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Abstract

We study the problem of detecting the correlation
between two Gaussian databases X ∈ Rn×d and
Yn×d, each composed of n users with d features.
This problem is relevant in the analysis of social
media, computational biology, etc. We formulate
this as a hypothesis testing problem: under the
null hypothesis, these two databases are statisti-
cally independent. Under the alternative, however,
there exists an unknown permutation σ over the
set of n users (or, row permutation), such that X
is ρ-correlated with Yσ , a permuted version of Y.
We determine sharp thresholds at which optimal
testing exhibits a phase transition, depending on
the asymptotic regime of n and d. Specifically,
we prove that if ρ2d → 0, as d → ∞, then weak
detection (performing slightly better than random
guessing) is statistically impossible, irrespectively
of the value of n. This compliments the perfor-
mance of a simple test that thresholds the sum
all entries of XTY. Furthermore, when d is fixed,
we prove that strong detection (vanishing error
probability) is impossible for any ρ < ρ⋆, where
ρ⋆ is an explicit function of d, while weak detec-
tion is again impossible as long as ρ2d = o(1), as
n → ∞. These results close significant gaps in
current recent related studies.

1. Introduction
Database alignment and the quantification of the relation be-
tween different databases are among the most fundamental
tasks in modern applications of statistics. In many cases, the
observed databases are high-dimensional, unlabeled, noisy,
and scrambled, making the task of inference challenging.
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An example of such an inference task between, say, two
databases, formulated as an hypothesis testing problem, is
the following: under the null hypothesis, the databases are
statistically uncorrelated, while under the alternative, there
exists a permutation which scrambles one database, and for
which the two databases are correlated. Then, observing
the databases, under what conditions can we tell if they are
correlated or not?

It turns out that the above general inference formulation
is relevant in many fields, such as, computational biology
(Singh et al., 2008; Kang et al., 2012), social network analy-
sis (Narayanan & Shmatikov, 2008; 2009), computer vision
(Berg et al., 2005; Cour et al., 2006), and data anonymiza-
tion/privacy based systems. A concrete classical example
is: consider two data sources (e.g., Netflix and IMDb), each
supplying lists of features for a set of entities, say, users.
Those features might be various characteristics of those
users, such as, names, user identifications, ratings. In many
cases, reliable labeling for features is either not available or
deleted (so as to hide sensitive unique identifying informa-
tion) due to privacy concerns. In general, this precludes triv-
ial identification of feature pairs from the two sources that
correspond to the same user. Nonetheless, the hope is that
if the correlation between the two databases is sufficiently
large, then it is possible to identify correspondences between
the two databases, and generate an alignment between the
feature lists (Narayanan & Shmatikov, 2008; 2009).

Quite recently, the data alignment problem, a seemingly sim-
ple probabilistic model which captures the scenario above,
was introduced and investigated in (Cullina et al., 2018; Dai
et al., 2019). Specifically, there are two databases X ∈ Rn×d

and Yn×d, each composed of n users with d features. There
exist an unknown permutation/correspondence which match
users in X to users in Y. For a pair of matched database
entries, the features are dependent according to a known
distribution, and, for unmatched entries, the features are in-
dependent. The goal is to recover the unknown permutation,
and derive statistical guarantees for which recovery is pos-
sible and impossible, as a function of the correlation level,
n, and d. Roughly speaking, this recovery problem is well-
understood for a wide family of probability distributions.
For example, in the Gaussian case, denoting the correlation
coefficient by ρ, it was shown in (Dai et al., 2019) that if
ρ2 = 1− o(n−4/d) then perfect recovery is possible, while
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impossible if ρ2 = 1− ω(n−4/d), as n, d → ∞.

The detection counterpart of the above recovery problem
was also investigated in (K & Nazer, 2022a;b). Here, as
mentioned above, the underlying question is, given two
databases, can we determine whether they are correlated?
It was shown that if ρ2d → ∞ then efficient detection
is possible (with vanishing error probability), simply by
thresholding the sum of entries of XTY. On the other hand,
it was also shown that if ρ2d

√
n → 0 and d = Ω(log n),

then detection is information-theoretically impossible (i.e.,
lower bound), again, as n, d → ∞. Unfortunately, it is
evident that there is a substantial gap between those two
bounds. Most notably, the aforementioned upper bound
is completely independent of n, implying that it does not
play any significant role in the detection problem, while the
lower bound depends on n strongly. This sets precisely the
main goal of this paper: we would like to characterize the
detection boundaries tightly, as a function of n and d.

At first glance, one may suspect that the source for this
gap is the proposed algorithm. Indeed, note that under the
alternative distribution, the latent permutation represents a
hidden correspondence under which the databases are cor-
related. Accordingly, the “thresholding the sum” approach
ignores this hidden combinatorial structure, and therefore,
seemingly suboptimal. However, it turns out that in the
regime where d → ∞, independently of n, this simple ap-
proach is actually surprisingly optimal: we prove that when-
ever ρ2d → 0, then weak detection (performing slightly
better than random guessing) is information-theoretically
impossible, while if ρ2 ⪅ 1/d (that is, ρ2 ≤ (1 − ε)/d
for some ε > 0), then strong detection (vanishing error
probability) is information-theoretically impossible. This
behaviour, however, changes when d is fixed. In this case,
we prove that strong detection is impossible for any ρ < ρ⋆,
where ρ⋆ is an explicit function of d, while possible when
ρ = 1 − o(n−2/(d−1)). The later is achieved by counting
the number of empirical pairwise correlations that exceed as
certain threshold. Finally, we prove that weak detection (per-
forming slightly better than random guessing) is impossible
when ρ2d → 0, while possible for any ρ > ρ⋆⋆, where ρ⋆⋆

is again an explicit function of d. The bounds from previous
work and our new results described above are summarized
in Table 1, shown at the top of the page.

We now mention other related work briefly. In (Dai et al.,
2020) the problem of partial recovery of the permutation
aligning the databases was analyzed. In (Shirani et al., 2019)
necessary and sufficient conditions for successful recovery
matching using a typicality-based framework were estab-
lished. Furthermore, (Bakirtas & Erkip, 2021) and (Bakirtas
& Erkip, 2022) proposed and explored the problem of per-
mutation recovery under feature deletions and repetitions,
respectively. Recently, the problem of joint correlation de-

tection and alignment of Gaussian database was analyzed in
(Tamir, 2022). Finally, we note that the problem of database
alignment and detection is closely related to a wide verity
of planted matching problems, specifically, the graph align-
ment problem, with many exciting and interesting results,
and useful mathematical techniques, see, e.g., (Moharrami
et al., 2021; Ding et al., 2021; Pedarsani & Grossglauser,
2011; Ding et al., 2018; Wu et al., 2020; Mao et al., 2021;
Wu et al., 2022; Ganassali, 2020), and many references
therein.

Notation. For any n ∈ N, the set of integers {1, 2, . . . , n}
is denoted by [n]. Let Sn denotes the set of all permuta-
tions on [n]. For a given permutation σ ∈ Sn, let σi denote
the value to which σ maps i ∈ [n]. We use log to denote
the natural logarithm function (i.e., of base e). Random
vectors are denoted by capital letters such as X with trans-
pose XT . A collection of n random vectors is written as
X = (X1, . . . , Xn). The notation (X1, . . . , Xn) ∼ P⊗n

X

means that the random vectors (X1, . . . , Xn) are indepen-
dent and identically distributed (i.i.d.) according to PX .
We use N (η,Σ) to represent the multivariate normal distri-
bution with mean vector η and covariance matrix Σ. Let
Poisson(λ) denote the Poisson distribution with parame-
ter λ. The n × n identity matrix is denoted by In×n, and
0d denotes the all zero d-dimensional column vector. Let
L(Y ) denote the law, that is, the probability distribution,
of a random variable Y . For probability measures P and
Q, let dTV(P,Q) = 1

2

∫
|dP − dQ| denote the total varia-

tion distance. For a probability measure µ on a space Ω,
we use µ⊗d for the product measure of µ (d times) on the
product space Ωd. For a measure ν ≪ µ (that is, a measure
absolutely continuous with respect to µ), we denote (by
abuse of notation) the Randon-Nikodym derivative ν with
respect to µ by ν

µ . For functions f, g : N → R, we say that
f = O(g) (and f = Ω(g)) if there exists c > 0 such that
f(n) ≤ cg(n) (and f(n) ≥ cg(n)) for all n. We say that
f = o(g) if limn→∞ f(n)/g(n) = 0, and that f = ω(g) if
g = o(f).

2. Problem Formulation and Main Results
Probabilistic Model. Consider the following binary hy-
pothesis testing problem. Under the null hypothesis H0, the
Gaussian databases X and Y are generated independently
with X1, . . . , Xn, Y1, . . . , Yn ∼ N (0d, Id×d). Let P0 de-
note the resulting distribution over (X,Y). Under the alter-
nate hypothesis H1, the databases X and Y are correlated
with permutation σ for some unknown σ ∈ Sn and some
known correlation coefficient ρ ∈ [−1, 1] \ {0}. Namely,

H0 : (X1, Y1), . . . , (Xn, Yn)
i.i.d∼ N⊗d (02, I2×2)

H1 : (X1, Yσ1
), . . . , (Xn, Yσn

)
i.i.d∼ N⊗d (02,Σρ) ,

(1)
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Weak Detection Strong Detection

Asymptotics Possible Impossible Possible Impossible

n, d → ∞ Ω
(
d−1

)∗
o
(
d−1

)
ω
(
d−1

)∗
(1− ε)d−1

d → ∞, n constant Ω
(
d−1

)∗
o
(
d−1

)
ω
(
d−1

)∗
O
(
d−1

)
n → ∞, d constant ρ2 ≥ 60 log 2

d

∗
o(1) 1− o(n− 2

d−1 ) ρ⋆(d)

Table 1. A summary of our bounds on ρ2, for weak and strong detection, as a function of the asymptotic regime. Bounds marked with ∗
follows from the upper-bound from (K & Nazer, 2022b).

for some permutation σ ∈ Sn, where

Σρ ≜

[
1 ρ
ρ 1

]
. (2)

For a fixed σ ∈ Sn, we denote the joint distribution measure
of (X,Y) under the hypothesis H1 by PH1|σ . See Fig. 1 for
a visual illustration of our probabilistic model.

Learning Problem. A test function for our problem is a
function ϕ : Rn×d×Rn×d → {0, 1}, designed to determine
which of the hypothesis H0,H1 occurred. The risk of a test
ϕ is defined as the sum of its Type-I and (worst-case) Type-II
error probabilities, i.e.,

R(ϕ) ≜ PH0 [ϕ(X,Y) = 1] + max
σ∈Sn

PH1|σ[ϕ(X,Y) = 0].

(3)

The minimax risk for our hypothesis detection problem is

R⋆ ≜ inf
ϕ:Rn×d×Rn×d→{0,1}

R(ϕ). (4)

We remark that R is a function of ρ, d, and n, however, we
omit them from our notation for the benefit of readability.

Definition 2.1. A sequence (ρ, d, n) = (ρk, dk, nk)k is:

1. Admissible for strong detection if limk→∞ R⋆ = 0.
2. Admissible for weak detection if lim supk→∞ R⋆ < 1.

Clearly, admissibility of strong detection implies the admis-
sibility of weak detection.

While admissibility of strong detection clearly refers to the
existence of algorithms that correctly detects with probabil-
ity that tends to 1, weak detection implies the the existence
of algorithms which are asymptotically better then randomly
guessing which of the hypothesis occurred. A useful way
to rule out the possibility of weak/strong detection is by
considering the relaxed average-case problem, where the
permutation is uniformly drawn rather then been arbitrary.
In that case, the risk function is characterized by the total

variation distance between the null hypothesis distribution
PH0

and the distribution under the alternative hypothesis
PH1

. In particular, it can be shown that,

dTV(PH0 ,PH1) = o(1) =⇒ lim
k→∞

R⋆ = 1, (5)

and

dTV(PH0
,PH1

) ≤ 1− Ω(1) =⇒ lim inf
k→∞

R⋆ > 0, (6)

which correspond to the impossibility of weak and strong
detection, respectively. We further discuss the relations
specified in (5) and (6) in Appendix B.

Main Results. In this section, we present our results con-
cerning the thresholds for admissibility and impossibility of
weak and strong detection, in different asymptotic regimes:
(a) both n and d tends to infinity, (b) n is a constant and
d tends to infinity, and (c) d is a constant and n tends to
infinity. We begin with our upper-bounds. As was men-
tioned in the Introduction, (K & Nazer, 2022b) proposed
the following simple test:

ϕsum(X,Y) ≜ 1

sign(ρ)
n∑

i,j=1

XT
i Yj > |ρ|dn

2

 . (7)

We have the following result.

Theorem 2.2. (K & Nazer, 2022b) Consider the detection
problem in (1). Then,

R(ϕsum) ≤ 2 · exp
(
−dρ2

60

)
. (8)

The implication of Theorem 2.2 is that if ρ2 = ω(d−1),
then ϕsum achieves strong detection. Furthermore, if ρ2 >
60 log 2

d , then ϕsum achieves weak detection. Note that the
upper bound in (8) is completely independent of n. We
observe that in the case where d is constant, the bound (8)
can never guarantee strong detection using ϕsum, not even
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n

d

XH1
YH1

XH0
YH0
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σ1

σ2
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σn

Figure 1. An illustration of the probabilistic model. On the left are the databases X and Y under the hypothesis H1, where correlated
vectors are marked with a similar color. On the right are the uncorrelated databases under the null hypothesis.

in the trivial case where ρ2 = 1 (where detection with zero
risk is possible). It should be emphasized that the above
phenomenon is inherent; it can be shown that the boundary
ρ2 = ω(d−1) associated with R(ϕsum) cannot be improved
and is not an artifact of the bounding technique used to
establish (8).

Aiming for strong detection in the scenario where d is
constant (and ρ2 is smaller than unity), we propose the
following alternative detection algorithm. For i ∈ [n],
let us define X̄i ≜ Xi

∥Xi∥2
and Ȳi ≜ Yi

∥Yi∥2
. Also, let

Wij(X,Y) ≜ 1
{
sign(ρ)X̄T

i Ȳj ≥ |ρ|
}

, for i, j ∈ [n]. Then,
we define the test

ϕcount(X,Y) ≜ 1


n∑

i,j=1

Wij(X,Y) ≥
1

2
nPd,ρ

 , (9)

where Pd,ρ ≜ Pρ

(
X̄T

1 Ȳ1 ≥ ρ
)
, and

Pρ ≜ N⊗d

([
0
0

]
,

[
1 ρ
ρ 1

])
. (10)

We study the possibility and impossibility of our detection
problem in multiple asymptotic regimes. These regimes are
characterized by sequences of the parameters (ρ, d, n) =
(ρk, dk, nk)k∈N. We consider the scenarios where dk and
nk are either bounded or diverge to infinity. Accordingly,
whenever we use asymptotic notations, such as, ρ2 = o(·),
ρ2 = Ω(·), etc., it should be understood in the context of the
sequences above. For example, the condition ρ2 = o(d−1)
means that the sequence (ρ, d, n) satisfies ρ2kdk → 0, as
k → ∞.

The following theorem, shows that as long as ρ tends to one
sufficiently fast, strong detection is possible.

Theorem 2.3. Consider the detection problem in (1) and
fix 2 ≤ d ∈ N. Then, R(ϕcount) → 0, as n → ∞, if
ρ2 = 1− o(n− 2

d−1 ).

Prior to our work, for the case where d is fixed and inde-
pendent of n, it was not clear if strong detection (vanishing
error probabilities) can be even achieved. In Theorem, it
is shown for the first time that strong detection is possible
under non-trivial conditions (i.e, ρ2 < 1). We also point out
the fact that our analysis hols only whenever d ≥ 2. The
case where d = 1, on the other hand, remains a mystery. It
turns out that many other alternative tests fail when d = 1
as well. We suspect that this phenomenon might be inherent
to the probabilistic structure whenever d = 1, rather then an
artifact of our algorithms. We leave this intriguing question
open for future work.
Remark 2.4 (Recovery vs. detection). As mentioned in
the introduction, the recovery problem of the permutation
σ was considered in (Dai et al., 2019). It was shown that
recovery is possible via the maximum-likelihood estimator
if ρ2 = 1− o(n− 4

d ), while recovery is impossible if ρ2 =

1 − ω(n− 4
d ). Thus, Theorem 2.3 above, shows that the

detection problem is statistically easier than recovery even
when d is fixed. In fact, denoting the maximum-likelihood
estimator by σ̂ML, consider the following test

ϕmax(X,Y) ≜ 1

{
sign(ρ)

n∑
i=1

XT
i Yσ̂ML

i
> |ρ|dn

2

}
. (11)

It was claimed in (K & Nazer, 2022b) that as a corollary of
(Dai et al., 2019), this test achieves strong detection under
the same recovery guarantee, namely, if ρ2 = 1− o(n− 4

d ).
However, we suspect that this claim is in fact imprecise, as
the authors overlooked the analysis of the Type-I error prob-
ability. Furthermore, it should be mentioned that (Tamir,
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2022) proposed and analyzed a similar test as in (9). It was
shown that in the case where d is constant, detection is pos-
sible if ρ2

4 = 1−o(n− 4
d ). However, this condition is clearly

meaningless since |ρ| ≤ 1. Finally, we also mention that in
other regimes, the threshold for the recovery problem has a
significantly different behaviour compared to the detection
problem; for example, if d = ω(log n), then the recovery
barrier is logn

d , i.e., recovery is possible (impossible) if
ρ2 ≫ logn

d (ρ2 ≪ logn
d ). For detection, on the other hand,

the barrier is 1
d , independently of n.

In Theorem 2.5, we provide lower bounds, establishing
thresholds for which weak detection is impossible.

Theorem 2.5 (Impossibility of weak detection). Weak de-
tection is impossible as long as ρ2 = o(d−1). That is, for a
sequence (ρ, d, n) = (ρk, dk, nk)k such that ρ2 = o(d−1):

• If d is any function of k, and n → ∞ then
limk→∞ R⋆ = 1.

• If n is constant and d → ∞ then limk→∞ R⋆ = 1.

Namely, (ρ, d, n) is not admissible for weak detection.

Our second lower bound concerns with impossibility of
strong detection. In the case where d is constant. In The-
orem 2.6 we prove that for any d there exists ρ⋆ = ρ⋆(d)
such that for ρ2 < ρ⋆, strong detection is impossible. In
the remaining cases, we show that the function d−1 is a
threshold for strong detection.

Theorem 2.6 (Impossibility of strong detection). A se-
quence (ρ, d, n) is not admissible for strong detection at
either of the following scenarios:

1. d ∈ N and ρ ∈ (−1, 1) are constants such that d <
log(ρ2)

log(1−ρ2) , and n → ∞.
2. n, d → ∞, and ρ2 < (1− ε)d−1 for some fixed ε > 0

which does not depend on n and d.
3. d → ∞, n is constant, and ρ2 = O(d−1).

We remark that the function d⋆(ρ2) = log(ρ2)
log(1−ρ2) is invert-

ible as a function (0, 1) → (0,∞). Denoting the inverse
function by ρ⋆, the condition established in Theorem 2.6 is
equivalent to ρ2 < ρ⋆(d).

3. Proofs
In this section, we present some of the proofs of our results.
Detailed proofs are relegated to the appendix.

3.1. Proof of Theorem 2.3

To prove Theorem 2.3 we use the first and second moment
methods, which reduce to the task of bounding the proba-
bilities that the inner product between two random vectors
(either independent or ρ-correlated) exceed a certain thresh-

old. To that end, we apply certain powerful integration
techniques, to estimate the volumes of high-dimensional
spherical caps.

Without loss of generality we assume below that ρ > 0.
Recall that for i ∈ [n], we define X̄i ≜ Xi

∥Xi∥2
and

Ȳi ≜ Yi

∥Yi∥2
. Furthermore, let Qd,ρ ≜ P0

(
X̄T

1 Ȳ1 ≥ ρ
)
,

and Pd,ρ ≜ Pρ

(
X̄T

1 Ȳ1 ≥ ρ
)
, where Pρ is defined in (10),

and P0 ≡ Pρ=0. Consider the test in (9). We start by bound-
ing the Type-I error probability. Markov’s inequality implies
that

PH0 (ϕcount = 1)

= PH0

 n∑
i,j=1

1
{
X̄T

i Ȳj ≥ ρ
}
≥ 1

2
nPd,ρ

 (12)

≤ 2n2Qd,ρ

nPd,ρ
. (13)

On the other hand, we bound the Type-II error probability
as follows. Under H1, since our proposed test is invariant
to reordering of X and Y, we may assume without loss of
generality that the latent permutation is the identity one, i.e.,
σ = Id. Then, Chebyshev’s inequality implies that

PH1
(ϕcount = 0)

= PH1

 n∑
i,j=1

1
{
X̄T

i Ȳj ≥ ρ
}
<

1

2
nPd,ρ

 (14)

≤ PH1

(
n∑

i=1

1
{
X̄T

i Ȳi ≥ ρ
}
<

1

2
nPd,ρ

)
(15)

≤
4 · Varρ

(∑n
i=1 1

{
X̄T

i Ȳi ≥ ρ
})

n2P2
d,ρ

, (16)

where Varρ denotes the variance with respect to Pρ, which
for the random variable

∑n
i=1 1

{
X̄T

i Ȳi

}
equals to the vari-

ance under the hypothesis H1. Noticing that

Varρ

(
n∑

i=1

1
{
X̄T

i Ȳi ≥ ρ
})

=

n∑
i=1

Varρ
(
1
{
X̄T

i Ȳi ≥ ρ
})

(17)

= nPd,ρ(1− Pd,ρ), (18)

we finally obtain,

PH1
(ϕcount = 0) ≤ 4(1− Pd,ρ)

nPd,ρ
≤ 4

nPd,ρ
. (19)

Next, we derive bounds on Qd,ρ and Pd,ρ. We start with a
lower bound on Pd,ρ. Let Z1, . . . , Zd be i.i.d N (0, Id×d)

random vectors, independent with X1, . . . , Xn. Let Y ′
i ≜

5
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ρXi+
√
1− ρ2Zi. We note that under Pρ, (X,Y) is equally

distributed as (X,Y′). Thus, for our analysis, we shall as-
sume without loss of generality that Y = Y′. Under this
assumption, we show in the appendix that X̄T

1 Ȳ1 ≥ ρ holds
if

cos(φX1Z1) ≥
ρ

2
√
1− ρ2

(
∥Z1∥2
∥X1∥2

−
∥X1∥2
∥Z1∥2

)
,

where φX1Z1
denotes the angle between X1 and Z1. Since

φX1Z1
is statistically independent of ∥X1∥2 and ∥Z1∥2, we

get that

Pd,ρ = Pρ

(
X̄T

1 Ȳ1 ≥ ρ
)

≥ P0

[
cos(φX1Z1

) ≥ ρ

2
√
1− ρ2

(
∥Z1∥2
∥X1∥2

−
∥X1∥2
∥Z1∥2

)]
≥ P0 (cos(φX1Z1) ≥ 0, ∥X1∥2 ≥ ∥Z1∥2)
= P0 (cos(φX1Z1) ≥ 0) · P0 (∥X1∥2 ≥ ∥Z1∥2)
= 1/4. (20)

We now derive an upper bound on Qd,ρ. For a fixed vec-
tor y1 ∈ Sd−1 on the d-dimensional sphere, let us define
Bρ(y1) ≜

{
x1 ∈ Sd−1 : xT

1 y1 ≥ ρ
}

. Since under P0, X̄1

and Ȳ1 are independently and uniformly distributed on Sd−1

we have

Qd,ρ =

∫
Sd−1

Vol(Bρ(y1))

Vol(Sd−1)2
dy1, (21)

where the volume of a set A ⊂ Rd is defined as Vol(A) =∫
A dx, where the integration is with respect to Lebesgue’s

measure on the sphere. Let us bound Vol(Bρ) from above.
To that end, define the set

B̃ρ(y1) =

{
v ∈ Rd :

v

∥v∥
∈ Bρ(y1)

}
(22)

=
{
v ∈ Rd : vT y1 ≥ ρ ∥v∥

}
. (23)

Let f : (v1, . . . , vd) → (φ1, . . . , φd−1, r) denote the spher-
ical coordinates transformation and let Pd−1 denote the
projection of an element from Rd onto its first d− 1 coordi-
nates. We observe that since B̃ρ(y1) is the cone defined by
the spherical cap Bρ(y1), it follows that,

f(B̃ρ(y1)) = P (f(Bρ(y1)))× [0,∞]. (24)

Finally, let µ denote the Gaussian measure of a multivariate
random vector with mean y1, and covariance matrix Σ =
σ2Id×d, where σ2 ≥ 0. We denote the integration with
respect to dφ1dφ2 . . . , dφd−1dr by dφdr an obtain

1 =

∫
x∈Rd

µ(dx)

=

∫
Rd

1

(2πσ2)d/2
e−

1
2σ2 ∥v−y1∥2

2dv

≥
∫

B̃ρ(y1)

1

(2πσ2)d/2
e−

1
2σ2 ∥v−y1∥2

2dv

(a)

≥
∫

B̃ρ(y1)

1

(2πσ2)d/2
e−

1
2σ2 (∥v∥2−2ρ∥v∥+1)dv

(b)
=

1

(2πσ2)d/2

∫
f(B̃ρ(y1))

e−
1

2σ2 (r2−2ρr+1)·

(
rd−1

d−1∏
i=1

sind−1−i(φi)

)
dφdr

(c)
=

1

(2πσ2)d/2

∫
P (f(Bρ(y1))

(
d−1∏
i=1

sind−1−i(φi)

)
dφ

︸ ︷︷ ︸
Vol(Bρ(y1))

·

∞∫
0

rd−1e−
1

2σ2 (r2−2ρr+1)dr

≥ Vol(Bρ(y1))

(2πσ2)d/2

∞∫
ρ

ρd−1e−
1

2σ2 (r2−2ρr+1)dr

=
Vol(Bρ(y1))ρ

d−1

(2πσ2)(d−1)/2
e−

1−ρ2

2σ2

∞∫
ρ

1

(2πσ2)1/2
e−

(r−ρ)2

2σ2 dr

=
ρd−1

(2πσ2)(d−1)/2
e−

1−ρ2

2σ2 Vol(Bρ(y1))
1

2
,

where (a) follows from the definition of B̃ρ(y1) , (b) follows
from change of variables and (c) follows from (24). Thus,
for every y1 ∈ Sd−1,

Vol(Bρ(y1)) ≤ min
σ2≥0

2e
1−ρ2

2σ2 + d−1
2 log(2πσ2)ρ1−d (25)

= 2e
d−1
2 log

(
2πe 1−ρ2

d−1

)
ρ1−d. (26)

On the other hand, it is well-known that,

Vol(Sd−1) =
2πd/2

Γ(d/2)
≥ 2πd/2

(d/2)d/2−1
=

4

d
e

d
2 log(2π/d),

(27)

where we have used the fact that Γ(x) < xx−1, for x > 1
(see, e.g., (Anderson & Qiu, 1997)). Combining (27), (26),
and (21), we obtain

Qd,ρ ≤ f(d)e
d−1
2 log(1−ρ2)ρ1−d, (28)

where f(d) ≜ d
2

(
ed
d−1

)d/2 (
2πe
d−1

)1/2
. Finally, using (20)

and (28), we see that (13) can be further upper bounded as

PH0 (ϕcount = 1) ≤ 8nf(d)e
d−1
2 log(1−ρ2)ρ1−d (29)
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= 8f(d)n(ρ−2 − 1)
d−1
2 , (30)

while (74) can be upper bounded as,

PH1
(ϕcount = 0) ≤ 16

n
. (31)

Thus, for a fixed d ≥ 2, it is clear that PH1
(ϕcount = 0) →

0, as n → ∞, and PH0
(ϕcount = 1) → 0, if n(ρ−2 −

1)
d−1
2 = o(1). The later holds if ρ−2 = 1 + o(n−2/(d−1)),

which implies that ρ2 = 1− o(n−2/(d−1)), as stated.

3.2. Proof of Theorem 2.5

We focus on weak detection in the regime where n, d → ∞.
As in many detection problems, evaluating the minimax risk
function opposes a great challenge due to the error term
obtained by maximizing over the error for all permutations
in Sn. A well known strategy for overcoming this inherent
obstacle is by considering the softer average-case version
of the problem. Let π be the uniform measure on Sn, and
let us denote by PH1

the probability measure obtained by
averaging PH1|σ with respect to π. For a test ϕ, we consider
the Bayesian risk function given by

R̄(ϕ) ≜ PH0
[ϕ(X,Y) = 1] + Eσ∼π

[
PH1|σ[ϕ(X,Y) = 0]

]
,

and the Bayesian risk for our problem:

R̄⋆ ≜ inf
ϕ

R̄(ϕ).

Clearly, any test ϕ satisfies R(ϕ) ≥ R̄(ϕ), and therefore
R⋆ ≥ R̄⋆. We conclude that in order to prove Theorem 2.5, it
is sufficient to show that under the given assumptions, R̄⋆ =
1 + o(1). Using a well-known equivalent characterization
of the Bayesian risk function by the total variation distance
and Cauchy-Schwartz inequality one shows that

R⋆ ≥ R̄⋆ = 1− dTV(PH0 ,PH1) ≥ 1− 1

2

√
E0[L2]− 1,

(32)
where L ≜

PH1

PH0
is the likelihood ratio, and the expectation

is taken with respect to PH0 . Using the bound given in
(32), it is sufficient to show that under the assumptions of
Theorem 2.5, E0

[
L2
]
≤ 1 + o(1).

Inspired by (Wu et al., 2020), K and Nazer (K & Nazer,
2022b) gave an exact description of E0

[
L2
]

using the distri-
bution of cycles in a uniformly drawn random permeation.
In order to prove Theorem 2.5, we shall carefully analyse
E0[L

2], and improve the bounds proved (K & Nazer, 2022b).
The first step in the calculation calls for a use of Ingster-
Suslina method, stating that by Fubini’s theorem, E0[L

2]
may be equivalently written as

E0[L
2] = Eπ⊥⊥π′

[
E0

[PH1|π

PH0

·
PH1|π′

PH0

]]
, (33)

where the expectation is taken with respect to the inde-
pendent coupling of π and π′, two copies of the uniform
measure on Sn. For fixed permutations σ and σ′, we note
that PH1|σ,PH1|σ′ and P0 are absolutely continuous with
respect to Lebesgue’s measure on R2×d×n and therefore we
have

PH1|σ

PH0

=
fH1|σ

fH0

, and
PH1|σ′

PH0

=
fH1|σ′

fH0

,

where fHi denotes the Radon-Nikodym derivative of PHi

with respect to Lebesgue’s measure, which is the density
function (X,Y) under the corresponding hypothesis. Let
Nρ : R2×d :→ R+ denote the density function of a pair of
random vectors distributed as

N⊗d

([
0
0

]
,

[
1 ρ
ρ 1

])
.

We note that

fH1|σ(X,Y)

fH0
(X,Y)

fH1|σ′(X,Y)

fH0
(X,Y)

=

n∏
i=1

Nρ(Xi, Yσi)

N0(Xi, Yσi
)

Nρ(Xi, Yσ′
i
)

N0(Xi, Yσ′
i
)
. (34)

In order to proceed with the calculation, we make two key
observations. First, we note that the distribution under the
null hypothesis (H0) is invariant to reordering the coordi-
nates. In a similar manner, the uniform measure on Sn, is
invariant under composition with a fixed permutation. Thus,

Eπ⊥⊥π′

[
E0

[PH1|π

PH0

·
PH1|π′

PH0

]]
= Eπ

[
E0

[PH1|π

PH0

·
PH1| Id

PH0

]]
. (35)

We consider the product given in (34) for a fixed σ ∈ Sn
and σ′ = Id, which we denote by Zσ . The second key obser-
vation, is that Zσ can be decomposed to independent terms,
corresponding to the cycles of the permeation σ. We recall
that a cycle of a permutation σ is a string (i0, i2, . . . , i|C|−1)
of elements in [n] such that σ(ij) = ij+1 mod |C| for all j.
If |C| = k, we call C a k-cycle. For a fixed cycle C, we
denote

ZC ≜
∏
i∈C

Nρ(Xi, Yσi
)

N0(Xi, Yσi
)

Nρ(Xi, Yi)

N0(Xi, Yi)
. (36)

Since the set of cycles of a permutation induce a partition
of [n], the random variables {ZC}C , corresponding to all
cycles of σ, are independent (with respect to PH0

) and

Zσ =
∏
C

ZC . (37)

7



Phase Transitions in the Detection of Correlated Databases

The following lemma states that for a fixed cycle C, E0[ZC ]
depends on ρ and |C|. The proof of the lemma is based
on the properties of Gaussian random vectors. For further
details the reader is referred to Lemma 10 in (K & Nazer,
2022b).

Lemma 3.1. For a fixed cycle C of a permutation σ,

E0[ZC ] =
1

(1− ρ2|C|)d
. (38)

For a fixed permutation σ ∈ Sn and k ∈ [n], let Nk(σ)
denote the number of k-cycles of σ. Combining (33), (35),
(37), and Lemma 3.1 we obtain

E0[L
2] = Eπ

[∏
C

ZC

]
= Eπ

[
n∏

k=1

1

(1− ρ2k)dNk

]
. (39)

We carefully bound (39) from above, utilizing the statistical
properties of k-cycles in a uniformly distributed random
permutation. We shall require several technical results. The
following lemma concerns the approximation of the joint
distribution of k-cycles by independent Poisson random
variables.

Lemma 3.2. (Arratia & Tavaré, 1992)[Theorem 2] Let
1 ≤ k ≤ n be an integer, and let Z1 . . . , Zk be inde-
pendent random variables such that for all 1 ≤ i ≤ k,
Zi ∼ Poisson

(
i−1
)
. Then, the total variation between the

law of N1, . . . , Nk and Z1, . . . , Zk satisfies

dTV(L(N1, N2, . . . , Nk),L(Z1, Z2, . . . , Zk)) ≤ F
(n
k

)
,

where F (x) is a monotone decreasing function satisfying
logF (x) = −x log x(1 + o(1)) as x → ∞ and we recall
that L(·) denote the law, that is, the probability distribution,
of a given random variable.

Lemma 3.3. Let 1 ≤ m ≤ n be an integer, and let
Z1 . . . , Zm be independent random variables such that for
all 1 ≤ i ≤ m, Zi ∼ Poisson

(
i−1
)
. Then,

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
,

where c(d, ρ2) = d(d+1)
2(1−ρ2)d+2 , and therefore if ρ2 = o(d−1),

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
≤ 1 + o(1). (40)

Proof. By rearranging the expression in the expectation and
using independence we have

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
=

m∏
k=1

Eπ

[(
1

1− ρ2k

)dZk
]

=

m∏
k=1

Eπ

[
exp
(
−dZk log

(
1− ρ2k

))]
(41)

(a)
=

m∏
k=1

exp

(
1

k

(
e−d log(1−ρ2k) − 1

))
(42)

=

m∏
k=1

exp

(
1

k

(
1

(1− ρ2k)d
− 1

))
. (43)

where (a) is followed by the definition of the moment gener-
ating function of a Poisson random variable. We prove in
the appendix that for any k > 0,

1

(1− ρ2k)d
≤ 1 + dρ2k +

d(d+ 1)

2(1− ρ2k)(d+2)
ρ4k

≤ 1 + dρ2k + c(d, ρ2)ρ4k, (44)

where

c(d, ρ2) ≜
d(d+ 1)

2(1− ρ2)(d+2)
ρ4k. (45)

Therefore, we get

m∏
k=1

exp

(
1

k

(
1

(1− ρ2k)d
− 1

))

≤ exp

(
d

m∑
k=1

ρ2k

k
+ c(d, ρ2)

m∑
k=1

ρ4k

k

)
(46)

≤ exp

(
d

∞∑
k=1

ρ2k

k
+ c(d, ρ2)

∞∑
k=1

ρ4k

k

)
(47)

= exp
(
−d log(1− ρ2)− c(d, ρ2) log(1− ρ4)

)
(48)

(a)

≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
, (49)

where (a) follows from the well known inequality log(1 +
x) ≥ x/(1+x), for x > −1. In the case where ρ = o(d−1)
clearly dρ2 = o(1). Furthermore,

c(d, ρ2)ρ4 =
d(d+ 1)

2(1− ρ2)d+2
ρ4

≤ 1

2
exp((d+ 2)ρ2)d(d+ 1)ρ4

= exp(o(1)) · o(1) = o(1). (50)

In particular, we get

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
≤ 1 + o(1). (51)

We are now in a position to prove Theorem 2.5, in the case
where n, d → ∞. The idea of the proof is as follows: we

8
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consider the expectation of the product given in (39). In
the case that n → ∞, we show that the product of the last
n− log n terms is always upper-bounded by 1 + o(1). For
the expectation of the product of the first log n terms, use
the Poisson approximation of {Nk}k given in Lemma 3.2
and the estimation in that case, given in Lemma 3.3.

We assume that n, d → ∞ and ρ2 = o(d−1) or ρ2 <
(1− ε)d−1. We choose m = ⌈log n⌉ and we get

dnρ2m ≤ (dρ2) · n(ρ2)log(n)−1 (52)

= (dρ2)n(ρ2)log(
n
e ) (53)

= e(dρ2)
(n
e

)1+log ρ2

. (54)

Since ρ2 < d−1 (which is clearly true for sufficiently large
d in the particular case where ρ2 = o(d−1)), and d → ∞,
we have log ρ2 → −∞ as n → ∞. In the appendix we
prove that the tail of the product may be simply bounded as
follows:

n∏
k=m=logn

(
1

1− ρ2k

)dNk

≤ exp

(
dnρ2m

1− ρ2m

)
(55)

= exp(o(1)) = 1 + o(1).
(56)

Next, let {Zk}k be independent Poisson
(
k−1

)
random vari-

ables as in Lemma 3.2. Since
∑m

k=1 Nk ≤ n with probabil-
ity 1, using Lemma 3.2 we show in the appendix that

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dNk
]
≤ Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]

+ dTV(L(Nm
1 ),L(Zm

1 ))

(
1

1− ρ2

)dn

(a)

≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ F

( n

m

)
·
(

1

1− ρ2

)dn

,

where (a) follows from Lemma 3.3. By Lemma 3.2, we can
also show that

log

(
F

(
n

⌈log n⌉

)(
1

1− ρ2

)dn
)

≤ −n(1− dρ2 + o(1)),

(57)

which tends to −∞ as ρ2 = o(d−1). This implies that

F

(
n

⌈log n⌉

)(
1

1− ρ2

)dn

= o(1), (58)

and therefore,

Eπ

⌈logn⌉∏
k=1

(
1

1− ρ2k

)dNk



≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ o(1) (59)

= 1 + o(1), (60)

where the last equality follows from the assumption that
ρ2 = o(d−1). Combining (55) and (60) together we con-
clude:

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]

≤ Eπ

⌈logn⌉∏
k=1

(
1

1− ρ2k

)dNk n∏
k=⌈logn⌉

(
1

1− ρ2k

)dNk


= (1 + o(1)) · Eπ

⌈logn⌉∏
k=1

(
1

1− ρ2k

)dNk

 (61)

= (1 + o(1)). (62)

Finally, we combine (33), (39) and (62), and obtain:

R⋆ ≥ 1−
√
E0[L2]− 1 (63)

= 1−

√√√√Eπ

[
n∏

k=1

1

(1− ρ2k)dNk

]
− 1 (64)

≥ 1−
√
1 + o(1)− 1 (65)

= 1− o(1). (66)

4. Conclusions
In this paper, we have studied the asymptotic thresholds for
weak and strong sense detection in the Gaussian correlated
databases problem. Our results, summarized in Table 1,
resolve significant gaps in current literature (where the focus
was exclusively on the regime where n, d → ∞). When
d is fixed and n → ∞, the picture is incomplete and a
gap between our bounds is evident. Closing this gap is an
intriguing open problem.
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Arratia, R. and Tavaré, S. The cycle structure of random
permutations. The Annals of Probability, pp. 1567–1591,
1992.

9



Phase Transitions in the Detection of Correlated Databases

Bakirtas, S. and Erkip, E. Database matching under col-
umn deletions. 2021 IEEE International Symposium on
Information Theory (ISIT), pp. 2720–2725, 2021.

Bakirtas, S. and Erkip, E. Database matching under column
repetitions. ArXiv, abs/2202.01730, 2022.

Berg, A., Berg, T., and Malik, J. Shape matching and object
recognition using low distortion correspondences. In
Proc. Computer Vision and Pattern Recognition, 2005.

Cour, T., Srinivasan, P., and Shi, J. Balanced graph matching.
In Proceedings of the 19th International Conference on
Neural Information Processing Systems, NIPS’06, pp.
313–320, Cambridge, MA, USA, 2006. MIT Press.

Cullina, D., Mittal, P., and Kiyavash, N. Fundamental
limits of database alignment. In 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 651–655.
IEEE Press, 2018.

Dai, O. E., Cullina, D., and Kiyavash, N. Database align-
ment with gaussian features. In Chaudhuri, K. and
Sugiyama, M. (eds.), Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine Learning
Research, pp. 3225–3233. PMLR, 16–18 Apr 2019.

Dai, O. E., Cullina, D., and Kiyavash, N. Achievabil-
ity of nearly-exact alignment for correlated gaussian
databases. In 2020 IEEE International Symposium on
Information Theory (ISIT), pp. 1230–1235, 2020. doi:
10.1109/ISIT44484.2020.9174507.

Ding, J., Ma, Z., Wu, Y., and Xu, J. Efficient random graph
matching via degree profiles. Probability Theory and
Related Fields, 179:29–115, 2018.

Ding, J., Wu, Y., Xu, J., and Yang, D. The planted match-
ing problem: Sharp threshold and infinite-order phase
transition. ArXiv, abs/2103.09383, 2021.

Ganassali, L. Sharp threshold for alignment of graph
databases with gaussian weights. In MSML, 2020.

K, Z. and Nazer, B. Detecting correlated gaussian databases.
In 2022 IEEE International Symposium on Information
Theory (ISIT), pp. 2064–2069, 2022a. doi: 10.1109/
ISIT50566.2022.9834731.

K, Z. and Nazer, B. Detecting correlated gaussian databases.
arXiv preprint arXiv:2206.12011, 2022b.

Kang, U., Hebert, M., and Park, S. Fast and scalable ap-
proximate spectral graph matching for correspondence
problems. Information Sciences, 2012.

Mao, C., Wu, Y., Xu, J., and Yu, S. H. Testing network
correlation efficiently via counting trees. 2021.

Moharrami, M., Moore, C., and Xu, J. The planted matching
problem: Phase transitions and exact results. The Annals
of Applied Probability, 31(6):2663 – 2720, 2021.

Narayanan, A. and Shmatikov, V. Robust de-anonymization
of large sparse datasets. In 2008 IEEE Symposium on
Security and Privacy (sp 2008), pp. 111–125, 2008. doi:
10.1109/SP.2008.33.

Narayanan, A. and Shmatikov, V. De-anonymizing social
networks. In 2009 30th IEEE Symposium on Security and
Privacy, pp. 173–187, 2009. doi: 10.1109/SP.2009.22.

Pedarsani, P. and Grossglauser, M. On the privacy of
anonymized networks. In Knowledge Discovery and Data
Mining, 2011.

Shirani, F., Garg, S., and Erkip, E. A concentration of
measure approach to database de-anonymization. In 2019
IEEE International Symposium on Information Theory
(ISIT), pp. 2748–2752. IEEE Press, 2019.

Singh, R., Xu, J., and Berger, B. Global alignment of
multiple protein interaction networks with application
to functional orthology detection. Proceedings of the
National Academy of Sciences of the United States of
America, 105(35):12763–8, Sep 2008. doi: 10.1073/pnas.
0806627105.

Tamir, R. Joint correlation detection and alignment of Gaus-
sian databases. 2022. URL https://arxiv.org/
abs/2211.01069.

Tsybakov, A. B. Introduction to nonparametric estimation,
2009. URL https://doi. org/10.1007/b13794. Revised and
extended from the, 9(10), 2004.

Wu, Y., Xu, J., and Yu, S. H. Testing correlation of unlabeled
random graphs. arXiv preprint arXiv:2008.10097, 2020.

Wu, Y., Xu, J., and Yu, S. H. Settling the sharp recon-
struction thresholds of random graph matching. IEEE
Transactions on Information Theory, 68(8):5391–5417,
2022. doi: 10.1109/TIT.2022.3169005.

10

https://arxiv.org/abs/2211.01069
https://arxiv.org/abs/2211.01069


Phase Transitions in the Detection of Correlated Databases

A. Proof of Theorem 2.3
Without loss of generality we assume below that ρ > 0. Recall that for i ∈ [n], we define X̄i ≜

Xi

∥Xi∥2
and Ȳi ≜

Yi

∥Yi∥2
.

Furthermore, let Qd,ρ ≜ P0

(
X̄T

1 Ȳ1 ≥ ρ
)
, and Pd,ρ ≜ Pρ

(
X̄T

1 Ȳ1 ≥ ρ
)
, where Pρ is defined in (10), and P0 ≡ Pρ=0.

Consider the test in (9). We start by bounding the Type-I error probability. Markov’s inequality implies that

PH0
(ϕcount = 1) = PH0

 n∑
i,j=1

1
{
X̄T

i Ȳj ≥ ρ
}
≥ 1

2
nPd,ρ

 (67)

≤ 2n2Qd,ρ

nPd,ρ
. (68)

On the other hand, we bound the Type-II error probability as follows. Under H1, since our proposed test is invariant to
reordering of X and Y, we may assume without loss of generality that the latent permutation is the identity one, i.e., σ = Id.
Then, Chebyshev’s inequality implies that

PH1 (ϕcount = 0) = PH1

 n∑
i,j=1

1
{
X̄T

i Ȳj ≥ ρ
}
<

1

2
nPd,ρ

 (69)

≤ PH1

(
n∑

i=1

1
{
X̄T

i Ȳi ≥ ρ
}
<

1

2
nPd,ρ

)
(70)

≤
4 · Varρ

(∑n
i=1 1

{
X̄T

i Ȳi ≥ ρ
})

n2P2
d,ρ

, (71)

where Varρ denotes the variance with respect to Pρ, which for the random variable
∑n

i=1 1
{
X̄T

i Ȳi

}
equals to the variance

under the hypothesis H1. Noticing that

Varρ

(
n∑

i=1

1
{
X̄T

i Ȳi ≥ ρ
})

=

n∑
i=1

Varρ
(
1
{
X̄T

i Ȳi ≥ ρ
})

(72)

= nPd,ρ(1− Pd,ρ), (73)

we finally obtain,

PH1
(ϕcount = 0) ≤ 4(1− Pd,ρ)

nPd,ρ
≤ 4

nPd,ρ
. (74)

Next, we derive bounds on Qd,ρ and Pd,ρ. We start with a lower bound on Pd,ρ. Let Z1, . . . , Zd be i.i.d N (0, Id×d) random
vectors, independent with X1, . . . , Xn. Let Y ′

i ≜ ρXi +
√

1− ρ2Zi. We note that under Pρ, (X,Y) is equally distributed
as (X,Y′). Thus, for our analysis, we shall assume without loss of generality that Y = Y′. Under this assumption, we have

|X̄T
1 Ȳ1|2 =

ρ2 ∥X1∥42 + 2ρ
√
1− ρ2 ∥X1∥22 XT

1 Z1 + (1− ρ2)|XT
1 Z1|2

ρ2 ∥X1∥42 + 2ρ
√
1− ρ2 ∥X1∥22 XT

1 Z1 + (1− ρ2) ∥X1∥22 ∥Z1∥22
(75)

≥
ρ2 ∥X1∥42 + 2ρ

√
1− ρ2 ∥X1∥22 XT

1 Z1

ρ2 ∥X1∥42 + 2ρ
√
1− ρ2 ∥X1∥22 XT

1 Z1 + (1− ρ2) ∥X1∥22 ∥Z1∥22
(76)

=
ρ2 ∥X1∥22 + 2ρ

√
1− ρ2 ∥X1∥2 ∥Z1∥2 cos(φX1Z1

)

ρ2 ∥X1∥22 + 2ρ
√
1− ρ2 ∥X1∥2 ∥Z1∥2 cos(φX1Z1

) + (1− ρ2) ∥Z1∥22
, (77)

where we have used the fact that for X1, Z1 ∈ Rd, the inner product XT
1 Z1 can be represented as XT

1 Z1 =
∥X1∥2 ∥Z1∥2 cosφX1Z1 , where φX1Z1 denotes the angle between X1 and Z1. Also, note that φX1Z1 is statistically
independent of ∥X1∥2 and ∥Z1∥2. Thus, straightforward algebra steps reveal that,

Pd,ρ = Pρ

(
X̄T

1 Ȳ1 ≥ ρ
)

(78)
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≥ P0

[
cos(φX1Z1

) ≥ ρ

2
√
1− ρ2

(
∥Z1∥2
∥X1∥2

−
∥X1∥2
∥Z1∥2

)]
(79)

≥ P0

[
cos(φX1Z1) ≥

ρ

2
√
1− ρ2

(
∥Z1∥2
∥X1∥2

−
∥X1∥2
∥Z1∥2

)
, ∥X1∥2 ≥ ∥Z1∥2

]
(80)

≥ P0 (cos(φX1Z1
) ≥ 0, ∥X1∥2 ≥ ∥Z1∥2) (81)

= P0 (cos(φX1Z1
) ≥ 0) · P0 (∥X1∥2 ≥ ∥Z1∥2) (82)

= 1/4. (83)

We now derive an upper bound on Qd,ρ. For a fixed vector y1 ∈ Sd−1 on the d-dimensional sphere, let us define
Bρ(y1) ≜

{
x1 ∈ Sd−1 : xT

1 y1 ≥ ρ
}

. Since under P0, X̄1 and Ȳ1 are independently and uniformly distributed on Sd−1 we
have

Qd,ρ =

∫
Sd−1

Vol(Bρ(y1))

Vol(Sd−1)2
dy1, (84)

where the volume of a set A ⊂ Rd is defined as Vol(A) =
∫
A dx, where the integration is with respect to Lebesgue’s

measure on the sphere. Let us bound Vol(Bρ) from above. To that end, define the set

B̃ρ(y1) =

{
v ∈ Rd :

v

∥v∥
∈ Bρ(y1)

}
=
{
v ∈ Rd : vT y1 ≥ ρ ∥v∥

}
. (85)

Let f : (v1, . . . , vd) → (φ1, . . . , φd−1, r) denote the spherical coordinates transformation and let Pd−1 denote the projection
of an element from Rd onto its first d− 1 coordinates. We observe that since B̃ρ(y1) is the cone defined by the spherical cap
Bρ(y1), it follows that,

f(B̃ρ(y1)) = P (f(Bρ(y1)))× [0,∞]. (86)

Finally, let µ denote the Gaussian measure of a multivariate random vector with mean y1, and covariance matrix Σ = σ2Id×d,
where σ2 ≥ 0. Then,

1 =

∫
x∈Rd

µ(dx) (87)

=

∫
Rd

1

(2πσ2)d/2
e−

1
2σ2 ∥v−y1∥2

2dv (88)

≥
∫

B̃ρ(y1)

1

(2πσ2)d/2
e−

1
2σ2 ∥v−y1∥2

2dv (89)

(a)

≥
∫

B̃ρ(y1)

1

(2πσ2)d/2
e−

1
2σ2 (∥v∥2−2ρ∥v∥+1)dv (90)

(b)
=

1

(2πσ2)d/2

∫
f(B̃ρ(y1))

e−
1

2σ2 (r2−2ρr+1)

(
rd−1

d−1∏
i=1

sind−1−i(φi)

)
dφ1 · · · dφd−1dr (91)

(c)
=

1

(2πσ2)d/2

∫
P (f(Bρ(y1))

(
d−1∏
i=1

sind−1−i(φi)

)
dφ1 · · · dφd−1

︸ ︷︷ ︸
Vol(Bρ(y1))

·
∞∫
0

rd−1e−
1

2σ2 (r2−2ρr+1)dr (92)

≥ 1

(2πσ2)d/2
Vol(Bρ(y1))

∞∫
ρ

ρd−1e−
1

2σ2 (r2−2ρr+1)dr (93)

12



Phase Transitions in the Detection of Correlated Databases

=
1

(2πσ2)(d−1)/2
Vol(Bρ(y1))e

− 1−ρ2

2σ2 ρd−1

∞∫
ρ

1

(2πσ2)1/2
e−

(r−ρ)2

2σ2 dr (94)

=
ρd−1

(2πσ2)(d−1)/2
e−

1−ρ2

2σ2 Vol(Bρ(y1))
1

2
, (95)

where (a) follows from the definition of B̃ρ(y1) , (b) follows from change of variables and (c) follows from (86).

Thus, for every y1 ∈ Sd−1,

Vol(Bρ(y1)) ≤ min
σ2≥0

2e
1−ρ2

2σ2 + d−1
2 log(2πσ2)ρ1−d (96)

= 2e
d−1
2 log

(
2πe 1−ρ2

d−1

)
ρ1−d. (97)

On the other hand, it is well-known that,

Vol(Sd−1) =
2πd/2

Γ(d/2)
≥ 2πd/2

(d/2)d/2−1
=

4

d
e

d
2 log(2π/d), (98)

where we have used the fact that Γ(x) < xx−1, for x > 1 (see, e.g., (Anderson & Qiu, 1997)). Combining (98), (97), and
(84), we obtain

Qd,ρ ≤ f(d)e
d−1
2 log(1−ρ2)ρ1−d, (99)

where f(d) ≜ d
2

(
ed
d−1

)d/2 (
2πe
d−1

)1/2
. Finally, using (83) and (99), we see that (68) can be further upper bounded as

PH0 (ϕcount = 1) ≤ 8nf(d)e
d−1
2 log(1−ρ2)ρ1−d = 8f(d)n(ρ−2 − 1)

d−1
2 , (100)

while (74) can be upper bounded as,

PH1
(ϕcount = 0) ≤ 16

n
. (101)

Thus, for a fixed d ≥ 2, it is clear that PH1
(ϕcount = 0) → 0, as n → ∞, and PH0

(ϕcount = 1) → 0, if n(ρ−2 − 1)
d−1
2 =

o(1). The later holds if ρ−2 = 1 + o(n−2/(d−1)), which implies that ρ2 = 1− o(n−2/(d−1)), as stated.

B. Lower Bounds
As in many detection problems, evaluating the minimax risk function opposes a great challenge due to the error term
obtained by maximizing over the error for all permutations in Sn. A well known strategy for overcoming this inherent
obstacle is by considering the softer average-case version of the problem. Let π be the uniform measure on Sn, and let
us denote by PH1 the probability measure obtained by averaging PH1|σ with respect to π. For a test ϕ, we consider the
Bayesian risk function given by

R̄(ϕ) ≜ PH0 [ϕ(X,Y) = 1] + Eσ∼π

[
PH1|σ[ϕ(X,Y) = 0]

]
,

and the Bayesian risk for our problem:
R̄⋆ ≜ inf

ϕ
R̄(ϕ).

Clearly, any test ϕ satisfies R(ϕ) ≥ R̄(ϕ), and therefore R⋆ ≥ R̄⋆. We conclude that in order to prove Theorem 2.5, it is
sufficient to show that under the given assumptions, R̄⋆ = 1 + o(1). Using a well-known equivalent characterization of the
Bayesian risk function by the total variation distance and Cauchy-Schwartz inequality one shows that

R⋆ ≥ R̄⋆ = 1− dTV(PH0
,PH1

) ≥ 1− 1

2

√
E0[L2]− 1, (102)
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where L ≜
PH1

PH0
is the likelihood ratio, and the expectation is taken with respect to PH0 . Using the bound given in (102), it

is sufficient to show that under the assumptions of Theorem 2.5, E0

[
L2
]
≤ 1 + o(1).

Inspired by (Wu et al., 2020), Zeynep and Nazer (K & Nazer, 2022b) gave an exact description of E0

[
L2
]

using the
distribution of cycles in a uniformly drawn random permeation. In order to prove Theorem 2.5, we shall carefully analyse
E0[L

2], and improve the bounds proved (K & Nazer, 2022b). For completeness of the paper, we outline the main ideas
behind Nazer and Zeynep’s calculation of E0

[
L2
]

before we proceed toward our refined analysis.

The first step in the calculation calls for a use of Ingster-Suslina method, stating that by Fubini’s theorem, E0[L
2] may be

equivalently written as

E0[L
2] = Eπ⊥⊥π′

[
E0

[PH1|π

PH0

·
PH1|π′

PH0

]]
, (103)

where the expectation is taken with respect to the independent coupling of π and π′, two copies of the uniform measure
on Sn. For fixed permutations σ and σ′, we note that PH1|σ,PH1|σ′ and P0 are absolutely continuous with respect to
Lebesgue’s measure on R2×d×n and therefore we have

PH1|σ

PH0

=
fH1|σ

fH0

and
PH1|σ′

PH0

=
fH1|σ′

fH0

,

where fHi
denotes the Radon-Nikodym derivative of PHi

with respect to Lebesgue’s measure, which is the density function
(X,Y) under the corresponding hypothesis. Let Nρ : R2×d :→ R+ denote the density function of a pair of random vectors
distributed as

N⊗d

([
0
0

]
,

[
1 ρ
ρ 1

])
.

We note that
fH1|σ(X,Y)

fH0
(X,Y)

fH1|σ′(X,Y)

fH0
(X,Y)

=

n∏
i=1

Nρ(Xi, Yσi
)

N0(Xi, Yσi
)

Nρ(Xi, Yσ′
i
)

N0(Xi, Yσ′
i
)
. (104)

In order to proceed with the calculation, we make two key observations. First, we note that the distribution under the null
hypothesis (H0) is invariant to reordering the coordinates. In a similar manner, the uniform measure on Sn, is invariant
under composition with a fixed permutation. Thus,

Eπ⊥⊥π′

[
E0

[PH1|π

PH0

·
PH1|π′

PH0

]]
= Eπ

[
E0

[PH1|π

PH0

·
PH1| Id

PH0

]]
. (105)

We consider the product given in (104) for a fixed σ ∈ Sn and σ′ = Id, which we denote by Zσ . The second key observation,
is that Zσ can be decomposed to independent terms, corresponding to the cycles of the permeation σ. We recall that a cycle
of a permutation σ is a string (i0, i2, . . . , i|C|−1) of elements in [n] such that σ(ij) = ij+1 mod |C| for all j. If |C| = k, we
call C a k-cycle. For a fixed cycle C, we denote

ZC ≜
∏
i∈C

Nρ(Xi, Yσi
)

N0(Xi, Yσi
)

Nρ(Xi, Yi)

N0(Xi, Yi)
.

Since the set of cycles of a permutation induce a partition of [n], the random variables {ZC}C , corresponding to all cycles
of σ, are independent (with respect to PH0

) and
Zσ =

∏
C

ZC . (106)

The following lemma states that for a fixed cycle C, E0[ZC ] depends on ρ and |C|. The proof of the lemma is based on the
properties of Gaussian random vectors. For further details the reader is referred to (K & Nazer, 2022b)[Lemma 10].

Lemma B.1. For a fixed cycle C of a permutation σ,

E0[ZC ] =
1

(1− ρ2|C|)d
.
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For a fixed permutation σ ∈ Sn and k ∈ [n], let Nk(σ) denote the number of k-cycles of σ. Combining (103), (105), (106),
and Lemma B.1 we obtain

E0[L
2] = Eπ

[∏
C

ZC

]
= Eπ

[
n∏

k=1

1

(1− ρ2k)dNk

]
. (107)

By analysis of (107), Zeynep and Nazer showed in (K & Nazer, 2022b)[Lemma 3] that E0[L
2] ≤ (1 − ρ2)−dn, which

equals 1 + o(1) if ρ2 = o((nd)−1). Inspired by the calculation performed in (Wu et al., 2020)[Proposition 2], we carefully
bound (107) from above, utilizing the statistical properties of k-cycles in a uniformly distributed random permutation. Our
refined analysis enables us to prove that E0[L

2] ≤ 1 + o(1) assuming only that ρ2 = o(d−1). The following proposition is
makes the main argument for the proof of our lower bounds given in Theorem 2.5 and Theorem 2.6.

Proposition B.2. Let Nk be the number of k-cycles in a uniformly distributed permutation π, and 1 ≤ k ≤ n. Then:

1. For all (ρ2, d, n) is holds that

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
≤ exp

(
ndρ2

1− ρ2

)
. (108)

2. If at least one of n, d tends to ∞ and ρ2 = o(d−1), then

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
≤ 1 + o(1). (109)

3. If both n, d tends to ∞ and ρ2 < (1− ε)d−1 for some ε > 0 then

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
≤ (1 + o(1)) exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
. (110)

4. If d and ρ2 are a constant satisfying d < log(ρ2)
log(1−ρ2) and n → ∞

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
≤ (1 + o(1)) exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
, (111)

where c(d, ρ2) = d(d+1)
2(1−ρ2)d+2 .

For the proof of this proposition, we shall require several technical results. The following lemma concerns the approximation
of the joint distribution of k-cycles by independent Poisson random variables.

Lemma B.3. (Arratia & Tavaré, 1992)[Theorem 2] Let 1 ≤ k ≤ n be an integer, and let Z1 . . . , Zk be independent random
variables such that for all 1 ≤ i ≤ k, Zi ∼ Poisson

(
i−1
)
. Then, the total variation between the law of N1, . . . , Nk and

Z1, . . . , Zk satisfies
dTV(L(N1, N2, . . . , Nk),L(Z1, Z2, . . . , Zk)) ≤ F

(n
k

)
,

where F (x) is a monotone decreasing function satisfying logF (x) = −x log x(1 + o(1)) as x → ∞ and we recall that
L(·) denote the law, that is, the probability distribution, of a given random variable.

Lemma B.4. Let 1 ≤ m ≤ n be an integer, and let Z1 . . . , Zm be independent random variables such that for all 1 ≤ i ≤ m,
Zi ∼ Poisson

(
i−1
)
. Then,

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
,

where c(d, ρ2) = d(d+1)
2(1−ρ2)d+2 , and therefore if ρ2 = o(d−1),

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
≤ 1 + o(1).
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Proof. The proof of this lemma is elementary, only requires the moment generating function of Poisson random variables,
and some linear approximations of elementary functions. By rearranging the expression in the expectation and using
independence we have

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
=

m∏
k=1

Eπ

[(
1

1− ρ2k

)dZk
]

=

m∏
k=1

Eπ

[
exp
(
−dZk log

(
1− ρ2k

))]
(a)
=

m∏
k=1

exp

(
1

k

(
e−d log(1−ρ2k) − 1

))

=

m∏
k=1

exp

(
1

k

(
1

(1− ρ2k)d
− 1

))
.

where (a) is followed by the definition of the moment generating function of a Poisson random variable.

We shall now bound the term (1− ρ2k)−d − 1 from above. A straight forward calculation of the Taylor expansion of the
function f(x) = (1− x)−d show that for x ∈ (0, 1) we have

1

(1− x)d
=

∞∑
m=0

(
m+ d− 1

d− 1

)
xm.

Using Lagrange’s remainder theorem and obtain that for all x > (0, 1),

1

(1− x)d
= 1 + dx+

d(d+ 1)

2
· 1

(1− c)(d+2)
x2

≤ 1 + dx+
d(d+ 1)

2(1− x)(d+2)
x2.

where c is a point in [0, x]. Choosing x = ρ2k we get that for any k > 0

1

(1− ρ2k)d
≤ 1 + dρ2k +

d(d+ 1)

2(1− ρ2k)(d+2)
ρ4k

≤ 1 + dρ2k +
d(d+ 1)

2(1− ρ2)(d+2)
ρ4k.

For the rest of our analysis we denote

c(d, ρ2) ≜
d(d+ 1)

2(1− ρ2)(d+2)
ρ4k,

and we get

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
=

m∏
k=1

Eπ

[(
1

1− ρ2k

)dZk
]

=

m∏
k=1

exp

(
1

k

(
1

(1− ρ2k)d
− 1

))

≤
m∏

k=1

exp

(
1

k

(
1 +

(
dρ2k + c(d, ρ2)ρ4k

)
− 1
))

= exp

(
d

m∑
k=1

ρ2k

k
+ c(d, ρ2)

m∑
k=1

ρ4k

k

)

≤ exp

(
d

∞∑
k=1

ρ2k

k
+ c(d, ρ2)

∞∑
k=1

ρ4k

k

)
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= exp
(
−d log(1− ρ2)− c(d, ρ2) log(1− ρ4)

)
(a)

≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
,

where (a) follows from the well known inequality log(1 + x) ≥ x/(1 + x), for x > −1. In the case where ρ2 = o(d−1)
clearly dρ2 = o(1). Furthermore,

c(d, ρ2)ρ4 =
d(d+ 1)

2(1− ρ2)d+2
ρ4 ≤ 1

2
exp((d+ 2)ρ2)d(d+ 1)ρ4 = exp(o(1)) · o(1) = o(1).

In particular, we get

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
(112)

= exp

(
o(1)

1− o(1)
+

o(1)

1− o(1)

)
= exp(o(1)) = 1 + o(1). (113)

We are now ready to prove Proposition B.2. The idea of the proof is as follows: we consider the expectation of the product
given in (109). In the case that n → ∞, we show that the product of the last n− α log n terms is always upper-bounded
by 1 + o(1) for an appropriate choice of α. For the expectation of the product of the first α log n terms, use the Poisson
approximation of {Nk}k given in Lemma B.3 and the estimation in that case, given in Lemma B.4. The other case, where n
is constant, is solvable using elementary arguments.

Proof of Proposition B.2. We divide our proof into three parts, with respect to the asymptotic regimes of n and d. We start
by a simple observation - whenever n is fixed we have

∑n
k=1 kNK = n, which implies that for any 1 ≤ m ≤ n we have

n∏
k=m

(
1

1− ρ2k

)dNk

≤
n∏

k=m

(
1

1− ρ2m

)dNk

=

(
1

1− ρ2m

)d
∑n

k=m Nk

(114)

≤
(

1

1− ρ2m

)dn

=

(
1 +

ρ2m

1− ρ2m

)dn

≤ exp

(
dnρ2m

1− ρ2m

)
. (115)

This immediately proves (108).

The case where both n and d tends to ∞: we assume that n, d → ∞ and ρ2 = o(d−1) or ρ2 < (1− ε)d−1. We choose
m = ⌈log n⌉ and we get

dnρ2m ≤ (dρ2) · n(ρ2)log(n)−1 = (dρ2)n(ρ2)log(
n
e ) = e(dρ2)

(n
e

)1+log ρ2

.

Since ρ2 < d−1 (which is clearly true for sufficiently large d in the particular case where ρ2 = o(d−1)), and d → ∞, we
have log ρ2 → −∞ as n → ∞. Plugging our chosen m in (115) obtain:

n∏
k=logn

(
1

1− ρ2k

)dNk

≤ exp

(
dnρ2m

1− ρ2m

)
= exp(o(1)) = 1 + o(1). (116)

For a fixed integer m, we consider the set Sn,m ⊆ Nm given by

Sn,m =

{
(n1, . . . , nm) ∈ Nd

∣∣∣∣∣
m∑

k=1

nk ≤ n

}
,
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and a function fn,m : Nm → [0,∞] given by

fn,m(n1, n2, . . . , nm) =

m∏
k=1

(
1

1− ρ2k

)dnk

· 1Sn,m(n1, . . . , nm).

We note that for all n1, . . . , nm ∈ N

fn,m(n1, n2, . . . , nm) ≤
m∏

k=1

(
1

1− ρ2

)dnk

· 1Sn,m
(n1, . . . , nm) ≤

(
1

1− ρ2

)dn

. (117)

We set m = ⌈log n⌉, and let {Zk}k be independent Poisson
(
k−1

)
random variables as in Lemma B.3. Since

∑m
k=1 Nk ≤ n

with probability 1, we have

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dNk
]
= Eπ[fn,m(N1, . . . , Nm)]

≤ E[fn,m(Z1, . . . , Zm)] + dTV(L(Nm
1 ),L(Zm

1 )) · ∥fn,m∥∞

≤ Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
+ dTV(L(Nm

1 ),L(Zm
1 )) · ∥fn,m∥∞

(a)

≤ Eπ

[
m∏

k=1

(
1

1− ρ2k

)dZk
]
+ F

( n

m

)
·
(

1

1− ρ2

)dn

(b)

≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ F

( n

m

)
·
(

1

1− ρ2

)dn

= exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ F

(
n

⌈log n⌉

)
·
(

1

1− ρ2

)dn

,

where (a) follows from (117) and Lemma B.3, (b) follows from Lemma B.4. By Lemma B.3, we also have

log

(
F

(
n

⌈log n⌉

)(
1

1− ρ2

)dn
)

≤ log

(
F

(
n

log n

)(
1

1− ρ2

)dn
)

= log

(
F

(
n

log n

))
− nd log

(
1− ρ2

)
≤ −(1 + o(1))

n

log n
log

(
n

log n

)
− nd log

(
1− ρ2

)
(a)

≤ −(1 + o(1))
n

log n
log

(
n

log n

)
+ ndρ2(1 + o(1))

= n

(
−(1 + o(1))

(
1− log log n

log n

)
+ dρ2(1 + o(1))

)
= −n(1− dρ2 + o(1))

(b)−−−−→
n→∞

−∞,

where (a) follows from the Taylor expansion of the function log(1− x) and ρ2 = o(1), and (b) follows from the assumption
that ρ2 < (1− ε)d−1. This implies that

F

(
n

⌈log n⌉

)(
1

1− ρ2

)dn

= o(1),

and therefore,

Eπ

⌈logn⌉∏
k=1

(
1

1− ρ2k

)dNk

 ≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ o(1). (118)
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Combining (116) and (118) together we conclude:

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
≤ Eπ

⌈logn⌉∏
k=1

(
1

1− ρ2k

)dNk n∏
k=⌈logn⌉

(
1

1− ρ2k

)dNk


= (1 + o(1)) · Eπ

⌈logn⌉∏
k=1

(
1

1− ρ2k

)dNk


= (1 + o(1)) · exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ o(1).

We have now proved (110). We note that by assuming furthermore that ρ2 = o(d−1), by the second part of Lemma B.4 we
get

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
= (1 + o(1)) exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ o(1) = 1 + o(1).

We have now proved (109).

The case where n is constant and d tends to ∞: We assume that ρ2 = o(d−1). Since n is constant, we have dnρ2 = o(1)
and therefore by (115) we have

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
≤ exp

(
dnρ2

1− ρ2

)
= 1 + o(1).

The case where d is constant and n tends to ∞: we also assume that ρ2 is a constant such that d < log(ρ2)
log(1−ρ2) . We repeat

the same steps as in the case where n → ∞ and ρ2 = o(d−1) with a minor change. Instead of approximating the product of
the first m = ⌈log n⌉ terms in the product, we take m′ = ⌈α log(n)⌉, where α = − 1

log(ρ2) + ε, where ε sufficiently small
so that

d
log(1− ρ2)

log(ρ2)
<

1

1− ε log(ρ2)
, (119)

(such exists by the assumption d < d⋆(ρ2) = log(ρ2)
log(1−ρ2) ). Repeating the same steps as in the previous part, we have

n∏
k=m′

(
1

1− ρ2k

)dNk

≤ exp

(
dnρ2m

′

1− ρ2m′

)
.

We observe that

ndρ2m
′
≤ nd(ρ2)α logn = ndnα log(ρ2) = dn1+α log(ρ2) = dnε log(ρ2) = o(1),

which implies that
n∏

k=m′

(
1

1− ρ2k

)dNk

≤ exp

(
dnρ2m

′

1− ρ2m′

)
= 1 + o(1).

We now evaluate the product of the first m′ terms. In a similar fashion to the first part, by Lemma B.3 and Lemma B.4,

Eπ

 m′∏
k=1

(
1

1− ρ2k

)dNk

 ≤ Eπ

 m′∏
k=1

(
1

1− ρ2k

)dZk

+ F
( n

m′

)
·
(

1

1− ρ2

)dn

≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ F

( n

m′

)
·
(

1

1− ρ2

)dn
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=exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ F

(
n

⌈α log n⌉

)
·
(

1

1− ρ2

)dn

.

Using Lemma B.3 once again, we obtain

log

(
F

(
n

⌈α log n⌉

)(
1

1− ρ2

)dn
)

≤ −(1 + o(1))
n

α log n
log

(
n

α log n

)
− nd log(1− ρ2)

= −n

(
(1 + o(1))

1

α

(
1− log(α log n)

log n

)
+ d log(1− ρ2)

)
= −n(1 + o(1))

(
1

α
− d log(1− ρ2)

)
= −n(1 + o(1))

(
log(ρ2)

1− ε log(ρ2)
− d log(1− ρ2)

)
.

By (119) we have
log(ρ2)

1− ε log(ρ2)
− d log(1− ρ2) > 0,

which implies that

F
( n

m′

)
·
(

1

1− ρ2

)dn

= o(1).

We now conclude

Eπ

[
n∏

k=1

(
1

1− ρ2k

)dNk
]
= Eπ

 m′∏
k=1

(
1

1− ρ2k

)dNk n∏
k=m′

(
1

1− ρ2k

)dNk


= Eπ

 m′∏
k=1

(
1

1− ρ2k

)dNk

(1 + o(1))


≤ (1 + o(1))

(
exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ o(1)

)
= (1 + o(1)) exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
.

The proofs of Theorem 2.5 and Theorem 2.6 now follows:

Proof of Theorem 2.5. We combine (103), (107) and Proposition B.2 and obtain:

R⋆ ≥ 1−
√

E0[L2]− 1

= 1−

√√√√Eπ

[
n∏

k=1

1

(1− ρ2k)dNk

]
− 1

≥ 1−
√
1 + o(1)− 1

= 1− o(1).

Proof of Theorem 2.6. Let (ρ, d, n) be a sequence satisfying the assumptions of Theorem 2.6. We start by recalling an
important well-known fact (see, for example, (Tsybakov, 2004)[Lemma 2.6 and 2.7]): for any sequence of measures
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(P0,k)k, (P1,k)k,

EP0,k

[(
P1,k

P0,k

)2
]
= O(1) =⇒ dTV(P0,k,P1,k) = 1− Ω(1).

Thus, by (102), if E0[L
2] = O(1) we have

R⋆ ≥ 1− dTV(PH0 ,PH1) = Ω(1), (120)

which implies that (ρ, d, n) is not admissible for strong detection (as (120) implies lim supR⋆ > 0).

Indeed, by Proposition B.2 and (107): if d and ρ are constants such that d < d⋆(ρ2), and n → ∞, then

E0[L
2] ≤ (1 + o(1)) exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
= O(1).

On the other hand, if d, n → ∞ and ρ2 < (1− ε)d−1, we have that ρ2 = o(1). Thus, it also follows from Proposition B.2
that

E0[L
2] ≤ (1 + o(1)) exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
≤ (1 + o(1)) exp

(
(1 + o(1))

(
dρ2 +

d(d+ 1)

2(1− ρ2)d+2
ρ4
))

≤ (1 + o(1)) exp

(
(1 + o(1))

(
1 +

1

2e−2(1 + o(1))

))
= O(1).

The remaining case is where d → ∞, n is constant and ρ2 = O(d−1). By (108), which is true without any assumptions on
(ρ, d, n), we have

E0[L
2] ≤ exp

(
ndρ2

1− ρ2

)
= O(1).

That concludes the proof.
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