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ABSTRACT

Text-based Visual Question Answering (Text-VQA) task requires the model to
learn effective representations in a joint semantic space. Previous methods lack
the explicit alignment between object-level and scene text-level in visual-linguistic
modalities. To address this issue, we propose a novel two-stage model with cross-
level contrastive learning. In the first pre-training stage, we encourage the model
to enhance the proximity of cross-level cross-modal representations within the
same image in semantic space, while also distancing representations from differ-
ent images. Then we fine-tune the model to generate the answer to the question.
Experimental results on a widely used benchmark dataset demonstrate the effec-
tiveness of our proposed model compared to existing methods.

1 INTRODUCTION

The Text-VQA task is a critical area of research, which requires the model to generate the answer
to the question by thoroughly analyzing and understanding the information within a given image.
For this sake, the model must possess the ability to not only recognize and comprehend the objects
and scene texts within an image, but also to effectively learn their representations in a joint semantic
space. Recent studies (Hu et al., 2019; Zhu et al., 2021; Gao et al., 2021; Li et al., 2023) employ
different network structures to improve the performance. However, they fail to explicitly align cross-
level information and generate effective joint representations, which affects the performance of the
models. Inspired by contrastive learning, we propose a novel two-stage model for the Text-VQA
task. In the first pre-training stage, we propose a cross-level contrastive learning method based on a
multi-modal transformer model to solve the above issue, as shown in Figure 1. For the subsequent
fine-tuning stage, we generate the answer in an auto-regressive manner.

Figure 1: The proposed cross-level contrastive learning method in the pre-training process.
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2 METHODOLOGY

In this section, we introduce a novel two-stage framework for the Text-VQA task, consisting of three
key components. First, we extract features from the input image and question. This involves using
the Faster R-CNN model (Girshick, 2015) to detect visual object regions and their category labels.
We combine the appearance and location features of the objects to formulate object-level visual
features. Additionally, we embed object labels by Bert (Devlin et al., 2019) to obtain object-level
linguistic features. Furthermore, we employ the Microsoft Azure Optical Character Recognition
(OCR) system 1 to identify scene texts in the image and extract FastText and Pyramidal Histogram
of Characters (PHOC) features to generate OCR-level linguistic feature. Analogous to the object-
level visual features, we extract OCR-level visual features, which comprise both appearance and
spatial features.

Second, we employ a multi-modal transformer model to explicitly align the object-level and scene
text-level information within the image in the pre-training stage. Inspired by contrastive learning,
we design a cross-level contrastive learning (CCL) with Object-OCR Visual-Linguistic Contrastive
Learning (BCL) and OCR-Object Visual-Linguistic Contrastive Learning (CBL). We design two
contrastive losses for BCL and CBL by using the formulation of InfoNCE as LBC and LCB . For
each pair (visual feature v, linguistic feature l) in a batch with N pairs, we calculate the similarity
between them: visual-to-linguistic as pv,ln = exp(sim(v,l))/τ)∑N

n=1 exp(sim(v,l))/τ)
and linguistic-to-visual as pl,vn =

exp(sim(l,v))/τ)∑N
n=1 exp(sim(l,v))/τ)

, where N is the batch size, τ is a temperature parameter, and sim() denotes

the cosine similarity. Then, Lv2l is defined as the cross-entropy between pv,ln and the ground truth.
LBC is formulated as the mean of Ll2v

BC and Lv2l
BC , utilizing object-level visual feature Bv and OCR-

level linguistic feature Cl as inputs. Likewise, we could obtain the LCB .

Third, we utilize the transformer as a decoder to generate the answer to the question in the fine-
tuning process. The generated answer is derived from a vocabulary list of common answers found
in the training data or the OCR tokens within the image. The whole prediction process is in an
auto-regressive manner.

3 EXPERIMENTAL

We conduct experiments on the TextVQA benchmark (Singh et al., 2019) by using VQA accuracy
(Acc.) as the evaluation metric. Our method is compared with M4C (Hu et al., 2019), SMA (Gao
et al., 2021), SSBaseline (Zhu et al., 2021), and the previous SOTA DA-Net (Li et al., 2023). As
listed in Table 1, our model outperforms all considered methods. The results of our method represent
a significant improvement over DA-Net, demonstrating a performance increase of 3.31% and 2.74%
on the validation set and test set, respectively. This highlights the superiority of our approach.

Table 1: Comparison with the state-of-the-art methods.

Method Val Acc. Test Acc.
M4C (Hu et al., 2019) 39.44 39.01
SMA (Gao et al., 2021) 40.05 40.66
SSBaseline (Zhu et al., 2021) 43.95 44.72
DA-Net (Li et al., 2023) 47.12 47.11
Ours 50.43 49.85

4 CONCLUSION

In this work, we propose a novel two-stage framework with a well-designed cross-level contrastive
learning for the Text-VQA task. It facilitates the alignment between object-level and scene text-level
features in visual-linguistic modalities. Our methodology exhibits outstanding performance on the
Text-VQA task. In the future, we plan to use this idea for the text caption task.

1https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We implement all models in Python using the PyTorch toolbox. We utilize the Faster R-CNN to
perform object detection in the images. The visual features of each detected object consist of both
appearance and spatial features. The appearance feature is generated by utilizing the Faster R-
CNN fc7 weights to extract the fc6 features, resulting in a 2048-dimensional fc7 appearance feature.
These fc7 weights are further fine-tuned during the training process. The 4-dimensional spatial
feature comprises bounding box coordinates, which include the top-left and bottom-right points of
each object. After the object label is predicted by Faster R-CNN, we input the label into Bert-base
to produce a 768-dimensional object-level linguistic feature. As for the OCR-level visual feature, it
comprises a similar composition with a 2048-dimensional appearance feature and a 4-dimensional
spatial feature. The OCR-level linguistic feature is a blend of a 300-dimensional FastText feature
and a 604-dimensional PHOC feature. The multi-modal transformer refers to the encoder-decoder
architecture (Vaswani et al., 2017). In our model, we utilize a stack of 4 transformer layers, each
with 12 attention heads, and the hidden dimension is set to 768. We first pre-train the model for
36,000 iterations and then fine-tune it for another 36,000 iterations. The learning rate is set to
1e-4 and the batch size is 12. For the answer vocabulary, we use the top 5000 frequent words
from the answers in the training set. We set the maximum number of decoding steps to 12. In
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Table 2: Ablation studies of our proposed BCL, CBL, and CCL in the pre-training stage.

Method Val Acc. Test Acc.
Ours 50.43 49.85
– BCL 49.28 48.56
– CBL 49.59 48.12
– CCL (BCL & CBL) 48.51 48.03

the pre-training stage, the final pre-training loss is achieved by integrating our proposed cross-level
contrastive learning (CCL), masked language modeling (MLM), and image-text matching (ITM),
i.e., Lfinal = LCCL + LMLM + LITM .

A.2 DETAILS OF OCR SYSTEM EMPLOYED

We use the Microsoft Azure OCR system to detect the texts within the image. The outputs of
the Microsoft-OCR system involve three aspects: First, it efficiently extracts the textual content
in the image, such as signs, labels, and written notes. Second, each piece of text identified by
the system is associated with a specific visual region within the image represented by a bounding
box. The bounding box is defined by the coordinates of its four points: the top-left corner, the
top-right corner, the bottom-right corner, and the bottom-left corner. Third, the Microsoft-OCR
system assigns a probability score to each piece of text, which indicates the system’s confidence in
accurately recognizing the text.

A.3 ABLATION RESULTS

We conduct ablation studies to validate the effectiveness of our proposed BCL, CBL, and the entire
cross-level contrastive learning (CCL) in the pre-training stage. Table 2 presents the experimental
results. It is evident that both BCL and CBL contribute to the improvement in performance. When
we remove the BCL, the performance declines from 50.43% to 49.28% in the validation set and from
49.85% to 48.56% in the test set. The exclusion of CBL also leads to a decrease in performance.
Removing CCL implies pre-training the model solely using MLM and ITM. The CCL brings an
improvement of 1.92% (from 48.51% to 50.43%) on the validation set, it facilitates the model to
learn cross-level representation in vision and linguistic modality. These results indicate that cross-
level contrastive learning plays a crucial role in enhancing the performance of the model.

Table 3: Supplement analysis of components selection.

No.
CCL Intra-Level Intra-Modality Val Acc.

BCL CBL BBVL CCVL BCVV BCLL
1 ✓ ✓ 50.43
2 ✓ ✓ 49.85
3 ✓ ✓ 49.62
4 ✓ ✓ ✓ ✓ 49.55
5 ✓ ✓ ✓ ✓ 49.27
6 ✓ ✓ ✓ ✓ 49.38
7 ✓ ✓ ✓ ✓ ✓ ✓ 49.47

Moreover, we conduct supplementary experiments to further explore the impact of our design
choices on the model’s performance. Specifically, we investigate the effects of intra-level feature
alignment and intra-modal feature alignment. Correspondingly, intra-level contrastive learning in-
cludes object-level visual-linguistic contrastive learning (BBVL) and OCR-level visual-linguistic
contrastive learning (CCVL). Intra-modal contrastive learning contains object-OCR visual-visual
contrastive learning (BCVV) and object-OCR linguistic-linguistic contrastive learning (BCLL).
Next, we explore our CCL framework with these additional contrastive learning strategies. The
results of these component selection experiments are presented in Table 3. The first row, represent-
ing our proposed CCL, establishes a baseline with a validation accuracy of 50.43%. The following
rows detail the results of incorporating various combinations of contrastive learning components into
the framework. The introduction of BBVL and CCVL in rows 2 and 3 leads to a decline in accuracy
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Figure 2: The Qualitative results showcase the comparison results between our method and the
SSBaseline method in the Text-VQA task.

compared to the baseline. This decline indicates the importance of cross-level and cross-modality
alignment in enhancing semantic integration within the model. Rows 4 through 7 provide a detailed
exploration of various combinations of CCL with intra-level and intra-modality contrastive learning.
It is worth noting that the integration of CCL with other contrastive learning methods in rows 4, 5,
and 7 consistently leads to a reduction in validation accuracy. This implies that an excessive align-
ment of information may introduce unexpected noise and redundancy into the feature space, which
could weaken the model’s capacity to generate discriminative feature representations.

A.4 QUALITATIVE RESULTS.

In Fig. 2, the samples from the TextVQA validation set showcase the comparison results intuitively
in the Text-VQA task. Specifically, compared with the method SSBaseline, our approach demon-
strates a significant advantage in accurately identifying key objects in question and then linking them
to relevant textual components, guided by the visual attributes or labels. For instance, the second
example highlights that our method enables the correct identification of the airplane as the central
object and then accurately associates the question’s keyword ’light blue’ with the corresponding
textual region in the visual context. This results in the accurate prediction of ‘cargo,’ as the text
explicitly linked to the visual cue, instead of erroneously focusing on irrelevant background text like
SSBaseline.

(a) Learning with BCL (b) Learning without BCL

Figure 3: The visualization for the embedding space with and w/o Object-OCR visual-linguistic
Contrastive Learning (BCL).

A.5 VISUALIZATION FOR THE EMBEDDING SPACE

To illustrate the effectiveness of our proposed CCL in achieving cross-level and cross-modality fea-
ture alignment, we have employed an intuitive visualization approach. This approach demonstrates
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(a) Learning with CBL (b) Learning without CBL

Figure 4: The visualization for the embedding space with and w/o OCR-Object visual-linguistic
Contrastive Learning (CBL).

the distribution of multi-modal cross-level representations within the semantic space. Specifically,
we utilize the t-SNE algorithm to transform complex three-dimensional multi-modal representations
into two-dimensional feature points. When executing t-SNE, we set the number of components to
2, the perplexity to 30, the learning rate to 200, and the number of iterations to 1000 for optimal
results.

In our visualization results, we compare the distribution of multi-modal feature points before and
after applying our CCL, which comprises both Object-OCR Visual-Linguistic Contrastive Learning
(BCL) and OCR-Object Visual-Linguistic Contrastive Learning (CBL). The results, illustrated sep-
arately in Fig. 3 and Fig. 4, demonstrate that the utilization of BCL and CBL significantly reduces
the distances between aligned feature points in the semantic space. This indicates not only an im-
proved clustering but also a more coherent feature alignment, as related points are drawn closer to
one another. In contrast, without the application of CCL, the feature points exhibit greater dispersion
within the semantic space.

A.6 HYPERPARAMETER ANALYSIS

Batch Size Number Val Acc.
1 49.10
2 49.16
4 49.42
8 49.85
12 50.43

Table 4: Validation accuracy with respect to different batch size numbers.

Learning Rate Val Acc.
5e-3 50.19
1e-4 50.43
5e-4 49.93
1e-5 49.64

Table 5: Validation accuracy with respect to different learning rates.

In contrastive learning, the temperature parameter, batch size, and learning rate are three critical
hyperparameters. The temperature parameter is used to scale the similarity scores, which is vital
for the model to differentiate between pairs of samples. We treat the temperature parameter as a
learnable parameter, allowing the model to adaptively adjust during the training process. In our
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experiments, we tune different batch size numbers (1, 2, 4, 8, 12). We can observe that as the batch
size increases, the validation accuracy on the TextVQA dataset improves from 49.10% to 50.43%.
This indicates that the model’s performance is quite sensitive to batch size. A larger batch size
provides more negative samples and facilitates representation learning. Regarding the learning rate,
we explore settings including 5e-3, 1e-4, 5e-4, and 1e-5. The results show that within this range, the
model is not very sensitive to changes in the learning rate. Notably, the best performance is achieved
when the learning rate is set at 1e-4. Based on the aforementioned results, we select a batch size of
12 and a learning rate of 1e-4 as the final parameters.
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