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Abstract

Vehicle trajectory prediction serves as a critical enabler for autonomous navigation
and intelligent transportation systems. While existing approaches predominantly
focus on pattern extraction and vehicle-environment interaction modeling, they
exhibit a fundamental limitation in addressing trajectory heterogeneity originat-
ing from human driving styles. This oversight constrains prediction reliability in
complex real-world scenarios. To bridge this gap, we propose the Driving-Style-
Adaptive (DSA) framework, which establishes the first systematic integration of
heterogeneous driving behaviors into trajectory prediction models. Specifically, our
framework employs a set of basis functions tailored to each driving style to approx-
imate the trajectory patterns. By dynamically combining and adaptively adjusting
the degree of these basis functions, DSA not only enhances prediction accuracy
but also provides explanations insights into the prediction process. Extensive
experiments on public real-world datasets demonstrate that the DSA framework
outperforms state-of-the-art methods.

1 Introduction

Figure 1: Illustration of three driving styles: Con-
servative drivers typically move slowly or stop to
avoid obstacles; Aggressive drivers often travel at
high speeds and are prone to overtaking other ve-
hicles; Normal drivers maintain a constant speed
and frequently change lanes to ensure safety.

Vehicle Trajectory Prediction (VTP) serves as
a fundamental capability for numerous intelli-
gent transportation applications, including au-
tonomous driving systems [1, 2, 3], motion plan-
ning algorithms [4, 5] and adaptive traffic con-
trol frameworks [6, 7]. Recent advances in
VTP achieve notable progress through two pri-
mary paradigms: (1) capturing temporal patterns
from historical trajectories and modeling vehi-
cle interactions [8, 9, 10, 11], and (2) leveraging
structured scene representations that incorpo-
rate road topology and regulatory constraints
[12, 13, 14, 15]. However, these methods often
overlook the originator of the trajectory: human
drivers [16, 17], whose diverse behavior leads
to heterogeneous trajectory patterns.

In this paper, we propose an adaptive VTP framework based on distinct driving styles [18, 19]:
Conservative, Aggressive and Normal (CAN). Each driving style manifests in characteristic trajectory
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patterns, as illustrated in Figure 1. limited variability (conservative), non-smooth trajectories (aggres-
sive) and frequent yet smooth motion changes (normal). For each styles, we employs variable basis
functions within Kolmogorov-Arnold Networks (KANs) [20] to capture these trajectory patterns.
In complex real-world scenarios, driver behavior often reflects a probabilistic mixture of weighted
driving styles [21].

Our framework comprises two core components: (1) the matching between driving styles and their
corresponding basis functions, and (2) the weighted combination and adjustment of the degrees
of these functions. Additionally, inspired by the Weierstrass Approximation Theorem [22], our
proposed DSA framework extends KANs from a theoretical perspective. Each matching in (1) is
further grounded in the mechanical properties of basis functions, thereby providing explanations for
our DSA framework.

Our main contributions in this paper are summarized as follows:

• To address the vehicle trajectory prediction task, we propose for the first time, a novel Driving-
Style-Adaptive (DSA) framework tailored to the driving styles of human drivers and effectively
leverages trajectory information.

• We utilize polynomial approximation operators to approximate and predict trajectories under
different driving styles: Conservative, Aggressive and Normal (CAN). These operators support
a mathematical explanation matching mechanism that matches each driving style with a
corresponding polynomial form.

• The experimental results on real-world datasets (nuScenes, Argoverse and Waymo) demonstrate
that our model significantly outperforms existing methods in vehicle trajectory prediction.

2 Preliminary & Related Work

2.1 Task Definition: Vehicle Trajectory Prediction (VTP)

VTP aims to predict the future trajectory of vehicles based on history trajectory or other informations
available in a given scenario. In recent years, deep learning based VTP methods are categorized into
two groups [23]: (i) knowledge-based methods, which incorporate specific information such as maps
[24, 25], vehicles [9, 26] and interactions [27, 28] to represent the environment or vehicle behaviour.
(ii) knowledge-free methods, which rely on deep learning’s ability to encode complex data features,
modeling them using structures such as tensors [29, 30] or attention mechanisms [31, 32].

Following above works, we analyze traffic scenes involving N vehicles (agents). The trajectory
of each vehicle i in historical interval [0, T ] is denoted as Xi =

{
s−t
i , · · · , s0i

}
. Each state s⋆i is a

5-dimensional vector representing the (x, y) position, velocity, acceleration, and the nearest lane
segments ID. The superscript ⋆ denotes the time step. Similarly, the future trajectory in interval [0, T ]
is given by Yi =

{
s0i , · · · , sTi

}
.

2.2 Basic Network: Kolmogorov-Arnold Networks (KANs)

KANs [20] are inspired by the mathematical principles [33, 34, 35] of the Kolmogorov-Arnold
representation theorem [36, 37, 38], stated as follows:

Theorem 2.1 (Kolmogorov-Arnold representation Theorem) For any multivariate continuous func-
tion f : [0, 1]

n → R, f can be represented as a finite composition of univariate continuous functions
ϕij : [0, 1]→ R and Φj : R→ R, with the binary operation of addition such that:

F = f(x1, · · · , xn) =
2n+1∑
j=1

Φj

[
n∑

i=1

ϕij (xi)

]
. (1)

The key innovation of KANs lies in implementing the residual activation functions ϕ(x) in Equation
(1) as:

ϕ(x) = wbb(x) + wsψ(x), (2)
where b(x) = silu(x) and ψ(x) = spline(x). Unlike Multi-Layer Perceptrons (MLPs [39, 40]),
which utilize fixed activation functions associated with nodes ("neurons"), KANs feature learnable
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ϕ(x) on edges ("weights"). However, due to the inherent complexity of these functions, the speed
and scalability of the original KANs are not satisfactory [41]. Consequently, a variety of KAN-based
applications are emerged in AI4Science tasks [42, 43, 44, 45, 46, 47]. To the best of our knowledge,
we are the first to extension KANs to the VTP task. We achieve this by expanding the set of basis
functions ψ(x) to match different driving styles and by grounding this matching in both mathematical
theory and task-specific behavior.

2.3 Core Theory: Applying Polynomials as Basis Functions

As describe in Section 2.2, a fixed basis function has inherent limitations. In the VTP task, such a
function may fail to adequately approximate diverse trajectory or lane curves. This raises an important
question: how can we legitimately expand the class of basis functions? In approximation theory, a
fundamental question is whether polynomials can approximate any given continuous function to an
arbitrary degree of precision. Weierstrass [22] provides a definitive answer by:

Theorem 2.2 (Weierstrass Approximation Theorem) Let f(x) ∈ Lp[0, 1] for any p > 0. Then there
exists an algebraic polynomial pn (x) =

∑n
m=0 cmx

m such that

lim
n→∞

∫ 1

0

|f (x)− pn (x)|p dx = 0. (3)

This interval can be extended to [a, b]. This demonstrates that polynomials pn ∈ Pn can serve as
basis functions ψ(x) in Equation (2) to approximate the f in Theorem 2.1. In our task, the vehicle
trajectories are treated as the function f , with respect to the time step t. For different driving styles,
we employ corresponding pn as basis functions to approximate these trajectories in accordance with
Theorem 2.2. Furthermore, these trajectories also belong to the Lp space2, and are thus well-defined.

3 Methodology

3.1 Motivation and Overview

Our Driving-Style-Adaptive (DSA) framework (illustrate in 2) models the behavior of the trajec-
tory originator: the human driver. The driving style of various vehicle drivers are categoried
as: Conservative, Aggressive and Normal (CAN) [48, 49, 50], each reflecting distinct trajectory
characteristics.

Figure 2: An overview of our DSA framework, which performs trajectory prediction based on driving
style categories: conservative, aggressive and normal (CAN) to prediction. For clarity, we illustrate
this process using a single vehicle example. the solid line represents trajectories length while the
arrow ndicates the direction (history or future). The symbol Bn, T c

n and Ln denote different basis
functions pn corresponding to each driving style. Our proposed DSA framework dynamic adaps the
experts (driving style) weighs w∗ and the degree n∗ of selected pn.

We match each driving style characteristic to a corresponding approximation polynomial pn based
on the mathematics properties of pn as described in Section 3.2. To implement this mechanism, we
introduce pn combination and degree adjustment strategies in Section 3.3.

2Taking the x-position as an example, it can be shown that the integral
∫
Ω
|x (t)| dt <∞ holds
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3.2 Theoretical Foundations for Matching Polynomials to Driving Styles

In this section, we elucidate the matching between the polynomials pn (pn ∈ Pn) and driving style,
focusing on the mathematical properties of pn and analyzing the characteristics of each driver’s type.
Specifically, we address conservative drivers in Section 3.2.1, aggressive drivers in Section 3.2.2 and
normal drivers in Section 3.2.3.

3.2.1 Conservative Drivers

Conservative drivers [51] prioritize driving comfort and safety, which leads to more cautious decisions.
Their average speed is typically the slowest and rarely change their behavior. Consequently, their
trajectories are characterized by smoothness and stability, with minimal abrupt changes in speed.

In this situation, we require a pn to capture approximating drivers with minimal behavioral changes,
that is, ensures the approximation error decreases uniformly across the entire interval. we employ the
Bernstein operatore3 Bn [52] to achieve this:

Definition 3.1 (Bernstein polynomial, Bn) Consider a function f(x) ∈ C[0, 1], x ∈ [0, 1], Bn is
specified by the equation:

(Bn) f (x) =
n∑

k=0

f

(
k

n

)(
n
k

)
xk (1− x)n−k

.

It is clear that Bn ⊆ Pn thus applies to Theorem 2.2. The primary advantage of the Bn is articulated
in the following proposition:

Proposition 3.2 For all functions f ∈ C[0, 1], the sequence {Bnf ;n = 1, 2, 3, · · · } converges
uniform4 to f as Bn (f) ⇒ f (x).

This proposition demonstrates that the Bn exhibits uniform convergence across the entire interval,
making it particularly suitable for approximating trajectories with slow travel speeds and few be-
havioral changes, such as those of conservative drivers. This ensures that the approximation error
decreases uniformly throughout the interval.

3.2.2 Aggressive Drivers

Aggressive drivers [53] prioritize their own benefits at the expense of safety and comfort, which leads
to higher speeds, abrupt changes in acceleration and braking, with a frequent tendency to change
lanes. As a result, their trajectories display more abrupt motions and are less smooth.

Trigonometric polynomials Tn are dense5 in C(I) on the unit circle according to the Stone-
Weierstrass Theorem [54]. This implies that trigonometric polynomials Tn are particularly ef-
fective at approximating functions with discontinuities or sharp features, which define as: Tn (x) =
a0 +

∑N
n=1 [an cos (nx) + bn sin (nx)] . We employ the Chebyshev polynomials [55] T c

n, defined
as follows:

Definition 3.3 (Chebyshev Polynomials, T c
n) For x ∈ [−1, 1], the n-th T c

n of the first kind is given
by T c

n (x) = cos [n · arccos (x)].

The effectiveness of T c
n is further highlighted by the Chebyshev Minimax Theorem [56]:

Theorem 3.4 (Chebyshev Minimax Theorem) For f ∈ C [−1, 1], T c
n minimizes the maximum error

in the uniform norm compared to any other pn approximation of the same degree. Formally, this
relationship is expressed as:

∥f − T c
n∥L∞ ⩽ ∥f − pn∥L∞ .

3In this task, we leverage pn approximation operators to approximate and predict the vehicle trajectories,
Specifically, we instantiate these operators using representative basis such as Bn, the same as other two
approximation operators.

4Uniform Convergence For every ϵ > 0, there exists an N ∈ Z+, N = N(ϵ), s.t. for all n ⩾ N , there is
|fn (x)− f (x)| < ϵ.

5Dense A subset A of a topological space X is said to be dense in X if every point of X either belongs to A
or else is arbitrarily "close" to a member of A.
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Theorem 3.4 explicitly states that T c
n can minimize the maximum error, effectively reducing the

impact of sudden behavioral and speed changes typical of aggressive drivers. Furthermore, the overall
prediction error is decreased.

3.2.3 Normal Drivers

Normal drivers [57] strike a balance between conservative and aggressive driving styles, representing
a relatively common group in driving behavior. Their speed and acceleration typically fall between
those of conservative and aggressive drivers, exhibiting moderate speed changes and occasional rapid
reactions. Consequently, their trajectories are neither as smooth as those of conservative drivers nor
as abrupt as those of aggressive drivers, but their trajectories may exhibit regular fluctuations.

This driving characteristic is closely related to the application of orthogonal polynomials pon [58].
The pon has significant flexibility and enables accurately capture the trajectories characterized by
gradual changes and moderate fluctuations for normal drivers. The pon with weight function6 ρ and
∂ (pon) = n are defined as:

〈
poi , p

o
j

〉
=

∫ b

a
ρ (x) poi (x) p

o
j (x) dx = δij , where δij equal to 0 iff i ̸= j.

The approximation of pon can be effectively described by [59]:

Theorem 3.5 (Least Squares Characterization Theorem) For any function f ∈ C[a, b], there exists
an orthogonal polynomial pon with ∂ (pon) ⩽ n that minimizes the error in the L2

ρ norm7 between
f(x) and pon(x):

∥f − pon∥L2
ρ
= min

p∈Pn

∥f − p∥L2
ρ
,

where Pn denotes the space of all polynomials of degree at most n.

The term "least" here does not denote the non-uniqueness, but rather indicates the possible to select
optimal coefficients under best L2

ρ approximating. For instance, Legendre polynomials Ln is a typical
orthogonal polynomial:

Definition 3.6 (Legendre Polynomial, Ln) For x ∈ [−1, 1] with a constant weight function ρ (x) =
1, Ln is defined by

Ln =
1

2nn!

dn

dxn

[(
x2 − 1

)n]
.

This orthogonality under the L2 norm particularly without weight or a constant weight, makes it an
exceptionally efficient tool for approximation [60], which represents a specific instance covered by
Theorem 3.5. Moreover, Ln is also defined by a simple recurrence relation:

(n+ 1)Ln+1 (x) = (2n+ 1)xLn (x)− nLn−1 (x) ,

This recurrence relation facilitates quick calculations and the optimal square approximation property
excels under the L2 norm. These characteristics make it well-suited for handling smooth and
continuous trajectory fluctuations, align well with the The normal drivers. Their characterized by
gradual changes and smoother transitions.

3.3 Algorithm Realization

3.3.1 Polynomial Combination

In Section 3.2, we utilize different polynomial forms to match different driving styles, thereby fully
leveraging trajectory information for prediction. However, assuming a single fixed driving style
may be inadequate in complex real-world scenarios. Kernel density estimation and latent variable
analysis, reveal that driver behavior varies continuously with context and can be characterized as
a probabilistic mixture [21, 61, 62] of weighted driving styles. Here we employ a MoE-TopK [63]
approach to model multiple driving styles for trajectory prediction.

6Weight Function In open interval (a, b), the defined positive, continuous, and integrable function is called
weight function.

7 The L2
ρ Norm Used to measure the "magnitude" or "error" of a function when combined with a particular

weighting function ρ(x) in a given interval. It is defined as ∥f∥L2
ρ
=
(∫ b

a
|f(x)|2ρ(x) dx

)1/2
.
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The process of combining the polynomials corresponding to multiple driving styles is presented in the
algorithm on the right.. Here Xi represents the i− th history trajectory in N vehicles as described
in Section 2.1, which has 5 dimensions as (x, y) position, velocity, acceleration, and the nearest
lane segments ID. Experts represents the polynomials in Section 3.2. The output zCom is the feature
of combine. In line 2, "SN" and "Sp" denote the Standard Normal and Softplus functions [64, 65],
respectively, Wg and Wn are trainable weight matrices. In line 3, we define H = (H1, H2, H3).

Algorithm: Polynomial Combination

Require: Input vehicle trajectory Xi,
1: Experts networ {Ej}3j=1, Gating network G

Ensure: Feature zCom
i via Polynomial Combination

2: Hj ← (X ·Wg)i + SN () · Sp [(X ·Wn)i] for all i
3: Gj(x) = Softmax(H)
4: for i = 1 to N do
5: zCom

i ← Gj (Xi) · Ej (Xi) .
6: end for
7: zCom ←

∑N
i=1 z

Com
i

This combination structure of pn al-
lows each Ei to better extract the
trajectory feature in different driving
styles, and enables the use of vari-
ous basis functions for predict vehi-
cle trajectory. To encourage all ex-
perts to contribute the combination
process, Shazeer N et al. [63] in-
troduce a load balancing loss func-
tion LMoE-K to encourage experts have
equal importance as: LMoE-K = wload ·
CV (loads)2, where "CV" denotes the
coefficient of variation.

3.3.2 Degree Adjustment

Different driving style of trajectories
can be approximated by corresponding pn. However, the fixed degree of pn can restrict their ability
for prediction entire trajectory of vehicles, which refers to:

Theorem 3.7 (Kolmogorov Theorem) For f ∈ C [a, b], there exists a polynomial pn such that
approximation error is bounded by:

∥f − Pn∥L∞ ≲

(
log n

n

)
V (f, [a, b]),

where V (f, [a, b]) denotes the total variation8 of f over the interval.

From Theorem 3.7, the accuracy of the polynomial approximation is directly related to the degree
n of the pn, which applies broadly to Lp-space. On the other hand, the n is bounded when error
bounded of pn is know, this assertion is proved in Appendix C.

Adapting n presents a complex non-convex and combinatorial optimization problem. To tackle this
issue, we utilize SMAC3 [66] tool, which is particularly suitable for optimizing low-dimensional and
continuous functions, suitable for characteristic of vehicle trajectory (Section 2.1). Specifically, the
degree n is treated as a hyperparameter optimization problem, aimed at minimizing the loss (L) on
validation data Dval and training data Dtrain. This process can be formulated as follows:

nSMAC ∈ arg min
n∈Z+

c (n) = arg min
n∈Z+

L (Dtrain,Dval;n) ,

The hyperparameter optimization process targets the final degree nSMAC, corresponding to achieve
the least error for the corresponding basis function pn.

4 Experiments

4.1 Basic Setting

We evaluate our DSA framework on three real-world vehicle trajectory prediction datasets: nuScenes
[67], Argoverse [68] and Waymo [69]. These timestep settings follow the format(history time
→ prediction time): 2 → 6, 2 → 3 and 1 → 8, respectively. We utilize Loss = λ1LDis +

λ2LMoE-K, with LMoE-K = wload ·CV (loads)2 for model training with balanced weighting parameters
λ∗. We employ common standard metrics as the Average / Final Displacement Error (ADE / FDE)
for evaluate generate k trajectories. More detail of datasets and metrics, please refer to Appendix B.

8Total Variation A measure of the total amount of variation in a function over a given interval [a, b], which
is defined by supx̸=y |f (x)− f (y)|

/
|x− y| .
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4.2 Main Results

4.2.1 Quantitative Result

We evaluate our proposed DSA framework against existing methods utilize standard metrics. The best
and second-best results are highlighted in Table 1 for the nuScenes and Argoverse datasets (with a 2-
second observation window). Table 2 for Waymo (with a 1-second observation window) respectively.
The results demonstrate that our method outperforms most existing approaches, achieving superior
performance in 9 out of 13 evaluation metrics and ranking second in 3 others. Specifically, the best
results over baseline datasets in Section 4.1 are 5.52%-FDE5 (nuScenes), 8.82% -ADE6 (Argoverse)
and 1.93%-minFDE (Waymo).

Table 1: Performance comparison of baseline and our DSA framework on the nuScenes (left, N-
Method) and Argoverse (right, A-Method) datasets. The best and second-best are highlighted.

N-Method ADE1 FDE1 ADE5 FDE5 ADE10 FDE10 A-Method ADE1 FDE1 ADE6 FDE6

THOMAS [70] - 6.71 1.33 - 1.04 - GOHOME [71] 1.70 3.68 0.89 1.29
PreTraM [72] - - 1.70 4.15 1.45 3.22 LTP [13] 1.62 3.55 0.83 1.30

Goal-Driven [73] - - 1.85 3.87 1.32 2.50 MP++* [74] 1.62 3.61 0.79 1.21
MUSE-VAE [75] - - 1.38 2.90 1.09 2.10 HiVT [76] 1.60 3.53 0.77 1.17
Real-Time [77] 3.56 8.63 1.60 3.34 1.23 2.32 ADAPT [78] 1.59 3.50 0.79 1.17

Aware [79] 5.58 11.47 - - 1.67 2.66 Aware [79] 1.61 3.54 0.86 1.31
FRM [80] - 6.59 1.18 - 0.88 - FRM [80] - - 0.82 1.27

Context-Aware [81] 3.54 8.24 1.59 3.28 - - R-Pred [82] 1.58 3.47 0.76 1.12
LAformer [11] - - 1.19 - 0.93 - LAformer [11] - - 0.77 1.16
DAMM [83] 2.84 6.59 1.39 3.14 1.02 2.05 DAMM [83] 1.57 3.42 0.76 1.29

CASPNet++ [84] 2.74 6.18 1.16 - 0.92 - ProphNet [85] 1.28 2.77 0.68 0.97
CASPFormer [86] - 6.70 1.15 - - - QCNet [87] - - 0.73 1.07

DSA 2.69 6.47 1.21 2.74 0.85 2.00 DSA 1.17 2.85 0.62 0.95

In the nuScenes dataset, DSA outperforms previous methods in metrics of ADE1, FDE5, ADE10,
and FDE10. Compared to DAMM [83], which utilizes higher-order patterns to describe interac-
tions between agents (vehicles), our model shows a significant improvement, achieving a 16.67%
enhancement in ADE10. Moreover, compared with FRM [80], which uses lane information to predict
stochastic future relationships among agents, there is only a marginal gap of 0.03 in ADE5, but we
achieve a 3.41% improvement in ADE10. However, DSA is slightly less effective than CASPNet++
[84], which employs interaction modeling and scene understanding for joint prediction of all road
users while we only predict vehicle, that leads to a minimal gap, measured in the thousandth place.

Table 2: Performance comparison of baseline and
our DSA framework on the Waymo datasets. The
best and second-best are highlighted.

Method minADE minFDE MR∗

MultiPath++ [74] 0.9780 2.3050 0.4400
SceneTransformer [88] 0.6117 1.2116 0.1564

MPA [89] 0.5913 1.2507 0.1603
ReCoAt [90] 0.7703 1.6668 0.2437

DIPP [91] 0.6951 1.4678 0.1854
LiMTR [92] 1.3640 - 0.2156
HDGT [93] 0.5933 1.2055 0.1511

MotionLM [94] 0.5702 1.1653 0.1327
MTR++ [95] 0.5912 1.1986 0.1296
TC-Map [96] 0.6181 1.2375 0.1402

ControlMTR [97] 0.5897 1.1916 0.1262

DSA 0.5852 1.1431 0.1259

* MR (Missing Rate) is the proportion of cases in which
the Euclidean distance between the prediction and the
ground truth at FDE exceeds 2m.

In the Argoverse dataset, our model achieves
on three of four metrics in baseline. Although
our FDE1 metric gap in 0.08 than the baseline
best results ProphNet [85], when predicting 6
samples, DSA shows improvements of 8.82%
in ADE and 2.06% in ADE. In addition, while
ProphNet utilizes an agent-centric model with
anchor informed strategies, our DSA employs
global positioning directly.

In the Waymo dataset (Table 2), our DSA
achieve the lowest minFDE and MR. We re-
duce the MR by 5.14% and minFDE by 1.88%
compared to MotionLM [94], their minADE is
slightly higher than ours by 0.015, whereas our
framework is based on a simpler baseline model
The ControlMTR [97] generate scene-compliant
intention points and converte into a physics-
based model, while DSA is driving and math-
ematical based, we reduce the minFDE with
4.10% (value 0.0488).

Our DSA framework adaptive design accommo-
dates three categories of driving styles and we provide comprehensive explanations. This strategy
simplifies the prediction process and enhances the accuracy and adaptability of predictions in complex
real-world traffic scenarios.

7



4.2.2 Qualitative Result

Figure 3 demonstrates the effectiveness for our DSA framework in vehicle trajectories prediction.
For more visual content, please refer to Appendix. The k is the number of generation trajectories,
ground truth trajectory is actual trajectories. To describe specific subfigures in Figure 3, we use the

Figure 3: Qualitative results of our DSA framework. The value of k (left) represents the number of
generation trajectories while letters (top) are index for clearly describe. Round head lines represents
predict and ground truth trajectory, respectively.

position index (k, ∗) where ∗ denotes the letter shown at the top of each subfigure.

When k = 1 (i.e. the first row of Figure 3), he single prediction samples demonstrate that our DSA
framework generally produces accurate results. It effectively handles not only simple road scenarios:
such as straight lanes in (1, a) and (1, e), or stop conditions in (1, d). But also complex scenarios
including T-junctions in (1, b) and crossroads in (1, c).

In cases for generates 5 and 10 trajectories, our DSA framework delivers predictions that are both
accurate and diverse. In simple scenarios, such as go straight in (5, c), (10, a), or stopping in
(5, e), our framework maintains high accuracy while offering a broader range of plausible outcomes.
It particularly excels in complex road conditions, including Y-crossroads in (10, b), high density
crossroads (5, b) and roundabouts (10, e). Moreover, the predicted trajectories effectively conform to
curved roads, such as turning maneuvers in (5, d) and (10, d).

4.3 Ablation Studies for DSA Framework

To explore the benefits of different components and design choices in our DSA framework, we
conduct ablation experiments along several dimensions: Type and combination of polynomials pn
in Section 4.3.1. Degree adjustment of polynomials in Section 4.3.2. Analysis of driving style in
Section 4.3.3, examining the relationship between styles and specific pn, and how expert weights
reflect behaviors. In addition, we present sensitivity analyses for different scenarios in Appendix D.

4.3.1 Effects of Approximate Polynomial

We design two experiments to evaluate the combination and type of pn on the Argoverse dataset.
The number of polynomials. To illustrate the importance of considering all drivers’ driving styles
instead of the parts of them in trajectory predictions, we simulate a scenario where only one or two
driving styles existing and select corresponding matching pn (Section 3.2) for prediction.
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Table 3: The performances of DSA framework with different
combinations of basis functions on the Argoverse dataset.
C, A and N denote Conservative-Bn, Aggressive-T c

n and
Normal-Ln, respectively. The best and second-best results
are highlighted in table.

Metric C A N C+A A+N C+N DSA
ADE1 1.61 1.45 1.32 1.54 1.39 1.66 1.17
FDE1 3.46 2.87 2.91 3.09 2.87 2.78 2.85
ADE6 1.02 1.31 1.12 0.83 0.92 0.98 0.62
FDE6 1.26 1.29 1.33 1.29 1.04 1.17 0.96

Analyzing results from Table 3, con-
sider whole driving style outperform
almost the best than other combine.
We observe that DSA framework in-
corporating two driving styles gener-
ally outperform those with only one.
However, this trend is not universal.
For instance, in FDE1, the model

based solely on the normal driver
(1.32) over the combination of con-
servative and aggressive styles (C+A,
1.54). Compared to the above com-
bine (C+A) in ADE6, DSA further re-
duces 0.21 with 25.3%. This illustrate that the necessity of considering all driving styles in trajectory
prediction.

Table 4: Evaluate different pn in DSA framework on the Ar-
goverse dataset, with original→ replace and corresponding
style (abbreviate with the first three letters) in the second
column. The best and second-best results highlight in table.

Method Replace ADE1 FDE1 ADE6 FDE6

Cn + Tn + Ln Bn → Cn Con 1.48 3.76 1.10 1.53
Bn + Sn + Ln Tn → Sn Agg 1.59 3.91 0.86 1.41
Bn + Tn +Hn Ln → Hn Nor 1.62 2.81 0.71 1.02

DSA - 1.17 2.85 0.62 0.96

The Type of Polynomials. For in-
struction the effects of the pn we uti-
lize in DSA framework, we replace
types of pn to evaluate it, with results
in Table 4. We select Charlier ([98],
Cn), Hermite ([99], Hn) and second-
order (Sn) polynomials to instead pn
we select in our DSA framework.

Our DSA yields the best performance
on three out of four evaluation met-
rics in blod, which most improved is
27.8%, 43.6% and 37.3% respectively.

Although the combination Bn + Tn +Hn achieves a slightly lower FDE1 from 2.81 to 2.85 by 1.4%
a marginal gap, DSA still ranks second on FDE1.

4.3.2 Effects of Polynomial Degree

From Theorem 3.7, we understand that the prediction accuracy is directly related to the degree n
of the polynomial pn. We now evaluate the impact of adaptively adjusting n. To clearly illustrate
this influence, we analyze the performance of a single driving style with varying degrees, as shown
in Figure 4. We observe that the error generally decreases with an increasing degree. However, the

Figure 4: Performance of our DSA Framework,with only one single fixed basis function on the
waymo dataset, which the lowest error highlighted in yellow.

highest degree does not necessarily yield the best results. For instance, within the aggressive driver
style, ∂ (T c

n) = 5 outperforms other degrees in minFDE while ∂ (T c
n) = 8 is the best minADE,

similar to conservative and normal driving style, the best results from different degrees. Consequently,
adjusting n rather than maintaining a fixed set provides enhanced granularity for the pn polynomials,
thereby improving their capability to generate accurate and varied predictions across diverse vehicle
trajectory styles.
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4.3.3 Analysis of Driving Style

In Section 3.2, we provide the mathematical analysis for matching driving styles to their corresponding
pn. Here, we present experimental results that evaluate both the matching relationships and how
expert weights reflect those relationships.

Table 5: Cosine similarity reflecting consistent match-
ing between polynomial based predictions and driving
style standards on the nuScenes (N) and Argoverse (A)
datasets.

pn N-Con Agg Nor A-Con Agg Nor
Bn 0.953 0.158 0.489 0.884 0.129 0.391
Tn 0.266 0.987 0.353 0.167 0.927 0.329
Ln 0.310 0.263 0.992 0.206 0.333 0.963

Relationship between driving style and
polynomials. We compute the cosine
similarity between the trajectory corre-
sponding to the highest-weighted polyno-
mial pn and the predefined driving style
standards [48, 49, 50], which include
Conservative (Con), Aggressive (Agg),
and Normal (Nor). The results on the
nuScenes (from N-Con) and Argoverse
(from A-Con) datasets are shown in Table
5.

From Table 5, our matching scheme (Bn-
Con, Tn-Agg, Ln-Nor) obtains significantly higher similarity scores on both datasets. On the
nuScenes dataset, the average similarity of the three correct matches (diagram values) is 0.977, while
that of all other matches (non-bold entries) is 0.307. On Argoverse, these values are 0.925 and 0.259,
respectively, representing a substantial gap.

Table 6: The matching relationship between differ-
ent driving styles and their corresponding pn. The
percentage indicates the rate at which each pn has
the highest weight within each driving style.

Style Argoverse nuScenes Top-1
Con 86.15% 87.96% Bn

Agg 92.87% 94.26% Tn
Nor 80.04% 83.56% Ln

Expert weights mapping to driving style. To
examine how expert weights mapping to driving
styles, we compute the correct matching rate,
defined as the proportion of cases in which the
highest expert weight (Top-1) matches the ex-
pected pn for each driving style. The results
appear in Table 6. The average correct match-
ing rates across the two datasets are 86.35% and
88.59%, respectively. The highest matching rate
is 94.26% for aggressive drivers on the nuScenes
dataset. All styles achieve a matching rate above
80%, with a fluctuation range of 14.22%.

5 Limitation

We evaluate our method on prediction horizons up to 9 seconds (1 second of history and 8 seconds
of future), which is the longest duration available in current open-access vehicle trajectory datasets.
However, for significantly longer horizons (e.g., over one minute), direct long-term prediction may
be unreliable and would likely require segment-wise modeling or hierarchical strategies. In addition,
external factors such as strong conditions (e.g., traffic signals and regulatory constraints) and soft
conditions (e.g., weather, which is often unlabeled in current datasets) can also affect trajectory
prediction. Incorporating these contextual cues remains an important direction for future work.

6 Conclusion

We propose an adaptive framework for vehicle trajectory prediction that is tailored to the driving
styles of human drivers. To enable effective matching between polynomials pn and driving styles,
we analyze the behavioral characteristics of each style alongside the mathematical properties of
corresponding pn. Furthermore, we investigate the effects of pn combine, the influence of different
polynomial types, and the necessity of adaptive parameters such as degree. Experiments results on
three real-world datasets demonstrate that our framework significantly outperforms existing methods.

10



Acknowledgements

This research is sponsored by the National Natural Science Foundation of China (U21B2090,
62472238, 62576181), the National Key Research and Development Program of China
(2023YFB4301900), the Shenzhen Science and Technology Program (JCYJ20240813151445059),
and the Science and Technology Planning Project of Guangdong Province (2023B12120600291).

References
[1] Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. Trajectory-guided control

prediction for end-to-end autonomous driving: A simple yet strong baseline. Advances in Neural
Information Processing Systems, 35:6119–6132, 2022.

[2] Qingzhao Zhang, Shengtuo Hu, Jiachen Sun, Qi Alfred Chen, and Z Morley Mao. On adversarial
robustness of trajectory prediction for autonomous vehicles. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15159–15168, 2022.

[3] Zhigang Wu, Jiyu Wang, Huanting Xu, and Zhaocheng He. T3c: A traffic-communication coupling
control approach for autonomous intersection management system. Transportation Research Part C:
Emerging Technologies, 169:104886, 2024.

[4] Haoran Song, Di Luan, Wenchao Ding, Michael Y Wang, and Qifeng Chen. Learning to predict vehicle
trajectories with model-based planning. In Conference on Robot Learning, pages 1035–1045. PMLR,
2022.

[5] Hong Wang, Bing Lu, Jun Li, Teng Liu, Yang Xing, Chen Lv, Dongpu Cao, Jingxuan Li, Jinwei
Zhang, and Ehsan Hashemi. Risk assessment and mitigation in local path planning for autonomous
vehicles with lstm based predictive model. IEEE Transactions on Automation Science and Engineering,
19(4):2738–2749, 2021.

[6] Chalavadi Vishnu, Vineel Abhinav, Debaditya Roy, C Krishna Mohan, and Ch Sobhan Babu. Improving
multi-agent trajectory prediction using traffic states on interactive driving scenarios. IEEE Robotics and
Automation Letters, 8(5):2708–2715, 2023.

[7] Xiao Han, Xinfeng Zhang, Yiling Wu, Zhenduo Zhang, Tianyu Zhang, and Yaowei Wang. Knowledge-
based multiple relations modeling for traffic forecasting. IEEE Transactions on Intelligent Transportation
Systems, 2024.

[8] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani. Agentformer: Agent-aware transformers for
socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9813–9823, 2021.

[9] Tung Phan-Minh, Elena Corina Grigore, Freddy A Boulton, Oscar Beijbom, and Eric M Wolff. Covernet:
Multimodal behavior prediction using trajectory sets. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 14074–14083, 2020.

[10] Jiachen Li, Hengbo Ma, Zhihao Zhang, Jinning Li, and Masayoshi Tomizuka. Spatio-temporal graph dual-
attention network for multi-agent prediction and tracking. IEEE Transactions on Intelligent Transportation
Systems, 23(8):10556–10569, 2021.

[11] Mengmeng Liu, Hao Cheng, Lin Chen, Hellward Broszio, Jiangtao Li, Runjiang Zhao, Monika Sester,
and Michael Ying Yang. Laformer: Trajectory prediction for autonomous driving with lane-aware scene
constraints. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2039–2049, 2024.

[12] Nachiket Deo, Eric Wolff, and Oscar Beijbom. Multimodal trajectory prediction conditioned on lane-graph
traversals. In Conference on Robot Learning, pages 203–212. PMLR, 2022.

[13] Jingke Wang, Tengju Ye, Ziqing Gu, and Junbo Chen. Ltp: Lane-based trajectory prediction for
autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17134–17142, 2022.

[14] Qingwen Xue, Yingying Xing, and Jian Lu. An integrated lane change prediction model incorporat-
ing traffic context based on trajectory data. Transportation research part C: emerging technologies,
141:103738, 2022.

11



[15] Ross Greer, Nachiket Deo, and Mohan Trivedi. Trajectory prediction in autonomous driving with a lane
heading auxiliary loss. IEEE Robotics and Automation Letters, 6(3):4907–4914, 2021.

[16] Haoran Li, Chaozhong Wu, Duanfeng Chu, Liping Lu, and Ken Cheng. Combined trajectory planning
and tracking for autonomous vehicle considering driving styles. IEEE Access, 9:9453–9463, 2021.

[17] Maria Valentina Niño de Zepeda, Fanlin Meng, Jinya Su, Xiao-Jun Zeng, and Qian Wang. Dynamic
clustering analysis for driving styles identification. Engineering applications of artificial intelligence,
97:104096, 2021.

[18] Harpreet Singh and Ankit Kathuria. Profiling drivers to assess safe and eco-driving behavior–a systematic
review of naturalistic driving studies. Accident Analysis & Prevention, 161:106349, 2021.

[19] Wenshuo Wang, Junqiang Xi, and Ding Zhao. Driving style analysis using primitive driving patterns
with bayesian nonparametric approaches. IEEE Transactions on Intelligent Transportation Systems,
20(8):2986–2998, 2018.

[20] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y
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[98] Nejla Özmen and Esra Erkuş-Duman. On the poisson-charlier polynomials. Serdica Mathematical
Journal, 41(4):457p–470p, 2015.

[99] Margit Rösler. Generalized hermite polynomials and the heat equation for dunkl operators. Communica-
tions in Mathematical Physics, 192:519–542, 1998.

[100] Yanjun Huang, Jiatong Du, Ziru Yang, Zewei Zhou, Lin Zhang, and Hong Chen. A survey on trajectory-
prediction methods for autonomous driving. IEEE Transactions on Intelligent Vehicles, 7(3):652–674,
2022.

[101] Thomas Batz, Kym Watson, and Jurgen Beyerer. Recognition of dangerous situations within a cooperative
group of vehicles. In 2009 IEEE Intelligent Vehicles Symposium, pages 907–912. IEEE, 2009.

[102] Mattias Brännström, Erik Coelingh, and Jonas Sjöberg. Model-based threat assessment for avoiding
arbitrary vehicle collisions. IEEE Transactions on Intelligent Transportation Systems, 11(3):658–669,
2010.

[103] Helgo Dyckmanns, Richard Matthaei, Markus Maurer, Bernd Lichte, Jan Effertz, and Dirk Stüker. Object
tracking in urban intersections based on active use of a priori knowledge: Active interacting multi model
filter. In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 625–630. IEEE, 2011.

[104] Vasileios Lefkopoulos, Marcel Menner, Alexander Domahidi, and Melanie N Zeilinger. Interaction-aware
motion prediction for autonomous driving: A multiple model kalman filtering scheme. IEEE Robotics
and Automation Letters, 6(1):80–87, 2020.

[105] Yijing Wang, Zhengxuan Liu, Zhiqiang Zuo, Zheng Li, Li Wang, and Xiaoyuan Luo. Trajectory planning
and safety assessment of autonomous vehicles based on motion prediction and model predictive control.
IEEE Transactions on Vehicular Technology, 68(9):8546–8556, 2019.

[106] Haoran Song, Di Luan, Wenchao Ding, Michael Y Wang, and Qifeng Chen. Learning to predict vehicle
trajectories with model-based planning. In Conference on Robot Learning, pages 1035–1045. PMLR,
2022.

[107] Quan Tran and Jonas Firl. Online maneuver recognition and multimodal trajectory prediction for
intersection assistance using non-parametric regression. In 2014 ieee intelligent vehicles symposium
proceedings, pages 918–923. IEEE, 2014.

[108] Yuande Jiang, Bing Zhu, Shun Yang, Jian Zhao, and Weiwen Deng. Vehicle trajectory prediction consid-
ering driver uncertainty and vehicle dynamics based on dynamic bayesian network. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2022.

16



[109] Samet Ayhan and Hanan Samet. Aircraft trajectory prediction made easy with predictive analytics. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 21–30, 2016.

[110] Zhibin Qiu, Jiangjun Ruan, Daochun Huang, Ziheng Pu, and Shengwen Shu. A prediction method for
breakdown voltage of typical air gaps based on electric field features and support vector machine. IEEE
Transactions on Dielectrics and Electrical Insulation, 22(4):2125–2135, 2015.

[111] Matthias Schreier, Volker Willert, and Jürgen Adamy. An integrated approach to maneuver-based
trajectory prediction and criticality assessment in arbitrary road environments. IEEE Transactions on
Intelligent Transportation Systems, 17(10):2751–2766, 2016.

[112] Junru Gu, Chen Sun, and Hang Zhao. Densetnt: End-to-end trajectory prediction from dense goal sets. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15303–15312, 2021.

[113] Hashmatullah Sadid and Constantinos Antoniou. Dynamic spatio-temporal graph neural network for
surrounding-aware trajectory prediction of autonomous vehicles. IEEE Transactions on Intelligent
Vehicles, 2024.

[114] DN Jagadish, Arun Chauhan, and Lakshman Mahto. Conditional variational autoencoder networks for
autonomous vehicle path prediction. Neural Processing Letters, 54(5):3965–3978, 2022.

[115] Zilai Zeng, Ce Zhang, Shijie Wang, and Chen Sun. Goal-conditioned predictive coding for offline
reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

[116] Rushdi Alsaleh and Tarek Sayed. Modeling pedestrian-cyclist interactions in shared space using inverse
reinforcement learning. Transportation research part F: traffic psychology and behaviour, 70:37–57,
2020.

[117] Zan Yang, Wei Nai, Dan Li, Lu Liu, and Ziyu Chen. A mixed generative adversarial imitation learning
based vehicle path planning algorithm. IEEE Access, 2024.

[118] David Hilbert. Über die gleichung neunten grades. In Algebra· Invariantentheorie Geometrie, pages
393–400. Springer, 1970.

[119] Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural networks. Neural
networks, 2(3):183–192, 1989.

[120] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[121] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[122] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–
257, 1991.

[123] Shriyank Somvanshi, Syed Aaqib Javed, Md Monzurul Islam, Diwas Pandit, and Subasish Das. A survey
on kolmogorov-arnold network. arXiv preprint arXiv:2411.06078, 2024.

[124] Kexin Ma, Xu Lu, Bragazzi Luigi Nicola, and Biao Tang. Integrating kolmogorov-arnold networks with
ordinary differential equations for efficient, interpretable and robust deep learning: A case study in the
epidemiology of infectious diseases. medRxiv, pages 2024–09, 2024.

[125] Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau. Convo-
lutional kolmogorov-arnold networks. arXiv preprint arXiv:2406.13155, 2024.

[126] Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks. arXiv preprint
arXiv:2405.12832, 2024.

[127] Cristian J Vaca-Rubio, Luis Blanco, Roberto Pereira, and Màrius Caus. Kolmogorov-arnold networks
(kans) for time series analysis. arXiv preprint arXiv:2405.08790, 2024.

[128] Ioannis E Livieris. C-kan: A new approach for integrating convolutional layers with kolmogorov–arnold
networks for time-series forecasting. Mathematics, 12(19):3022, 2024.

[129] Remi Genet and Hugo Inzirillo. Tkan: Temporal kolmogorov-arnold networks. arXiv preprint
arXiv:2405.07344, 2024.

17



[130] Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly weather review,
78(1):1–3, 1950.

[131] A. N. Kolmogorov. On the best approximation of continuous functions. Doklady Akademii Nauk SSSR,
1947:Approximate page numbers if available, 1947.

[132] P Billingsley. Probability and measure. 3rd wiley. New York, 1995.

[133] Norman L Johnson, Adrienne W Kemp, and Samuel Kotz. Univariate discrete distributions, volume 444.
John Wiley & Sons, 2005.

[134] A. F. Timan. Theory of Approximation of Functions of a Real Variable, volume 34 of International Series
of Monographs in Pure and Applied Mathematics. Pergamon Press, 1963.

[135] William W Hager. Lipschitz continuity for constrained processes. SIAM Journal on Control and
Optimization, 17(3):321–338, 1979.

[136] JC Ferrando and LM Sánchez Ruiz. A survey on recent advances on the nikodỳm boundedness theorem
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The diagram illustrates of three driving styles: Conservative, Aggressive and Normal (CAN), with
their corresponding trajectories represented by lines recorded at each time step. The lengths of the
lines indicate the driving distance, while the direction is shown by arrows. Conservative drivers
typically move at low speeds or stop to avoid obstacles. Aggressive drivers often travel at high speeds
and are prone to overtaking other vehicles. Normal drivers maintain a constant speed and frequently
change lanes to ensure safety.
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reproduce that algorithm.
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(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
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applicable).
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes] .

Justification: We detail are in Section 3.3.2.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No] .

Justification: This paper does not report error bars following the practice of previous work [70, 71, 88].

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes] .

Justification: Please refer to Section 4.2.1 and Section 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA] .

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA] .

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes] .

Justification: We cite the datasets we use in Section 4.1 and introduce them in Section B.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of
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• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes] .

Justification: We provide it in the supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM


Appendix of A Driving-Style-Adaptive Framework
for Vehicle Trajectory Prediction

A Problem Background

A.1 Vehicle Trajectory Prediction

The methods for vehicle trajectory prediction can be broadly classified into four categories [100]. These include:
(i) Physics-based methods: These employ vehicle dynamics or kinematics models, such as singles trajectory
methods, Monte Carlo, and Kalman filtering methods [101, 102, 103, 104, 105, 106]. These methods are known
for their conciseness, efficiency, and computational effectiveness. (ii) Classic machine learning: Unlike physics-
based methods that rely on several physics models, classic machine learning approaches apply data-driven
models and consider additional factors for predicting trajectories. Examples include the Hidden Markov Model,
Dynamic Bayesian Network, and K-Nearest Neighbors [107, 108, 109, 110, 111]. However, these traditional
methods are typically only suitable for simple prediction scenarios and short-term prediction tasks.

Recently, with the advancement of modern machine learning, vehicle trajectory prediction methods based on:
(iii) Deep learning and (iv) Reinforcement learning become increasingly popular. These methods are capable of
considering interaction-related factors, understanding high-dimensional complex policies, and adapting to more
complex scenarios. Examples include Graph Convolutional Network, Graph Attention Network, Conditional
Variational Auto Encoder, and reinforcement learning techniques such as Inverse Reinforcement Learning,
Generative Adversarial Imitation Learning, and Deep IRL [112, 113, 83, 114, 115, 116, 117].

In summary, an increasing number of autonomous vehicle trials are utilizing deep learning or reinforcement
learning methods to predict future vehicle trajectories. These approaches leverage expert demonstrations and
extract interaction information from traffic participants and road conditions, considering a broader range of
influencing factors.

A.2 Kolmogorov-Arnold Networks (KANs)

Hilbert’s 13th problem [118] famously posits that it is impossible to solve general seventh-degree equations
using only functions of two variables. Subsequent research by Kolmogorov et al.[36] has shown that any function
involving multiple variables can be represented using a finite number of three-variable functions. Further studies
as detailed by Arnol’d et al. [37], establish that even functions of just two variables are sufficient, as described in
Theorem 2.1 presents significant for machine learning: learning a high-dimensional function essentially reduces
to learning a limited number of one-dimensional basis functions ψ(x) in Equation (2).

In reference [20], the authors introduce Kolmogorov-Arnold Networks (KANs), which are neural network
applications based on Theorem 2.1. Unlike Multi-Layer Perceptrons (MLPs) that founded on the universal ap-
proximation theorem [119, 120, 121, 122], KANs feature learnable activation functions on what are traditionally
referred to as "edges" (neurons) and they utilize fixed activation functions at what are typically called "nodes"
(weights). Uniquely, each weight in KANs is replaced by a univariate function parametrized as a spline, meaning
the network contains no linear weights whatsoever.

A variety of KANs are used across different tasks as noted in [123], such as solving ordinary differential equations
[44, 124], image classification and reconstruction [125, 126], and time series forecasting [127, 128, 129], among
others. These applications demonstrate competitive or superior performance in efficiency and predictive power
compared to traditional models. However, to the best of our knowledge, we are the first to utilize KANs in
vehicle trajectory prediction. This involves approximating and predicting trajectories for different driving styles,
expanding the range of basis functions, and providing explanations for specific matches between functions and
trajectories.
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B Dataset Information

B.1 Datasets

We preprocess the three datasets using the official pip packages provided by their respective baselines. The
characteristics of each dataset are summarized in Table 7.

Table 7: Characteristics of the evaluation datasets.
Datasets Collect Size Library Select

Argoverse [68] Miami and Pittsburgh 23.69G Argoverse API / devkit Motion Forecasting
nuScenes [67] Boston and Singapore 4.81G nuscenes-devkit Motional-Full dataset
Waymo [69] Phoenix, AZ, Kirkland etc. 83.50G waymo-open-dataset Motion1.1-scenario

nuScenes This dataset [67] offers high-definition maps and trajectory data from 1,000 driving scenes in Boston
and Singapore, areas noted for dense traffic and complex driving challenges. It comprises 245,414 trajectory
instances, each a sequence of 2D coordinates over 8 seconds, sampled at 2Hz. The nuScenes benchmark requires
predicting a target agent’s 6-second future trajectory from a 2-second historical trajectory. The comprehensive
dataset features approximately 1.4 million camera images, 390,000 LIDAR sweeps, 1.4 million RADAR sweeps,
and 1.4 million object bounding boxes across 40,000 keyframes.

Argoverse This dataset [68] facilitates research in 3D tracking and motion forecasting for autonomous
vehicles. Originating from select areas in Miami and Pittsburgh, it includes 113 scenes with 3D tracking
annotations, featuring 324,557 significant vehicle trajectories derived from over 1,000 hours of driving. The
forecasting component of Argoverse provides agent trajectories and high-definition maps, requiring the prediction
of a target vehicle’s future trajectory for the next 3 seconds, based on its past trajectory over two seconds, sampled
at 10Hz. The dataset encompasses 333K real-world driving sequences, primarily at intersections or within dense
traffic, each focusing on one target vehicle for trajectory prediction.

Waymo This dataset [69] publicly to aid the research community in investigating a wide range of interesting
aspects of machine perception and autonomous driving technology. This Dataset we use is the Motion part, with
object trajectories and corresponding 3D maps for 103,354 segments. Given agents’ tracks for the past 1 second
on a corresponding map, predict the joint future positions of 2 interacting agents for 8 seconds into the future.
The ground truth future data for the interactive test set is hidden from challenge participants. The validation
sets contain the ground truth future data for use in model development. In addition, the test and validation sets
provide 2 interacting object tracks in the scene to be predicted.

B.2 Metrics

We evaluate the predicted trajectory Y t against the ground truth trajectory Y t
GT using standard error-based metrics.

Our DSA framework adopts the commonly used Average Displacement Error (ADE) and Final Displacement
Error (FDE), as defined in [23]:

ADE =
1

T

T∑
t=1

∥Y t − Y t
GT∥L2 , FDE = ∥Y t − Y t

GT∥L2 .

Here, the superscript t denotes the current time step, and T refers to the total number of time steps in the
prediction horizon. The metrics we use include ADEk, FDEk, minADE, minFDE, and b-minFDE. The subscript
k indicates the Top-k most likely predicted future trajectories. The "min" variants (minADE and minFDE)
compute the L2 distance between Y t

GT and the closest predicted trajectory Y t across all generated samples,
averaged over all agents. The b-minFDE metric extends minFDE by incorporating the Brier score [130], which
evaluates the calibration of the predictive distribution. It is defined as the sum of the Brier score and minFDE.
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C Proof of Bound

As we discuss in Section 3.3.2, Kolmogorov’s theorem [131] provides error bounds by evaluating the absolute
value of the function and the overall variation in the function value. This is illustrated as follows:

Theorem C.1 (Kolmogorov Theorem) For f ∈ C [a, b], there exists a polynomial pn such that approximation
error is bounded by:

∥f − pn∥L∞ ≲

(
logn

n

)
V (f, [a, b]),

where V (f, [a, b]) denotes the total variation 9 of f over the interval.

From this theorem, we conclude that when n > e, increasing the degree n of pn results in a smaller decrease in
the theoretical upper bound on the approximation error.

However, in practice, considering computational cost and time, the value of n cannot be arbitrarily large. In
this section, we provide three proofs corresponding to the three categories of drivers, demonstrating that under
a given error limit δ, there exists a relationship between the minimum degree n and the components of the
trajectory to be approximated, as described in Section 2.1 (i.e., position (x, y), velocity, and acceleration). For
clarity, we use f to represent each continuous component with respect to t.

C.1 Conservative Drives: Bernstein Polynomial

In Section 3.2.1, we use the properties of Bernstein polynomials (Bn) for their uniform convergence to
approximate the trajectories of conservative drivers, characterized by low speed and minimal motion changes.
The minimum degree n of the Bn polynomial is obtained by:

Theorem C.2 For all ϵ > 0, if ∂ [Bn (f)] = n, then for a given error limit δ with 0 < ϵ ⩽ δ ≪ ∞, then

n ⩾ max | f ′′ (ξ) |
/
8δ.

Proof: First, we calculate the error between f(x) and Bn(f)

|f (x)−Bn (f)|

=

∣∣∣∣∣
n∑

k=0

[
f (x)− f

(
k

n

)](
n
k

)
xk (1− x)n−k

∣∣∣∣∣
⩽

∣∣∣∣∣
n∑

k=0

[
−f ′′( k

n
−x) − 1

2
f ′′
(
k

n
− x

)2
]
· PB (k)

∣∣∣∣∣ (4)

=
1

2
f ′′ (ξ)

n∑
k=0

(n
k
− x
)2
PB (k) ξ ∈

(
x,
k

n

)
. (5)

In formula (4), PB (k) ≜ Ck
nx

k (1− x)n−k. From Equation (5), we next proceed to prove

1.
∑

k

(
n
k
− x
)
· PB (k) = 0 ,

2.
∑

k

(
n
k
− x
)2 · PB (k) = x

n
(1− x) .

For Equation 1, applying the Central Limit Theorem (CLT) as discussed in [132], we consider the total difference
of weights, represented by [(n/k)− x]. Specifically, the probability p satisfies p = x = k/n. In this case, as
described in [133], we have E(k) = nx. Thus, we can derive the expectation as follows:

E

(
k

n

)
=
E (k)

n
= x. (6)

Therefore, Equation 1 simplifies to E(k/n)− x = 0.

For Equation 2, we employ a similar method; here (n
k
−x)2 represents the squared difference in weights between

k
n

and x, alternatively described as the deviation between observation and expectation. According to Equation
(6),

D

(
k

n

)
=
nx

n2
· (1− x) =

x (1− x)

n
.

9Total Variation A measure of the total amount of variation in a function over a given interval [a, b], which
is defined by supx̸=y |f (x)− f (y)|

/
|x− y| .
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Equation 2 corresponds to the squared deviation
(
n
k
− x
)2 based on weights PB(k). Moreover

∵ E

[(
k

n
− x

)2
]
= D

(
k

n

)
,

∴ (5) =
1

2
f ′′ (ξ)

x (1− x)

n
⩽
M2

8n
, with M2 = max

ξ∈D
f ′′ (ξ) .

Considering the error limit δ, we have:
M2

8n
< δ ⇒ n ⩾

M2

8δ
.

□

Theorem C.3 If f ∈ Lp[a, b], Bω
n (f) ∈ [a, b] and ∂ [Bω

n (f)] = n. For all ϵ > 0, 0 < ϵ ⩽ δ ≪ ∞, δ is
given error limitation, then:

n ⩾
max[|f ′′(ξ̃) · ω|] · (b− a)2

8δ
,

where ω is the weights of weighted Bn polynomials Bω
n (f).

Proof: Here the error is L∞ norm, the definition of Bω
n (f) is

Bω
n (f) =

n∑
k=0

f

(
k

n

)
ω

(
k

n

)(
n

k

)
xk(1− x)n−k

Let u = (x− a)
/
(b− a), then u ∈ [0, 1]. So M̃2 is similar to Theorem C.2, here

M̃2 = max
u∈[0,1]

∣∣g′′ (u)∣∣ = (b− a)2
∣∣f ′′ (ξ)

∣∣ ,
where g (u) = f

(
u−a
b−a

)
. The next following prove is similar to Theorem C.2. □

C.2 Aggressive Drivers: Chebyshev Polynomial

In Section 3.2.2, aggressive drivers’ trajectories are characterized by non-smooth, high-speed movements during
motion changes. We use the Chebyshev polynomials T c

n and their minimum-maximum error properties to
approximate these trajectories. The minimum degree n of T c

n polynomial is obtained as follows:

Theorem C.4 For f ∈ Lp[a, b] and a given error bound δ (where 0 < ϵ ⩽ δ ≪ ∞), the condition ∂ [T c
n (f)] =

n is satisfied:

n ⩾
1

ω−1

(
f,

δ

12

) , (7)

where ω−1 is the inverse of the modulus of continuity for the function f .

To provide the proof of Theorem C.4, we first introduce the definition of the modulus of continuity and a lemma
related to this proof.

Definition C.5 (Modulus of Continuity in Lp Space) Let f ∈ Lp [a, b] , p ⩾ 1 and 0 ⩽ m ⩽ b − a. The
modulus of continuity ωp (m, f) is defined as:

ωp (m) =ωp (m, f)

= sup
0⩽h⩽m

(∫ b−h

a

|f (x+ h)− f (x)|p
)1/p

which represents the continuity norm for f over the interval [a, b].

For T c
n polynomials belonging to the C2π space 10, we use En(f) to denote the deviation of the approximation

of f by a trigonometric polynomial Tn of degree n, as follow:

En(f) = inf
{Tn}

∥f − Tn∥.

This deviation satisfies:
10C2π Space Let f ∈ R with period 2π. Define

∥ f ∥= sup
−π⩽x⩽π

| f (x) | .

We call the above set the C2π space
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Lemma C.6 (Jackson [134]) Let f ∈ C2π , then for all n ∈ N, the following inequality holds:

En(f) ⩽ 12 · ω
(
f,

1

n

)
.

It is evident that T c
n ⊆ C2π . Based on Lemma C.6, we present the proof of Theorem C.4.

Proof: According to the definition of δ, we have ∥ f − Tn ∥L∞< δ. Lemma C.6 provides the modulus of
continuity under the L∞ space, so we need to relate ωp from Definition C.5 to ω in Lemma C.6, which relates
the Lp and L∞ norms:

∥g∥Lp([a,b−h]) ≤ (b− a− h)
1
p · ∥g∥L∞([a,b−h]).

For the function difference g(x) = f(x+ h)− f(x):

|f(x+ h)− f(x)| ≤ ω(f, h), for ∀x ∈ [a, b− h].

Therefore, the ωp(m, f) is related to ω(f, h) as follows:

ωp(h, f) ⩽

{∫ b−h

a

[ω (f, h)]p
}1/p

= ω(f, h) · (b− a− h)
1
p . (8)

When h→ 0, Equation (8) can be approximated as:

ωp ⩽ ω · (b− a)
1
p .

According to Lemma C.6 and satisfy the error limit δ, s.t. En(f) ⩽ δ, we have

ω

(
f,

1

n

)
⩽

δ

12
.

To obtain the lower bound on n, since ω(f, h) is a nondecreasing function with respect to h, we take its inverse
function ω−1(f, y) as follows:

1

n
⩽ ω−1

(
f,

δ

12

)
. (9)

Finally, the lower bound for n can be derived from inequality (9) as:

n ⩾
1

ω−1

(
f,

δ

12

) .
□

Lemma C.4 provides a minimum bound related to the value of the modulus of continuity. Furthermore, the
Lipschitz continuity [135] of vehicle trajectories Xi and Yi offers a more compact bound for inequality (7):

Corollary C.7 The bound in inequality (7) is satisfied as follows:

n ⩾
12L

δ
, (10)

where L represents Lipschitz constant.

Proof: The proof of Corollary C.7 consists of two parts: (i) establishing Lipschitz continuity of vehicle
trajectories and (ii) deriving Equation (10).

(i) Lipschitz Continuity of Vehicle Trajectories

To demonstrate the Lipschitz continuity of vehicle trajectories, it suffices to show that their state information
(Section 2.1), including (x, y) position, velocity v and acceleration a, satisfies the Lipschitz condition (L-
condition). Specifically, there exists a constant L, s.t. for any x′, x′′ ∈ [a, b], the following holds:∣∣f (x′)− f

(
x′′
)∣∣ ⩽ L

∣∣x′ − x′′
∣∣ . (11)

According to the physical relationships among these states, if acceleration a satisfies L-condition, then by the
boundedness theorem [136], the other states also satisfy it. Thus, we take a as an example, and similar arguments
apply to the other states, quod erat demonstrandum.

According to [137, 138], the variation in vehicle acceleration is constrained by factors such as engine performance,
vehicle weight, and braking system, which implies that the jerk j(t) (the rate of change of acceleration over time)
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cannot be physically infinite. Therefore, there exists a constant Mj , s.t. |j (τ)| ⩽ Mj . For any t1, t2 ∈ [a, b],
the following holds:

|a (t1)− a (t1)| =
∣∣∣∣∫ t1

t2

j (τ)

∣∣∣∣ ⩽ ∫ t1

t2

|j (τ)|

⩽
∫ t1

t2

Mj dτ =Mj |t1 − t2| .

Therefore,Hence, the acceleration function a(t) is Lipschitz continuous with the Lipschitz constant L =Mj .

(ii) Derivation of a more compact bound.

To obtain a tighter bound, we use the L-continuity property of f . From the continues of modulus, we have:

ω(f, h) ⩽ Lh⇒ ω−1(f, y) ⩾
y

L
. (12)

From Jackson’s inequality in Lemma C.6, let y = δ/12 in Equation (12). This ensures that the error remains
below δ, with δ/12 acting as a piecewise error threshold. Then Equation (12) becomes:

ω−1(f, y) ∼ ω−1(f,
δ

12
) ⩽

δ

12L
. (13)

Combining inequalities (7) and (13), we obtain the more compact bound (10). □

C.3 Normal Drivers: Legendre Polynomial

In Section 3.2.3, we discuss that the speed and acceleration of normal drivers maintain an intermediate state
between conservative and aggressive drivers. Their trajectories do not change as dramatically as aggressive
drivers, nor are they so slow as to affect the flow of traffic. To approximate these trajectories, we use the Legendre
polynomial Ln. The minimum degree n of Ln is obtain by:

Theorem C.8 For all ϵ > 0, if ∂ [Ln (f)] = n, for a given error limit δ with 0 < ϵ ⩽ δ ≪ ∞, then

n ⩾

(
CH

δ

)1/α

, (14)

where CH is Hölder constant modulus of continuity and α represents Hölder exponent.

From Theorem C.8 we apply Jackson’s inequality (Lemma C.6) to establish a relationship between the approxi-
mation and the modulus of continuity. This inequality also applies to continuous functions defined on the interval
[−1, 1] interval. To achieve the bound in Equation (14), we further use the Hölder continuous property [139]
of vehicle trajectory. Similar to L-continues as defined in Equation (11), Hölder continuous (H-continuous) is
define as follows:

Definition C.9 (Hölder continuous) For a function f defines on interval I , if there exits a constant C ∈ R, s.t.
for ∀z′,z

′′
∈ I: ∣∣f (z′)− f

(
z′′
)∣∣ ⩽ CH

∣∣z′ − z′′
∣∣α , α ∈ (0, 1] ,

then f is is said to be Hölder continuous of order α.

When α = 1, H-continuous reduces to L-continuous. Reference [140, 141, 142, 143] analyze the Hölder
continuity or related smoothness of vehicle trajectories and their states (position, velocity, and acceleration),
either directly or indirectly by examining the smoothness of physical constraints and changes. Therefore, the
bound in Equation (14) can similarly be derived from inequality (12):

ω(f, h) ⩽ CHh
α ⇒ CH

(
1

n

)α

⩽ δ.

Thus, we obtain a bound as expressed by inequality (14).
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D Effects of Framework Sensitive

In Section 4.3, we evaluate our DSA framework with respect to module component dimensions: namely the type,
combination, and degree of polynomials pn, as well as the driving style matching. In this section, we further
analyze the sensitivity of our model with regard to: variations in the driving style categories themselves (Section
D.1), external influences such as changing traffic densities (Section D.2) and varying road conditions (Section
D.3).

D.1 Number of Driving Style

In reference [48, 49, 50] we know that driving style are categores as three type and each characters are illustrated
in Section 3.2. Now we use automatic manner category numbers rather than the predefining for driving styles.
Specifically, we evaluate multiple-category settings using K-means clustering, and report the corresponding
metrics (log-normalized results except for Silhouette metric) on the Argoverse (from A-△WSS) and nuScenes
(from N-△WSS) in Table 8, here for all metrics listed below, larger values indicate better clustering performance.
Our three-category configuration yields the highest number of best scores across the metrics, supporting the

Table 8: Clustering evaluation results on Argoverse (A) and nuScenes (N). A value of “1” indicates
the best performance among all settings.

k A-∆WSS Silhouette ∆CHI N-∆WSS Silhouette ∆CHI
2 - 0.919 - - 0 -
3 1 1 0.810 1 0.700 1
4 0.743 0.986 1 0.586 1 0.387
5 0.022 0.283 0 0.287 0.268 0.324
6 0 0 0.601 0 0.398 0

validity and rationality of our chosen driving style taxonomy. The metrics [144] are defined as follows:

• WSS (Within-Cluster Sum of Squares): Measures the improvement in intra-cluster compactness. A
higher value suggests tighter grouping of samples within clusters after clustering.

• Silhouette: Reflects both the cohesion within a cluster and the separation between clusters. A higher
silhouette score indicates that samples are well matched to their own cluster and poorly matched to
neighboring clusters.

• CHI (Calinski-Harabasz Index): Captures the variation in inter-cluster separability and intra-cluster
compactness. Higher values indicate better-defined and more distinct clusters.

D.2 Traffic Density

Traffic density is closely related to vehicle speed and traffic flow, and significantly influences trajectory prediction
due to varying interaction patterns among vehicles [145]. To clearly present the impact of traffic density, we
divide the dataset into five levels based on the number of vehicles per unit area. We compare the performance of
our DSA framework against the best-performing baseline with publicly available code: Context-Aware [81], as
identified in Table 1. The comparison results are illustrated in Figure 5.

Figure 5: Comparison of trajectory prediction performance under different traffic densities with
Context-Aware [81]. Our method is represented by solid lines, while Context-Aware is depicted using
dashed lines on both sides. The middle subfigure shows the density distribution with circled numbers
indicating the corresponding density levels.

Our DSA framework consistently outperforms the baseline across over 75% of the dataset. When averaged over
the highest-density and most common case (density level 1 in the middle subfigure of Figure 5), our method
achieves improvements of 1.97 in ADE1 and 3.26 in FDE1, as well as 0.25 in ADE5 and 0.13 in FDE5.
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The most notable gains appear in density level 2, where DSA reduces prediction errors by 49.48% and 44.19%
for k = 1, and by 33.78% and 25.05% for k = 5, compared to Context-Aware. Although our framework shows
slightly lower performance in levels 4 and 5 when generating 5 trajectories, these cases together account for only
6.28% of the dataset.

D.3 Road Condition

Road structure significantly influences the motion patterns of agents navigating through urban or highway
environments and is thus essential for accurate trajectory prediction [146, 11, 112]. Does road complexity
increase the frequency of driving style changes, thereby making prediction more difficult? To investigate this
question, we evaluate the performance of our DSA framework under different road conditions, as shown in
Table 9.

Table 9: The b-minFDE∗ in different road condition on the nuScenes dataset. The best results are
highlighted.

Method Type Stationary Straight Straight right Straight left Right U-turn Right-turn Left U-turn Left-turn All

MTR [147] 2.15 2.58 4.85 4.26 8.13 4.82 5.17 4.85 2.86
DSA 2.03 2.48 4.96 4.17 8.11 4.77 5.28 4.87 2.75

∗ Brier-minFDE (b-minFDE): bminFDE=minFDE+(1− p)2, where p is the probability of probability of the
best forecasting trajectory with minimum endpoint error (minFDE).

Our DSA framework achieves the lowest overall error of 2.75, improving upon the baseline by 3.85%. It
outperforms the baseline in 6 out of 8 categories, including reductions in error for common scenarios such as
Stationary (5.6%) and Straight (3.9%), as well as complex maneuvers like Straight-Left (2.1%), Right U-turn
(0.25%), and Right Turn (1.0%).

Although MTR performs slightly better in Straight-Right and Left U-turn (by 0.11 in both cases), DSA matches
or surpasses baseline performance in the most frequent and safety-critical trajectory types. These results
demonstrate the robustness and adaptability of our framework across diverse road semantics, particularly in
non-linear or discontinuous motion patterns.
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E Detailed Description of the Algorithm

In Sections 3.3.1 and 3.3.2, we introduced the mechanisms for polynomial combination and degree adaptation.
In this section, we provide a detailed description of the corresponding algorithms.

E.1 Polynomial Combination

To match each trajectory under various driving styles to a suitable polynomial combination, as analyzed in
Section 3.2, we employ a Mixture of Experts model based on Top-K Gating (MoE-TopK) [63]. In this method,
tunable Gaussian noise is added to the gating logits, and only the top K values are retained for expert selection.

Let us denote by G (x) and Ej (x) the output of the gating network and the output of the j-th expert network for
a given trajectory Xi, for clearly we omit subscript i. The output zcom of the MoE module can be written as
follows:

zcom =
∑3

j=1
G (X)j Ej (x) . (15)

As shown in [21, 61, 62], kernel density estimation and latent variable analysis reveal that a driver’s behavior
evolves continuously across different situations. This implies that driving behavior can be viewed as a probabilis-
tic mixture of weighted driving styles. Given that drivers may exhibit behaviors characteristic of multiple styles
in dynamic scenes—such as when another agent suddenly appears—we adopt the Noisy Top-K Gating network
[63] to capture this mixture behavior. This network activates only the top-k best-matching experts, enhancing

responsiveness and specificity. Accordingly, this modification adjusts G∗(·) in Equation (15) to G̃ (x), detailed
as follows:

G̃j(x) = Softmax {KeepTopK [H(X), k]} ,with

H(X) =(X ·WGj ) + SN () · Sp
[(
X ·Wnoisej

)]
.

Here, "SN" and "Sp" denote Standard Normal [64] and Softplus [65] functions, respectively. The symbol W∗
denotes the weight matrix corresponding to each subscript. The loss function is defined as follows:

LMoE-K = wload · CV (loads)2 , (16)

where "load" refers to the importance values assigned to each driving style, with wload representing the corre-
sponding weight. "CV" stands for the Coefficient of Variation, which assesses the variability of these values.
Equation (16) is a part of Loss in Section 4.1. This structure of the MoE model effectively recognizes the
diversity of trajectories, allowing each expert to specialize in different features of driving styles.

E.2 Degree Adaptation

From Theorem 3.7, we understand that the accuracy of polynomial pn approximation is directly influenced by
the degree n of the pn. However, adapting the degree of pn poses a complex, non-convex, and combinatorial
optimization challenge, as the relationship between prediction error and polynomial degree is not straightforward.
This complexity often leads to the presence of multiple local optima.

To address this issue, we utilize the versatile Bayesian Optimization (BO) tool SMAC3 [66] for its robustness
and flexibility, making it particularly suitable for optimizing low-dimensional and continuous functions (type:
SMAC4BB), such as those found in vehicle trajectory prediction.

We treat the adaptive of polynomial degree as a hyperparameter optimization problem, using SMAC3 for BO,
which leveraging Gaussian Processes with the Matérn kernel and the Expected Improvement acquisition function,
iteratively searches the candidate degree set to minimize the loss function. Specifically, the degree n is treated
as a hyperparameter optimization problem, aimed at minimizing the loss on validation data Dval of our model
trained on training data Dtrain. This process can be formulated as follows:

nSMAC ∈ arg min
n∈Z+

c (n) = arg min
n∈Z+

L (Dtrain,Dval;n) ,

The hyperparameter optimization process targets the degree nSMAC, which is defined as the optimal degree that
achieves the least error for the corresponding basis function pn. Here L denotes the loss function.
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F Limitation and Discussion

Limitation We summarize existing open vehicle trajectory prediction datasets in Table 10, and observe that
the maximum available trajectory duration is typically less than 10 seconds. Despite this limited time span,
our framework based on three driving styles adapts well to such settings. We evaluate its performance on both
short-term (3 seconds, Table 1) and long-term (8 seconds, Table 2) prediction tasks, achieving consistently strong
or state-of-the-art results across all durations.

Table 10: Existing vehicle trajectory datasets. “His” and “Pre” represent the historical and predicted
trajectory durations, respectively, while “Total” denotes the overall duration for each vehicle.

Datasets Pub. Collect Locations His Pre Total
KITTI [148] 2012 CVPR Karlsruhe 2 4 6

Apolloscapes [149] 2018 CVPR Beijing, ShangHai and SHenZhen 3 3 6
nuScenes [67] 2020 CVPR Boston and Singapore 2 6 8
Argoverse [68] 2019 CVPR Miami and Pittsburgh 2 3 5

INTERACTION [150] 2019 arXiv China, Germany and Bulgaria 1 3 4
InD [151] 2020 TIV German 3.2 4.8 8

RounD [152] 2020 ITSC Aachen 2 4 6
HighD [153] 2018 ITSC German 2.8 2.8 5.6
Waymo [69] 2020 CVPR USA 1 8 9

However, in longer prediction horizons, the complexity of driving behavior increases, suggesting that three
driving style categories may be insufficient to cover all possible scenarios. Moreover, trajectory patterns are
often influenced by external factors, which can be categorized as either soft or strong conditions.

Soft conditions, such as weather, affect driver perception and reaction. For example, on sunny days, improved
visibility may enhance drivers’ responsiveness, leading to smoother and more stable trajectories. In contrast,
adverse weather conditions such as fog, heavy rain, or snow can result in more abrupt or irregular driving
behavior.

Similarly, strong conditions such as traffic signals or regulatory constraints also significantly influence vehicle
trajectories. Unfortunately, most existing datasets lack labels for these contextual factors. We believe that
incorporating such labels could further enhance prediction accuracy in future research.

Discussion For longer vehicle trajectories, we can improve our DSA framework from both practical and
theoretical perspectives.

1. Incorporating more driving styles. Our current DSA framework utilizes three representative styles:
Conservative, Aggressive and Normal (CAN), which reflect two behavioral extremes and an interme-
diate pattern. However, as the temporal length of each driver’s trajectory increases, driving behaviors
may exhibit greater variability. To capture these nuances, the model can be extended by defining or
integrating additional driving styles. This would allow for a more fine-grained characterization of
driver behavior and potentially lead to improved trajectory prediction accuracy.

2. Expanding the set of basis functions. As driving styles become more diverse and trajectory conditions
more complex, a broader set of basis functions is required to effectively approximate and predict vehicle
trajectories. Instead of relying on a single polynomial type, we can extend to a set of basis functions
of the same class, such as orthogonal trigonometric polynomials. For example, to minimize the L2

norm in modeling trajectories of normal drivers, or other intermediate states between conservative and
aggressive behavior. It is beneficial to use a richer set of orthogonal polynomials that better match the
dynamics of these nuanced driving styles.
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G Future Work

In this paper, we focus on the characteristics of the individuals who generate the data (i.e., trajectories) and
leverage the mathematical properties of basis functions to approximate these trajectories. This concept can be
generalized and extended to other domains, such as:

• Other traffic participants. In addition to drivers, other agents in the traffic scene such as pedestrians
and cyclists, also exhibit distinct behavioral characteristics. By modeling these characteristics, we can
select appropriate basis functions tailored to each agent type, thereby improving the accuracy of their
trajectory prediction.

• Multivariety Time Series Forecasting. Our framework can be extended to long-term forecasting tasks
in domains such as weather prediction, energy consumption and electrocardiography. For example,
one could model temperature and precipitation trends across different climate zones, analyze electricity
usage patterns based on consumer behavior, or study heart rate dynamics as a function of individual
health conditions.

Additionally, by leveraging the core theoretical foundation (Theorem 2.2), we aim to construct models grounded
in the physical characteristics or behavioral attributes of the data sources, thereby fully exploiting the inherent
structure of the data itself.

H Visualization

Due to space constraints, the number of visualized prediction results in the main text is limited. Here, we provide
additional visualizations of predicted trajectories for various scenes, with generated trajectories k = 1, 5, 10.
Each value of k is presented for both simple (e.g., straight roads) and complex scenes (e.g., turns conditions),
showcasing different types of driving behavior.

To enhance the clarity of the visualization results, we present them on a dedicated page and reduce the background
opacity to improve visual contrast. Specific outcomes are accompanied by detailed explanations provided in
the corresponding figure captions. In summary, considering various scenario combinations and adjusting
the number of generated trajectories lead to more diverse, accurate, and comprehensive vehicle trajectory
predictions. Increasing the number of predicted trajectories improves prediction diversity and realism, while
analyzing different scenarios helps adapt to the diversity and complexity of real-world traffic environments.
These improvements contribute to making the model both more mathematically grounded and more adaptive.
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