161l

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao,
Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning Ding. Process
reinforcement through implicit rewards, 2025. URL https://arxiv.org/abs/2502.01456|

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback, 2023. URL https://arxiv,
org/abs/2310.12773.

10

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2202.04736
https://arxiv.org/abs/2202.04736
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2310.12773

Fatima Davelouis, John D. Martin, and Michael Bowling. On the interplay between sparsity and
training in deep reinforcement learning, 2025. URL https://arxiv.org/abs/2501.16729,

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yonggiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948,

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment, 2023. URL https://arxiv.org/abs/2304.06767.

Shitong Duan, Xiaoyuan Yi, Peng Zhang, Tun Lu, Xing Xie, and Ning Gu. Negating negatives:
Alignment without human positive samples via distributional dispreference optimization. CoRR,
abs/2403.03419, 2024. URL https://doi.org/10.48550/arXiv.2403.03419,

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization, 2024. URL https://arxiv.org/abs/2402,
01306,

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJ1-b3RcF7.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep g-
learning algorithms. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2021-2030. PMLR, 09-15 Jun 2019. URL https://proceedings.
mlr.press/v97/ful9a.html,

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning, 2022. URL https://arxiv.org/abs/2206.10369.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2),2021. URL https://openreview.net/forum?id=7Bywt2mQsCe,

11

https://arxiv.org/abs/2501.16729
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2304.06767
https://doi.org/10.48550/arXiv.2403.03419
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.mlr.press/v97/fu19a.html
https://proceedings.mlr.press/v97/fu19a.html
https://arxiv.org/abs/2206.10369
https://openreview.net/forum?id=7Bywt2mQsCe

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model, 2024. URL https://arxiv.org/abs/2403.07691.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
nZeVKeeFYfO.

Xinmeng Huang, Shuo Li, Edgar Dobriban, Osbert Bastani, Hamed Hassani, and Dongsheng Ding.
One-shot safety alignment for large language models via optimal dualization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=dA7hUm4css,

HuggingFace. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open-rl.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/abs/
2411.15124.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: a
challenge dataset for machine reading comprehension with logical reasoning. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI'20, 2021. ISBN
9780999241165.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
2025a. URL https://arxiv.org/abs/2505.24864.

Yuanxin Liu, Fandong Meng, Zheng Lin, Jiangnan Li, Peng Fu, Yanan Cao, Weiping Wang, and
Jie Zhou. A win-win deal: Towards sparse and robust pre-trained language models, 2022. URL
https://arxiv.org/abs/2210.05211.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
2025. URL https://arxiv.org/abs/2403.19647.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward, 2024. URL https://arxiv.org/abs/2405.14734.

Tong Mu, Alec Helyar, Johannes Heidecke, Joshua Achiam, Andrea Vallone, Ian Kivlichan, Molly
Lin, Alex Beutel, John Schulman, and Lilian Weng. Rule based rewards for language model safety,
2024. URL https://arxiv.org/abs/2411.01111,

OpenAl. Openai ol system card. 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

12

https://arxiv.org/abs/2403.07691
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=dA7hUm4css
https://openreview.net/forum?id=dA7hUm4css
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2505.24864
https://arxiv.org/abs/2210.05211
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2411.01111
https://arxiv.org/abs/2203.02155

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. LISA:
Layerwise importance sampling for memory-efficient large language model fine-tuning. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https !
//openreview.net/forum?id=L8ifDX5XNqg.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal.
Lottery ticket adaptation: Mitigating destructive interference in llms, 2024. URL https://arxiv,
org/abs/2406.16797.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 27011-27033. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/
panigrahi23a.html.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=HPuSIXJaa9.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=8aHzds2uUyB.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2017a. URL https://arxiv.org/abs/1502.05477,

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017b. URL https://arxiv.org/abs/1707.06347.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal, 2025. URL https://arxiv.org/abs/2502.12118|

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Hakim Sidahmed, Samrat Phatale, Alex Hutcheson, Zhuonan Lin, Zhang Chen, Zac Yu, Jarvis Jin,
Simral Chaudhary, Roman Komarytsia, Christiane Ahlheim, Yonghao Zhu, Bowen Li, Saravanan
Ganesh, Bill Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li, Abhinav Rastogi, and Lucas
Dixon. Parameter efficient reinforcement learning from human feedback, 2024. URL https:
//arxiv.org/abs/2403.10704.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning, 2022. URL https://arxiv.org/abs/
2106.04217.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
Liangyan Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer, and Trevor Darrell. Aligning large
multimodal models with factually augmented RLHF. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages
13088-13110, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.findings-acl.775. URL https://aclanthology.org/2024.findings-acl,
775/.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

13

https://openreview.net/forum?id=L8ifDX5XNq
https://openreview.net/forum?id=L8ifDX5XNq
https://arxiv.org/abs/2406.16797
https://arxiv.org/abs/2406.16797
https://proceedings.mlr.press/v202/panigrahi23a.html
https://proceedings.mlr.press/v202/panigrahi23a.html
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=8aHzds2uUyB
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2403.10704
https://arxiv.org/abs/2403.10704
https://arxiv.org/abs/2106.04217
https://arxiv.org/abs/2106.04217
https://aclanthology.org/2024.findings-acl.775/
https://aclanthology.org/2024.findings-acl.775/

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. RIx2: Training a sparse deep
reinforcement learning model from scratch, 2023. URL https://arxiv.org/abs/2205.15043|

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,
Mengdi Wang, Kam-Fai Wong, and Heng Ji. Otc: Optimal tool calls via reinforcement learning,
2025a. URL https://arxiv.org/abs/2504.14870.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.
URL https://arxiv.org/abs/2312.08935,

Shangshang Wang, Julian Asilis, Omer Faruk Akgiil, Enes Burak Bilgin, Ollie Liu, and Willie
Neiswanger. Tina: Tiny reasoning models via lora, 2025b. URL https://arxiv.org/abs/
2504.15777.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming Zhou, Zhongyu Wei, Zhumin Chen, and Nan
Duan. From lIsat: The progress and challenges of complex reasoning. IEEE/ACM Trans. Audio,
Speech and Lang. Proc., 30:2201-2216, April 2022. ISSN 2329-9290. doi: 10.1109/TASLP.2022.
3164218. URL https://doi.org/10.1109/TASLP.2022.3164218.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example,
2025c. URL https://arxiv.org/abs/2504.20571.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-task language
understanding benchmark. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024b. URL https://openreview.net/forum?id=
y10DM6R2r 3.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for RLHF
under KL-constraint. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=c1AKcA6ryl.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to llm reasoning: from rejection
sampling to reinforce, 2025. URL https://arxiv.org/abs/2504.11343|

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models, 2023. URL https://arxiv.org/abs/2306.
01708.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
Advancing llm reasoning generalists with preference trees. In ICLR, 2025.

14

https://arxiv.org/abs/2205.15043
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2504.14870
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2504.15777
https://arxiv.org/abs/2504.15777
https://doi.org/10.1109/TASLP.2022.3164218
https://arxiv.org/abs/2504.20571
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=c1AKcA6ry1
https://arxiv.org/abs/2504.11343
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2306.01708

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892,

Dylan Zhang, Qirun Dai, and Hao Peng. The best instruction-tuning data are those that fit, 2025.
URL https://arxiv.org/abs/2502.04194,

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. In First Conference on Language Modeling, 2024.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. AGIEval: A human-centric benchmark for evaluating foundation
models. In Kevin Duh, Helena Gomez, and Steven Bethard, editors, Findings of the Association
for Computational Linguistics: NAACL 2024, pages 2299-2314, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.149. URL
https://aclanthology.org/2024.findings-naacl.149/.

Guanghao Zhou, Panjia Qiu, Cen Chen, Jie Wang, Zheming Yang, Jian Xu, and Minghui Qiu.
Reinforced mllm: A survey on rl-based reasoning in multimodal large language models, 2025.
URL https://arxiv.org/abs/2504.21277,

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.
URL https://arxiv.org/abs/1909.08593,

15

https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2502.04194
https://aclanthology.org/2024.findings-naacl.149/
https://arxiv.org/abs/2504.21277
https://arxiv.org/abs/1909.08593

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:
* You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).
The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it

(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Sections 3-6 provides empirical evidence for the claims made in intro and
abstract

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Separate dedicated limiation section included

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper doesnt discuss theoretical proofs, most results are empirical
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All relevant datasets, models are listed, all hyperparameters discussed in detail

5. Open access to data and code

16

10.

11.

12.

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification:

Guidelines:

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details shared for reproducibility

Guidelines:

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Most accuracies are reported on deterministic setups

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [TODO]

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Most experiments performed are with publicly released models, datasets and
codebases.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No immediate societal impacts of the work
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such risks
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All works are cited.

17

https://neurips.cc/public/EthicsGuidelines

13.

14.

15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Doesnt release new assets
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Doesn’t involve crowdsourcing.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: does not involve crowdsourcing nor research with human subjects
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Does not involve LLMs usage

18

A Appendix

Algorithm Model (RL Checkpoint) Tol=1e-8 Tol=1e-7 Tol=1e-6 Tol=1e-5
DPO allenai/Llama-3.1-Tulu-3-8B-DPO 76.04 76.04 76.14 81.38
DPO allenai/Llama-3.1-Tulu-3-70B-DPO 87.58 87.59 87.79 95.24
GRPO deepseek-ai/deepseek-math-7b-rl 68.14 68.14 68.14 68.53
ORPO kaist-ai/mistral-orpo-beta 73.16 73.18 73.23 76.94
ORPO kaist-ai/mistral-orpo-alpha 50.40 50.41 50.48 53.23
KTO openbmb/Eurus-7b-kto 71.78 71.79 73.14 95.98
PPO peiyi9979/math-shepherd-mistral-7b-rl 52.45 52.47 53.21 80.77
PPO PRIME-RL/Eurus-2-7B-PRIME 75.26 75.27 75.36 77.04
SimPO Llama-3-Instruct-8B-SimPO 71.00 71.00 71.10 76.42
SimPO Llama-3-Base-8B-SFT-SimPO 79.47 79.47 79.60 86.52
SimPO Mistral-7B-Instruct-SimPO 59.37 59.40 60.31 89.07
SimPO Mistral-7B-Base-SFT-SimPO 62.58 62.60 63.56 91.44

Table 6: Sparsity (%) of parameter updates under different thresholds across RL algorithms and RL
checkpoints.

B Hyperparameter choices for Gradient Masking experiments

DPO: For DPO, we fine-tuned the LLaMA-3.1-Tulu-3-8B model using Direct Preference Opti-
mization (DPO) with bfloat16 mixed-precision and DeepSpeed Stage 3 for memory and compute
efficiency across 8 processes. Training uses a sequence length of 2048 tokens with an effective
batch size of 128, achieved by setting the per-device batch size to 1 with 16 gradient accumu-
lation steps. A linear learning rate schedule is applied with a peak learning rate of 5 x 1077
and a warmup ratio of 0.1, without weight decay. The model is trained for one epoch on the
allenai/llama-3.1-tulu-3-8b-preference-mixture dataset.

PRIME: For PRIME, We fine-tune Qwen2.5-Math-7B using on a mixture of GSM8K and MATH
datasets. The training batch size is set to 64. The actor is optimized with a learning rate of 5 x 10~
while the reward model is trained with a learning rate of 1 x 10~%. We performed four rollouts are
performed per sample. We use gradient clipping of 10.0, and a temperature 5 of 0.05. Training is
conducted on for 15 epochs.

C Model Checkpoints: SFT vs RL sparsity comparison

SFT Checkpoints. We compare the following base and SFT checkpoints:

* meta-llama/Llama-3.1-8Bvs. allenai/Llama-3.1-Tulu-3-8B-SFT
e meta-llama/Llama-3.1-70B vs. allenai/Llama-3.1-Tulu-3-70B-SFT
* Qwen/Qwen2.5-Math-7B vs. PRIME-RL/Eurus-2-7B-SFT

RL Checkpoints. We compare the following SFT and RL-finetuned checkpoints:

e allenai/Llama-3.1-Tulu-3-8B-SFT vs. allenai/Llama-3.1-Tulu-3-8B-DP0
e allenai/Llama-3.1-Tulu-3-70B-SFT vs. allenai/Llama-3.1-Tulu-3-70B-DP0O
e PRIME-RL/Eurus-2-7B-SFT vs. PRIME-RL/Eurus-2-7B-PRIME

D Training Dynamics

We analyzed intermediate checkpoints of the PRIME model. Notably, our goal is to observe the
convergence of the sparsity with training time. Does the sparsity decay with gradient steps ? Does it
asymptotically reach a sparsity level of zero or is the convergence to a non-zero point ?

19

Experimental setup We analyze 21 intermediate checkpoints from a training run of the PRIME
model. Let the model parameters at these checkpoints be denoted by 61,605, ..., 021, and let iy
denote the parameters of the corresponding base model (i.e., PRIME-RL/Eurus-7b-sft). We define
the sparsity between the base model to checkpoint k as sparsityy, = sparsity(fy, 0;n:t), and the
sparsity between two checkpoints 7 and j as sparsity;; = sparsity(d;, 6;).

Key Findings Our analysis begins by examining how the sparsity;, evolve with training progress,
offering insight into the update patterns.

100% —— Sparsity (%) —— Sparsity
—a— MATH 500 (%)
—— AIME 2024 (%) 98.50%

/_W 98.00%

S S 97.50%

97.00%

- _/\/\/\/—\—_/\/\

0 50 100 150 200 250 300 350 25 50 75 10.0 125 15.0 175 20.0
Global Step Step

(a) (b)

Figure 7: Sparsity Analysis of intermediate checkpoints of PRIME (a) shows the sparsity

Figure [7(a) illustrates the sparsity of intermediate checkpoints alongside their accuracy on the
MATHS500 and AIME2024 tasks. The plot clearly demonstrates that all intermediate checkpoints
exhibit non-trivial sparsity. Furthermore, as training progresses, the sparsity converges to a numeri-
cally significant asymptote, suggesting that a substantial proportion of weights remain unaffected
even after prolonged period of training. In Figure b), we report the sparsity of the sparsity;; for
all consecutive checkpoint pairs, i.e., where j = ¢ + 1. Notably, in each successive step, on average,
only 7% of the weights receive a non-zero gradient update.

E Random Guessing baseline

If model 1 has sparsity s; and model 2 has sparsity so, the expected overlap is given by: (=s)(=s)

100
.. . . 1—s 1—s .
Normalizing like earlier, we get O1 random = (10?)2) and Oz random = % i.e. for random

guessing the overlap for model 1 is the density of model 2.

20

	Introduction
	Related work and Background
	Related Work
	Background

	RL Induces Sparse but Full-rank Updates; SFT Induces Dense Ones
	Finetuning the Subnetwork Alone Can Reproduce the Full-finetuned Model
	Consistency of Subnetworks Across Seeds, Data, and Algorithms
	Why Do the Subnetworks Emerge?
	Limitations and Future Work
	Conclusion
	Acknowledgments
	Appendix
	Hyperparameter choices for Gradient Masking experiments
	Model Checkpoints: SFT vs RL sparsity comparison
	Training Dynamics
	Random Guessing baseline

