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ABSTRACT

Predictive models that satisfy group fairness criteria in aggregate for members of
a protected class, but do not guarantee subgroup fairness, could produce biased
predictions for individuals at the intersection of two or more protected classes. To
address this risk, we propose Conditional Bias Scan (CBS), an auditing framework
for detecting intersectional biases in classification models. CBS identifies the
subgroup with the most significant bias against the protected class, compared to
the equivalent subgroup in the non-protected class, and can incorporate multiple
commonly used fairness definitions for both probabilistic and binarized predictions.
We show that this methodology can detect subgroup biases in the COMPAS pre-
trial risk assessment tool and in German Credit Data, and has higher bias detection
power compared to similar methods that audit for subgroup fairness.

1 INTRODUCTION

Predictive models are increasingly used to assist in high-stakes decisions with significant impacts
on individuals’ lives and livelihoods. However, recent studies have revealed numerous models
whose predictions contain biases, in the form of group fairness violations, against disadvantaged and
marginalized groups (Angwin et al., 2016a; Obermeyer et al., 2019). When auditing a predictive model
for bias, typical group fairness definitions (Mitchell et al., 2021) rely on univariate measurements of
the difference between the distributions of predictions or outcomes for individuals in a “protected
class”, typically defined by a sensitive attribute such as race or gender, as compared to those in the
non-protected class. Since these approaches only detect biases for a predetermined subpopulation
at an aggregate level, e.g., a bias against Black individuals, they may fail to detect biases that
adversely affect a subset of individuals in a protected class, e.g., Black females. While it is possible
to define a specific multidimensional subgroup and then audit a classifier for biases impacting that
subgroup, this approach does not scale to the combinatorial number of subgroups. Therefore, group
fairness measurements cannot reliably detect if there are any subgroups within a given population
that are adversely impacted by predictive biases, and thus subgroup biases in predictions often go
unaddressed.

In this paper, we present a novel methodology for bias detection called Conditional Bias Scan (CBS).
Given a classifier’s probabilistic predictions or binarized recommendations based on those predictions,
CBS discovers systematic biases impacting any subgroups of a predefined subpopulation of interest
(the protected class). More precisely, CBS aims to discover subgroups of the protected class for
whom the classifier’s predictions or recommendations systematically deviate from the corresponding
subgroup of individuals who are not a part of the protected class. Subgroups are defined by a
non-empty subset of attribute values for each observed attribute, excluding the sensitive attribute
which determines whether or not individuals belong to the protected class.

The detected subgroups can represent both intersectional and contextual biases. Intersectional biases
refer to subgroup biases defined by membership in two or more protected classes. See Appendix D and
references (Crenshaw, 1991a; Runyan, 2018) for further discussion of the concept of intersectionality.
Contextual biases refer to other forms of subgroup biases that may only be present for certain decision
situations (Runyan, 2018). For example, when auditing an algorithmic risk assessment tool, CBS
may identify a subgroup bias against Black females (intersectional bias) for individuals with no prior
offenses (contextual bias).
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Table 1: Table of all scan types for CBS for different group fairness definitions.

Predictions (P ∈ [0, 1]) Recommendations (Pbin ∈ {0, 1})
Pbin = 1 Pbin = 0 Pbin

Y = 1 E[P | Y = 1, X]⊥A Pr(Pbin = 1|Y = 1, X)⊥A Pr(Pbin = 0|Y = 1, X)⊥A
Balance for Positive Class True Positive Rate False Negative Rate

Y = 0 E[P | Y = 0, X]⊥A Pr(Pbin = 1|Y = 0, X)⊥A Pr(Pbin = 0|Y = 0, X)⊥A
Balance for Negative Class False Positive Rate True Negative Rate

Separation

Y E[P | Y,X]⊥A Pr(Pbin = 1 | Y,X)⊥A Pr(Pbin = 0 | Y,X)⊥A
Y = 1 Pr(Y = 1 | P,X)⊥A Pr(Y = 1|Pbin = 1, X)⊥A Pr(Y = 1|Pbin = 0, X)⊥A Pr(Y = 1|Pbin, X)⊥A

Positive Predictive Value False Omission Rate
Y = 0 Pr(Y = 0 | P,X)⊥A Pr(Y = 0|Pbin = 1, X)⊥A Pr(Y = 0|Pbin = 0, X)⊥A Pr(Y = 0|Pbin, X)⊥ASufficiency

False Discovery Rate Negative Predictive Value

The notation ⊥ refers to conditional independence from membership in the protected class (A). For example,
for the False Discovery Rate scan, Pr(Y = 0 | Pbin = 1, X)⊥A is shorthand for
Pr(Y = 0 | Pbin = 1, X,A = 1) = Pr(Y = 0 | Pbin = 1, X,A = 0).

The contributions of our research include:

• A methodological framework that can flexibly accommodate multiple group-fairness defini-
tions and can reliably detect intersectional and contextual biases, with significantly improved
bias detection accuracy compared to other tools used to audit for subgroup fairness.

• A computationally efficient detection algorithm to audit classifiers for fairness violations in
the exponentially many subgroups of a prespecified protected class.

• Robust evaluation and two real-world case studies that compare results across group-fairness
metrics, showing differences between separation and sufficiency metrics.

2 RELATED WORK

Bias Scan (Zhang and Neill, 2016) uses a multidimensional subset scan to search exponentially many
subgroups of data, identifying the subgroup with the most significantly miscalibrated probabilistic
predictions compared to the observed outcomes. Bias Scan lacks the functionality of traditional
group fairness techniques to define a protected class and to determine whether those individuals
are impacted by biased predictions, and is thus limited to asking, “Which subgroup has the most
miscalibrated predictions?" In contrast, given a protected class A, CBS can reliably identify biases
impacting A or any subgroup of A. CBS searches for subgroups within the protected class with the
most significant deviation in their predictions and observed outcomes as compared to the predictions
and observed outcomes for the corresponding subgroup of the non-protected class (e.g., a racial bias
against Black females as compared to non-Black females). Since Bias Scan solely focuses on the
deviation between the predictions and observed outcomes within a subgroup, it would be unable to
detect such a bias unless the subgroup was also biased as compared to the population as a whole.
Furthermore, CBS generalizes to separation- and sufficiency-based group fairness metrics, and to
probabilistic and binarized predictions. To enable this new functionality, CBS deviates from Bias
Scan in substantial ways, including new preprocessing and estimation techniques (see Section 3.2
and Appendix A.1) and new hypotheses and score functions (see Section 3.3).

GerryFair (Kearns et al., 2018) and MultiAccuracy Boost (Kim et al., 2019a) are two methods that use
an auditor to iteratively detect subgroups while training or correcting a classifier to guarantee subgroup
fairness. GerryFair’s auditor relies on linear regressions trained to predict differences between the
predictions and the observed global error rate of a dataset. MultiAccuracy Boost iteratively forms
subgroups by evaluating rows with predictions above and below a threshold to determine which
predictions to adjust. CBS’s methodology for forming subgroups is more complex because it does
not assume a linear relationship between covariates and the difference between the predictions and
baseline error rate. Unlike CBS, these methods provide limited fairness definitions for auditing, and
do not return interpretable subgroups that are defined by discrete attribute values of the covariates,
but rather identify all rows that have a fairness violation on a given iteration. Since both methods
incorporate the predictions in forming subgroups and enable auditing, they are comparable to CBS.
In Section 4, we show that CBS has substantially higher bias detection accuracy than GerryFair and
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MultiAccuracy Boost. Additional related work about subgroup bias, intersectionality, and subgroup
discovery is discussed in Appendix D.

3 METHODS

CBS begins by defining the dataset D = (A,X, Y, P, Pbin) = {(Ai, Xi, Yi, Pi, Pi,bin)}ni=1, for n
individuals indexed as i = 1..n. Ai is a binary variable representing whether individual i belongs to
the protected class. Xi = (X1

i . . . X
m
i ) are other covariates for individual i, excluding Ai and the

sensitive attribute from which Ai was derived. We assume here that all covariates are discrete-valued,
but continuous covariates can also be used (see Appendix A.1 for discussion). Yi is individual i’s
observed binary outcome, Pi ∈ [0, 1] is the classifier’s probabilistic prediction of individual i’s
outcome, and Pi,bin ∈ {0, 1} is the binary recommendation corresponding to Pi.

Given these data, CBS searches for subgroups of the protected class, defined by a non-empty subset
of values for each covariate X1 . . . Xm, for whom some group fairness definition (contained in
Table 1) is violated. Each fairness definition can be viewed as a conditional independence relationship
between an individual’s membership in the protected class Ai and their value of an event variable
Ii, conditioned on their covariates Xi and their value of a conditional variable Ci. We define the
null hypothesis, H0, that I ⊥ A | (C,X), and use CBS to search for subgroups with statistically
significant violations of this conditional independence relationship, correctly adjusting for multiple
hypothesis testing, allowing us to reject H0 for the alternative hypothesis H1 that I ̸⊥ A | (C,X) .

The CBS framework has four sequential steps. (1) Given a fairness definition, CBS chooses I ∈
{Y, P, Pbin} and C ∈ {Y, P, Pbin}. Section 3.1 maps different group fairness criteria to particular
choices of event variable I and conditional variable C. (2) CBS estimates the expected value of Ii for
each individual in the protected class under the null hypothesis H0 that I and A are conditionally
independent. These expectations are denoted as Îi. Section 3.2 describes how to estimate Î . (3) CBS
uses a novel multidimensional subset scan to search for subgroups S where for i ∈ S, Ii deviates
systematically from its expectation Îi in the direction of interest. This step to detect S∗ is described
in Section 3.3. (4) The final step to evaluate statistical significance of the detected subgroup S∗

(Section 3.3) uses permutation testing (Appendix A.3) to adjust for multiple hypothesis testing and
determine if S∗’s deviation between protected and non-protected class is statistically significant.

3.1 DEFINE (I, C): Overview of Scan Types

Many of the group fairness criteria proposed in the fairness literature fall into two categories of
statistical fairness called sufficiency and separation. Sufficiency is focused on equivalency in the rate
of an outcome (for comparable individuals with the same prediction or recommendation) regardless
of protected class membership (Y ⊥ A | P,X), whereas separation is focused on equivalency of
the expected prediction or recommendation (for comparable individuals with the same outcome)
regardless of protected class membership (P ⊥ A | Y,X). The choice between separation and
sufficiency determines whether outcome Y is the event variable of interest I or the conditional
variable C, where bias exists if E[I | C,X,A = 1] ̸= E[I | C,X,A = 0]. The combination of
fairness metric (sufficiency or separation) and prediction type (continuous prediction or binary
recommendation) produces four classes of fairness scans: separation for predictions (I = P , C = Y ),
separation for recommendations (I = Pbin, C = Y ), sufficiency for predictions (I = Y , C = P ),
and sufficiency for recommendations (I = Y , C = Pbin).

Depending on the particular bias of interest, we can also perform “value-conditional” scans by
restricting the value of the conditional variable. For example, to scan for subgroups with increased
false positive rate (FPR), we restrict the data to individuals with Y = 0 and perform a separation scan
for recommendations. All of the scan options for CBS are shown in Table 1. Each scan in Table 1
can detect bias in either direction, e.g., searching for subgroups with increased or decreased FPR.

3.2 GENERATE EXPECTATIONS Î OF THE EVENT VARIABLE

Once we have defined the event variable I and conditional variable C, we wish to detect fairness
violations by assessing whether there exist subgroups of the protected class where E[I | C,X,A =
1] differs systematically from E[I | C,X,A = 0]. For each individual i in the protected class,
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Table 2: Null and alternative hypotheses, H0 and H1(S), and corresponding log-likelihood ratio
score functions, F (S), used to measure a subgroup’s degree of anomalousness (comparing the event
variable I to its expectation Î under H0) for all four variants of CBS.

Scan Types Hypotheses Distribution
for F (S)

F (S)

Null Hypothesis H0 : ∆i ∼ N(0, σ), ∀i ∈ D1

Alternative Hypothesis H1(S) : ∆i ∼ N(µ, σ)

where ∆i = log
(

Ii
1−Ii

)
−log

(
Îi

1−Îi

)
Over-estimation Bias: µ < 0, ∀i ∈ S, and µ = 0, ∀i /∈ S.

Predictions

Under-estimation Bias: µ > 0, ∀i ∈ S, and µ = 0, ∀i /∈ S.

Gaussian maxµ
2µ(

∑
i∈S ∆i)−|S|µ2

2σ2Separation

Recommendations Null Hypothesis H0 : odds(Ii) =
Îi

1−Îi
, ∀i ∈ D1

BernoulliPredictions Alternative Hypothesis H1(S) : odds(Ii) = q Îi
1−Îi

maxq
∑

i∈S(Ii log(q)

Over-estimation Bias: q < 1, ∀i ∈ S, and q = 1, ∀i /∈ S. − log(qÎi − Îi + 1))Sufficiency Recommendations Under-estimation Bias: q > 1, ∀i ∈ S, and q = 1, ∀i /∈ S.

Over-estimation (under-estimation) bias means that the expectations Îi are larger (smaller) than Ii.

Ii | Ci, Xi, Ai = 1 is observed but Ii | Ci, Xi, Ai = 0 is unobserved. Thus we must calculate an
estimate Îi = EH0

[Ii |Ci, Xi, Ai = 1], under the null hypothesis, H0: (I ⊥ A |C,X), and compare
Îi to the observed Ii. To calculate Î we use the following method from the econometric literature on
heterogeneous treatment effects, which controls for non-random selection into the protected class A
based on observed covariates X: (1) Learn a probabilistic model for estimating Pr(A = 1 |X), and
use it to produce propensity scores, pAj , for each individual j in the non-protected class; (2) For each
individual j in the non-protected class, use the observed E[Ij |Cj , Xj , Aj = 0] weighted by the odds

of the propensity score for individual j,
pA
j

1−pA
j

, to learn a probabilistic model for EH0
[I |C,X,A = 1];

(3) For each individual i in the protected class, use the model of EH0
[I | C,X,A = 1] to calculate

Îi = EH0 [Ii = 1 | Ci, Xi, Ai = 1]. Appendix A.1 provides a detailed description of this method,
including its modifications for a real-valued event variable (i.e., separation scan for predictions) and
for value-conditional scans.

3.3 DETECT THE MOST SIGNIFICANT SUBGROUP S∗ AND EVALUATE ITS STATISTICAL
SIGNIFICANCE

Given the observed event variables Ii and the expectations Îi of the event variable under the null
hypothesis (I ⊥ A | C,X) for the protected class, we define a score function measuring subgroup
bias, F : S → R≥0, that can be efficiently optimized over exponentially many subgroups to
identify S∗ = argmaxS F (S). To do so, we follow the literature on spatial and subset scan
statistics (Kulldorff, 1997; Neill, 2012) by defining score functions F (S) that take the general form
of a log-likelihood ratio (LLR) test statistic, F (S) = log

(
Pr(D | H1(S))
Pr(D | H0)

)
. Here the denominator

represents the likelihood of seeing the observed values of event variable I for subgroup S of the
protected class under the null hypothesis H0 of no bias. The numerator represents the likelihood of
seeing the observed values of I for subgroup S of the protected class under the alternative hypothesis
H1(S), where the Ii values are systematically increased or decreased as compared to Îi. For H1(S) to
represent a deviation from H0, H1 contains a free parameter (q or µ) that is determined by maximum
likelihood estimation. Under-estimation bias (Ii > Îi) or over-estimation bias (Ii < Îi) can be
detected using different constraints for q or µ as shown in Table 2. When I is a probabilistic prediction
(i.e., for separation scan for predictions), the hypotheses are in the form of a difference of log-odds
between I and Î sampled from a Gaussian distribution. Here the free parameter µ in H1 represents
a mean shift (µ ̸= 0) of the Gaussian distribution. For all other scans, under H0, each observed Ii
is assumed to be drawn from a Bernoulli distribution centered at the corresponding expectation Îi.
Under H1, the free parameter q represents a multiplicative increase or decrease (q ̸= 1) of the odds
of I as compared to Î . The various score functions all aggregate the deviations from H0 for each
instance in a subgroup, and thus the log-likelihood ratio score F (S) scales linearly with subgroup
size |S| for a given amount of deviation. This dependence on |S| prevents the scan from assigning
disproportionately high log-likelihood scores to subgroups with very few instances where there is a
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large deviation in, for example, false positive rates between those in the protected class and those in
the non-protected class. This helps to ensure that subgroups with few instances with large, chance
deviations from the null hypothesis are not favored over the true, larger subgroups of interest.

As in Zhang and Neill (2016), a penalty term can be added to F (S) equal to a prespecified scalar
times the total number of attribute values included in subgroup S, summed across all covariates
X1 . . . Xm. Note that there is no penalty for a given attribute if all attribute values are included, since
this is equivalent to ignoring the attribute when defining subgroup S. The penalty term results in
more interpretable subgroups by encouraging the scan to either ignore an attribute (i.e., all values of
that attribute are included in the subgroup) or choose a smaller number of attribute values to include
in the subgroup. This allows the detected subgroup to consist of those attributes and values whose
inclusion most increases the log-likelihood ratio score, while omitting those attributes and values that
have little effect on the log-likelihood ratio score.

We now consider how CBS is able to efficiently maximize F (S) over subgroups S of the protected
class, returning S∗ = argmaxS F (S) and the corresponding score F (S∗). The scan procedure
for CBS takes as inputs a dataset D1 = (I, Î, X) consisting of the event variable Ii, the estimated
expectation of Ii under the null hypothesis Îi, and the covariates Xi, for each individual in the
protected class (Ai = 1), along with several parameters: the type of scan (Gaussian or Bernoulli), the
direction of bias to scan for (over- or under-estimation), complexity penalty, and number of iterations.
It then searches for the highest-scoring subgroup (consisting of a non-empty subset of values V j

for each covariate Xj), starting with a random initialization on each iteration, and proceeding by
coordinate ascent. The coordinate ascent step identifies the highest-scoring non-empty subset of
values V j for a given covariate Xj , conditioned on the current subsets of values V −j for all other
attributes. As shown in McFowland III et al. (2023), each individual coordinate ascent step can
provably find the optimal subset of attribute values while evaluating only |Xj | of the 2|X

j | subsets of
values, where |Xj | is the arity of covariate Xj . This efficient subroutine follows from the fact that the
score functions above satisfy the additive linear-time subset scanning property (Neill, 2012; Speakman
et al., 2016). The coordinate ascent step is repeated with different, randomly selected covariates
until convergence to a local optimum of the score function, and multiple random restarts enable the
scan to approach the global optimum. McFowland III et al. (2023) provide sufficient conditions
under which this routine will identify the global optimum in the large-sample limit; empirically,
the approach converges to near-optimal subgroups while requiring only low-order polynomial time.
For an in-depth, self-contained description of the scan algorithm, including pseudocode, and how it
exploits an additive property of the score functions to achieve linear-time efficiency for each scan
step, see Appendix A.2. Finally, as described in detail in Appendix A.3, we perform permutation
testing to compute the p-value of the detected subgroup, comparing its score to the distribution of
maximum subgroup scores under H0, and report whether it is significant at a given level α (e.g.,
α = .05).

4 EVALUATION

Given the lack of gold standard approaches for evaluating subgroup bias auditing methods, we
evaluate the CBS framework through semi-synthetic simulations with the following steps:

(A) Randomly select a protected class A and generate a semi-synthetic dataset where the predictions,
recommendations, and outcomes are conditionally independent of A given X , i.e., there are no
sufficiency or separation violations (as defined in Section 3.1) pertaining to protected class A.

(B) Take the unmodified semi-synthetic data and inject signal consistent with a separation or
sufficiency violation or base rate shift into a subgroup of protected class A.

(C) Run CBS and benchmark methods to detect violations pertaining to protected class A and measure
the accuracy of the detected subgroups compared to the known (injected) biased subgroup.

We generate 100 semi-synthetic datasets. For each dataset, we perform the same set of 1,344
experiments, each with a specific type and amount of injected signal. We then average performance
over the 100 datasets for each experiment.
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Figure 1: Average accuracy (with 95% CI) as a function of the amount of bias injected into subgroup
Sbias of the protected class, for four variants of CBS, GerryFair, and MultiAccuracy Boost. Left:
increasing predicted probabilities by µsep. Right: decreasing true probabilities by µsuf .

(A) Generate a semi-synthetic dataset: Using COMPAS data1 described in Section 5, we randomly
select an attribute and value to define the protected class A and remove that attribute from X . For
each attribute-value of the covariates, we draw a weight from a Gaussian distribution, N (0, 0.2). We
use these weights to produce the true log-odds of a positive outcome (Yi = 1) for each row i by a
linear combination of the attribute values with these weights. Additionally, for each row, we add
ϵtruei ∼ N (0, σtrue) to its true log-odds, representing variation between rows that arises from external
factors (not included in the scan attributes), and is incorporated into the predictive model.2 Given the
true log-odds Ltrue

i of Yi = 1 for each row, we draw each outcome Yi from a Bernoulli distribution
with the corresponding probability, expit(Ltrue

i ), which we refer to as the true probabilities. Next, we
set each row’s predicted probability Pi = expit(Ltrue

i + ϵi), where ϵi ∼ N (0, σpredict) represents
non-systematic errors (random noise) in the predictive model. We use default values of σtrue = 0.6
and σpredict = 0.2, and examine sensitivity to these parameters in Appendix B.4; see Appendix B.2
for discussion of the impact of σtrue on sufficiency-based fairness definitions. Finally, we threshold
the probabilities to produce recommendations Pi,bin = 1(Pi ≥ 0.5) for each row i. Since A is
conditionally independent of the outcomes Y , predictions P and recommendations Pbin given the
observed covariates X , this dataset contains no signals indicating separation or sufficiency violations
for a subgroup of protected class A.

(B) Inject signal: We randomly select a subgroup of the protected class Sbias into which we will
inject biases or base rate shifts. We pick Sbias by randomly choosing two attributes (nbias = 2) and
then independently including or excluding each value of those attributes with probability pbias = 0.5.
(This process is repeated until the resulting subgroup is non-empty.)

We designed the evaluation to address three key questions about the performance of the four CBS
variants and benchmark methods:

(Q1) How well do they detect biases represented as systematic differences between the predicted
and true probabilities for the event variable I in subgroup Sbias of the protected class?

(Q2) How do they respond to a base rate shift, i.e., an equal shift δ in the predicted and true
probabilities for the event variable I for subgroup Sbias of the protected class, assuming no
injected bias?

(Q3) How do the answers to the first two questions vary based on the characteristics of Sbias?

1We use the covariates from COMPAS to maintain realistic covariate correlations, but do not use the
predictions or outcomes.

2Rudin et al. (2020) note that COMPAS relies on up to 137 variables collected from a questionnaire, and we
expect that some of these additional variables are correlated with outcomes.
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Figure 2: Average accuracy (with 95% CI) as a function of the base rate difference δ between
protected and non-protected class for subgroup Sbias, for four variants of CBS, GerryFair, and
MultiAccuracy Boost. Note that predictions are well calibrated, µsep = µsuf = 0.

To address (Q1), we inject bias into subgroup Sbias of the protected class, keeping the corresponding
subgroup of the non-protected class unchanged, in one of two ways: (1) increasing the predicted
probabilities, Pi, by µsep for each row in Sbias, and recomputing the model’s recommendations
Pi,bin by thresholding Pi at 0.50; or (2) reducing the true probabilities by µsuf for each row in Sbias,
and redrawing the outcomes Yi. Both of these shifts result in a bias where P and Pbin overestimate
the outcomes (Y ) for the given subgroup of the protected class. When µsep > 0, this creates a signal
which is consistent with separation violations in the positive direction. When µsuf > 0, this creates
a signal which is consistent with sufficiency violations in the negative direction. To address (Q2),
we inject a base rate shift into subgroup Sbias of the protected class, keeping the corresponding
subgroup of the non-protected class unchanged by increasing both the true probabilities and the
predicted probabilities of Sbias by δ, then redrawing outcomes Yi and recomputing recommendations
Pi,bin. For positive δ, this creates a higher base rate of a positive outcome for subgroup Sbias of
the protected class, as compared to the corresponding subgroup of the non-protected class, while
maintaining well-calibrated predictions.

Importantly, the signals for µsep, µsuf , and δ are created by a uniform shift in the true and predicted
probabilities, which corresponds to a non-uniform shift in the true and predicted log-odds. This
is distinct from the modeling assumption made by CBS, which assumes (under the alternative
hypothesis that bias is present) a constant additive shift in the true or predicted log-odds. By injecting
signal in this way, we ensure that our method is robust to non-additive shifts in log-odds. For
simulation results that inject bias represented as additive shifts in log-odds, please see Appendix B.4.
We observe high consistency between those additional results and the ones presented here.

To address (Q3), we vary the size of Sbias by (1) varying the number of attributes, nbias, that the
attribute-values can be chosen from, between 1 and 4; or (2) varying the probability, pbias, that
each value of the chosen attributes is included in Sbias. We run three experiments (µsep = 0.50,
µsuf = 0.50, and δ = 0.25) while varying nbias and pbias for each experiment.

(C) Run CBS and benchmark methods and measure the accuracy of the detected subgroups: We
compare the four variants of CBS to GerryFair (Kearns et al., 2018) and MultiAccuracy Boost (Kim
et al., 2019a), described in Section 2. For more information about the methods and modifications we
made to both benchmark methods to make them more comparable to CBS for these simulations, see
Appendix B.1. We use the same settings for CBS as described in Section 5, with the exception of
running all scans with all conditional variable values rather than as value-conditional scans. After
injecting bias into or shifting the base rates of Sbias in the protected class and running all CBS
scans and GerryFair and MultiAccuracy Boost, we measure the accuracy of a detected subset, S∗,
by accuracy(S∗) = | Sbias ∩ S∗ |

| Sbias ∪ S∗ | , the Jaccard similarity between the injected and detected subsets.
This accuracy measure penalizes both falsely detected unbiased instances and undetected instances
affected by bias, making it appropriate for applications where both types of error should be minimized.
Accuracies are averaged over the 100 simulations for each experiment.

Simulation Results: In Figure 1, which addresses (Q1), we observe that all four variants of CBS
are able to detect the injected bias (for subgroup Sbias of the protected class) with higher accuracy
than GerryFair or MultiAccuracy Boost. Sufficiency scans had highest accuracy for shifts in true
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probabilities (µsuf ), and separation scans had highest accuracy for shifts in predicted probabilities
(µsep). Scans for predictions generally outperformed scans for recommendations, due to the loss
of information from binarizing the probabilistic predictions. Interestingly, sufficiency scan for
predictions (but not for recommendations) converged to perfect accuracy for µsep, while separation
scans did not converge to perfect accuracy for µsuf . Sufficiency scan for predictions is conditioned
on a real-valued variable (Pi) rather than a binary variable (Pi,bin or Yi), allowing more flexible
modeling of E[Y | P,X] and thus greater sensitivity to shifts in predicted probabilities.

In Figure 2, which addresses (Q2), shifting the base rate for subgroup Sbias of the protected class
results in separation scans detecting a base rate shift when δ > 0, while sufficiency scans and
competing methods are robust to this shift. This finding aligns with previous research proving that
differences in base rates between two populations will result in a higher false positive rate for the
population with a higher base rate when using a well-calibrated classifier (Chouldechova, 2017).
Interestingly, sufficiency scan for recommendations detects a base rate shift for δ ≪ 0. In this
case, E[Y | Pbin, X] is lower for instances in the protected class than for instances with negative
recommendations in the non-protected class. Thus conditioning on the binary indicator Pi,bin is not
sufficient to capture this decrease in the true probabilities, while conditioning on the real-valued
prediction Pi allows sufficiency scan for predictions to extrapolate reasonably well to these cases.

In Figure 4 in Appendix B.3, which addresses (Q3), we see that CBS is robust to increasing the number
of affected dimensions nbias, with the relative accuracies for scans and competing methods similar to
those in Figures 1 and 2. Interestingly, increasing pbias to 1 (meaning that bias is injected into the
entire protected class) enables GerryFair to achieve similar accuracy to CBS for µsep = 0.50, but CBS
outperforms GerryFair for smaller, more subtle, subgroup biases. All fixed hyper-parameter choices
for these simulations are moderate values which align with non-edge cases. Additional robustness
checks for varying hyper-parameter choices for these simulations are described in Appendix B.4. For
estimates of compute power needed for the simulations see Appendix B.5.

5 CASE STUDY OF COMPAS

The COMPAS algorithm is used in various jurisdictions across the United States as a decision support
tool to predict individuals’ risk of recidivism. It is commonly used by judges when deciding whether
an arrested individual should be released prior to their trial (Angwin et al., 2016b). We define each
defendant’s predicted probability of reoffending, Pi, by mapping their COMPAS risk score to the
proportion of all defendants with the given risk score who reoffended. Defendants with COMPAS
risk scores of 5+ are considered “high risk” (Pi,bin = 1) since the COMPAS documentation stipulates
careful consideration by supervision agencies for these defendants (Larson et al., 2016). For details
about the COMPAS data, critiques of this dataset, and other considerations about using COMPAS in
this case study, please see Appendices C.1.1 and C.1.4.

We chose the parameters for each of the four variants of CBS (value of the conditioning variable, if it
is binary, and direction of effect) in order to search for systematic biases in COMPAS predictions and
recommendations which disadvantage the protected class. For the separation scans, we detect positive
deviations for the protected class attribute in the E(P | Y = 0, X) and Pr(Pbin = 1 | Y = 0, X), i.e.,
increase in predicted risk and increase in FPR for non-reoffending defendants, respectively. For the
sufficiency scans, we detect a negative deviation for the protected class in the Pr(Y = 1 | P,X) and
Pr(Y = 1 | Pbin = 1, X), i.e., decreased probability of reoffending conditional on predicted risk and
on being flagged as high-risk, respectively. For all scans, we use all attributes except for the sensitive
attribute when calculating the probability of being a member of the protected class (for the propensity
score weighting step) and when generating the predicted values Î in Section 3.2. All scans were run
for 500 iterations with a penalty equal to 1.

Figure 3 contains the detected subgroups S∗, and their associated log-likelihood ratio scores F (S∗)
and corresponding indicators of statistical significance, found by each of the four variants of CBS,
for various choices of the protected class: Black, white, female, male, younger (under the age of 25)
and older (age 25+) defendants. Please see Appendix A.3 for the permutation test procedure used to
determine statistical significance of CBS’s detected biases. For the full set of results for all CBS scans
when treating each attribute value as the protected class, please see Table 4 in Appendix C.1.2. This
table includes information about the number of individuals and the observed rate (e.g., proportion
of reoffending), both for the detected subgroup of the protected class, and for the corresponding
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Figure 3: Scores of the subgroups found when running four variants of CBS on COMPAS data
for different choices of protected class. A text description of the subgroup S∗ found for each
scan is provided if the subgroup score F (S∗) is greater than 0. *** indicates the subgroup’s score
is statistically significant with p-value < .05 measured by permutation testing, as described in
Appendix A.3. We exclude statistically significant detected subgroups affected by over-estimation
bias pertaining to Asian and Hispanic defendants because the F (S∗) scores were small and visually
challenging to display. Please reference Table 4 in Appendix C.1.2 for these results.

(comparison) subgroup of the non-protected class. For a discussion of the benchmark methodologies’
results for COMPAS, please reference Appendix C.1.5. Below are the statistically significant racial
and age biases that CBS found in COMPAS predictions and recommendations:

Racial bias in COMPAS. Figure 3 shows that the separation scans identify highly significant
biases against a subgroup of Black defendants, while the sufficiency scans do not. These results
support and complement the previous findings by ProPublica (Angwin et al., 2016b) and follow-up
analyses (Chouldechova, 2017), which concluded that COMPAS has large error rate disparities
which negatively impact Black defendants (corresponding to large scores for separation scans),
and that its predictions are well-calibrated for Black defendants (corresponding to small scores for
sufficiency scans). However, CBS’s detected subgroup for the two separation scans adds a useful
finding to this discussion: the large FPR disparity of COMPAS against Black defendants is even more
significant in the intersectional subgroup of Black males. Non-reoffending Black male defendants
have an FPR of 0.44, compared to non-reoffending non-Black male defendants’ FPR of 0.19, whereas
non-reoffending Black defendants have an FPR of 0.42, compared to non-reoffending non-Black
defendants’ FPR of 0.20. Sufficiency scans find Asian defendants arrested on misdemeanor charges
have a lower rate of reoffending compared to non-Asian defendants with comparable COMPAS risk
scores and Hispanic defendants flagged as high-risk by COMPAS have lower rate of reoffending
compared to non-Hispanic defendants flagged as high-risk.

Age bias in COMPAS. Previous research argues that COMPAS relies heavily on the assumption
that younger defendants are more likely to reoffend (Rudin et al., 2020), when computing risk scores.
Younger defendants have a higher reoffending rate compared to older defendants (0.56 vs. 0.46), and
thus, well-calibrated predictions and recommendations would result in younger defendants having
higher FPR than older defendants. Our separation scans identify non-reoffending defendants under
age 25 as the subgroup with the largest FPR disparity. On the other hand, our sufficiency scans
identify a large subgroup bias within the protected class of defendants age 25+: older male defendants

9
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with 0 to 5 priors have a lower rate of reoffending, as compared to younger male defendants with
0 to 5 priors, both for flagged high-risk defendants (sufficiency scan for recommendations) and
for defendants with similar risk scores (sufficiency scan for predictions). This finding highlights
the scenario described in Section 1 that CBS is designed to detect: predictions are well-calibrated
between older and younger defendants, in aggregate, but not for the detected subgroup of older males
with 0 to 5 priors.

For gender bias in COMPAS, reference Appendix C.1.3. For our German Credit Data case study,
see Appendix C.2.

6 LIMITATIONS

Our CBS framework is designed to audit a classifier’s predictions and recommendations for biases
with respect to subgroups of a protected class, whereas competing methods provide mechanisms for
both auditing and correcting classifiers. Combining auditors with correction and training presents the
challenge of how to quantify the inherent trade-offs between performance and fairness when correcting
for subgroup biases. Additionally, designing auditors that are linked to correction and training
methods reinforces the framing that the primary solution to subgroup biases is to correct the models.
Given that fairness is often context-specific, ideas of fairness could differ between stakeholders, and
upstream biases exist in data sources used in many socio-technical settings, designing an optimally
fair model is not always feasible. We endorse exploring larger policy shifts (not limited to model
correction) to address biases that auditing tools like CBS might unearth that are correlated with
broader societal issues.

CBS is designed to detect biases in the form of group fairness violations represented as conditional
independence relationships. While CBS is easily generalizable to other objectives that can be
represented as group-level conditional independence relationships, it is less generalizable to other
fairness definitions such as individual and counterfactual fairness (Dwork et al., 2012; Kusner et al.,
2017). Our technique for estimating the expectations Î under the null hypothesis of no bias has
the limitation (which is commonly cited in the average treatment effects literature) of only being
reliable when using well-specified models for estimating the propensity scores of protected class
membership and for estimating Î . Given the consistency of our COMPAS results in Section 5 with
other researchers’ findings about COMPAS, the process of estimating Î seems to model the COMPAS
data well. With that said, we encourage users of CBS to check estimates of Î and if necessary,
employ procedures common in the econometric literature (Imbens, 2004; Schuler and Rose, 2017)
or calibration methods within the computer science literature. Lastly, there are various limitations
to permutation testing, some of which are discussed in Berger (2000). For CBS specifically, if Î is
poorly estimated during permutation testing, this could result in higher type II errors where CBS is
more likely to erroneously fail to reject the null hypothesis H0 of no bias.

Our simulations in Section 4 account for bias in the form of shifts in the predicted and true probabilities
(separately and jointly) – which produces predictive and aggregation biases – for a prescribed set of
covariate attribute values in the protected class. We provide additional simulations with signal and
base rate shifts represented as shifts in the true and predicted log-odds in Appendix B.4. In real-world
scenarios, the generative process of bias might differ from the assumptions made in our simulations.
Future research could determine and (if necessary) improve CBS’s robustness to different generative
schemas of bias. While this is a limitation of our simulations, the results of CBS for COMPAS, which
is a real-world application where the biases present are not a result of our generative process, are in
line with other research about biases in COMPAS and the U.S. criminal justice system (Chouldechova
and G’Sell, 2017; Everett et al., 2011; Rudin et al., 2020). Additionally, we provide a discussion of
the benchmark methodologies’ results for COMPAS in Appendix C.1.5 to highlight that CBS has
various advantages as an auditor in this real-world application (not restricted by the assumptions used
in Section 4) compared to the benchmark methodologies’ auditor results.

In summary, CBS is a flexible framework that works with most group-level fairness definitions to
detect intersectional and contextual biases within subgroups of the protected class while overcoming
some of the issues that arise when only considering fairness violations in aggregate for a single
protected attribute value. CBS can discover intersectional and contextual biases in COMPAS scores
and German Credit Data, and outperforms similar methods that audit classifiers for subgroup fairness.
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A METHODS APPENDICES

A.1 DETAILS ABOUT THE METHOD FOR GENERATING Î USED IN SECTION 3.2 AND ITS
LIMITATIONS

The method presented in Section 3.2 describes how to estimate Îi, the expectation of the event
variable Ii for each individual i in the protected class, under the null hypothesis, H0, of no bias (i.e.,
I ⊥ A | C,X). Using the estimated Î and observed I , we can determine which subgroups in the
protected class have the largest deviations in I as compared to what we would expect if there was no
bias, Î . The method to generate Î borrows from the literature on causal inference in observational
settings, where propensity score reweighting is used to account for the selection of individuals into a
“treatment” condition (here, membership in the protected class) given their observed covariates X .

The method to estimate Î consists of the following steps:

1. Train a predictive model using all the individuals in the data to estimate Pr(A = 1 |X).
2. Use this model to produce the probabilities, pAi = Pr(Ai = 1 |Xi), and the corresponding

propensity score weights, wA
i =

pA
i

1−pA
i

, for each individual i in the non-protected class
(Ai = 0). Intuitively, individuals in the non-protected class whose attributes Xi are more
similar to individuals in the protected class have higher weights wA

i . This weighting scheme
is used in the literature to produce causal effect estimates that can be interpreted as the
average treatment effect on treated individuals (ATT) under typical assumptions of positivity
and strong ignorability.

3. If the event variable, I , is binary (i.e., for all sufficiency scans and separation scan for
recommendations), we train a model using only data for individuals in the non-protected
class (Ai = 0) to estimate EH0

[I |C,X] by weighting each individual i in the non-protected
class by wA

i . The trained model is used to estimate the expectations Îi = EH0
[Ii | Ci, Xi]

for each individual in the protected class (Ai = 1) under the null hypothesis, H0, of
I ⊥ A | (C,X).

4. For the separation scan for predictions, we have a real-valued event variable, the probabilistic
predictions P , rather than a binary event variable. We use a similar but modified process to
estimate EH0

[I |C,X], where I = P and C = Y . For each individual i in the non-protected
class, we create two training records containing the same covariates Xi, but different labels
and associated weights:

(a) For the first record, we set the label, Itemp
i+

, equal to 1, and set the weight to wA
i Pi.

(b) For the second record, we set the label, Itemp
i−

, equal to 0, and set the weight to
wA

i (1− Pi)

We create a dataset that includes both records for each individual in the non-protected
class and their associated weights, and use this concatenated data set to train a model that
estimates EH0

[Itemp | C,X], by weighting each individual i in the non-protected class by
either wA

i Pi or wA
i (1− Pi) as described above. This approach is consistent with other CBS

variants and enforces the desired constraint 0 ≤ Îi ≤ 1, unlike alternative approaches such
as using regression models to predict P .

For value-conditional scans, CBS audits for biases in the subset of data where C = z, for z ∈ {0, 1}.
Dataset D is filtered before Step 3 to only include individuals where C = z. For example, for
the value-conditional scan for FPR, we filter the data to only include individuals where C = 0 (or
equivalently, Y = 0).

A probabilistic model can be used to estimate Pr(A = 1 |X) in Step 1, and a probabilistic model that
allows for weighting of instances during training can be used to estimate EH0

[I | C,X] in Steps 3
and 4. For Sections 4 and 5, as well as Appendices B.3 and B.4, we use logistic regression to
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estimate Pr(A = 1 |X) and weighted logistic regression to estimate EH0
[I |C,X]. When estimating

EH0
[Y | P,X] (the realized expectation of EH0

[I | C,X]) for sufficiency scan for predictions, we
transform the conditional variable, Pi, to its corresponding log-odds, log Pi

1−Pi
, prior to training,

since we expect log Yi

1−Yi
(the target of the logistic regression) to be approximately log Pi

1−Pi
for

well-calibrated classifiers. Alternative prediction models, such as random forests with Platt scaling
for calibration of probability estimates, could also be used in place of logistic regression.

The method described above has the limitation of only producing accurate estimates of Î when both
the model for Pr(A = 1 | X) and EH0 [I | C,X] are well-specified. Accurate estimates of Î are
essential for CBS to accurately detect the subgroup in the protected class with the most deviation
between the observed I and estimated Î under the null hypothesis of no bias. Given the consistency
of our findings for the COMPAS case study in Section 5 with other researchers’ findings about
COMPAS, as well as other checks we have performed to examine Î , we believe the method above
suffices for COMPAS. However, we find that logistic regression does not do a good job of estimating
Î for the German Credit Data, due to the smaller dataset size and highly-correlated predictors. Thus
we use a more flexible model—a gradient boosting classifier with Platt scaling—in our German
Credit Data experiments in Appendix C.2 to ensure that CBS predictions are well-calibrated when
computing propensity scores and when estimating Î . We encourage others using CBS to be aware of
this limitation, pay special consideration to estimates of Î , and if necessary, employ methods from
the causal inference literature on doubly robust estimation (Imbens, 2004; Schuler and Rose, 2017) or
methods from the computer science literature for model calibration when producing estimates of Î .

Critically, we note that both discrete-valued and continuous-valued covariates Xi can be used for
estimating Î . Both the propensity model Pr(A = 1|X) and the model of EH0 [I |C,X] can incorporate
either discrete-valued or continuous-valued covariates. However, continuous-valued covariates must
be discretized or removed prior to the scan step, which assumes that all scan dimensions are discrete.

A.2 FAST SUBSET SCANNING FOR CONDITIONAL BIAS SCAN

In this section, we explain the fast subset scanning (FSS) algorithm that CBS uses to find the subgroup
of the protected class with the most biased predictions or recommendations (Neill, 2012). We will
introduce FSS using a simplified example, for illustrative purposes, to highlight the computational
difficulties inherent in subset scanning, the additive property of the score functions for CBS that
enable computationally feasible subset scanning, and the implementation of FSS for CBS.

Let us assume a dataset of individuals in the protected class (A = 1), denoted as Q = {(X1, I, Î)},
that contains values of the event variable Ii, estimates Îi of the expected value of the event variable
under the null hypothesis of no bias, and a single categorical covariate attribute X1

i for each individual
i. For concreteness, we perform a sufficiency scan for predictions, therefore, the event variable
Ii is the observed binary outcome Yi for individual i, and the corresponding Îi is the estimated
Pr(Yi = 1 | Pi, Xi) under the null hypothesis H0 that Y ⊥ A | (P,X). S refers to a subgroup of
Q, which in our simple example is a non-empty subset of values for attribute X1. Since our event
variable is binary, we use the Bernoulli likelihood function to represent the hypotheses in the score
function, F (S), used to determine the level of anomalousness of a subgroup S of Q.

In the worst-case scenario, X1 could be a categorical variable with distinct values for each of the n
rows of data in Q. If we were to score all of the possible S ⊆ Q using F (S), this method would have
a runtime of O(2n), which would be computationally infeasible. To overcome this computational
barrier, FSS relies on its score functions, F (S), being a part of an efficiently optimizable class of
functions in order to find the most anomalous subset S∗ = argmaxS⊆Q F (S) without the need to
evaluate all of the subsets of Q. The property that determines if a function is a part of this class that
enables fast subset scanning is called Additive Linear-Time Subset Scanning (ALTSS) (Speakman
et al., 2016) and is formally defined below. Informally, if F (S) can be represented as an additive
set function over all instances i ∈ S when conditioning on the free parameter (q for the Bernoulli
distribution or µ for the Gaussian distribution in Table 2), it satisfies this property (Speakman et al.,
2016).

To explore how FSS exploits the ALTSS property for computationally efficient subset scanning,
assume that the categorical covariate X1 for each individual i can only be equal to one of four values,
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X1
i ∈ {a, b, c, d}. FSS constructs a subset for each attribute value of X1 such that Sa = {i ∈ Q :

X1
i = a}, Sb = {i ∈ Q : X1

i = b}, Sc = {i ∈ Q : X1
i = c}, Sd = {i ∈ Q : X1

i = d}. Since we
are using the likelihood function for the Bernoulli distribution for F (S), F (S) is a concave function
of the free parameter q, and for illustrative purposes, we will assume that maxq F (S) is positive
for all subsets Sa, Sb, Sc and Sd. Therefore, for each subset Sa, Sb, Sc and Sd, F (S) is a function
over the domain of q, where as q increases from −∞, F (S) eventually equals 0 and then the global
maximum for F (S) for that given subset, and then starts decreasing until it again reaches a point
where F (S) = 0, and then remains negative as q approaches∞. FSS identifies three q values for
each subset, S ∈ {Sa, Sb, Sc, Sd}:

1. The first value of q where F (S) = 0 as q increases from −∞ to∞, which we will refer to
as qmin.

2. The second value of q where F (S) = 0 as q increases from −∞ to∞, which we will refer
to as qmax.

3. The value of q for argmaxq F (S), which we will refer to as qMLE.

Each distinct qmin and qmax value for subsets (Sa, Sb, Sc, Sd) is a value of q where the score function
F (S) becomes negative or positive for at least one of these four subsets. By sorting all of the distinct
qmin and qmax values across all the subsets (Sa, Sb, Sc, Sd) in ascending order, we construct a list of
q values, {q(1), ..., q(m)}, where each pair of adjacent values, q(k) and q(k+1), represents an interval
of the q domain, (q(k), q(k+1)), for which each subset S ∈ {Sa, Sb, Sc, Sd} has either F (S) > 0 for
the entire interval or F (S) < 0 for the entire interval. For each interval, we perform the following:

1. Find the midpoint of the interval (average of q(k) and q(k+1)), which we refer to as qmid
k .

2. Create a new subset Saggregate
k by aggregating all subsets S ∈ {Sa, Sb, Sc, Sd} where the

subset’s qmin < qmid
k and the subset’s qmax > qmid

k , i.e., F (S) > 0 when q = qmid
k

and therefore for the entire interval (q(k), q(k+1)). Since the score function is additive,
conditioned on q, we know that a subset S will make a positive contribution to the score
F (Saggregate

k ) if and only if F (S) > 0 for that value of q. Thus, we know that the highest
scoring subset Saggregate

k for that interval [q(k), q(k+1)] contains all and only those subsets S
with F (S) > 0 at q = qmid

k .

3. Find the maximum likelihood estimate of q, qaggregate
MLE = argmaxq F (Saggregate

k ), and the
corresponding score F (Saggregate

k ).

The aggregate subset, Saggregate
k , with the highest score for F (S) using its associated qaggregate

MLE is the
most anomalous subset when considering subsets formed by combinations of different attribute-values
of X1.

For our simplified example, there are at most 8 distinct qmin or qmax values from the four subsets
(Sa, Sb, Sc, Sd), and thus at most 7 distinct intervals (q(k), q(k+1)) that must be considered. For a
given interval, we need to evaluate only a single subset Saggregate

k , and thus, only 7 of the 15 non-empty
subsets of {Sa, Sb, Sc, Sd}. More generally, if n is the arity (number of attribute values) of categorical
attribute X1, at most 2n− 1 of the 2n − 1 non-empty subsets of attribute values must be evaluated to
identify the highest-scoring subgroup.

The scenario where the covariates consist of a single categorical attribute is a simplified example,
where only a single iteration of FSS is needed to find the optimal subset, S∗, of Q. When there are
two or more attributes for the covariates, multiple iterations of FSS must be performed to find the
optimal subset. On each iteration the following is performed:

1. We define an initial subset, Stemp where:
(a) If it is the first iteration, all of the attribute values for each attribute are included in

Stemp.
(b) Otherwise, a random subset of attribute values for each attribute are chosen to be

included in Stemp.

2. For each attribute Xi, in random order, we construct subsets by partitioning Stemp by the
distinct attribute values of Xi, form intervals across the domain of q for F (S), and then
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assemble and score the subsets for each interval (as described above). Stemp is updated
as higher scoring subsets using F (S) are found. Therefore, when an attribute is evaluated,
Stemp contains only rows of Q that fit the found criteria (in the form of attribute values)
from previously evaluated attributes, excluding the attribute currently under consideration.
This iterative ascent procedure is repeated until convergence.

Multiple iterations are performed with the final optimal subset being the subset with the highest
score using F (S) found across all the iterations, S∗. For the pseudocode of FSS for CBS, please see
Algorithm 1. The final results from FSS are the optimal subset, S∗, in the form of attribute-values
that form the criteria for the subgroup in the protected class with the most anomalous bias detected,
the parameter q or µ that maximizes F (S∗), and the score F (S∗) given the parameter q or µ.

A.2.1 FORMAL DEFINITION OF ADDITIVE LINEAR-TIME SUBSET SCANNING PROPERTY
(ALTSS)

Below we provide a formal definition of the Additive Linear-Time Subset Scanning Property. The
score functions, F (S), used to evaluate subgroups are a log-likelihood ratio formed from two
different hypotheses whose likelihoods are modeled by likelihood functions for either the Bernoulli
distribution or Gaussian distribution, both of which satisfy the Additive Linear-time Subset Scanning
Property (Speakman et al., 2016; Zhang and Neill, 2016).
Definition A.1 (Additive Linear-time Subset Scanning Property). A function, F : S × θ → R≥0,
that produces a score for a subset S ⊆ D, where D is a set of data and θ = argmaxθ F (S | θ),
satisfies the Additive Linear-time Subset Scanning Property if F (S | θ) =

∑
si∈S F (si | θ) where si

is a subset of S and ∀si, sj ∈ S, where si ̸= sj , we have si ∩ sj = ∅.

We refer to the score functions, F (S), contained in the rightmost column of Table 2 as F (S | µ) for
the score functions that use the Gaussian likelihood function to form hypotheses and F (S | q) for the
score functions that use the Bernoulli likelihood function to form hypotheses. F (S | q) contains a
summation,

∑
i∈S(Ii log q − log(qÎi − Îi + 1)), that is the sum of individual-specific values derived

from Ii, Îi, and q. Given that each individual is distinct, F (S | q) =
∑

i∈S F (si | q), where si is the
subset of S that contains only individual i, satisfies the ALTSS property. Similarly, F (S | µ) contains
a summation,

∑
i∈S ∆i, that is the sum of individual-specific values ∆i derived from Ii, Îi, and µ.

Therefore F (S | µ) =
∑

si∈S F (si | µ), where si is the subset of S that contains only individual i,
satisfies the ALTSS property.

A.2.2 PSEUDOCODE OF FAST SUBSET SCAN ALGORITHM FOR CONDITIONAL BIAS SCAN

Algorithm 1 is the pseudocode for the Fast Subset Scan (FSS) algorithm used in the CBS frame-
work (Neill, 2012). The algorithm finds the subgroup, S∗, with the most anomalous signal (i.e., the
highest score F (S∗)) in a dataset. For CBS, this signal is in the form of a bias (according to one of
the fairness definitions in Table 1) against members of the protected class (A = 1) for subgroup S∗.
The dataset passed to the FSS algorithm by CBS contains only individuals i in the protected class,
and FSS compares their values of the event variable Ii to the estimated expectations Îi under the null
hypothesis of no bias.

At the initialization of FSS, placeholder variables are created that will hold the most anomalous subset
(S∗), and the subset’s corresponding information (θ∗, Score∗), across all iterations (Lines 1-3). At
the beginning of an iteration, a random subset is picked (set of attribute-values) as the starting subset,
Stemp, with the exception of the first iteration where the starting subset includes all attribute values,
as shown in the if-else statement starting on Line 5. For each iteration of this algorithm, we repeatedly
choose a random attribute to scan (i.e., we scan over subsets of its attribute values) as shown in
Lines 14-15, until convergence (i.e., when all attributes have been scanned without increasing the
score F (Stemp)).

For each attribute Xtemp to be scanned, for each of its attribute values Xtempi
, we score the subset

SXtempi
containing only the records with the given value of that attribute (Xtemp = Xtempi

), and
matching subset Stemp on all other attributes in X . We write this as SXtempi

← Srelaxed
temp ∩ {i ∈

D : Xtemp = Xtempi
}, where Srelaxed

temp is the relaxation of subset Stemp to include all values for
attribute Xtemp. Along with scoring this attribute-value subset SXtempi

, we find the two values of θ
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Algorithm 1 Fast Subset Scan for Conditional Bias Scan

Require: niters > 0, (Xi, Îi, Ii) ∀i ∈ D where Ai = 1, direction ∈ {positive, negative}
1: S∗ ← {}
2: Score∗ ← −∞
3: θ∗ ← −∞
4: for j ← 1 . . . niters do
5: if j == 1 then
6: Stemp ← all attribute-values for each attribute in X
7: else
8: Stemp ← random nonempty subset of attribute-values for each attribute in X
9: end if

10: θtemp ← argmaxθ(F (Stemp | θ))
11: Scoretemp ← F (S | θtemp)
12: nattributes ← number of attributes in X
13: nscanned ← 0 ▷ mark all attributes as unscanned
14: while nscanned < nattributes do
15: Xtemp ← randomly selected attribute that is marked as unscanned
16: for Xtempi

∈ Xtemp do ▷ for all attribute-values in Xtemp

17: SXtempi
← Srelaxed

temp ∩ {i ∈ D : Xtemp = Xtempi
} ▷ see Appendix A.2.2 for

definition of Srelaxed
temp

18: θmini
, θmaxi

← argθ(F (SXtempi
| θ) = 0) ▷ exception noted in Appendix A.2.2

19: θMLEi
= argmaxθ(F (SXtempi

| θ))
20: Scorei ← F (Stempi

| θMLEi
)

21: Adjust θmini
and θmaxi

depending on the direction of scan ▷ explained in text of
Appendix A.2.2

22: end for
23: θintervals ← {θmini , θmaxi∀Xtempi ∈ Xtemp} in ascending order ▷ all values of θ

where F (S) = 0 ∀Xtempi ∈ Xtemp, indexed by θ(k) below
24: Scoreinterval ← −∞
25: Sinterval ← {}
26: θinterval ← −∞ ▷ not to be confused with θintervals
27: for k ← 1 . . . length(θintervals)− 1 do
28: Saggregate

k ← {}
29: θmid

k ← θ(k)+θ(k+1)

2
30: for Xtempi ∈ Xtemp do
31: if Scorei > 0 and θmini < θmid

k and θmaxi > θmid
k then

32: Saggregate
k ← Saggregate

k ∪ SXtempi

33: end if
34: end for
35: θaggregate

k ← argmaxθ(F (Saggregate
k | θ))

36: Scoreaggregate
k ← F (Saggregate

k | θaggregate
k )

37: if Scoreaggregate
k > Scoreinterval then

38: Scoreinterval ← Scoreaggregate
k

39: Sinterval ← Saggregate
k

40: θinterval ← θaggregate
k

41: end if
42: end for
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43: if Scoretemp < Scoreinterval then
44: Scoretemp ← Scoreinterval
45: Stemp ← Sinterval

46: θtemp ← θinterval
47: nscanned ← 0 ▷ mark all attributes as unscanned
48: end if
49: nscanned ← nscanned + 1 ▷ mark attribute Xtemp as scanned
50: end while
51: if Score∗ < Scoretemp then
52: Score∗ ← Scoretemp

53: S∗ ← Stemp

54: θ∗ ← θtemp

55: end if
56: end for
57: return S∗, Score∗, θ∗

where F (SXtempi
) = 0, θmini

and θmaxi
, and the θ that maximizes F (SXtempi

), θMLEi
, with the

exception of attribute-value subsets SXtempi
that are not positive for any value of θ. This is shown in

the for-loop in Lines 16-21.

Line 21 states that θmini
and θmaxi

must be adjusted according to the direction of the scan to enforce
that the found parameters θmini and θmaxi adhere to the restrictions set by the direction of the scan.
The constraints necessary for the scans to detect biases in the positive and negative directions are
fully specified in Table 2. For positive scans that have score functions that utilize the Gaussian
likelihood function to form hypotheses, θmini

= max(0, θmini
) and for negative scans that utilize the

Gaussian likelihood function, θmaxi
= min(0, θmaxi

). For positive scans that have score functions
that utilize the Bernoulli likelihood function to form hypotheses, θmini

= max(1, θmini
) and for

negative scans that utilize the Bernoulli likelihood function, θmaxi
= min(1, θmaxi

). Attribute-value
subsets SXtempi

should not be considered when choosing subsets for Saggregate for positive scans
where θmaxi < 0 or θmaxi < 1 for scans using the Gaussian likelihood function or Bernoulli
likelihood function in F (S), respectively. Conversely, attribute-value subsets SXtempi

should not be
considered when choosing subsets for Saggregate for negative scans where θmini

> 0 or θmini
> 1 for

scans using the Gaussian likelihood function or Bernoulli likelihood function in F (S), respectively.

We sort the θmini
and θmaxi

values found across all the attribute values of the attribute we are
scanning in ascending order in Line 23. These form a list of intervals over the domain of θ. For
each interval, we calculate a midpoint of that interval, and aggregate all the attribute-value subsets
that have a positive score, F (S), when θ equals the midpoint of that interval in Lines 30-33. If the
aggregated subset of attribute values with the maximum score across all the intervals is greater than
the score of Stemp, we update Stemp and all of its accompanying information (θtemp, Scoretemp)
to equal the maximum-scoring subset of aggregated attribute-values across all the intervals and its
accompanying information. Stemp is continuously updated as higher scoring subsets are found as we
scan over all the attributes and their attribute values.

At the end of an iteration, if the found subset, Stemp, has a higher score than the global maximum
scoring subset S∗, then S∗ and its accompanying information (θ∗, Score∗) are replaced with Stemp

and Stemp’s accompanying information. Once all the iterations have completed, the subset with the
maximum score found across all iterations is returned, S∗, with its score F (S∗ |θ∗) and accompanying
θ∗ parameter.

McFowland III et al. (2023) show that a similar multidimensional scan algorithm, used for heteroge-
neous treatment effect estimation, will converge with high probability to a near-optimal subset when
run with multiple iterations.

A.3 PERMUTATION TESTING TO DETERMINE STATISTICAL SIGNIFICANCE OF DETECTED
SUBGROUPS

As discussed in Section 3.3, the statistical significance (p-value) of the discovered subgroup S∗ can
be obtained by permutation testing, which correctly adjusts for the multiple testing resulting from
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searching over subgroups. To do so, we generate a large number of simulated datasets under the null
hypothesis H0, perform the same CBS scan for each null dataset (maximizing the log-likelihood ratio
score over subgroups, exactly as performed for the original dataset), and compare the maximum score
F (S∗) for the true dataset to the distribution of maximum scores F (S∗) for the simulated datasets.
The detected subgroup is significant at level α if its score exceeds the 1− α quantile of the F (S∗)
values for the simulated datasets. To generate each simulated dataset, we copy the original dataset
and randomly permute the values of Ai (whether or not each individual is a member of the protected
class), thus testing the null hypothesis that A is conditionally independent of the event variable I .

This permutation testing approach is computationally expensive, multiplying the runtime by the total
number of datasets (original and simulated) on which the CBS scan is performed, but it has the benefit
of bounding the overall false positive rate (family-wise type I error rate) of the scan while maintaining
high detection power. In comparison, a simpler approach like Bonferroni correction would also
bound the overall false positive rate, and would require much less runtime, but would suffer from
dramatically reduced detection power. For a given dataset, the score threshold for significance at a
fixed level α = .05 will differ for different choices of the sensitive attribute and protected class. Thus,
if CBS is used to audit a classifier for possible biases against multiple protected classes, a separate
permutation test must be performed for each protected class value.

A.4 CONDITIONAL BIAS SCAN FRAMEWORK PARAMETERS

Table 3 contains all the parameters needed to run Conditional Bias Scan.

B EVALUATION APPENDICES

B.1 ADAPTATIONS OF THE BENCHMARK METHODS USED IN EVALUATION

Both GerryFair and MultiAccuracy Boost provide implementations of their methods on GitHub (Neel
et al., 2019; Kim et al., 2019b). Our goal was to use their provided code with minimal changes as
benchmarks in Sections 4 and 5. However, GerryFair and MultiAccuracy Boost do not provide the
functionality to indicate whether to audit for bias in the positive direction (under-estimation bias) or
bias in the negative direction (over-estimation bias). This lack of functionality makes results from
CBS substantially different than those returned by GerryFair and MultiAccuracy Boost.

For GerryFair’s auditor, given the type of error rate to audit (false negative rate or false positive rate),
they train four linear regressions using the features (X) as dependent variables with the following
four sets of labels:

1. Two linear regressions with the zero set as labels.

2. One linear regression with the labels set to a measurement that assigns positive costs for
predictions that deviate in the positive direction (when the predictions are greater than the
observed global error rate), and negative costs otherwise.

3. One linear regression with the labels set to a measurement that assigns positive costs for
predictions that deviate in the negative direction (when the predictions are less than the
observed global error rate), and negative costs otherwise.

They use the predictions from the linear regressions to flag a subset of data where the predictions
from the linear regression trained with the zero set labels are greater than the values predicted by the
linear regression trained with the costs representing deviations of the predictions from the observed
baseline error rate metric of interest as labels. Two linear regressions are used to estimate deviations
of the predictions from the observed error rate baseline, and therefore they form two subgroups: (1) a
subgroup with rows that are estimated to have predictions that are greater than the baseline for the
metric of interest; and (2) a subgroup with rows that are estimated to have predictions that are less
than the baseline for the metric of interest. The original GerryFair implementation uses a heuristic
to decide which subgroup has more significant biases and returns that subgroup accordingly. The
subgroup with the rows that are estimated to have predictions that are greater than the metric of
interest more closely aligns with the concept of auditing for bias in the positive direction or auditing
for under-estimation bias. Since CBS provides the functionality of auditing for biases of a specific
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Table 3: Table with all parameters needed to run Conditional Bias Scan.
Parameter Purpose Parameter Attribute Values Sections for Reference
Membership in Protected
Class Indicator Variable
(A)

Binary attribute which defines
whether each individual is a
member of the protected class.
We wish to identify any bi-
ases that are present in the clas-
sifier’s predictions or recom-
mendations that impact the pro-
tected class.

3

Scan Type The subcategory of the scan
type

Separation scan for recom-
mendations; Separation scan
for predictions; Sufficiency
scan for recommendations;
Sufficiency scan for predic-
tions

3.1

Event Variable (I) The event of interest for the
scan. The abstracted event vari-
able must be defined as either
the outcome, prediction, or rec-
ommendation variable.

Y ; P ; Pbin 3, 3.1

Conditional Variable (C) The conditional variable for the
scan. The abstracted condi-
tional variable must be defined
as either the outcome, predic-
tion, or recommendation vari-
able.

Y ; P ; Pbin 3, 3.1

Field value (z) of Condi-
tional Variable (C = z)

For value-conditional scans,
this is the value on which we
are conditioning the conditional
variable (C). Defining a field
value results in scans that detect
different forms of fairness vio-
lations.

None; 0; 1 3, 3.2, 3.3, A.2

List of Attributes for
forming subgroups (X)

List of attributes to scan over to
form subgroups

3, 3.1, A.2

Direction of Bias Specifying whether we are de-
tecting under-estimation bias
(positive direction) or over-
estimation bias (negative direc-
tion)

Positive; Negative 3.1, 3.3, A.2

List of Attributes for esti-
mating Î (X)

List of attributes used for con-
ditioning when producing Î . In
this paper we use the same at-
tributes to form subgroups and
produce Î . This does not neces-
sarily have to be the case for all
applications of CBS.

3.2, A.1

Subgroup Complexity
Penalty

The non-negative integer-
valued scalar penalty that
is subtracted from the score
function for each subgroup,
depending on the subgroup’s
total number of included values
for each covariate X1 . . . Xm,
not including covariates for
which all values are included.

0+ (default value: 1) 3.3

Scan Iterations Specifies the number of itera-
tions to run the fast subset scan-
ning algorithm

1+ (default value: 500) 3.3, A.2

The table lists the parameter, purpose of the parameter, possible values of the parameter, when applicable, and
the sections in our paper where this parameter is described in further detail.

direction, we add an option to GerryFair that allows the user to determine which direction of bias
they are interested in, making GerryFair’s results more comparable to CBS.
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For each simulation, we ran GerryFair two times, once to detect bias in the form of systematic
increases in the false positive rate, and once to detect bias in the form of systematic increases in
the false negative rate. In each case, we allow GerryFair to use all covariates (X) to make the
predictions used to form subgroups, including the protected class category. This resulted in two result
sets for GerryFair for each simulation. We present the result set in Section 4 that had the highest
overall accuracy for most of the simulations, which is the GerryFair setup for detecting increased
false positive rate. GerryFair returns a subgroup that could contain individuals in both the protected
class and the non-protected class. To have the accuracy measurements for GerryFair and CBS be
comparable, we filter the subgroup returned by GerryFair to only include individuals in the protected
class before calculating the subgroup’s accuracy.

MultiAccuracy Boost is an iterative algorithm where, on each iteration, it audits for a subgroup
with inaccuracies and then corrects that subgroup’s predicted log-odds. More specifically, for each
iteration:

1. A custom heuristic is calculated for all rows of data, similar to an absolute residual, where
larger values represent a larger deviation between the observed labels and predictions.

2. The residuals of all the rows’ predictions and observed outcomes are calculated.
3. The full data is split into a training and holdout set.
4. Three partitions of data are created for the training data, hold out data, and the full dataset:

(a) A partition containing all the rows.
(b) A partition containing all the rows with predictions greater than 0.50.
(c) A partition containing all the rows with predictions less than or equal to 0.50.

5. For each of the partitions of data constructed in Step 4:
(a) A ridge regression classifier (using α = 1.0) is trained using the respective partition in

the training data, with the covariates X and the sensitive attribute A as features and the
custom heuristic calculated in Step 1 as labels.

(b) The ridge regression classifier is used to make predictions for the respective partition
in the holdout data.

(c) If the average of the predictions multiplied by the residuals for the partition set in
the hold out data is greater than 10−4, then the predicted log-odds for the respective
partition in the full dataset is shifted by the predictions multiplied by 0.1.

(d) If the predicted log-odds are updated, the iteration terminates and no other partitions of
data are evaluated for that iteration.

The steps above are slightly modified for the scenario of a classifier that produces a singular probability
of a positive outcome whereas the original MultiAccuracy Boost was designed for was a bivariate
outcome vector from a Inception-ResNet-v1 model. To make MultiAccuracy Boost audit for bias
in one direction, when calculating whether a partition of the data’s predicted log-odds should be
updated using the holdout data to remove an inaccuracy, we override the residuals that are negative
with 0. In effect, we only consider rows with negative outcomes when deciding which partition of
predictions have inaccuracies that need to be corrected on a given iteration. This was the least invasive
modification we could make to MultiAccuracy Boost to have it solely consider bias in the positive
direction when deciding which subgroup’s predicted log-odds to update. When using this slight
adaptation, we see an increase in the overall average accuracy for the simulations by approximately
8% for MultiAccuracy Boost compared to a version of MultiAccuracy Boost without the modification
intended to account for directional bias.

Since the auditor and correction method are functioning in tandem, we run all iterations of the
algorithm and log each subgroup (i.e., partition) that was detected as needing a correction to its
predicted log-odds and its associated score calculated in Step 5c. After the algorithm terminates, we
find the partition with the highest score and return its associated partition in the full data set. The
decision to return the partition with the highest score across all the iterations of MultiAccuracy Boost
in the simulations is motivated by the fact that MultiAccuracy Boost’s auditor has no theoretical
guarantees of detecting the most inaccurate partition on a specific iteration of the algorithm. Similarly
to GerryFair, MultiAccuracy Boost detects a subgroup that contains members of the protected
class and non-protected class. We filter all the individuals in the returned subgroup to only contain
individuals who are part of the protected class before calculating the accuracy of the returned partition.
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One distinction between these methods and CBS is that their auditors were intended to be used in
conjunction with another process to improve a classifier or predictions. Therefore, their auditors were
designed to have the level of detection accuracy necessary to discern which subgroups or partitions
of data need to be corrected, either by modifying the classifier or by post-processing their predicted
log-odds. Given that both methods suggest that they can be used for auditing purposes, they are
appropriate choices as benchmarks for CBS, but it is important to note that CBS was specifically
designed to have a high accuracy for bias detection, whereas that was not necessarily an explicit
intention of GerryFair or MultiAccuracy Boost.

B.2 EXPLANATION OF THE ADDITIVE TERM (ϵtrue) FOR THE TRUE LOG-ODDS USED IN THE
GENERATIVE MODEL FOR THE SEMI-SYNTHETIC DATA

For the evaluation simulations described in Section 4, when producing the true log-odds that are
used to determine the outcomes and predicted values, we add a term to each row’s true log-odds of a
value drawn from a Gaussian distribution ϵtruei ∼ N (0, σtrue) where σtrue = 0.6. We add this term
to the true log-odds to ensure that when the true probabilities (expit(Ltrue

i )) for the rows of Sbias

in the protected class are injected with µsuf , this results in a violation of the fairness definition for
sufficiency.

For the remainder of this section we will focus on sufficiency scan for predictions, but our explanation
below is applicable for sufficiency scan for recommendations as well. Sufficiency implies that
the outcomes Y are conditionally independent of membership in the protected class A given the
predictions P and covariates X , that is, Y ⊥ A | (P,X). Assume that we have predictions that
are independent of the outcome conditional on the covariates, Y ⊥ P | X . Since the outcome is
independent of the predictions conditional on the covariates, the definition of sufficiency simplifies to
Y ⊥ A |X . This simplification of sufficiency reduces sufficiency scans to finding the subgroup in
the protected class with the largest base rate difference from its corresponding subgroup in the non-
protected class regardless of that subgroup’s predictions. Therefore, it is not evaluating sufficiency
violations because these base rate differences are independent of the predictions. Consequentially,
when there is no base rate difference between the protected and non-protected class conditional on
the covariates, (Y ⊥ A |X), in order for sufficiency to be violated, Y ̸⊥ A | (P,X), we must also
have Y ̸⊥ P |X . This is formally stated in Theorem B.1.

Theorem B.1. To have violations of the sufficiency definition, Y ̸⊥ A | (P,X), when there are
no base rate differences between the protected class and non-protected class conditional on the
covariates, Y ⊥ A | X , the predictions and outcomes must be conditionally dependent given the
covariates, Y ̸⊥ P |X .

Proof. Let us assume that (i) there are no base rate differences between protected and non-protected
class conditional on the covariates, Y ⊥ A | X; (ii) outcomes are independent of the predictions
conditional on the covariates, Y ⊥ P | X; and (iii) violations of the sufficiency definition exist,
Y ̸⊥ A | (P,X). We will show that these three statements lead to a contradiction. First, (Y ⊥ P |X)
and (Y ⊥ A |X) together imply that Y ⊥ (P,A) |X . Furthermore, using the weak union axiom for
conditional independence, Y ⊥ (P,A) |X implies that Y ⊥ A | (P,X), which contradicts (iii). Since
these three statements cannot all be true, we know that no base rate differences (i) and violations of
sufficiency (iii) together imply that the outcomes cannot be independent of the predictions conditional
on the covariates, Y ̸⊥ P |X .

To ensure that Y ̸⊥ P |X , the predictions P must carry information about the outcomes Y that is
not carried in X . By adding the term ϵtruei to the true log-odds for each row, given that the predicted
log-odds (and the corresponding predicted probabilities Pi and binarized recommendations Pi,bin)
and the outcomes Y are both derived from the true log-odds, this ensures that Y ̸⊥ P | X in the
evaluation simulations because P carries information about Y , in the form of the added row-wise
terms (drawn from a Gaussian distribution), that are captured in Y , but are not captured in X .

B.3 ADDITIONAL EVALUATION SIMULATIONS

To evaluate (Q3) in Section 4, we modify the characteristics of Sbias, by varying nbias and pbias for
three settings, when µsep = 0.50, µsuf = 0.50, and δ = 0.25. For each setting, we perform two
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Figure 4: Average accuracy (with 95% CI) for biases and base rate shifts injected into subgroup
Sbias of the protected class, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying
parameters nbias (top row) and pbias (bottom row). Left: increasing predicted probabilities by
µsep = 0.50. Center: decreasing true probabilities by µsuf = 0.50. Right: base rate difference
δ = 0.25, for µsep = µsuf = 0.

Figure 5: Average accuracy (with 95% CI) for biases injected into subgroup Sbias of the protected
class, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying base rate difference δ
between protected and non-protected class for subgroup Sbias. Left: increasing predicted probabilities
by µsep = 0.50. Right: decreasing true probabilities by µsuf = 0.50.

simulations: (1) varying the number of attribute categories to choose attribute-values from (nbias)
between 1 and 4, when pbias = 0.50; and (2) varying the probability (pbias) of an attribute-value
being included in Sbias between 0 and 1, when nbias = 2. The results of these simulations are
shown in Figure 4. We observe that, when varying nbias, CBS has similar accuracy results to the
simulations shown in Figures 1 and 2, with separation scans and sufficiency scan for predictions
having higher bias detection accuracy when µsep = 0.50, and sufficiency scans having higher bias
detection accuracy when µsuf = 0.50, as compared to competing methods across all settings of
nbias. Interestingly, when µsep = 0.50 and pbias approaches 1 (i.e., more individuals in the protected
class are included in Sbias), GerryFair has improved bias detection accuracy, approaching that of
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Figure 6: Average accuracy (with 95% CI) as a function of the amount of bias injected into subgroup
Sbias of the protected class, for four variants of CBS, GerryFair, and MultiAccuracy Boost. Left:
increasing predicted log-odds by µ′

sep. Right: decreasing true log-odds by µ′
suf .

Figure 7: Average accuracy (with 95% CI) as a function of the base rate difference δ′ between
protected and non-protected class for subgroup Sbias, for four variants of CBS, GerryFair, and
MultiAccuracy Boost. Note that predictions are well calibrated, µ′

sep = µ′
suf = 0.

CBS, but it performs poorly for low values of pbias. This suggests that CBS is better at detecting
smaller, more subtle subgroups Sbias than the competing methods.

Additionally, we investigated the case where we have both an injected bias (µsep = 0.50 or µsuf =
0.50) and a base rate shift δ in subgroup Sbias for the protected class (Figure 5). We examined the
extent to which positive and negative shifts δ either help or harm the detection accuracy of the various
methods. Thus we run two separate sets of experiments with injected bias µsep = 0.50 and injected
bias µsuf = 0.50, while varying the base rate shift δ from -0.50 to +0.50 for each experiment. A
positive δ means Sbias in the protected class has a higher base rate, while a negative δ means Sbias in
the protected class has a lower base rate, as compared to Sbias in the non-protected class.

In Figure 5, we observe that the detection accuracy of the separation scans increases with δ. This
relationship is particularly strong for the experiments with injected bias µsuf = 0.50, in which the
separation scans show near-perfect accuracy for large positive δ and near-zero accuracy for large
negative δ. These results are not surprising given the separation scans’ sensitivity to positive base
rate differences for Sbias in the protected class even when no injected bias is present (see Figure 2).
We observe that the detection accuracy of the sufficiency scan for recommendations decreases with δ
when µsep = 0.50, with near-perfect accuracy for large negative δ and near-zero accuracy for large
positive δ. Again, these results are not surprising given the sufficiency scan for recommendations’
sensitivity to negative base rate differences for Sbias in the protected class even when no injected bias
is present (see Figure 2). Finally, we observe that the sufficiency scan for predictions maintains high
accuracy for both µsep = 0.50 and µsuf = 0.50 regardless of the base rate difference δ for Sbias in
the protected class.
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Lastly, the method we use for injecting bias or shifting the base rate of the affected subgroup Sbias in
the protected class involves increasing or decreasing the true probabilities and predicted probabilities.
Since CBS is designed to detect a constant, additive shift in the true and/or predicted log-odds for
a subgroup, Sbias, in the protected class in comparison to that subgroup in the non-protected class
(as shown in the alternative hypotheses contained in Table 2), the simulations are designed to ensure
that CBS is robust to injected biases and base rate shifts that do not take the same form as CBS’s
modeling assumptions. For comparison purposes, we also examine injected biases and base rate
shifts represented by shifts in the true and/or predicted log-odds. The resulting Figures 6 and 7 can be
directly compared to Figures 1 and 2 respectively. Specifically, we perform the following simulations:

• We increase the predicted log-odds by µ′
sep for Sbias in the protected class. Note, this shift

is performed prior to the predicted probabilities being drawn for all the data.
• We decrease the true log-odds by µ′

suf for Sbias in the protected class. This shift is
performed after predicted probabilities have been drawn for all the data. After the true
log-odds have been decreased by µ′

suf for Sbias in the protected class, outcomes Y are
redrawn specifically for the rows of Sbias in the protected class.

• We simultaneously shift the true and predicted log-odds by δ′ for Sbias in the protected class.
Outcomes are redrawn for Sbias in the protected class after the shift by δ′ is performed.

In Figure 6, we observe that the injected signals for µ′
sep and µ′

suf (represented as shifts in the
predicted and true log-odds respectively) have an effect on CBS’s detection accuracy that is nearly
identical to the predicted and true probability shifts (µsep and µsuf respectively) shown in Figure 1.
Similarly, in Figure 7, we see that the base rate shift created by simultaneously shifting the true and
predicted log-odds by δ′ for Sbias in the protected class has an effect on CBS’s detection accuracy
that is nearly identical to the simultaneous shift of the true and predicted probabilities of Sbias in the
protected class by δ as shown in Figure 2. Therefore, we can conclude that CBS not only performs
well for a constant additive shift in the true and/or predicted log-odds (consistent with its modeling
assumptions) but also achieves high detection power for non-additive shifts as shown in Section 4.
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Figure 8: Average accuracy (with 95% CI) for biases and base rate shifts injected into subgroup
Sbias of the protected class, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying
parameter σpredict. Left: increasing predicted probabilities by µsep = 0.50. Center: decreasing true
probabilities by µsuf = 0.50. Right: base rate difference δ = 0.25, for µsep = µsuf = 0.

Figure 9: Average accuracy (with 95% CI) for biases and base rate shifts injected into subgroup
Sbias of the protected class, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying
parameter σtrue. Left: increasing predicted probabilities by µsep = 0.50. Center: decreasing true
probabilities by µsuf = 0.50. Right: base rate difference δ = 0.25, for µsep = µsuf = 0.

B.4 ROBUSTNESS ANALYSES OF EVALUATION SIMULATIONS FOR PARAMETERS σtrue AND
σpredict

In this section, we examine the robustness of our results in Section 4 by varying the parameters
σpredict and σtrue from their default values of 0.2 and 0.6 respectively.

First, we examine the impact of varying σpredict. Recall that each predicted log-odds is drawn from a
Gaussian distribution centered at the true log-odds, with standard deviation σpredict. Thus σpredict

can be interpreted as the average amount of random error in the classifier’s predictions as compared
to the true log-odds values. We run three separate sets of experiments where we alter Sbias in the
protected class by injecting a bias of µsep = 0.50, injecting a bias of µsuf = 0.50, and creating a
base rate difference of δ = 0.25 respectively, while varying σpredict between 0 and 2. Accuracies are
averaged over 100 semi-synthetic datasets for each experiment. The experiments where µsep = 0.50
and µsuf = 0.50 analyze the robustness to σpredict of the evaluation simulations for (Q1), whereas
the experiments where δ = 0.25 analyze the robustness to σpredict of the evaluation simulations for
(Q2).

In Figure 8, we observe that large amounts of noise σpredict harm the accuracy of the separation
scans for injected biases µsuf = 0.50 which shift the true probabilities in subgroup Sbias for the
protected class. When σpredict is large, we see a reduction in accuracy for the sufficiency scan for
recommendations for injected biases µsep = 0.50, which is expected given this scan’s initial lower
accuracy detection with recommendations with a moderate value of noise in the recommendations.
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Second, we examine the impact of varying σtrue. Recall that each individual’s true log-odds is a
deterministic (linear) function of their covariate values Xi plus a term, ϵtruei , drawn from a Gaussian
distribution centered at 0 with a standard deviation of σtrue. Thus the parameter σtrue represents
the variation between individuals’ true log-odds based on characteristics other than the covariate
values Xi used by CBS. Moreover, since each individual’s predicted log-odds is drawn from a
Gaussian distribution centered at the true log-odds, these characteristics are assumed to be known and
incorporated into the classifier, thus creating the dependency Y ̸⊥ P |X when σtrue > 0. In other
words, σtrue represents the average amount of signal in the predictions P (for predicting the outcome
Y ) that is not already present in the covariates X . We run three separate sets of experiments where we
alter Sbias in the protected class by injecting a bias of µsep = 0.50, injecting a bias of µsuf = 0.50,
and creating a base rate difference of δ = 0.25 respectively, while varying σtrue between 0 and 2 for
each experiment. Accuracies are averaged over 100 semi-synthetic datasets for each experiment. The
experiments where µsep = 0.50 and µsuf = 0.50 analyze the robustness to σtrue of the evaluation
simulations for (Q1), whereas the experiments where δ = 0.25 analyze the robustness to σtrue of the
evaluation simulations for (Q2).

In Figure 9, we observe that small values of σtrue harm the accuracy of the separation scans for
injected bias µsuf = 0.50 while making them more likely to detect base rate shifts δ > 0 in subgroup
Sbias for the protected class. Most interestingly, when σtrue is small, we see a substantial reduction
in accuracy for the sufficiency scans for injected bias µsep = 0.50. This reduced performance for
σtrue ≈ 0 follows from our argument in Section B.2 above: σtrue = 0 implies Y ⊥ P |X , and if
we also have no base rate difference between the protected and non-protected classes (Y ⊥ A |X),
this implies Y ⊥ A | P,X . In other words, even if a bias is injected into the predicted probabilities
(and recommendations) in subgroup Sbias for the protected class, the sufficiency-based definition of
fairness is not violated, and thus the injected bias cannot be accurately detected.

B.5 ESTIMATES OF COMPUTE POWER

For all of the experiments in Section 4, Appendix B.3, and Appendix B.4, with the exception of the
experiments displayed in Figure 6 and Figure 7, we used a university’s high-performance computing
(HPC) services. We completed all these simulations with 100 jobs that used one node, one core
(CPU), and 7 GB of memory each. Each of these jobs performed 1,344 CBS runs, and each job was
alive for approximately 9 days. To perform the experiments displayed in Figure 6 and Figure 7, as
well as additional robustness checks, we used 15 shared, university compute servers running CentOS
with 16-64 cores (CPU) and 16-256 GB of memory. Each server performed 15-120 runs of CBS
concurrently, and ran for approximately 9 days. We estimate that to run all of the simulations and
robust checks (1,344 CBS runs in total) for a single data set using shifts in the predicted and true
probabilities for injecting bias and base rate shifts, this would take approximately 9 days. We estimate
that to run all of the simulations and robustness checks (1,504 CBS runs in total) for a single data
set using shifts in the predicted and true log-odds for injecting bias and base rate shifts, this would
take approximately 32.5 hours. Lastly, to run an individual CBS scan for the COMPAS data (150
iterations), it takes on average approximately 90 seconds. A single run of CBS takes a similar runtime
for the German Credit Data.

C CASE STUDIES APPENDICES

C.1 CASE STUDY OF COMPAS APPENDICES

C.1.1 ADDITIONAL INFORMATION ABOUT PREPROCESSING OF COMPAS DATA

We follow many of the processing decisions made in the initial ProPublica analysis, including
removing traffic offenses and defining recidivism as a new arrest within two years of the initial arrest
for a defendant (Larson et al., 2016; Larson and Roswell, 2017). After preprocessing the initial data
set, we have 6,172 defendants, their gender, race, age (Under 25 or 25+), charge degree (Misdemeanor
or Felony), prior offenses (None, 1 to 5, or Over 5), predicted recidivism risk score (1-10), and
whether they were re-arrested within two years of the initial arrest.
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C.1.2 FULL RESULTS OF COMPAS CASE STUDY

Table 4 contains the full set of COMPAS results for CBS.

Table 4: Full table of results for COMPAS case study

Scan Type Protected
Class
Attribute
Value

Detected
Subgroup

Comparison
Subgroup

Score Observed
Rate
(De-
tected)

Observed
Rate
(Com-
parison)

Under
age 25

All defendants un-
der age 25 (593)

All defendants
age 25+ (2770)

128.2 0.51 0.37

6+ priors All defendants
with 6+ priors
(349)

All defendants
with 0-5 priors
(3014)

83.9 0.54 0.38

Black Black male defen-
dants (1168)

Non-Black male
defendants (1433)

42.4 0.45 0.35

Separation
Scan for
Predictions

1 to 5 pri-
ors

Defendants under
age 25 with 1 to 5
priors (227)

Defendants under
age 25 with 0 or
6+ priors (366)

3.28 0.54 0.49

Felony White female de-
fendants arrested
on felony charges
(139)

White female de-
fendants arrested
on misdemeanor
charges (173)

2.45 0.42 0.34

Female White female de-
fendants (312)

White male defen-
dants (969)

1.51 0.38 0.35

Male Asian male defen-
dants (22)

Asian female de-
fendants (1)

0.63 0.30 0.22

Native
American

All Native Amer-
ican defendants
(6)

All non-Native
American defen-
dants (3357)

0.45 0.49 0.39

Under
age 25

All defendants un-
der age 25 (403)

All defendants
age 25+ (1583)

159.3 0.53 0.25

6+ priors All defendants
with 6+ priors
(349)

All defendants
with 0-5 priors
(3014)

126.9 0.66 0.26

Black Black male defen-
dants (1168)

Non-Black male
defendants (1433)

102.3 0.44 0.19

Male Asian and His-
panic male defen-
dants (286)

Asian and His-
panic female de-
fendants (57)

22.5 0.21 0.05

Separation
Scan for
Recom-
mendations

1 to 5 pri-
ors

Defendants under
age 25 with 1 to 5
priors (227)

Defendants under
age 25 with 0 or
6+ priors (366)

12.6 0.64 0.47

Female White female de-
fendants (312)

White male defen-
dants (969)

12.5 0.29 0.20

Felony White female de-
fendants arrested
on felony charges
(139)

White female de-
fendants arrested
on misdemeanor
charges (173)

9.56 0.38 0.21

White White female
defendants under
age 25 with no
priors (31)

Non-white female
defendants under
age 25 with no pri-
ors (70)

2.01 0.71 0.56
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Misde-
meanor

Native American
defendants with
1 to 5 priors
arrested on misde-
meanor charges
(2)

Native American
defendants with 1
to 5 priors ar-
rested on felony
charges (1)

1.67 1.00 0.00

Age 25+ Asian defendants
age 25+ arrested
on felony charges
(10)

Asian defendants
under age 25 ar-
rested on felony
charges (1)

0.74 0.20 0.00

Native
American

All Native Amer-
ican defendants
(6)

All non-Native
American defen-
dants (3357)

0.53 0.50 0.30

No priors All defendants
with no priors
(2085)

All defendants
with 1+ priors
(4087)

111.6 0.29 0.54

Age 25+ Male defendants
age 25+ with 0-5
priors (2867)

Male defendants
under age 25 with
0-5 priors (1041)

92.7 0.35 0.59

Male Male Native
American defen-
dants of age 25+
(7)

Female Native
American defen-
dants of age 25+
(2)

31.4 0.14 1.00

Female Female defen-
dants under age
25 (246)

Male defendants
under age 25
(1101)

18.7 0.38 0.60

Sufficiency
Scan for
Predictions

Misde-
meanor

Female defen-
dants arrested
on misdemeanor
charges (491)

Female defen-
dants arrested on
felony charges
(684)

3.51 0.26 0.41

Asian Asian defendants
arrested on mis-
demeanor charges
(12)

Non-Asian de-
fendants arrested
on misdemeanor
charges (2190)

3.16 0.00 0.38

White White defendants
under age 25
(347)

Non-white defen-
dants under age
25 (1000)

2.36 0.49 0.58

Black Black female de-
fendants (549)

Non-Black fe-
male defendants
(626)

2.21 0.37 0.34

1 to 5 pri-
ors

Black defendants
of age 25+ with 1
to 5 priors (1038)

Black defendants
of age 25+ with
0 or 6+ priors
(1328)

2.17 0.42 0.55

Hispanic All Hispanic de-
fendants (509)

All non-Hispanic
defendants (5663)

0.26 0.37 0.46

Native
American

All Native Amer-
ican defendants
(11)

All non-Native
American defen-
dants (6161)

0.14 0.45 0.46

Age 25+ Male defendants
of age 25+ with 0-
5 priors (772)

Male defendants
under age 25 with
0-5 priors (641)

53.0 0.52 0.67

No priors All defendants
with no priors
(553)

All defendants
with 1+ priors
(2198)

51.0 0.46 0.67

1 to 5 pri-
ors

Male defendants
of age 25+ with 1
to 5 priors (595)

Male defendants
of age 25+ with 0
or 6+ priors (981)

26.8 0.54 0.70
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Male Male Native
American defen-
dants of age 25+
(4)

Female Native
American defen-
dants of age 25+
(2)

14.1 0.25 1.00

Sufficiency
Scan for
Recom-
mendations

Female Female defen-
dants under age
25 (167)

Male defendants
under age 25
(699)

13.2 0.44 0.68

Misde-
meanor

All defendants
on misdemeanor
charges (736)

All defendants on
felony charges
(2015)

10.7 0.55 0.66

Hispanic All Hispanic de-
fendants (141)

All non-Hispanic
defendants (2610)

2.48 0.56 0.63

6+ priors Asian defendants
with 6+ priors (1)

Asian defendants
with 0-5 priors (6)

0.42 0.00 0.83

White White female
defendants under
age 25 (57)

Non-white female
defendants under
age 25 (110)

0.41 0.39 0.47

Black Black defendants
of age 25+ with 0-
5 priors (581)

Non-Black defen-
dants of age 25+
with 0-5 priors
(404)

0.37 0.50 0.52

Asian Asian defendants
with 6+ priors (1)

Non-Asian defen-
dants with 6+ pri-
ors (965)

0.11 0.00 0.76

Each of the four variants of CBS was run using each observed attribute
value as the protected class. Detected subgroup S∗ of the protected class
and corresponding (comparison) subgroup of the non-protected class;
numbers of defendants for each subgroup are shown in parentheses. All
runs with log-likelihood ratio score F (S∗) > 0 are shown, sorted in
descending order by score for each method. Separation scan for predic-
tions: “observed rate” is average predicted probability of reoffending,
E[Pi], for defendants who did not reoffend (Yi = 0). Separation scan for
recommendations: “observed rate” is false positive rate, i.e., proportion of
individuals predicted as “high risk” (Pi,bin = 1) for defendants who did
not reoffend (Yi = 0). Sufficiency scan for predictions: “observed rate” is
proportion of reoffending individuals (Yi = 1), controlling for predicted
risk. Sufficiency scan for recommendations: “observed rate” is positive
predictive value, i.e., proportion of reoffending individuals (Yi = 1) for
defendants who were predicted as “high risk” (Pi,bin = 1). Bolded scores
are statistically significant with p-value <.05 measured by permutation
testing, as described in Appendix A.3.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.1.3 GENDER BIAS IN COMPAS

Gender bias in COMPAS. While male and female defendants have equal false positive rates overall,
separation scan for recommendations detects a statistically significant gender bias: non-reoffending
white female defendants have a higher false positive rate than non-reoffending white male defendants
(0.29 vs 0.20). Separation scan for predictions detects the same gender bias but to a lesser degree: non-
reoffending white females have an expected risk of 0.38, compared to non-reoffending white males
with an expected risk of 0.35. Sufficiency scans for both recommendations and predictions detect a
statistically significant over-estimation bias for females under the age of 25. 44% of females under the
age of 25 who are flagged as “high-risk” by COMPAS reoffend, as compared to a 68% recidivism rate
for males under the age of 25 who are flagged as “high-risk” by COMPAS. For both sufficiency and
separation scans, thresholding the risk scores to create recommendations results in larger deviations
between the subgroups of females and males found by the scans, thereby exacerbating the underlying
biases present in the COMPAS risk scores that adversely impact white female defendants and
younger female defendants respectively. Lastly, separation scan for recommendations finds that
non-reoffending Asian and Hispanic male defendants have a statistically significant higher false
positive rate of being flagged as high-risk (0.21) in comparison to non-reoffending Asian and Hispanic
female defendants (0.05) showing that the COMPAS risk scores have intersectional gender biases
(in the form of separation violations) that adversely impact different subgroups of male and female
defendants.

C.1.4 CONSIDERATIONS AND LIMITATIONS OF COMPAS DATA AND FAIRNESS DEFINITIONS
IN OUR COMPAS CASE STUDY

Following the initial investigation by ProPublica about fairness issues in COMPAS risk predic-
tions (Angwin et al., 2016b), ProPublica’s COMPAS dataset has been used as a benchmark in the
fairness literature. While we use the COMPAS data because of its familiarity and supporting research,
we also note the value of alternative framings of the evaluation of automated decision support tools in
the criminal justice systems, such as examining the risks that the system poses to defendants rather
than the risk of the defendants to public safety (Mitchell et al., 2021; Meyer et al., 2022; Green, 2020).
Beyond the implications of the traditional framing of pre-trial risk assessment tools, there have been
specific critiques of the COMPAS data that range from questioning the accuracy of the sensitive
attributes (specifically race), noting missing features in the ProPublica dataset that the COMPAS
creators claim are important for score calculations, and most importantly, a lack of evaluation of the
biases that exist in the outcome variable of whether a defendant is rearrested within two years of
arrest (Fabris et al., 2022). Given that certain types of individuals are arrested at a higher rate than
others, the outcome variable of re-arrest most likely under- and over-represents certain subpopulations
of defendants.

In our COMPAS case study, for the separation scans, we search for subgroups of the protected
class with the most significant increase, either in the probabilistic predictions or in the probability
that the binarized recommendation equals 1, conditional on the defendant’s covariates. Moreover,
we perform value-conditional scans, focusing specifically on the subset of defendants who did not
reoffend (Yi = 0). For the separation scan for recommendations, this results in CBS detecting
subgroups of the protected class for whom the false positive rate is most significantly increased.
For the sufficiency scans, we search for subgroups of the protected class with the most significant
decrease in the observed rate of reoffending, conditional on the defendant’s covariates and their
COMPAS prediction or recommendation. For the sufficiency scan for recommendations, we also
perform a value-conditional scan. We focus specifically on the subset of defendants who were
predicted to be “high risk” by COMPAS (Pi,bin = 1) because this labeling could negatively impact
the defendant, e.g., by decreasing their likelihood of pre-trial release. This results in CBS detecting
subgroups of the protected class for whom the false discovery rate is most significantly increased.
These fairness definitions neglect bias detection for defendants who reoffend (for separation scans)
and defendants who are not flagged as high-risk (for sufficiency scan for recommendations). These
choices were made to ensure our ability to verify our findings based on previous research on COMPAS
which commonly focus on similar fairness violations to those used in our case study. With that
said, we strongly encourage auditing for predictive biases that affect reoffending defendants and
low-risk defendants as well, if using CBS to audit an algorithmic risk assessment tool in practice.
For example, auditing for the increased probability of being flagged as high-risk for reoffending
defendants could help to uncover subpopulations that are over-prosecuted in comparison to other
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populations of reoffending defendants. Therefore, expanding the fairness definitions used to audit
pre-trial risk assessment tools for biases could have beneficial findings.

C.1.5 DISCUSSION OF COMPAS RESULTS FOR BENCHMARK METHODOLOGIES

Our evaluation of CBS, GerryFair, and MultiAccuracy Boost (Section 4) uses semi-synthetic data that
maintains the covariate distribution of COMPAS. The evaluation simulations follow a framework that
employs certain generative assumptions for injecting bias into subgroups. The limitations of these
generative assumptions used in our framework are discussed in detail in Section 6. In this Appendix,
we provide the results of the benchmark methodologies (GerryFair and MultiAccuracy Boost) run on
the original COMPAS data, and compare these results to the CBS results for the COMPAS case study
in Section 5. We include these results to highlight the differences between CBS and the benchmark
methodologies on a non-synthetic dataset, showing the benefits of CBS in a setting without the
generative model assumptions used in Section 4.

We ran GerryFair and MultiAccuracy Boost using the same COMPAS data, preprocessing steps, and
setup described in Section 5 and Appendix C.1.1. We report two sets of results: (1) the results of
these methodologies with their out-of-the-box settings; and (2) the results when using the minimum
modifications needed to adapt these methods for under-estimation and over-estimation bias, described
in Appendix B.1. We include both of these results to display the methodologies’ default functionality,
which we assume is the intended setting for practitioners, and to obtain a set of results for COMPAS
data that can be used to contextualize the differences between these benchmark methodologies and
CBS in a real-world setting. GerryFair and MultiAccuracy Boost provide demonstration code that
uses probabilities as the predictive output to be audited, and therefore we use the same Pi calculated
for each defendant based on their COMPAS risk score, as described in Section 5.

GerryFair Results: When running GerryFair to detect intersectional biases in false positive rates,
with race, sex, and the indicator variable of whether defendants are under the age of 25 marked as
sensitive attributes, the detected subgroup consists of all defendants aged 25+ who are not Black
or Native American. This subgroup is systematically advantaged rather than disadvantaged: non-
reoffending defendants in the detected subgroup have an average predicted risk E(P |Y = 0) = 0.32,
while non-reoffending defendants not included in this subgroup have an average predicted risk
E(P |Y = 0) = 0.45. When modified to perform a directional scan, and searching for a systematically
disadvantaged subgroup, GerryFair detects a subpopulation consisting of three distinct, marginal
groups—all defendants under 25, all Black defendants, and all Native American defendants—rather
than an intersectional or contextual subgroup.

MultiAccuracy Boost Results: MultiAccuracy Boost chooses between three partitions of data on
each iteration of the algorithm, where the chosen partition has its probabilities adjusted. When
running MultiAccuracy Boost with its default settings on COMPAS, the highest scoring partition is
found on the first iteration. This partition consists of all defendants in the initial iteration that had
higher probabilities (P > 0.50), and therefore each of those defendants’ probabilities gets adjusted
depending on their custom residual heuristic (see Appendix B.1). Given that there are large overlaps
in the covariate spaces of the partition that gets its predictions adjusted and the other partitions, the
best way to describe this partition’s covariate space is based on the coefficients of the classifier used to
model the custom residual heuristic, as described in Appendix B.1, where larger values contribute to
larger adjustments needed to the probabilities of the defendants in the detected subgroup. The factors
that are associated with defendants in this partition needing larger adjustments to their probabilities
include defendants with no priors and Hispanic defendants. We note that this algorithm is stochastic,
but these covariates consistently show a positive association with larger values of the adjustment
heuristic.

When running MultiAccuracy Boost using the modifications described in Appendix B.1 to detect
directional bias, the highest scoring partition is found on the first iteration of the algorithm. We find
that the factors that estimate the level of adjustments needed to the defendant’s probabilities include
defendants with no priors, Hispanic and Female defendants, defendants of age 25+, and defendants
arrested on misdemeanor charges.

Discussion: There are several takeaways to highlight about the results of GerryFair and MultiAccuracy
Boost for COMPAS:
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• GerryFair’s original implementation of its auditor does not allow the user to select between
detection of over-estimation bias and detection of under-estimation bias. This results in a de-
tected subgroup of non-reoffending defendants that is advantaged rather than disadvantaged,
benefiting from lower predicted risk.

• With our modification to detect directional bias, GerryFair finds a large subpopulation
consisting of all Black defendants, all Native American defendants, and all defendants under
the age of 25. The results of CBS for separation scans for predictions (Appendix C.1.2) show
some similarities with GerryFair’s results – that is, for each of the three protected classes
included in GerryFair’s results, the subgroups detected by CBS within the protected class also
have positive scores. The major distinction is that GerryFair is not detecting intersectional
or contextual subgroups within the protected class, such as the subgroup of Black males
detected by CBS. In contrast, CBS identifies that non-reoffending Black male defendants
have a higher predicted risk compared to non-reoffending non-Black male defendants,
and that this identified racial disparity is more significant than the disparity between all
non-reoffending Black defendants and all non-reoffending non-Black defendants.

• More generally, GerryFair appears to lack the flexibility of CBS to specify a single protected
class and search for intersectional or contextual subgroups within that protected class for
whom bias is present. In the given example, it identifies some individuals using character-
istics unrelated to race, and the marginal subgroups of all Black defendants who did not
reoffend and all Native American defendants who did not reoffend respectively. This is
consistent with our evaluation results in Section 4, in which GerryFair was able to reliably
detect marginal biases (for simulation parameter pbias = 1) but had low power to detect
smaller, more subtle subgroup biases.

• The results of MultiAccuracy Boost suggest that while MultiAccuracy Boost provides a
black-box auditor tool, its auditor does not provide interpretable results. This is because the
algorithm forms subgroups based only on prediction thresholding, which results in these
subgroups having overlapping covariate spaces. This, in combination with the method’s
inability to audit for specific biases for specified protected class attributes, results in the
algorithm neglecting to find important intersectional biases. This is evident from the factors
that describe over-estimation bias being defendants of age 25+, defendants with no priors,
Hispanic and female defendants, which somewhat aligns with CBS’s results for sufficiency
scan for predictions for COMPAS, but does not have the capabilities to also find more subtle
biases such as the subgroup of Asian defendants arrested on misdemeanor charges affected
by over-estimation bias.

In summary, we believe that the above results demonstrate the advantages of CBS as compared to
competing methods, as an auditor for detecting intersectional and contextual biases in a real-world
context.

C.2 CASE STUDY OF GERMAN CREDIT DATA

We present the results of using CBS to audit for predictive bias in algorithmically-generated risk scores
for customers in the German Credit Data (Hofmann, 1994). This dataset contains information about
1,000 customers from a German financial institution. Each row of the dataset represents a customer.
For each customer, various pieces of demographic, socioeconomic, and financial information are
available, as well as a label generated by the financial institution indicating whether each customer is
a “good” (trustworthy for credit) or “bad” (untrustworthy for credit) customer. This dataset is often
used in the fair machine learning literature to evaluate the predictive bias of models estimating credit
risk. This is also the context we assume for these data. We include these appendices to demonstrate
the use of CBS for an additional dataset. This case study also provides an example of running CBS on
a notably smaller data set: the German Credit Data is less than one sixth of the size of the COMPAS
data in terms of rows. Below we provide the same set of results as those shown for COMPAS above.

C.2.1 PREPROCESSING OF GERMAN CREDIT DATA

We use a publicly available version of the German Credit Data that has mapped the keys in the
original Statlog data file to their decoded categories (Datahub.io, 2019).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

We follow the feature selection and preprocessing methods documented in Kamiran and Calders
(2009), which is one of the first publications that used these data for fair machine learning research.
For each customer, we use the following information:

• Whether the customer is under age 26 or age 26+.
• Whether the customer owns, rents, or lives in their housing for free.
• The customer’s gender and marital status. These were initially coded as one variable. For

CBS we create two separate categories for gender and marital status. Additionally, we create
two high-level categories for marital status: single or married/separated/divorced/widowed
(i.e., “non-single”).

• The customer’s credit history. We recode this category to the following schema: previously
delayed credit/ critical credit/other existing credit or no credit/all credit paid. This involved
combining the “no credit/ all credit paid”, “all paid”, and “existing credit paid” categories
because of their overlap. Additionally, we combine previously delayed credit and critical
credit/ other existing credit categories because of a lack of clear differences between the
categories. The main motivation of these simplifications was to ensure that each category
was not overlapping and thus to increase interpretability. We note that there is a lack of
granularity specifying if the customer has never had credit before or has no credit because
they have paid off all their previous credit for most of the customers in the data set. This is
why we see a correlation between customers being labeled as untrustworthy for credit and
customers in the category of “no credit/all paid”.

• Whether a customer is considered a trustworthy or untrustworthy customer for credit by
the financial institution. An untrustworthy customer is coded as a positive outcome and a
trustworthy customer as a negative outcome for consistency with the COMPAS case study’s
outcome label.

Unlike COMPAS, which provides both an algorithmically-generated risk score and an observed
outcome for each row, the German Credit Data only provides the label of whether a customer
is trustworthy or untrustworthy for credit, which is commonly used as an outcome variable. To
produce the equivalent of an algorithmically-generated risk score for each customer, which we will
subsequently audit for predictive bias, we train a logistic regression model using credit history, age
(under 26 or age 26+), and housing ownership as predictors and the binary indicator of whether the
customer is trustworthy or untrustworthy for credit as the label. We use this model to produce the
predicted probability that each customer is untrustworthy for credit. These predicted probabilities,
and the corresponding binarized recommendations as to whether each customer is predicted high-risk
or low-risk of being untrustworthy for credit, are the predictive risk scores that we audit with CBS.
This modeling approach is an example of “fairness through unawareness” because it does not use the
two sensitive attributes (gender and marital status) as predictors in training to produce its predictions
and recommendations. We will examine whether the predictions and recommendations produced by
this model still contain predictive biases, as identified by CBS.

C.2.2 SCANS FOR THE GERMAN CREDIT DATA

We preprocessed the outcome variable (whether a customer is trustworthy or untrustworthy for
credit) in a similar fashion to the COMPAS outcome variable. A positive outcome represents a
less desirable real-world result. For the German Credit Data, this means that a positive outcome
represents an observed untrustworthy customer for credit. Therefore, we run the same scans in terms
of conditional variables and direction for the German Credit Data that we ran for COMPAS. For the
separation scans, we detect positive deviations for the protected class attribute in E(P | Y = 0, X)
and Pr(Pbin = 1 | Y = 0, X), i.e., increase in average predicted risk for trustworthy customers and
increase in FPR (probability of being predicted high-risk for trustworthy customers), respectively.
For the sufficiency scans, we detect a negative deviation for the protected class in Pr(Y = 1 | P,X)
and Pr(Y = 1 | Pbin = 1, X), i.e., decreased probability of being an untrustworthy customer
conditional on predicted risk and conditional on being predicted as high-risk, respectively. For the
separation and sufficiency scans for recommendations, we threshold the probability risk-scores by 0.5
to construct recommendations: Pbin = 1{P ≥ 0.5}. Given the smaller dataset size (as compared to
COMPAS) and highly-correlated predictor variables, we found that logistic regression was inadequate
for computing propensity scores and for the outcome model (predicting the probabilities Î using data
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from the non-protected class). Thus we use a more flexible model– a gradient boosting classifier with
Platt scaling – to ensure that our predictions are well-calibrated when computing propensity scores
and when estimating Î . All scans were run for 500 iterations with a penalty equal to 1.

C.2.3 RESULTS OF GERMAN CREDIT DATA CASE STUDY

Table 5 contains the full set of German Credit Data results for CBS. We observe that the statistically
significant biases detected by separation scans are those corresponding to subpopulations with higher
base rates (i.e., higher probability of being labeled “untrustworthy” for credit): customers with all
paid or no previous credit, younger customers, and customers who have free housing or rent their
housing. For sufficiency scans, we detect only a single statistically significant bias: conditional on
predicted risk, older female customers with all paid or no previous credit who own their housing are
significantly less likely to be labeled as “untrustworthy” than older female customers with all paid or
no previous credit who rent or have free housing.

As described in Appendix C.2.1, we purposely excluded the gender and marital status features when
modeling the risk scores. Since the exclusion of sensitive features alone does not guarantee that a
model will produce predictions without predictive biases, we examine gender biases detected in the
logistic regression model’s risk scores. It is notable that a sufficiency scan for recommendations
identifies a subgroup of female customers who own or rent their housing, have critical, previously
delayed, or other existing credit, and are aged 26 or older who are flagged as high-risk for credit.
This subgroup has a lower rate of being untrustworthy for credit (0.12) compared to the equivalent
group of male customers predicted as high-risk for credit, where the rate of being untrustworthy
for credit is 0.19. This scan additionally detects that male customers who have free housing and
are predicted as high-risk have a lower rate of being untrustworthy for credit (0.37) as compared to
female customers who have free housing and are predicted as high-risk (0.58). Although neither
of these detected subgroups is statistically significant, they do represent deviations, in the form
of miscalibrated predictions, that disadvantage a subgroup of customers based on their gender as
compared to the opposite gender. This suggests that removing gender and marital status as predictors
may not be sufficient to fully remove gender-related subgroup biases in the model predictions.
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Table 5: Full table of results for German Credit Data case study

Scan Type Protected
Class
Attribute
Value

Detected
Subgroup

Comparison
Subgroup

Score Observed
Rate
(De-
tected)

Observed
Rate
(Com-
parison)

All paid
or no
previous
credit

All customers
with all paid or
no previous credit
(397)

All customers
with critical, pre-
viously delayed
or other existing
credit (303)

86.5 0.35 0.20

Separation
Scan for
Predictions

Under
age 26

All customers un-
der age 26 (110)

All customers of
age 26+ (590)

13.5 0.41 0.26

Free hous-
ing

All customers
who have free
housing (64)

All customers
who own or rent
their housing
(636)

12.9 0.39 0.28

Rent their
housing

All customers
who rent their
housing (109)

All customers
who own or have
free housing
(591)

5.62 0.38 0.27

Single Single customers
under age 26 who
have free housing
(2)

Non-single cus-
tomers under age
26 who have free
housing (1)

9.19 1.00 0.00

Male Male customers
under age 26 who
have free housing
(2)

Female customers
under age 26 who
have free housing
(1)

8.39 1.00 0.00

Separation
Scan for
Recom-
mendations

Free hous-
ing

Customers under
age 26 who have
free housing (3)

Customers under
age 26 who own
or rent their hous-
ing (107)

3.02 0.67 0.32

Non-
single

Non-single cus-
tomers who rent
their housing (74)

Single customers
who rent their
housing (35)

2.39 0.42 0.09

Female All female cus-
tomers (201)

All male cus-
tomers (499)

0.08 0.11 0.03

Own their
housing

Female customers
of age 26+ with
all paid or no pre-
vious credit who
own their housing
(93)

Female customers
of age 26+ with
all paid or no pre-
vious credit who
rent or have free
housing (42)

81.2 0.33 0.50

Age 26+ Single customers
who own their
housing of age
26+ (366)

Single customers
who own their
housing under
age 26 (42)

42.4 0.22 0.36

Critical,
previ-
ously
delayed
or other
existing
credit

Customers who
own their housing
of age 26+ with
critical, previ-
ously delayed
or other existing
credit (267)

Customers who
own their housing
of age 26+ with
all paid or no
previous credit
who own their
housing (340)

8.80 0.16 0.29
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Female Female customers
who own or rent
their housing
with critical, pre-
viously delayed
or other existing
credit of age 26+
(66)

Male customers
who own or rent
their housing
with critical, pre-
viously delayed
or other existing
credit of age 26+
(234)

7.31 0.12 0.19

Sufficiency
Scan for
Predictions

Male Male customers
who have free
housing (89)

Female customers
who have free
housing (19)

6.23 0.37 0.58

Single Single customers
who have free
housing (85)

Non-single cus-
tomers who have
free housing (23)

4.92 0.38 0.52

Rent their
housing

Female customers
who rent their
housing (95)

Female customers
who own or have
free housing
(215)

1.91 0.41 0.33

All paid
or no
previous
credit

Single customers
of age 26+ who
own their housing
with all paid or
no previous credit
(189)

Single customers
of age 26+ who
own their housing
with critical, pre-
viously delayed
or other existing
credit (177)

1.55 0.28 0.15

Under
age 26

All customers un-
der age 26 (190)

All customers of
age 26+ (810)

0.07 0.42 0.27

Non-
single

All non-single
customers (56)

All single cus-
tomers (12)

0.54 0.45 0.58

Sufficiency
Scan for
Recom-
mendations

Male All male cus-
tomers (24)

All female cus-
tomers (44)

0.02 0.46 0.48

Each of the four variants of CBS was run using each observed attribute
value as the protected class. Detected subgroup S∗ of the protected class
and corresponding (comparison) subgroup of the non-protected class;
numbers of customers for each subgroup are shown in parentheses. All
runs with log-likelihood ratio score F (S∗) > 0 are shown, sorted in de-
scending order by score for each method. Separation scan for predictions:
“observed rate” is average predicted risk, E[Pi], for customers who are
trustworthy for credit (Yi = 0). Separation scan for recommendations:
“observed rate” is false positive rate, i.e., proportion of individuals pre-
dicted as “high-risk” (Pi,bin = 1) for customers who are trustworthy
for credit (Yi = 0). Sufficiency scan for predictions: “observed rate” is
proportion of untrustworthy customers for credit (Yi = 1), controlling
for predicted risk. Sufficiency scan for recommendations: “observed rate”
is positive predictive value, i.e., proportion of untrustworthy customers
(Yi = 1) for customers who were predicted as “high-risk” (Pi,bin = 1).
Some subgroups are not included for binary sufficiency and binary separa-
tion scans because the limited range of the predicted risk score prevented
auditing with CBS. We note that the three lowest-scoring subgroups for
sufficiency scan for predictions had higher observed rates in the detected
group vs. comparison group. These observed rates were still lower than
expected, resulting in small but non-zero scores, given the systematic
differences in other predictors between protected and non-protected class.
Bolded scores are statistically significant with p-value <.05 measured by
permutation testing, as described in Appendix A.3. “Non-single” is short
for the marital status attribute “Married/divorced/separated/widowed”.
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C.2.4 GERMAN CREDIT DATA RESULTS FOR BENCHMARK METHODOLOGIES

We use the same setup described in Appendix C.1.5 for running the benchmark methodologies with
their default settings and with the modifications to account for directional bias. Additionally, we use
the same data and risk scores described in the other sections of Appendix C.2.

GerryFair Results: When running GerryFair with its default settings of detecting positive or negative
deviations in the false positive rate in comparison to the global false positive rate with marital status
and gender marked as sensitive attributes, GerryFair detects a subgroup of single male customers with
a slightly decreased average predicted risk for credit of 0.27 for trustworthy customers in comparison
to the global average predicted risk score of 0.29 for trustworthy customers. This is a negative
deviation in the false positive rate. The German Credit dataset contains no single females. When
running GerryFair to detect positive deviations in the false positive rate, it detects a subgroup of
credit-trustworthy married/divorced/separated/widowed customers (i.e., “non-single”) who have a
slightly increased average predicted risk of 0.30 in comparison to the global expected risk score of
0.29 for all trustworthy customers.

MultiAccuracy Boost Results: The MultiAccuracy Boost results, both for its default settings and
when accounting for over-estimation bias, found no noteworthy associations between the coefficients
of the predictors used to estimate the custom residual heuristic used in MultiAccuracy Boost. This
further substantiates our claim that MultiAccuracy Boost does not have the capabilities to be easily
used as an auditing tool for subgroup predictive biases.

D ADDITIONAL RELATED WORK

Our discussion of related work in Section 2, and our empirical comparisons in Section 4, are focused
on the foundational papers in the machine learning literature on auditing classifiers for intersectional
and subgroup biases, e.g., Kearns et al. (2018) and Kim et al. (2019a). These papers are used as
benchmarks for our method.

There is other research for subgroup bias auditing which is not directly comparable to CBS. For
example, Chouldechova and G’Sell (2017) use a recursive partitioning algorithm to find subgroups
where the false positive rate disparity between individuals in the protected and non-protected class
differs between two predictive models. In addition to this framework providing limited fairness
metrics for auditing, this work is formulated to measure pairwise disparities between two models’
predictive performance, whereas CBS separately audits each predictive model’s results, making this
work ill-suited as a benchmark for CBS.

Additionally, we reference the concept of intersectionality in our main paper, which has a rich
history (Crenshaw, 1991a;b; Collins, 2008). Given the importance of intersectional biases, we
provide concise resources for the original conceptualizations of ‘intersectionality’. In the sociology
literature, intersectionality theory (Crenshaw, 1991a;b; Collins, 2008) describes how individuals’
different social positions and identities interact to influence their social experiences, actions, and
outcomes. In particular, an individual at the intersection of several minoritized groups may be
impacted by multiple historical and continuing systems of power and oppression (structural racism,
sexism, income and wealth disparities, etc.).

Several recent quantitative research papers (Bose and Hamilton, 2019; Foulds et al., 2020; Subra-
manian et al., 2021) have proposed methods for learning fair classifiers (as opposed to auditing
classifiers) with respect to intersectional and/or contextual biases. In the machine learning literature,
Bose and Hamilton (2019) use filtered embeddings to train debiased graph embeddings; Foulds et al.
(2020) propose new definitions of intersectional bias and use regularization to train fair classifiers;
and Subramanian et al. (2021) propose a classifier trained with bias-constraints and also extend a
post-hoc debiasing method called iterative nullspace projection (INLP) to address intersectional bias.
As noted above, Bose and Hamilton (2019), Foulds et al. (2020), and Subramanian et al. (2021)
focus on learning fair classifiers as opposed to auditing classifiers. While INLP could conceivably be
adapted for auditing given its similarity to the iterative postprocessing method used by MultiAccuracy
Boost discussed in Section 2 and used as a benchmark, this approach does not find the subgroup with
the most systematic bias on any given iteration, a significant and novel contribution of Conditional
Bias Scan.
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We present a novel subgroup discovery algorithm to search for predictive bias. Subgroup discovery
is a rich research domain. Herrera et al. (2011) provide a comprehensive overview of subgroup
discovery, covering various fundamental topics including a sampling of search algorithms and
quality measurements. Klösgen (1999) provides a condensed and select overview of the topic of
subgroup discovery. Lastly, Leman et al. (2008) present a framework for multi-target attribute
subgroup discovery. While this work is significantly different from CBS regarding framing, quality
measurements, search algorithms, etc., it provides a useful overview of various considerations of
subgroup discovery pertaining to a model’s outputs for a given data distribution.

E BROADER SCOPE OF IMPACT

CBS is, to our knowledge, the first auditing tool that can answer whether there are intersectional
biases that adversely impact a given protected class or any subgroup of that protected class. The
other tools mentioned in Section 2 and Appendix D either do not account for directional bias, do not
audit for predictive biases impacting a given protected class or subgroup of that protected class, or
were not designed for auditing a single model. Given the ultimate objective of understanding the full
scope of predictive biases that a model produces for all the sensitive subpopulations of a given target
population, there is the need for expanded measurements of predictive bias and improved methods
for searching for these biases within all sensitive subpopulations that could be adversely affected
by predictive bias. Without auditing tools that can robustly search for these biases, any predictive
bias definition will be limited to evaluating a limited, static set of subpopulations, and there will
presumably be some form of intersectional or contextual bias that goes undetected. Practitioners
can use CBS to determine if a model’s predictions are biased for any subgroup of a protected class,
therefore can identify intersectional and contextual biases that impact any subpopulation defined
by protected class membership. We demonstrate this with our case studies of the COMPAS risk
scores (Section 5 and Appendix C.1) and German Credit Data (Appendix C.2). Therefore, CBS is
an important step toward understanding the full scope of predictive biases a model might produce.
Ultimately, this methodology can play a role in ensuring that machine learning models used in
socio-technical settings are not exacerbating societal harms.

Since CBS is solely an auditing methodology, it presents less risk than a method that intends to
mitigate predictive biases. With that said, auditing tools for predictive models can inadvertently
suggest that the most beneficial course of action is to correct predictive biases. As discussed in
Section 6, predictive biases could exist for a variety of reasons, and often align with larger societal
disparities. Understanding and mitigating biases in predictive models are important goals, but do
not eliminate the pressing need to address the societal disparities which are the root causes of these
biases.

We use the COMPAS data as one of our case studies for CBS. In Appendix C.1.4 we discuss various
issues pertaining to the COMPAS data and its use in fair machine learning research, as well as
exploring the implications of the fairness definitions we chose for the COMPAS case study. Our use
of COMPAS was motivated by easily available data to verify our auditing methodology. We have no
intention of endorsing, solidifying or normalizing the use of risk assessment scores in arraignment
settings. In Appendix C.1.4, we provide references to research critical of the current framing of
risk assessment tools in arraignment courts, and alternative framings for risk assessments pertaining
to criminal justice, such as assessing the risk posed to defendants because of interactions with the
criminal justice system.

39


	Introduction
	Related Work
	Methods
	Define (I,C): Overview of Scan Types
	Generate Expectations  of the Event Variable
	Detect the Most Significant Subgroup S* and Evaluate its Statistical Significance

	Evaluation
	Case Study of COMPAS
	Limitations
	Methods Appendices
	Details about the Method for Generating  used in Section 3.2 and its Limitations
	Fast Subset Scanning for Conditional Bias Scan
	Formal Definition of Additive Linear-Time Subset Scanning Property (ALTSS)
	Pseudocode of Fast Subset Scan Algorithm for Conditional Bias Scan

	Permutation Testing to Determine Statistical Significance of Detected Subgroups
	Conditional Bias Scan Framework Parameters

	Evaluation Appendices
	Adaptations of the Benchmark Methods used in Evaluation
	Explanation of the Additive Term (true) for the True Log-Odds used in the Generative Model for the Semi-synthetic Data
	Additional Evaluation Simulations
	Robustness Analyses of Evaluation Simulations for Parameters true and predict 
	Estimates of Compute Power

	Case Studies Appendices
	Case Study of COMPAS Appendices
	Additional Information about Preprocessing of COMPAS Data
	Full Results of COMPAS Case Study
	Gender Bias in COMPAS
	Considerations and Limitations of COMPAS Data and Fairness Definitions in our COMPAS Case Study
	Discussion of COMPAS Results for Benchmark Methodologies

	Case Study of German Credit Data
	Preprocessing of German Credit Data
	Scans for the German Credit Data
	Results of German Credit Data Case Study
	German Credit Data Results for Benchmark Methodologies


	Additional Related Work
	Broader Scope of Impact

