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Abstract

Estimating the tangent spaces of a data manifold is a fundamental problem in data
analysis. The standard approach, Local Principal Component Analysis (LPCA),
struggles in high-noise settings due to a critical trade-off in choosing the neigh-
borhood size. Selecting an optimal size requires prior knowledge of the geometric
and noise characteristics of the data that are often unavailable. In this paper, we
propose a spectral method, Laplacian Eigenvector Gradient Orthogonalization
(LEGO), that utilizes the global structure of the data to guide local tangent space
estimation. Instead of relying solely on local neighborhoods, LEGO estimates the
tangent space at each data point by orthogonalizing the gradients of low-frequency
eigenvectors of the graph Laplacian. We provide theoretical motivation for LEGO
with a differential geometric analysis on a tubular neighborhood of a manifold.
We show that gradients of low-frequency Laplacian eigenfunctions align closely
with the tangent bundle, while an eigenfunction with high gradient in directions
orthogonal to the manifold lie deeper in the spectrum. We demonstrate that LEGO
yields tangent space estimates that are significantly more robust than those from
LPCA, resulting in marked improvements in downstream tasks such as manifold
learning, boundary detection, and local intrinsic dimension estimation.

1 Introduction

Tangent space estimation is a fundamental geometric task with broad applications across numerous
domains, including manifold learning [[1H5]], data denoising [[6], multi-manifold structure learning [[7-
10], local intrinsic dimension estimation [[11]], connection Laplacian approximation [12H14]], and
regression on manifolds [[15], among others. The most commonly adopted approach for tangent
space estimation is LPCA [[1H3} 15} 16, [13} [15]], which constructs the local covariance matrix using
the k;,-nearest neighbors of a data point and extracts the leading d eigenvectors, d being the local
intrinsic dimension, as an estimate of the tangent basis at that point.
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The local formulation of LPCA makes it an efficient approach for tangent space estimation. However,
as demonstrated in Figures [Ta] and [TB] it also leads to significant degradation of the quality of
the estimates in the presence of noise. In fact, there is a well-known trade-off in the choice of
neighborhood size for LPCA: small neighborhoods are prone to noise corruption, while larger ones
introduce bias due to the underlying curvature and reach of the manifold [16-20]. One approach to
improve robustness of LPCA involves selecting an adaptive neighborhood size [17]] that balances
these competing effects. However, implementation of such adaptive schemes is hindered by the fact
that the geometric quantities—curvature, reach, and the noise level, are typically unknown.

In contrast, taking cues from the global structure of the data may offer an alternative route to robust
tangent space estimation, avoiding the complexities of adapting neighborhood sizes while allowing
them to remain small. This idea builds on [21] which shows that, for each point = on a d-dimensional
Riemannian manifold [22]], there exist d eigenfunctions of the manifold Laplacian which yield a
bilipschitz local parameterization of a sufficiently small neighborhood of  into R?. This approach is
practically realized in [4] where local parameterizations of the data manifold are constructed using
global eigenvectors of the graph Laplacian. These parameterizations typically have low distortion,
ensuring their Jacobians are full rank and span the d-dimensional tangent spaces. Together, these
works motivate an approach to estimate tangent spaces using the gradients of Laplacian eigenvectors.

In the noisy setting, however, these graph Laplacian eigenvectors may still exhibit non-zero gradients
orthogonal to the manifold, thereby picking up components in the noise directions [23H27]. Empir-
ically, and as demonstrated in Figure [Ic] it is often observed that the eigenvectors corresponding
to small eigenvalues are robust to noise unlike the ones lying deeper into the spectrum [23H27]].
Building upon this insight, we propose an algorithm to estimate tangent spaces using the gradients of
low-frequency global eigenvectors of the graph Laplacian.
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Figure 1: Tangent space estimation using LPCA and LEGO on a noisy point cloud generated by
non-uniform sampling of a closed curve—wave on a circle—with heteroskedastic noise added in the
normal direction. (a) Clean data points with ground truth tangent vectors, along with tangent vectors
estimated from the noisy data using LPCA (k,, = 14 and d = 1) and LEGO (k,,,, = 14, m¢ = 20,
m = 100 and d = 1). (b) Cosine dissimilarity between the true and the estimated tangent vectors.
(c) Eigenvectors of the graph Laplacian constructed from noisy data [28], highlighting that those
exhibiting high gradient in the noise direction lie deeper into the spectrum.

Our contributions are as follows. In Section 2] we present a spectral algorithm, LEGO (Laplacian
Eigenvectors’ Gradients Orthogonalization), for estimating tangent spaces at each data point by
orthogonalizing the gradients of low-frequency global eigenvectors of the graph Laplacian derived
from a noisy point cloud. A geometric justification of our method based on a tubular neighborhood
noise model is provided in Section[3] In Section ] we demonstrate that LEGO yields tangent
space estimates that are significantly more robust to noise than those obtained via LPCA, resulting in



significant improvements across multiple downstream tasks, including bottom-up manifold learning [[1}
2,129, 13115, 130]], boundary detection [31H33]], and local intrinsic dimension estimation [[11]].

2 Tangent space estimate via low-frequency Laplacian eigenvectors gradients

Here, we introduce our algorithm, LEGO, for estimating tangent spaces at noise-perturbed data
points sampled from a tubular neighborhood of a smooth embedded submanifold. Our approach
estimates orthonormal bases of the tangent spaces at the clean points by orthogonalizing the gradients
of low-frequency global eigenvectors of the graph Laplacian constructed from the noisy data.

To begin with, let Y = [Y7,...,Y,] € RP*™ be a point cloud sampled from a smooth compact
d-dimensional submanifold B embedded in R?. Let X = [X7,..., X,,] € RP*™ be the noisy point
cloud such that X; is obtained by adding noise to Y; in the directions orthogonal to the tangent space
Ty,B. Let Nj = {j1,..., jk,, } be a set containing the indices of the k,,-nearest neighbors of X;
obtained using the Euclidean metric in RP. Let £ € R™*"™ be the graph Laplacian constructed from
X using either the random walk [28],134,135]], the self-tuned [36] or the doubly stochastic [37] kernel.
These strategies ensure that, under appropriate scaling of the kernel bandwidth and sampling density,
L converges with high probability to the manifold Laplacian —A;, on a tubular neighborhood of B.
Recent results [36, 38]] also establish the convergence of the spectrum of £ to that of —A(;p.

Let ¢; € R™ be the i-th eigenvector of £ corresponding to the i-th smallest eigenvalue, and V¢, €
RP*™ be a matrix whose j-th column, V¢;(X;) € RP, represents the gradient of ¢; at X;. The
p components of the V¢, are modeled as a smooth function on X i.e. a vector in the span of the
eigenvectors of L. Since the eigenvectors associated with higher eigenvalues are more susceptible
to noise (see, e.g., [39, 27]] and the next section), we estimate V¢; using only the first mg < n
eigenvectors. To ensure local fidelity, we require V¢; to approximate ¢;, up to first order, on the
neighborhood { X, : js € N} of each point X;. Precisely, we define

Xj =X =X Xy, = X517 and 6,(X;) = [00(X;) = 0i( X)), - 0i( X, ) — i (X5)]
respectively. Then, the estimate @qﬁi € RP*" of the gradients V¢, is given by,

@gbi = @ Us” where Ug is an orthonormal basis of the range of & = [¢1, d2, ..., Pm,] and (1)

C; = argmin lz 1X;Vei(X;) —@(Xj)Hz such that V¢, = C;Us” . )

C; ERPXm0 n =1

Using the fact that U3 T Ug = I,,,, the least squares solution of the above optimization problem is,

Ci=[Xig,0x1) ... X\g(X0)] Vs 3)
Having obtained the gradient estimates of the eigenvectors {¢1, ..., ¢, } at X; given by,
VO(X;) = [Voi(X;) .. Vom(X;)] € R, @)

we obtain an estimate of the orthonormal basis Q; € RP*? of the d-dimensional tangent space at the
jth point by orthogonalizing V(X)) i.e. using its top d left singular vectors. If the local intrinsic
dimension d is not known then it can be estimated by selecting the smallest number of top eigenvalues

of @rj)(X ;) whose normalized cumulative sum exceeds a user defined threshold. Finally, unlike
LPCA which takes linear time in n, k,, p and d, LEGO takes quadratic time in min{ky,, p} and
linear in all other hyperparameters.

3 Laplacian eigenfunctions with high gradient along the cross sections of a
tubular neighborhood lie deeper in the spectrum

Noisy data is often modeled as a sample drawn from a tubular neighborhood of an underlying smooth
submanifold [40-42, |19} 20l 43]. The graph Laplacian constructed from such data [28, |36, [37]
converges to the continuous Laplacian of the tubular neighborhood. This motivates the study of
the Laplacian eigenfunctions on the tube to better understand the behavior of the graph Laplacian



eigenvectors derived from noisy data. Here, we show that eigenfunctions exhibiting high gradients
across the cross sections of the tube necessarily correspond to higher eigenvalues. Consequently,
eigenfunctions associated with low eigenvalues exhibit minimal gradient in directions normal to the
submanifold. The practical implication is that the gradients of low-frequency Laplacian eigenvectors
have small components in the noise directions, making them suitable for tangent space estimation.

We start by describing the necessary constructs from [44] that are needed for our results. Let
B C R™* be a smooth embedded compact d-dimensional submanifold with or without boundary,
equipped with the metric g5 = 044%|p induced by the Euclidean metric §44%. Let N B be the
normal bundle of B equipped with the metric g& = 644%|v5. Assume that there exist a tubular
neighborhood 77 of B such that B C 7" C R%* where r is any finite number bounded by
the global reach [40]. Define a map ¥ : NB — R%* (2 v) = x + v which, when restricted
to NB" = {(z,v) € NB : |vl,,,, < r} C NB, is diffeomorphic to its image 7". Let
m : NB" — B be the canonical projection 7 (z,v) = z onto B. By equipping NB" with the
pullback metric g = ¥*§4, the tubular neighborhood 7 is isometric to N B". This also holds for
e-tubular neighborhood 7" of B and the normal bundle N B" for ¢ < 1. To keep the dependence
on ¢ explicit, it is convenient to work with N B" with the pullback metric g = D}g where the
map D. : NB" — NB is given by D.(z,v) = (x,ev). In fact, NB" equipped with ¢¢ is
isometric to 7" equipped with Euclidean metric d44x. Due to this construction, the Laplacian —A 4
on NB" is unitarily equivalent to the Euclidean Laplacian As,, , on 7°". Moreover, the metric
g5 = m*gp + €2gi turns 7* into a Riemannian submersion i.e. an isometry from 7*(TB) to T'B.
Let g, = g5~ be the e-independent unscaled version of the submersion metric.

Using g, we define the horizontal energy £g(¢) that captures the net gradient of ¢ along the
submanifold B, and vertical energy £ é(d)) that measures the net gradient normal to B, across tube’s
cross sections. To this end, let #!,... 2% be the local coordinates on B and {e, }¥ be a locally
orthonormal frame of N B" with respect to g§ such that every normal vector v(z) € N,B can
be written as v(z) = n%eq(x). For f € C§°(NB"), define its canonical gradients as V, f =
[Op1f, .0, f]T € R and Vo f = [Op1f,..., 00 f]F € RE. Then, for ¢ € C$°(T*"), the
horizontal energy £5(¢) and the vertical energy £ (¢) of ¢ are given by (here b= 23; 1 is the
unitary lift of ¢ onto N B")

1 Ingr VzaTg;Vw(nggs _ Ingr V:caTg]}leqASdet(gB)dml . dxdnt ... dnF

() = 2! !
0 =3, g 824V, g 8 det(gp)dat ... dxddn? ... dn*
®)
£(6) 72 ypr Va®' VaddVy, [y anASTd,zlvnQASdet(gB)dxl...dxddnl...dnk.
o Cr [ype 02dV,, Sy pr 2 det(gp)dat ... dzddnl ... dnk
(6)

Here, A\p, and C}/r? are the first non-zero eigenvalues of —Ay, on B and —Ag, on aball of radius

r in R¥, respectively. Here C}, is a constant that depends on the dimension % and the choice of
the boundary conditions. The normalizations with these eigenvalues ensure that the horizontal and
vertical energies are on similar scale with respect to r and €.

Finally, we define a symmetric matrix H, (z) € R?*¢ and a rectangular matrix ['g(z) € R¥** that
capture the coefficients of the scalar second fundamental form II on B and the Christoffel symbols of
the normal connection V+ with respect to {e, }¥, respectively. Specifically,

For each a € [1,k], (H,)ij = h),, = hflj = gp(€a,1(8yi,0,5)), wherei,j € [1,d], and (7)
Foreach 8 € [1, k], (D3)ia =72, = 95(V3 ea,e5), wherei € [1,d],a € [1,k]. (8)

Now we state our main result, the proof of which is provided in Appendix
Theorem 1. If (\, ¢) is a Neumann or Dirichlet eigenpair of the Laplacian As,, on T*" then

Cr (1—ers®)?_ |
“ (er)2 (14 E?%*)ng (9), ©)
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(1 — 5r/§*)d ABQ£B(¢) - 2RL*\/>\BQC]€EB(¢)S§ (¢) Ck6§(¢)
(14 erk*)? (14 erk*)? + (er)?

(1 +ers)d [ Ap,Ep(d) !
As (1 —erx*)d ((lB— Efﬁ*)z * ((1 — E?“K*) * (57“)2> Ckgﬁ(d))) ’ (in

where k* = max,ep k(1) € Rsg and k+* = max,ep HHL(,T)HQ € R, and where k() is the

A > (10)

and

absolute maximum principal curvature at v € B and k*(z) € R’;O quantifies the maximum rate of
twisting of e, 8 € [1, k|, in any direction in the tangent space T,, B (see Appendix [l:?])
1 (1—erx®)?

The above result shows that the eigenvalue A scales as €2 <W m) per unit increase in £ ()

*\d
versus O ()\32 %) per unit increase in Eg(¢). Due to the fact rx* < 1, this simplifies to:

Corollary 1.1. Ifr < \/Ci/Ap, and (1 — &)4t1 > (1 + £)%e'~t for some t € (0,1) then
A=Q(e7EF(P)) and X = O (Ep(9)). (12)

Consequently, when ¢ is sufficiently small such that ¢ is close to 1, any eigenvalue A of As,,, thatis
not too large—say, of order O(¢~2") for some 71 € (0, 1/2)—has a corresponding eigenfunction ¢
whose vertical energy £ (¢) is small, of order O(e%/=2"). The gradient of such an eigenfunction
has small component in the normal directions to B, making it a suitable candidate for tangent space
estimation.

4 Experiments

Here, we estimate tangent spaces on noisy datasets using LPCA and LEGO, compare the estimated
tangent spaces against the ground truth, and assess their utility in downstream tasks including manifold
learning, boundary detection, and local intrinsic dimension estimation (see Appendix [C).

First, we sample n = 10700 uniformly distributed points from a high-aspect ratio Swiss roll
embedded in R?, yielding the clean dataset Y as shown in Figure 2al Next, we perturb each point in
the direction normal to the underlying tangent space. Specifically, the noisy data points are given
by X; =Y} + n;v;, where v; is outward normal to the tangent space at Y; and the coefficient 7,
is uniformly distributed in (—e, &) where ¢ = 0.0175. The resulting noisy dataset X is shown in

Figure [2a]

We then estimate an orthonormal basis (); of the 2-dimensional tangent space at each point by
applying LPCA and LEGO on the noisy data. The discrepancy D; = Zle (1 —cos(8;;)), where
{6, }¢_, are the principal angles between the estimate (); and the ground-truth @} obtained from
clean data, is plotted in Figure These results show that LEGO produces significantly more
accurate estimates across the noisy data while LPCA estimates are highly sensitive to noise. The
same holds for noisy variants of a truncated curved torus data too. Ablation studies in Appendix [D]
further reveal that LEGO estimates remain stable across different noise levels and hyperparameter
values.

To assess how the tangent space estimates affect downstream tasks, we use them to compute a 2d
embedding of the noisy data and to detect boundary points. As shown in Figures [2c|and 2d] the
LPCA-based embeddings and the detected boundary points are severely degraded by noise, while
those based on LEGO closely match the results obtained from true tangent spaces. This is not
surprising as the accuracy of the tangent space estimation is critical to the performance of several
algorithms [[1, 12911315132, 131]] designed for these tasks. Finally, we evaluate the functional variance
explained by each of the three principal directions (see Appendix [C.3). As shown in Figure[2e] LEGO
concentrates functional variance in the first two directions, aligning with the true intrinsic structure.
In contrast, LPCA attributes significant variance to the third direction as well, indicating that the local
intrinsic dimension estimates due to LPCA are sensitive to noise.

In the next experiment, we use an image dataset from [45]], consisting of n = 8100 snapshots of
a platform with two objects—Yoda and a bulldog—each rotating about its vertical axis at distinct
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Figure 2: (a) Clean and noisy high-aspect ratio Swiss roll in R? colored by the “roll” parameter. (b)
Discrepancy between true and estimated tangent spaces due to LPCA (k,, = 9) and LEGO (k,, = 9,
m = 40 and my = 100). Note that k,,,, > 9 creates erroneous “shortcuts” through the noisy data. (c,
d) 2d parameterization and the boundary points detected from noisy data using the estimated and the
true tangent spaces. (e) Functional variance explained across noisy points by each of the 3 principal
directions obtained from LPCA and LEGO, reflecting local intrinsic dimension estimates.

frequencies. Therefore, the intrinsic geometry of the dataset is a 2-dimensional flat torus. The original
images of size 320 x 240 x 3 are first normalized to the range [0, 1], followed by addition of uniformly
distributed noise in (—1, 1) to each pixel channel (Figure . Due to the quadratic time complexity
of LEGO with respect to the ambient dimension, we apply PCA to reduce the dimensionality of the
noisy images to p = 10 dimensions where the explained variance ratio saturates (Figure [3b).

We then estimate the 2-dimensional tangent spaces using both LPCA and LEGO. These estimates
are then used to compute a 2-dimensional “torn" embedding of noisy data following the bottom-up
manifold learning framework in [4} [5]. As shown in Figure [3d} the LPCA-based embedding is non-
interpretable, whereas LEGO produces a clear rectangular embedding. When visualized with “gluing
instructions"” [4} [5]—which identifies the same-colored points along the embedding tear—it becomes
evident that opposite edges of the rectangle should be glued, revealing toroidal topology (Figure 3¢).
Moreover, examining the clean images at the points along the opposite edges reveals that only one of
the two puppets undergoes rotation, further supporting the toroidal structure. Finally, Figure [3f] shows
that LEGO concentrates the variance explained in the first two directions, faithfully capturing the
underlying 2d structure, while LPCA distributes the variance across multiple dimensions, highlighting
its inability to accurately recover the intrinsic geometry in the noisy setting.

A Pseudocode and time complexity of LEGO

Assuming that the local intrinsic dimension d is known apriori, the cost of estimating tangent space
at each point i.e., computing the top d principal directions from the local neighborhood using LPCA
is O(knnpd). Therefore, the total time complexity of applying LPCA to all n points is O(nky,pd).
In contrast, the time complexity of each stage of LEGO is as follows: (i) Computing eigenvectors
@1, - -, Om, of the graph Laplacian £ (Line|l|in Algorithm using an iterative eigensolver requires
O(nky,moT) time where T is the number of iterations required for convergence [46]). (ii) Estimating

the gradients V¢; for all i € [1,m] (Linein Algorithm requires O(nkp,p(min{kp,, p} +m)) +



(a) Clean images and their noisy counterparts (d) 2d parameterizations obtained by (€) LEGO assisted 2d parameterization
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Figure 3: (a) Sample images [43] and their noise-perturbed versions (pixels clipped in [0, 1]). (b, ¢)
The explained variance ratio saturating at the 10th dimension, and the visualization of the first three
principal components of the noisy data, colored by the third PC. (d) Torn 2d embeddings [4} [5]] of the
noisy data using the estimated tangent spaces by LPCA (ky,, = 14) and LEGO (k,, = 14, m = 20
and mg = 100). (e) The LEGO-based embedding equipped with the gluing instructions, reflecting
toroidal topology. (f) Functional variance explained across noisy points by each of the 10 principal
directions obtained from LPCA and LEGO, capturing the local intrinsic dimension estimates.

Algorithm 1 Tangent space estimation via LEGO.

Require: X € R"*P, L, k,,, m and mg where m < my, either d or f,,, € (0, 1).

I: ¢1,...,¢m, + eigenvectors of L corresponding to mg smallest eigenvalues.
2: Estimate V¢; using egs. (1) and (3) for i € [1,m].
3: for j € [1,n] do
4:  Set Vo¢(X;) asineq. @)
5: U eRP*P gy > ... > 0, < Left singular vectors and values of V(X).
6: if dis provided then
7: Q; + first d columns of U.
8: else
9: dj < min{s € [1,p] : >°7_, 02/ > 07 > fear}.
10: Q) < first d; columns of U.
11:  endif
12: end for

13: return {Q;}7.

O(nmemp) where the first term is exclusively corresponds to the estimation of C'\Z in eq. (3) and the
second term corresponds to multiplication by ® on the right side in eq. (3) and by ®7 in eq. . (iii)
Computing the orthonormal basis @; for all j € [1, n] using the gradients of eigenvectors requires
O(nmpd). Overall, the total time complexity of LEGO exceeds that of LPCA. In our experiments,
the computation of the eigenvectors ¢1, . . ., ¢, seem to dominate the computational cost of LEGO.

B Proofs from Section 3

B.1 Preliminaries

As described in Section (x',..., 2% n' ... nF) form local coordinates of N B". The associated
local coordinate vector fields are given by

a’t|(w,n) = 8mi7 8d—i-0t|(w7n) = an"‘7 RS [LdLa € [Lk] (13)



The span of {9;|(,,») }{ is not necessarily orthogonal t0 {9y-ta|(x,n) }+. To aid the analysis, we obtain
a new basis {0/7|(, . }{ by projecting each 9;, ) orthogonal to the span of {Ju+al(zn) }T via
Gram-Schmidt orthogonalization. Through basic manipulations we then obtain the following lemma.
Lemma 2. The pullback metric g° = D¥g = D:V* 411 with respect to the coordinate vector fields
{6{{|(I7n), .. ,8f|(w7n), Odav1l(z,n)s -+ Odikl(xm)} on NB", is given by

1/2 — —1/2\2 1/2
g (z,n) = [93/ (Ig —en®gp / Hagp / )293/ ) } (14)
g Ik
Consequently, for (E € C§°(N B") the Riemannian gradient of (E with respect to g° is given by,
—1/2 o, —1/2 —1/2\_o 71/2( n .8 n )
~ 1, H r
grad(b(x,n) — gB ( d En gB OégB ) gBA Vw(b(m,n) n ngﬁ(l‘,n)
e 2V, ¢(z,n)

(15)

Proof. The following form of the pullback metric g = U*d441 With respect to the coordinate vector
fields defined in eq. (I3), and as derived in [44, Lemma 4.1], is given by

= gB(aa:ivawj) - 2HV(8wia aacﬂ) + gB(WV(aa:"')v Wl/(awﬂ)) + gﬁ(vg_IL v, Vé;] V)

=95(Va,,v,€a)

955 (z,n)
gi,d+a(xa n)
9d+a,d+5($a n) = gﬁ(ea, eﬂ) = 0ag,

for i,j € [1,d], o, 8 € [1,k] and where (i) W, : X(B) — X(B) is the Weingarten map
that captures the projection of Vy  eq(x) on TB ie. We,(0,i) = —(Vﬂgd:rkea(x))—r, and (ii)
V4 : X(B) x X(NB) — X(NB) is the normal connection that captu;és the projection of
V]gj:kea(x) on NB, and is given by Vj ea(z) = (V%::kea(x))L. Since II,,(9y:,0,5) =
95V, T1(04i,045)) = 95 (04i, Wi (93)) = g5(0pi, W, (9,i)), therefore, using the definitions
of b/ and vfa in Equations (7)) and ,

I, (Oyi, 0ps ) = nRL; = nhi,;. (16)
W, (0y:) = gkt iy O (17)
Vg v=n%" es. (18)

P

Therefore,

gm»(:v,n) = (98)ij — 2nahg¢i + ”an'B(QB)klglgk hka’gg’ hél’ + ”anﬁ%‘woﬂ;}ﬁfsww’ (19)

= (gp)ij — 20kl + P g hi bl + nonP Y 56 (20)
Gidral@,m) =n"y 1)
Jita,dtp(T 1) = Sap. (22)

Consequently, the scaled pullback metric g¢ = D U*{§4,4 1 with respect to the coordinate vector fields
in Equation (T3) is given by,

gem.(:n, n) = (9g)ij — 2snahzm- + sznanﬁggl,hgk/hél, + 52n°‘nﬂ’y§g/yﬁ;5ww/ (23)
I iaralz.n) =yl (24)
gEdJra’dJrﬁ(x,n) = 526a5 (25)

Now, the new basis vector 97 |(z,n) Obtained by projecting 0;(,,) orthogonal to the span of
{Oa+al(em I 1s given by,
k
aiH|(at,n) = ai|(aﬁ,n) - Z gé(véiiy’ea)adJral(r,n) = 8i|(z,n) - n6'7?58d+a|(z,n)~ (26)

a=1



Consequently, the pullback metric ¢° in the new local coordinate fields {9} |(z,n) ¢ and
{0a+al(wm }}, is given by
9%,5(x:1) = 95(Ous, Os) = 2610, (D, 00 ) + €295 (Wor(00:), W (01s))  2T)

= (9B)ij — 2sn°‘hii 2no‘nﬁgB h('lk,h%l, (28)
g£i,d+a(x7 n)=0 (29)
9 arodss(®:n) = g5 (€as e5) = e28ap- (30)

Using the definition of H, in Equation (7),

— %en®H, SHag' H
g (am) = |9 = 2o ot g T Hy 52116} (1)
_ [(91? —enHags'*) (9" — eg5"*n® Hp) , } (32)
I Iy,
_ 9l = eng5 " Hag'* 291 , } (33)
L I

Finally, we decompose grade into a component (gradqb) on 7*(TB) and a component (gradgg)v
on ker(m,). Specifically, grade = (gradgb) (grad¢) where

~ TN i 8$ 85
H __ e H H _ ¢ B H
(gradg)™ = g° 0,7 ¢0;" =g <(‘3x] —nPy5 o ) 0;" and (34)
~ d+o< d+p a¢ — a$
(gradg)" = 5,5 00ta =5 Z0ara- (35)
Using the definition of I'5 in Equation (8),
~ “1/2,7 o —1/2 1/2 1/2 .3
graddlion = 95 "la—engp ' "Hagg ( (x,n) —n’T'sV, (i)(m n))

(36)
O

Note that ¢° is guaranteed to be positive semidefinite. However, for large ¢ it can become singular for
certain values of (n',...,n*). The following lemma provides a sufficient and necessary condition
on ¢ that ensures the positivity of g° throughout N B".

Lemma 3. Let k(z) € R>q and k* € Rx be the absolute maximum principal curvature at x € B
and across B, respectively, given by

1/2
k 2
* h _ T _1/2Ha —-1/2 .
K I;leagli(l') where k(x) Hffr\l@):(l (;_1 (v gp(x) (x)gp(x) v)

Then, g° is positive definite on N B” for all ¢ < 1. Moreover,
e 2 det(gp) (1 — ers®)® < det(g®) < e ?* det(gp) (1 +ers*)*?. (37)

Proof. Using the expression of ¢° in Lemma 2} we obtain

2
det(g°) = €% det(gp) det ( 4 —EN gBl/2Haggl/2) . (38)
Using Cauchy-Schwarz inequality, we obtain
n gBl/QHag;/2 , = Sup vT'n® gp 1/2Hag,§1/2v <rk(z) <rk*. (39)
koo flully=1

Since, for each € B the maximum value of rx(x) can be realized for some v dependent on x,
therefore det(g°) > 0 if and only if erx(x) < 1. Since r is bounded by the global reach of B which
in turn is bounded by 1/x* therefore det(g®) > 0 for all ¢ < 1. Under this constraint, it follows that
2% det(gp) (1 — er*)®? < det(g®) < e2* det(g) (1 + ers*)*?. (40)

O



Finally, as mentioned in the statement of Theorem kT and k1 (z) € RE,, are given by,
, B el (41)

— I;leaé{HmL(x)Hz where Iié(.’)ﬁ) = HgB(:C)_l/QI‘@(x)‘

B.2 Proof of Theorem/Il

Proof. First note that for f € C§°(T¢"),

fdVs,,, = / (T f)dVa-s,,, = / (BT Ve -5y, = / (D=1 £)dv-.
Ter NBeT NB" NB" @

Therefore, if (X, ¢) is an eigenpair of As,,, on 7°" with Neumann or Dirichlet boundary conditions

then it follows that (;5 = ﬁ; 1@(;5 is an eigenfunction of A4- with the same eigenvalue. Specifically,

- fNBT ggAgf@%dvgf _ fNBr <grad$7 grad@gfdvf . (43)

)\ _ - fTer ¢A5d+k ¢d‘/;sd+k _
Jrer @AV [y g @2dVye [y pr #2dVye
Using Lemma[2} Equation (#I)) and Cauchy-Schwarz inequality, we obtain
~ A~ ~ AT oy
(gradg, grade) - = grade” ¢° gradd > W

and

(gradqg, gradq§> =

= gradq?r g° grad(g
~ ~N\T ~ ~
= (Vat = 0°TsV00) 95" (Ta = en®g" * Hagp'*) 295" (V2 — n'TpV00) +
V0" Vad

L (vng - nﬂrﬁvna)T 95 (vza - nﬂrﬁvna) +=;

Vot Vo
2

>
~ (14 erk¥)
2 R T A
S _ Qnﬁv$$TgBlrﬁvn¢> + Va €2vn¢
k

1 _ ~ _ —~
e (V20T 95 Vb + 095 TV 0
(1+erk*)

> 1 (v 0T g5 Ve — 20°V 0T g5 TV 03) + Vad'Vd
— (1+erk*)? r A v B -pY¥n g2

1

Vid'Vad
> e )+

N 1/2 B N
_1vx¢) Hn6931/2rﬁvn¢ 5
k

~\ 1/2 N VnATVnA
(7:570570.8) " o [9.], ) + LT
k

Vnd Vo
)+¢2V¢,
519 [3)

1
>__ -
T (14erk*)?
1 T -1 n L= T _—1 ~\ 1/2 n

5 (Vo0 05 Vab — 20t (Vad" 95 Vad) || V0

>
~ (14 erk¥)
In the last two equations we used ||n|[5;, < r and the definitions of /@é— and x* provided in Equa-

tion (41). Combining the above with the bounds on det(g®) in Lemma |3} we obtain (the proof
of Equation (9) follows similarly)
\ - Sy g (grade, gradg) 4= dVe
Sy pr #2dVge
B fNBT<gradqu5, grad@ga /det(ge)dz! ... dxldnt ... dn*

Ingr $2\/det(ge)da! ... dwddn’ ... dn¥
(1 —ere*)? [ypr (gradg, grad¢A5>gs Vdet(gg)da! ... dzddnt ... dn*

> =
T (I+erk*)d Iygr @2/ det(gg)dat .. drddnt ... dn*
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(1 —ere”)? [ypr (gradq@, grad@ga dvy,

(1 4erw*)d Inpr (EQdVgs
(VedT g5 ' Vad) 2| Vadl|| . dv,
(1 _ E?”Ii*)d /\Bng((b) - QTKL* fNB ( gf gzd\/” |5k - Ck5§(¢)
> NB” Is
(14 erk*)d (1 + erk*)? (er)?
(1 — grﬂ*)d EB((b) - 2TKL* AB2£B(¢)E§(¢) Ckgé-(qﬁ)
T (I4erk*)d (14 erk*)? (er)?

The result follows from the definitions of horizontal and vertical energies in Equations (3)) and (6).
Similarly,

(gradg, gradg)ye-
= gradar g° grad$

~ T _ _ _ _ — n - vn/\TvnA
= (V2 n'T59,3) 65" 20— en® g5 Hagp ) 205" (Vad — 0T 9,8) + L2 Y2

~ ~\ T ~ ~
(V26 = n'05900) a5 (V6= n'T99)  0,379,3
(1 —erk*)? €2
_ - — ~N\T — " - I
(95"29:0 = 095" *T59,0) " (95°Vab — 105" TsV00) v, 57v.3
+
(1 —erk*)? €2
R 2
Vad"g5'Vad + 095 *Ts V. -
< ?" 95 ¢+ |n"9p sVno 5 +Vn$TVn¢
(1 —erk*)? g?
(Va0 95" Vad + In kb [2V,67V,0) L Vb Vb
= (1 —ers*)? €2
(V3763 Vo + (r6 PYuTV5) 9, 57,5
- (1 —erk*)? g2
Combining the above with the bounds on det(¢°) in Lemma we obtain
N fNBT<gradg$, gradg) - V- Sy (grade, grade) - /det(g7)dat ... daddn® ... dnk

IN

Ingr $2dV,e Jnpr $2+/det(g)dxt ... dxddnt . .. dn¥

< (1+ers*)? [ypr (gradg, grad@gs Vdet ggdat ... dxtdnt ... dn"
T (1—ers)? fNBT $2\/detg3dx1...dxddn1...dnk
_ (1+ers*)? [ypr (gradg, grad@g av,

(1 —ers*)d fNB"‘ ¢2dvg5

2

(1+ere®) [ Ap,Er(9) KA* L N

= (1 —erk*)d \ (1 —ers*)? + 1—erk* + (&) Cil5(9) | -

The result follows from the definitions of normalized horizontal and vertical energies in Equations (3]
and (6). O

C Overview of downstream tasks involving tangent space estimation
C.1 Bottom-up Manifold Learning

Given data points X = [X1,...,X,] € RP*" sampled from a d-dimensional data manifold where
p > d, bottom-up manifold learning algorithms [1H5]] aim to recover a d-dimensional parameterization
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of the data by first constructing local embeddings and then aligning them on the overlaps to obtain a
global embedding. Specifically, to construct local embeddings, an orthonormal basis @); € R? xd g
first estimated for the tangent space at each data point X ;. Using this basis, points in the neighborhood
N of X are projected onto the estimated tangent space to obtain d-dimensional local coordinates.
Precisely, the local coordinate of a neighbor X;_, where j, € N, is given by:

k
1 nn
st,j = QJT(XJ — [LJ) where i = a ;st' (44)

In our experiments we estimate (); either using LPCA or our proposed method LEGO.

Once the local views (i.e., the low-dimensional embeddings for each neighborhood) are computed,
they are aligned on the overlaps into a global embedding. This alignment can be performed using
either rigid or affine transformations. While affine alignment is more flexible, it requires additional
constraints—such as global uniformity [1} 29, 13]—to ensure the optimization problem is well-posed.
However, such constraints often lead to severely distorted embeddings as shown in [3]]. To preserve the
intrinsic geometry of the manifold, we choose to align local views via rigid transformations [30} 147].
This leads to an optimization problem where, for each local view, we estimate an orthogonal matrix
S € O(d) and a translation vector ¢} € R? that minimize the alignment error:

n
* *\N . 2
(S5, t5)j=1 = angmingg g n > D (ST ki + 1) = (ST Oks + )], 49
k’:lkGNiﬂ/\/j

Several techniques have been proposed to solve this problem, including spectral and semidefinite
relaxations [48], 149} [13] 150} 30, 511, generalized power method [52, 53], generalized Procrustes
analysis [54,155| 4, 156], and Riemannian gradient descent (RGD)[57, 47} 5]]. In our experiments, we
follow the procedure in[47, 5] where we first initialize the rigid transformations using Procrustes
analysis and then refine them using RGD. Once the optimal rigid transformations are obtained, the
global embedding is computed by averaging the transformed local coordinates:

o,  2ren; 5 Ok 1
{7 : ke Nj}

(46)

Note that when the data lies on a closed manifold—as in the case of the Yoda-Bulldog dataset—and
the goal is to recover an embedding in the intrinsic dimension, the above alignment strategy leads to
a collapsed non-injective embedding [S]]. To address this, a tear-enabled rigid alignment framework
was introduced in [S]], which tears the data manifold to avoid collapse. We adopt this framework
to compute a torn embedding in two dimensions of the Yoda-Bulldog dataset, along with gluing
instructions at the tear (see Figure [3¢). For further details regarding the tear-enabled alignment
framework, we refer the reader to [5]].

C.2 Boundary detection

Berry and Sauer in [32} 58] proposed a method to estimate the boundary points using a local statistic
that approximates the normal direction near the boundary and yields a zero vector in the interior. A
robust variant of this approach was recently developed in [31] which combines the doubly stochastic
kernel [59} 60] along with tangent space estimates to detect the boundary points. The method starts
by approximating the normal direction at X; as,

1 n
v, > WiQT(X: - X;). (47)
i=1

J::n—l,

Here W is the doubly stochastic kernel derived from the Gaussian kernel on the data via Sinkhorn
iterations (see [60, [59]] for details), and @); represents an estimate of the orthonormal basis of the
tangent space at X ;. After computing v; for each j € [1,n], boundary points are identified by
thresholding the norm ||v;||,,. In our experiments, we select a fixed percentile of these values as the
threshold, labeling X; as a boundary point if ||v; ||, exceeds this threshold. The same percentile is
used consistently across all methods for a given dataset.
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C.3 Local intrinsic dimension

When the local intrinsic dimension d; at the data point X; is not known apriori, a typical procedure to
estimate it—as used in LPCA—is to compute the eigenvalues A\; > ... > )\, of the local covariance
matrix

Kan Knn
Cj =Y (Xj, = ) (X, — ;)" where p; = [ > X “48)
s=1 M s=1

and then assess the variance explained by the ith principal direction (the i-th eigenvector of C}) at
X via A;/ > ¥ _; M. The local intrinsic dimension at X; is then selected to be the smallest index at
which the cumulative variance explained exceeds a user defined threshold.

This strategy can be readily adapted to our method, with the key difference being that the eigenvalues

AL, ..., Ap are now derived from the surrogate covariance matrix Vo(X j)ﬁqS(X )T, constructed
from the gradients of the low-frequency eigenvectors in LEGO. As demonstrated in our experiments,
this provides a robust estimate of the local intrinsic dimension in the presence of noise and varying
sampling density.

D Noise and hyperparmeter ablation

(a) Swiss roll (b) Truncated torus
— LPCA —— LEGO — LPCA —— LEGO
.0 1.0
3 5 1.0 g 5
< g < g
& e = g
= 805 £ E0s
o5 o5
>z >3
;E <= i
= 004 —L 4L 1 €1 _L 5 0.0 _l 4
0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0
Noise level Noise level

Figure 4: The discrepancy between true and the estimated tangent spaces from the noisy data

X; =Y, +onjvj, j € [1,n], as the noise level o varies between 0 and 1. In our experiments

in SectionEI, we used the maximum noise level i.e. 0 = 1.

(a) Swiss roll (a) Truncated torus
§ 2 1.00 § z 1.00
5075 25075
gﬁ g 0.50 J gn g 0.50
== 0.25 == 0.25
= =
0.00 IR Ll 0.00{ 44AAA0GRGREEE
10 30 50 70 90 110 130 10 30 50 70 90 110 130
L—100 — | 200 ' L—100 — | 200 '
Hyperparameters Hyperparameters

Figure 5: The discrepancy between the true and the estimated tangent spaces on the noisy datasets
described in SectionEl, against several different values of the hyperparameters m and mg in LEGO.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have claimed that the proposed algorithm LEGO provide tangent space
estimates robust to noise. The algorithm is described in Section [2]followed by theoretical
justification in Section [3|and experimental analysis in Section ]

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Although LEGO results in significant improvement in tangent space estimates
than the ones produced by LPCA, it has higher time complexity as mentioned at the end
of Section2]

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the necessary constructs required for derivation of our results are provided
in Section

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The data descriptions are provided in Section d] Our algorithm LEGO is
described in Section 2] A pseudocode is also provided in Appendix [A] A brief explanation
of the downstream tasks are provided in Appendix [C]

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As noted in our previous response, we have included all necessary details in
the paper to enable faithful reproduction of the experimental results.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The values of the hyperparameters are provided in the caption of the figures.
Hyperparameter ablation analysis is provided in Appendix [D}

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The hyperparameter and noise ablation analysis are provided in Appendix [D}

. Experiments compute resources
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10.

11.

12.

13.

14.

15.

16.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: All experiments are carried out on CPU workers, without relying on GPUs or
cloud providers. The tangent space estimates in each experiment are obtained within just a
few seconds.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The source of the puppets data in the experiments is cited.
Guidelines:

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Description of tangent space estimation via LEGO is provided in Section 2]
and a pseudocode is provided in Appendix [A]

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]

Justification: LLM is only used for writing, editing, or formatting purposes.
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