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Abstract

Multiple-Choice Questions (MCQs) constitute001
a critical area of research in the study of Large002
Language Models (LLMs). Previous works003
have investigated the selection bias problem004
in MCQs within few-shot scenarios, in which005
the LLM’s performance may be influenced by006
the presentation of answer choices, leaving the007
selection bias during Supervised Fine-Tuning008
(SFT) unexplored. In this paper, we reveal009
that selection bias persists in the SFT phase of010
LLMs, primarily due to the LLM’s inadequate011
Multiple Choice Symbol Binding (MCSB) ca-012
pability. This limitation implies that the model013
struggles to associate the answer options with014
their corresponding symbols effectively. To en-015
hance the model’s MCSB capability, we first016
incorporate option contents into the loss func-017
tion and subsequently adjust the weights of the018
option symbols and contents, guiding the model019
to understand the option content of the current020
symbol. Based on this, we introduce an effi-021
cient SFT algorithm for MCQs, termed Point-022
wise Intelligent Feedback (PIF). PIF constructs023
negative instances by randomly combining the024
incorrect option contents with all candidate op-025
tion symbols, and proposes a point-wise loss026
to provide feedback on these negative samples027
into LLMs. Our experimental results demon-028
strate that PIF significantly reduces the model’s029
selection bias by improving its MCSB capa-030
bility. Remarkably, PIF exhibits a substantial031
enhancement in the accuracy for MCQs.032

1 Introduction033

Multiple-Choice Questions (MCQs) are ubiqui-034

tously employed in the realm of Large Language035

models (LLMs). They typical comprise a query036

accompanied by an array of potential options,037

wherein the model’s assignment is to discern and038

select the most appropriate solution. Given the039

significance, numerous studies (Pezeshkpour and040

Hruschka, 2023; Zheng et al., 2023a; Robinson041

et al., 2023) have explored the challenges faced042

Within American poli0cs, the 
power to accord official 
recogni0on to other countries 
belongs to
Op0ons(Symbol: Content):
A: the Senate.
B: the president.
C: the Secretary of State.
D: the chairman of the Joint Chiefs.

Correct Answer  
B: the president

Wrong Answer
B: the Secretary of State

Within American poli0cs, the 
power to accord official 
recogni0on to other countries 
belongs to
Op0ons(Symbol: Content):
A: the Senate.
B: the Secretary of State.
C: the president.
D: the chairman of the Joint Chiefs.

LLM

Figure 1: Selection bias of MCQs. Upon transposition
of the correct content from option B to C, the model per-
sists in selecting B instead of the correct option content.

in the few-shot phase of MCQs. One of the main 043

challenges is the selection bias (Pezeshkpour and 044

Hruschka, 2023; Zheng et al., 2023a), which refers 045

that LLMs are sensitive to variations in the arrange- 046

ment of options within MCQs. Figure 1 demon- 047

strates an example of selection bias. 048

Foundation LLMs such as LLaMA2-7B can sel- 049

dom acquire data-sensitive domain knowledge. For 050

such scenarios, it is crucial to perform Supervised 051

Fine-Tuning (SFT) on LLMs. Thus we hope LLMs 052

to ensure accuracy and also robustly select reliable 053

options in MCQs during SFT. Unfortunately, we 054

find that the selection bias still exists during the 055

SFT phase. Following the methodology of Zheng 056

et al. (2023a), we conduct “answer-moving attack” 057

experiment by always moving the golden option 058

content to a specific symbol, and the results are 059

displayed in Table 1. In detail, we train two mod- 060

els using the training dataset, and select the best- 061

performing model on the validation set and predict 062

results for the test set. Then, we implement the 063

answer-moving attack by moving all the correct 064

options to the same symbol for the test dataset 065

and predict results again, which cause significant 066

changes in the models’ performance. For example, 067
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dataset MMLU

Move Golden to Orig A B C D

LLaMA2-7B 54.6
65.7 45.6 58.4 47.8

(+11.1) (-9.0) (+3.8) (-6.8)

LLaMA2-13B 59.2
54.8 64.6 56.3 61.5
(-4.4) (+5.4) (-2.9) (+2.3)

Table 1: The accuracy results after answer-moving at-
tack on the LLMs during the SFT process with MMLU
benchmarks. Relocating the correct option content of
MCQs to a specific symbol can lead to significant per-
formance fluctuations for LLMs.

when moving all correct options to symbol A, the068

accuracy of the LLaMA2-7B model increases by069

11.1, while LLaMA2-13B model decreases 4.4.070

Why do LLMs show selection bias during071

the SFT stage? We propose a hypothesis that072

"Strengthened Symbol Binding Makes Large Lan-073

guage Models Reliable Multiple-Choice Selec-074

tors". We utilize Multiple Choice Symbol Binding075

(MCSB) capability (Robinson et al., 2023) to rep-076

resent the LLM’s ability to bind option symbols077

and their corresponding option contents, and em-078

ploy Proportion of Plurality Agreement (PPA) met-079

ric to compare the relative MCSB ability of two080

LLMs. Through comprehensive experimental vali-081

dation, we discover that improving the LLMs’ per-082

formance on the PPA metric alleviates the LLMs’083

performance on selection bias.084

Based on the relationship between the LLMs’085

selection bias and its MCSB capabilities, we ex-086

pect to mitigate selection bias by enhancing the087

model’s MCSB capability. We first incorporate088

option contents into the loss function, guiding the089

model to understand the content of the current sym-090

bol. However, the results are less than satisfactory.091

Considering that label words are anchors (Wang092

et al., 2023a), we adjust the weights of the option093

symbols and contents in the optimization objec-094

tive, termed Reweighting Symbol-Content Binding095

(RSCB). Subsequently, inspired by Reinforcement096

Learning from Human Feedback (Stiennon et al.,097

2020), we propose Point-wise Intelligent Feedback098

(PIF), in which we construct negative samples by099

randomly combining the contents of incorrect op-100

tions with all option symbols, and design a point-101

wise loss to feedback these negative samples into102

SFT. Finally, PIF not only ensures the stability of103

model performance but also enhances it.104

In summary, our contributions are as follows:105

(1) We conduct experiments to demonstrate that106

there is still the selection bias when performing107

SFT on LLMs for MCQs. We hypothesize that 108

Strengthened Symbol Binding Makes Large Lan- 109

guage Models Reliable Multiple-Choice Selectors. 110

In Section 2.3, we validate this hypothesis by inves- 111

tigating the correlation between the MCSB capabil- 112

ity and the selection bias. (2) We mitigate selection 113

bias by enhancing the model’s MCSB capability. 114

We propose the Point-wise Intelligent Feedback 115

(PIF) method, which constructs negative samples 116

by randomly combining the content of incorrect 117

options with all candidate symbols and designing a 118

point-wise loss to provide feedback on these nega- 119

tive samples into LLMs. (3) We conduct extensive 120

experiments to validate that our PIF method can 121

significantly alleviate the selection bias of LLMs 122

during the SFT phase for MCQs. Meanwhile, the 123

experimental results prove that PIF could also en- 124

hance the accuracy performance of the model. 125

2 Exploration of Selection Bias During 126

Supervised Fine-tuning 127

2.1 Experimental Background 128

Datasets To investigate the selection bias in the 129

SFT stage of LLMs for MCQs, we conduct exper- 130

iments on several commonly used MCQs bench- 131

marks: Massive Multitask Language Understand- 132

ing(MMLU) benchmark (Hendrycks et al., 2021) 133

and CommonsenseQA(CSQA) (Talmor et al., 134

2019). Our choice of benchmarks considers the 135

variety of tasks and fields involved. Explicitly, 136

MMLU comprises 4-option multiple-choice ques- 137

tions, whereas CSQA contains 5-option variants. 138

As for domains, MMLU encompasses a wide range 139

of tasks from fields including STEM, humanities, 140

social science and others, coverage 57 subjects; 141

while CSQA conduct questions draw upon Con- 142

ceptNet (Speer et al., 2017) concepts, enabling va- 143

riety and integration of worldly knowledge within 144

the queries. It’s worth noting that the CSQA dataset 145

does not have standard answers for the test data. 146

Thus in our experimental setup, we use the dev set 147

as the test set and extract a portion of samples from 148

the train set to serve as the validation set. MMLU is 149

additionally split into four domains (STEM, Social 150

Science, Humanities, Others) based on its subject 151

categories. Details can be found in Appendix A. 152

Models We conduct experiments on LLMs origi- 153

nating from well-known LLM families, spanning 154

various sizes. LLaMA (Touvron et al., 2023) con- 155

stitutes a compilation of widely-used foundation 156

models designed to promote research on LLMs 157
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Figure 2: LLMs’ selection bias during SFT. The leftmost two columns demonstrate the changes in accuracy following
the answer-moving attack, whereas the rightmost column exhibits the metric µbias as defined by Equation 1.

for training, inference, and extensive applications.158

In this paper, taking into account the model size,159

we assess the 7B and 13B variant of LLaMA2160

(LLaMA2-7B, LLaMA2-13B). Projects used in161

this work is illustrated in Appendix B.162

Taking into account the limited computational163

resources, we fine-tune LLMs with Low-Rank164

Adaptation(LoRA) (Hu et al., 2022) and set its rank165

to 16, the alpha parameter to 64, and the dropout166

rate to 0.1. To investigate the selection bias, we167

design two distinct output configurations for LLMs168

during the training process. One generates only169

the option symbols, defined as πSymbol, while the170

other produces both the option symbols and con-171

tents concurrently, defined as πSCB. During the172

testing process, the model is configured to output173

only the symbol, which is sufficient for determining174

whether the answer is correct or not.175

2.2 Selection Bias During SFT176

We conduct experiments using two LLMs on six177

datasets. Similar to Zheng et al. (2023a), we con-178

duct "answer-moving attack" experiment to mea-179

sure the selection bias. During testing, we move180

all the correct answers to A|B|C|D|E respectively181

(Answers are A|B|C|D in MMLU. For the sake182

of convenience, we will use the unified notation183

of A|B|C|D|E) for the test set, and then display184

the model’s accuracy after the relocation. Subse-185

quently, to provide a concrete numerical represen-186

tation of the impact of the answer-moving attack,187

we calculate µbias, the average absolute value of the188

difference between the accuracy after the answer-189

moving attack and the original accuracy tested on190

the standard test set. Which can be formulated as: 191

µbias =

∑K
i=1(|Acci − Acc0|)

K
, (1) 192

Acci refers to the accuracy after answer-moving 193

attack, Acc0 is the accuracy on the standard testing 194

set, K is the number of options, and is set as 5 for 195

CSQA, 4 for MMLU. Through the experimental re- 196

sults in Figure 2, we make following observations: 197

Selection bias varies among different sizes of 198

the model parameters. As seen from Figure 2, 199

LLaMA2-7B tends to choose C, while LLaMA2- 200

13B prefers to choose D. Although these two mod- 201

els belong to the same model family, their perfor- 202

mances are not identical, which aligns with the 203

findings in Paper Zheng et al. (2023a). We also 204

observe that, when fine-tuning the model only with 205

option symbols, LLaMA2-13B has a smaller µbias 206

on MMLU compared to LLaMA2-7B, while re- 207

versed on the CSQA dataset. Therefore, during 208

SFT, there is no absolute relationship between se- 209

lection bias and the size of the model parameters. 210

SFT training examples influence both the magni- 211

tude and distribution of selection bias. Regard- 212

less of the LLMs, the overall bias value µbias for 213

CSQA is always smaller than that of MMLU. As 214

seen from Appendix A, the proportions of the five 215

options in the CSQA benchmark training set are 216

roughly equal, while this is not the case for MMLU. 217

Additionally, when we fine-tune LLaMA2-13B 218

with option symbols, the model shows a stronger 219

inclination to predict option B on MMLU, while 220

on CSQA, it predicts B with a significantly lower 221

probability than others. Therefore, we speculate 222

that the selection bias during SFT is closely related 223

to the fine-tuning dataset used in the SFT stage. 224
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Model
STEM Social Science Human Others MMLU CSQA

∆µbias ∆µppa ∆µbias ∆µppa ∆µbias ∆µppa ∆µbias ∆µppa ∆µbias ∆µppa ∆µbias ∆µppa

LLaMA2-7B -2.6 +0.6 -2.3 +1.2 -2.1 +2.4 -4.9 +1.2 -3.0 +1.6 +0.7 -0.2
LLaMA2-13B +3.7 -2.1 +3.4 -1.0 -0.7 +0.2 -0.4 -0.3 +1.8 -0.7 -0.2 +0.3

Table 2: Relationships between ∆µbias and ∆µppa. When ∆µbias is positive, ∆µppa is negative and vice versa. Such
indicating that "Strengthened Symbol Binding Makes Large Language Models Reliable Multiple-Choice Selectors".

2.3 Why Do LLMs Suffer Selection Bias in225

MCQs’ SFT226

After analyzing the selection bias during SFT in227

various LLMs and datasets, we now focus on un-228

derstanding why LLMs exhibit selection bias dur-229

ing the SFT stage. We identify two reasons why230

LLMs may choose the wrong answer. Firstly, the231

LLM does not know the correct option, which can232

be attributed to its capability. Secondly, the LLM233

is aware of the correct option content. However,234

selection bias makes it choose a preferred option235

symbol instead of one corresponding to the correct236

option. This indicates the model’s weak ability237

to associate option content with the appropriate238

symbol. According to it, we propose a hypothesis:239

Strengthened Symbol Binding Makes Large Lan-240

guage Models Reliable Multiple-Choice Selectors.241

In this paper, we utilize Multiple Choice Symbol242

Binding (MCSB) capability (Robinson et al., 2023)243

to represent the LLM’s ability to bind option sym-244

bols and their corresponding contents. Similar245

to Robinson et al. (2023), we also employ the246

Proportion of Plurality Agreement (µppa) metric to247

compare the relative MCSB ability of two LLMs.248

µppa =
1

|D|
∑
D

max
k∼K

(
K!∑
j=1

yj = ok)

K!
. (2)249

As shown in Table 14, given a question with250

K options, there are K! distinct arrangements of251

these options in a fixed set of symbols. For ease252

of expression, we use ok to represent the k-th op-253

tion content and yj to describe the content of the254

predicted arrangement. During testing, we present255

each question to the model using each unique order-256

ing, and then PPA for this question is the frequency257

corresponding to the most frequently predicted op-258

tion content. For a dataset D, µppa is calculated as259

the average of the PPAs for all individual questions.260

To demonstrate the relationship between the261

MCSB capability and the selection bias, we cal-262

culate the differences of µppa and µbias between263

πSymbol and πSCB, which are defined as follows:264

∆µbias = µπSCB
bias − µ

πSymbol
bias , (3) 265

∆µppa is defined in a similar approach. As delin- 266

eated in the prior analysis, if there exists a cor- 267

relation between selection bias and the LLM’s 268

MCSB capacity, then a positive ∆µppa corresponds 269

to a negative ∆µbias, indicating that increasing 270

the MCSB capability resulting a reduction in 271

the LLM’s bias. We conduct experiments with 272

LLaMA2-7B and LLaMA2-13B. The result is il- 273

lustrated in Table 2. Except for the performance of 274

LLaMA2-13B on MMLU-Others, all the remain- 275

ing results indicate that when ∆µbias is positive, 276

∆µppa is negative and vice versa. Additionally, the 277

performance of LLaMA2-13B on MMLU-Others 278

can be considered as having a relatively constant 279

µppa, rather than being contrary to our conclusion. 280

Appendix H also demonstrates a theoretical proof. 281

3 Methodology 282

According to the previous analysis, we can mit- 283

igate the selection bias of LLMs during SFT by 284

enhancing their MCSB abilities. 285

3.1 Symbol-Content Binding 286

Initially, we incorporate the option symbols as the 287

LLM’s target tokens during training, resulting in a 288

model πSymbol. Given input x and output ySymbol, 289

we define optimization objective as: 290

LSymbol = −
∑

t logPπSymbol(y
Symbol
t |x, ySymbol

<t )

|ySymbol|
.

(4) 291

As shown in Table 1, πSymbol suffers from severe 292

selection bias. Since enhancing the MCSB capa- 293

bilities can effectively alleviate the selection bias, 294

given output ySCB, we propose the Symbol-Content 295

Binding (SCB) debiasing method πSCB, which in- 296

corporates both the option symbols and contents as 297

the LLM’s target tokens during training: 298

LSCB = −
∑

t logPπSCB(y
SCB
t |x, ySCB

<t )

|ySCB|
. (5) 299
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What is the normal 
voltage used in 
directional heating ? 
Options:
A: 1.5 KV. B: 15 KV.
C: 33 KV. D: 66 KV.

Question

Reweighting Symbol-
Content Binding(RSCB)

Positive

Positive + Negative

Warm upLLM

𝐿!"#$ = −$
%&'

𝑙𝑜𝑔𝑃(!"# + 1 − 𝑝' )×𝛽×(−𝑙𝑜𝑔𝑝')

Response
Answer: A: 1.5 KV. ✔
Answer: B: 33 KV. ✖
Answer: C: 33 KV. ✖
Answer: D: 66 KV. ✖
Answer: D: 15 KV. ✖
              … …

What is the normal voltage 
used in directional heating ? 
Options:
A: 1.5 KV. B: 15 KV.
C: 33 KV. D: 66 KV.

Point-wise Intelligent 
Feedback(PIF)

What is the normal voltage 
used in directional heating ? 
Options:
A: 1.5 KV. B: 15 KV.
C: 33 KV. D: 66 KV.

Answer: A: 1.5 KV. ✔

Answer: B: 33 KV. ✖ 𝐿!"# = #
$%&'()*

max(0, −𝛾+ , (
∑, 𝑙𝑜𝑔𝑃-$%&(𝑦,

!"#|𝑥, 𝑦.,!"#)
|𝑦!"#|

− 𝑙𝑜𝑔𝜆+))

… …

… …

Answer: A : 1.5 KV. ✔

Figure 3: Visualization of RSCB and PIF. RSCB adjusts the weights of the option symbols and contents in the SFT
optimization objective. PIF constructs negative samples by randomly combining the content of incorrect options
with all option symbols and designs a point-wise loss to feedback these negative samples into SFT.

However, the results are not as expected. As300

shown in Table 2, there is no clear pattern indicat-301

ing that πSCB has a lower bias compared to πSymbol.302

3.2 Reweighting Symbol-Content Binding303

Actually, label words are anchors (Wang et al.,304

2023a), which LLMs pay more attention to. On305

the other hand, the answer content merely plays306

an auxiliary role, assisting the model in compre-307

hending the actual content of the corresponding308

symbol. Thus we adjust the weights of the option309

symbols and contents in the optimization objec-310

tive, termed Reweighting Symbol-Content Binding311

(RSCB). The objective function is defined as:312

LRSCB = LSCB + (1− ps)
α · β · (− log ps). (6)313

Where ps is the predicted probability of the symbol314

token, β is the re-assigned weight for the symbol315

token. Considering that LLM itself has already316

focused on the symbol tokens for simple samples,317

there is no need to emphasize the symbol tokens318

specifically in such cases. Therefore, we ultimately319

employ the Focal loss (Lin et al., 2017).320

3.3 Point-wise Intelligent Feedback321

Human feedback allows LLMs to identify issues322

with accuracy, fairness, and bias (Liu et al., 2024).323

Previous studies have explored how to incorporate324

human feedback with various stages during LLM’s325

training process, such as pre-training (Korbak et al.,326

2023), SFT (Yuan et al., 2023), Reinforcement327

Learning from Human Feedback (RLHF) (Stien-328

non et al., 2020; Xue et al., 2023), and others.329

In the context of MCQs, we possess knowledge 330

of both the positive options’ symbols and contents, 331

as well as the negative options. We can also easily 332

acquire negative symbol-content binding examples. 333

We call this process Intelligent Feedback without 334

human preference annotations. Moreover, our feed- 335

back is intrinsically point-wise, i.e., with absolute 336

scores, the reward score for positive samples should 337

be 1 and be λ for negative samples. We refer to this 338

approach as Point-wise Intelligent Feedback (PIF). 339

In this method, we aim to maximize the probability 340

of positive examples, approaching 1, which can be 341

optimized by cross-entropy loss, and minimize the 342

likelihood of negative examples falling below λ. 343

Inspired by RRHF (Yuan et al., 2023), we optimize 344

the object of negative samples as follows: 345

LPIFn = max(0,

log λ−
∑

t logPπPIF(y
PIFn
t |x, yPIFn

<t )

|yPIFn |
).

(7) 346

Consequently, the overall optimization objective 347

can be summarized as follows: 348

LPIF = max(0,−γk·

(

∑
t logPπPIF(y

PIF
t |x, yPIF

<t )

|yPIF|
− log λk)),

(8) 349

where k is utilized to differentiate between the pos- 350

itive and negative samples. In our experiments, 351

γpos = 1, γneg = −1, λpos = 1, λneg is a hyper- 352

parameter defined in Section 4.1. 353
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Model Method STEM Social Science Humanities Others MMLU CSQA

µbias↓ µppa↑ µbias↓ µppa↑ µbias↓ µppa↑ µbias↓ µppa↑ µbias↓ µppa↑ µbias↓ µppa↑

LLaMA2-7B

Symbol 10.3 70.9 6.8 81.8 6.2 81.3 8.1 80.2 7.7 78.9 1.3 93.1
SCB 7.7 71.5 4.5 83 4.1 83.7 3.2 81.4 4.7 80.5 2.0 92.9
RSCB 3.8 71.8 3.4 83.1 5.3 81.8 2.9 81.6 3.0 79.8 2.4 92.4

PIF
3.7 72.3 2.3 83.9 3.9 83.1 1.3 82.9 2.7 80.8 1.3 93.0

(-6.6) (+1.4) (-4.5) (+2.1) (-2.3) (+1.8) (-6.8) (+2.7) (-5.0) (+1.9) (0) (-0.1)

LLaMA2-13B

Symbol 6.2 73.9 1.9 84.9 5.6 79.5 3.5 83.9 3.8 80.5 2.8 92.5
SCB 9.9 71.8 5.3 83.9 4.9 79.7 3.1 83.6 5.6 79.8 2.6 92.8
RSCB 2.8 74.7 1.3 85.9 6.8 79.1 1.6 84.8 3.1 80.9 1.9 92.6

PIF
4.8 74.5 2.0 85.1 2.9 80.9 2.6 84.2 3.0 81.0 0.9 93.5

(-1.4) (+0.6) (+0.1) (+0.2) (-2.7) (+1.4) (-0.9) (+0.3) (-0.8) (+0.5) (-1.9) (+1.0)

Table 3: The metric µbias (A reduced value implies a diminished selection bias) and µppa (An elevated value suggests
an enhanced MSCB capability) of four methods. The implementation of PIF methodology has effectively enhanced
the model’s MCSB capability across virtually all datasets, consequently alleviating the selection bias.

We also find that the performance of πPIF is re-354

lated to its initial parameters. We ultimately ini-355

tialize πPIF using the parameters from πRSCB. Ap-356

pendix D demonstrates the ablation study.357

4 Experiment358

4.1 Implementation Detail359

Samples For PIF When employing PIF, the in-360

clusion of negative samples in the optimization ob-361

jective is essential. Given that the ultimate goal is to362

enhance the LLMs’ MCSB performance, negative363

samples are constructed by randomly combining364

the incorrect option contents with all candidate op-365

tion symbols. For instance, we can construct a neg-366

ative sample "B: 33KV." for the example presented367

in Figure 3. Due to the limited computational re-368

sources, we randomly select one negative sample369

for each instance. What’s more, in our experiment,370

the parameters of πPIF are warmed up from πRSCB.371

Metrics We finally employ four evaluation met-372

rics. µbias is defined by Equation 1 to measure the373

LLM’s selection bias. µppa is defined by Equa-374

tion 2 to represent the LLM’s MCSB capability.375

"Acc" refers to the LLM’s accuracy performance376

on the standard test set of the current benchmark.377

Accmin is the minimum accuracy after performing378

the answer-moving attack, in which case LLMs379

with higher Accmin exhibit greater robustness.380

Fine-tuning Hyper-parameters and prompts used381

in our experiment can be found in Appendix C.382

4.2 Main Results383

Table 3 contains the main experimental results384

of comparison between four methods defined in385

Section 3, which are called "Symbol", "Symbol-386
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Figure 4: With the evolution of methods, µbias is gradu-
ally decreasing, µppa is progressively increasing.

Content Binding (SCB)", "Reweighting Symbol- 387

Content Binding (RSCB)" and "Point-wise Intel- 388

ligent Feedback (PIF)". Figure 4 demonstrates a 389

more apparent trend in the results’ changes. Ap- 390

pendix G also reports the accuracy after the answer- 391

moving attack for each method on each benchmark. 392

The SCB method combines the option symbols 393

and option contents as the prediction target tokens. 394

However, this method can not reduce selection bias 395

or enhance the LLM’s MCSB capabilities across 396

all datasets and LLMs. In fact, SCB can even exac- 397

erbate selection bias for LLaMA2-13B. 398

Conversely, RSCB balances the weight of option 399

symbols and contents in the loss function based on 400

SCB. This method enhances the abilities of MCSB 401

on almost all datasets, which helps to reduce selec- 402

tion bias. This finding implies that symbols play a 403

more significant role in MCQs learning process. 404

Finally, we conduct experiments on our PIF 405

method. This method further reduces selection 406

bias for nearly all datasets. It is noteworthy that 407

for LLaMA2-7B’s performance on CSQA and 408

LLaMA2-13B’s performance on the Social Sci- 409

ence benchmark, the inherent bias of the models 410

is already relatively small, at 1.3 and 1.9, respec- 411
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Model Method STEM Social Science Humanities Others MMLU CSQA

Acc Accmin Acc Accmin Acc Accmin Acc Accmin Acc Accmin Acc Accmin

LLaMA2-7B

Symbol 43.8 33.5 62.5 54.5 52.2 43.3 60.6 51.6 54.6 45.6 79.8 77.2
SCB 43.6 35.0 62.1 55.9 50.5 45.4 60.4 54.9 53.8 47.7 78.4 76.2
RSCB 43.2 39.0 62.3 56.8 52.1 45.5 60.5 56.8 54.4 49.0 79.7 74.9
PIF 44.0 39.5 62.7 59.5 53.1 42.4 60.9 59.3 55.0 49.5 79.4 77.3

LLaMA2-13B

Symbol 46.9 42.3 68.1 64.0 55.0 47.9 65.5 59.9 59.2 54.8 81.5 76.2
SCB 48.7 36.2 68.5 62.0 54.2 43.3 64.8 61.8 58.6 50.2 81.0 79.0
RSCB 47.5 41.8 68.0 65.2 55.8 44.3 64.6 61.8 58.7 54.3 80.9 77.9
PIF 48.0 42.4 68.5 65.8 58.4 52.2 65.6 62.0 60.0 56.8 82.2 79.9

Table 4: The Acc (accuracy of standard test dataset) and Accmin (Minimum accuracy after performing an answer-
moving attack) of our four methods. By effectively constructing negative samples, the PIF method contributes to a
notable increase in accuracy. Simultaneously, by alleviating the LLM’s selection bias, it demonstrates a smaller
decline in accuracy when faced with answer-moving attack, resulting in a higher Accmin compared to other methods.

tively. Under these circumstances, the bias of our412

PIF method is essentially on par with the bias of413

the Symbol method. All these results validate the414

effectiveness of our constructed negative samples415

and the proposed point-wise objective function.416

Moreover, based on the results presented in417

Table 3, it is evident that an enhancement in418

MCSB capability leads to a reduction in selection419

bias. This finding reaffirms our initial hypothe-420

sis:Strengthened Symbol Binding Makes Large Lan-421

guage Models Reliable Multiple-Choice Selectors.422

4.3 Impact of Our Methods on Accuracy423

Essentially, while ensuring the stability of LLMs in424

MCQs, we also aspire to achieve higher accuracy.425

In Table 4, we present the performance of four426

methods in terms of accuracy and also the mini-427

mum accuracy after the model has been subjected428

to an answer-moving attack. This aims to demon-429

strate whether the current method can guarantee430

accuracy when faced with adversarial attacks.431

As we can see, the simple SCB method can432

not lead to an improvement in accuracy, and even433

causes a decrease in accuracy on LLaMA2-13B.434

On the other hand, by emphasizing the importance435

of symbols, RSCB achieves a similar level of ac-436

curacy as the method trained solely on symbols.437

Moreover, due to the significant reduction of se-438

lection bias in the RSCB method, it outperforms439

Symbol in terms of the Accmin metric.440

We are pleased to report that the PIF model out-441

performs the other three methods in terms of both442

Acc and Accmin metrics, yielding the most favor-443

able results. This outstanding performance is at-444

tributed to the process of randomly selecting con-445

tents from incorrect options and combining them446

with all symbols while creating negative instances 447

in the PIF model. This approach not only highlights 448

incorrect binding relationships but also exposes the 449

wrong option contents to the model, resulting in an 450

enhancement of the model’s accuracy. 451

4.4 Discussion 452

What would happen if there were no bias in SFT 453

training data? Although PIF has mitigated se- 454

lection bias, there is a more aggressive debiasing 455

approach. Considering that enhancing the model’s 456

MCSB capability can alleviate selection bias, simi- 457

lar to the calculation of µppa, we randomly combine 458

symbols and contents to obtain all K! possible ar- 459

rangements as training data and train the model. 460

We refer to this method as "Perm". Due to the lim- 461

ited computational resources, we randomly select 462
1
K! of the original training set for Perm. The results 463

are shown in Appendix H. Perm indeed signifi- 464

cantly alleviates selection bias, demonstrating that 465

LLM’s selection bias during SFT primarily stems 466

from the training data utilized in the SFT. This is 467

also consistent with the conclusion in Section 2.2. 468

It is practically impossible to implement the 469

Perm approach as it requires using all possible ran- 470

dom combinations, which is unrealistic due to the 471

high computational resources and training time re- 472

quired. In contrast, PIF can effectively alleviate 473

the selection bias by introducing just one negative 474

example during the SFT process. This further con- 475

firms the effectiveness of our approach. 476

Point-wise vs. Pair-wise. We propose Point-wise 477

Intelligent Feedback to resume the constructed neg- 478

ative samples. How about incorporating these feed- 479

back data using a Pair-wise method? We imple- 480

ment DPO (Rafailov et al., 2023), and the results in 481
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Appendix F show that PIF outperforms both allevi-482

ating selection bias and achieving higher accuracy483

compared to DPO. The results prove that it is ratio-484

nal to make the prediction scores of the negative485

examples approach a minimal value λ. However,486

when the samples can be optimized with absolute487

scores, the pair-wise method will lose the informa-488

tion of the gap between the pairs (Cai et al., 2023).489

5 Related Work490

Large Language Models In recent years, the491

scale of the model parameters has progressively492

increased with the rapid development of deep learn-493

ing, from 1.5 billion in 2018 (Radford et al., 2018)494

to 540 billion in 2022 (Chowdhery et al., 2023). A495

significant number of large language models have496

swiftly surfaced, especially after the emergence of497

chatGPT(OpenAI, 2022), such as LLaMA(Touvron498

et al., 2023), Vicuna(Chiang et al., 2023), and499

BLOOM(Workshop et al., 2022). These large lan-500

guage models have a vast amount of parameters.501

After being trained with massive data using genera-502

tive methods, they possess the impressive ability of503

natural language understanding and can follow hu-504

man instructions effectively (Ouyang et al., 2022).505

Selection Bias in Multiple-Choice Questions506

The robustness and vulnerabilities of large lan-507

guage models have always been an important re-508

search realm. Many researchers have explored how509

large language models are influenced by modifica-510

tions or adversarial attacks that impact individual511

instances in few-shot learning. For example, Zhao512

et al. (2021) found that large language models are513

easily affected by changes in task instructions and514

context when performing tasks. Wang et al. (2023b)515

and (Zheng et al., 2023b) reveal that GPT-4 tends516

to choose the option in the first position.517

MCQs are widely used to assess the capabilities518

of large language models. Various MCQs datasets519

are introduced as standard language model bench-520

marks, such as MMLU(Hendrycks et al., 2021),521

C-Eval(Huang et al., 2023), CSQA(Talmor et al.,522

2019). LLMs have achieved human-like perfor-523

mances on various MCQ benchmarks. However,524

many researchers have noticed that LLMs suffer525

from selection bias in MCQS. Pezeshkpour and526

Hruschka (2023) shows that large language mod-527

els are sensitive to the order of choices. Zheng528

et al. (2023a) found that LLMs are vulnerable to529

option symbol changes in MCQs due to their in-530

herent "token bias". Robinson et al. (2023) shows531

that a model with high multiple choice symbol 532

binding(MCSB) ability performs better in MCQs. 533

However, previous studies have only explored the 534

selection bias of LLMs in few-shot scenarios. Our 535

work demonstrates that the selection bias still exists 536

in SFT and mainly stems from the LLM’s inade- 537

quate multiple choice symbol binding capability. 538

Human Feedback in LLMs OpenAI (2022) and 539

Schulman et al. (2017) have demonstrated the po- 540

tential of applying reinforcement learning in LLMs 541

and its impressive performance. One part of the 542

main techniques is learning a reward function from 543

human feedback for reinforcement learning, which 544

is often dubbed as RLHF(Christiano et al., 2017) 545

(MacGlashan et al., 2017) (Lee et al., 2021). How- 546

ever, RLHF is a complex, expensive, and often 547

unstable procedure. Lee et al. (2023) offers a 548

promising alternative that uses a powerful LLM 549

to generate preference instead of human annotators. 550

To mitigate the problem of PPO’s sizeable com- 551

putational cost, Rafailov et al. (2023) introduces 552

a stable, computationally lightweight method to 553

solve the standard RLHF problem. Liu et al. (2024) 554

convert all types of feedback into sequences of sen- 555

tences, which are then used to fine-tune the model 556

to learn human preference. The methods above 557

mainly focus on pair-wise preference data. To use 558

point-wise preference data, Cai et al. (2023) de- 559

velop a point-wise preference learning method. In 560

this paper, we propose PIF which designs a point- 561

wise loss to incorporate negative samples into SFT. 562

6 Conclusion 563

This paper highlights that selection bias persists 564

in the SFT of LLMs in MCQs. To explore why 565

LLMs suffer from selection bias, we suppose that 566

"Symbol Binding Makes Large Language Models 567

Reliable Multiple-Choice Selectors". We utilize 568

MCSB capability to represent the LLMs’ ability to 569

bind option symbols and the corresponding content 570

and design experiments to establish the relation- 571

ship between MCSB capability and the selection 572

bias. Finally, we eliminate selection bias by en- 573

hancing the model’s MCSB capability. We propose 574

PIF, constructing negative samples by randomly 575

combining the content of incorrect contents with 576

all candidate symbols and designing a point-wise 577

loss to resume these negative samples. Compre- 578

hensive experimental results demonstrate that PIF 579

significantly reduces selection bias and substan- 580

tially improves the accuracy of LLMs for MCQs. 581
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7 Limitations582

Due to limited computational resources, there are583

some deficiencies in our work and we list here for584

future reference. Firstly, we conduct experiments585

on LLMs with 7B and 13B parameter sizes. In the586

future, we are eager to understand the patterns of587

selection bias during the SFT phase in LLMs with588

even larger parameter sizes such as 70B. Secondly,589

during our experiments, we select one negative590

sample randomly for each instance. We would like591

to investigate the correlation between the severity592

of selection bias and the percentage of negative593

samples introduced. Finally, our method has a594

broader range of applications. For instance, when595

using LLMs as human preference annotators, they596

prefer the responses in a specific position. In this597

case, we can assign some symbols to all responses598

and then use PIF method to eliminate the bias. We599

leave these limitations for future work.600
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A Statistics of Benchmarks768

Statistics of all benchmarks used in our paper is769

illustrated in Table 5.770

B LLMs Project771

LLaMA2-7B https://huggingface.co/meta-772

llama/Llama-2-7b-hf773

LLaMA2-13B https://huggingface.co/meta-774

llama/Llama-2-13b-hf775

Implementation Framework776

https://github.com/hiyouga/LLaMA-Factory777

C Implementation Details778

Fine-tuning Hyper-parameters We assign α779

and β of LRSCB to 2 and 0.1, respectively. For λ of780

LPIF, we conduct experiments with a set of values781

{0.0001, 0.001, 0.01, 0.1}, and select the one that782

achieves the best performance on the validation set.783

We configure the sequence length, epoch, the maxi-784

mum number of new tokens generated as 1024, 3,785

4, respectively. For learning rate, we experiment786

with the value set {1e− 5, 5e− 5, 1e− 4, 2e− 4},787

and select the one that yielded the best performance788

on validation. In most cases, it is set to 1e− 4. We789

conduct experiments on 8 GPUs. For the MMLU790

benchmark, for LLaMA2-7B and LLaMA2-13B791

models, the batch size per device is set to 4 and 2,792

respectively, while the gradient accumulation step793

is set to 2 and 4, ensuring a final total batch size794

of 64. For CSQA, we adjust the gradient accumu-795

lation step to achieve a final total batch size of 32.796

Additional details can be found in our code.797

Prompts We don’t use specific prompt engineer-798

ing in our experiments. Instead, all the experiments799

are conducted using a simple prompt:800

"The following are multiple choice questions. You801

should directly answer the question by choosing802

the correct option.803

Question: {{text}}804

Options: {{text}}805

Answer: {{text}}"806

D Ablation Study on PIF Parameter807

Initialization808

In this part, we investigate the effectiveness of the809

parameter initialization for πPIF, the results are con-810

tained in Table 6. Compared to PIFraw, our pro-811

posed PIFRSCB performs better in terms of selec-812

tion bias, MSCB capability and accuracy.813

E Results of Permutation 814

Figure 5 illustrates the selection bias of Perm. Perm 815

indeed significantly alleviates selection bias, which 816

demonstrates that LLM’s selection bias during SFT 817

primarily stems from the training data for SFT. 818

F Results of The Point-wise and Pair-wise 819

Method 820

Table 7 demonstrates the different results between 821

point-wise method PIF and pair-wise method DPO. 822

PIF outperforms both alleviating selection bias and 823

achieving higher accuracy compared to DPO. 824

G Evaluation Results of Selection Bias 825

All accuracy results after answer-moving attack can 826

be found in Table 8, 9, 10, 11, 12, 13. 827

H Proof of The Relationship Between 828

MCSB Capability and Selection Bias 829

For a single instance, we denote its PPA as vppa, its 830

selection bias as vbias, its accuracy as vAcc. From 831

Equation 1, vbias =
∑K

i=1(|vAcci−vAcc0 |)
K . Consid- 832

ering that vAcc0 can only be 0 or 1 for a single 833

instance, then vbias is: 834

vbias =


∑K

i=1 vAcci
K vAcc0=0

1−
∑K

i=1 vAcci
K vAcc0=1

(9) 835

On the other hand, vppa =
max
k∼K

(
K!∑
j=1

yj=ok)

K! . Given 836

a question with K options, there are K! distinct ar- 837

rangements of these options, we now use a subset, 838

always moving the golden option content to a spe- 839

cific symbol, to represent the overall distribution, 840

then vppa =
max
k∼K

(
K∑

j=1
yj=ok)

K . If the most frequently 841

predicted option is the correct answer, vAcc0 will 842

have a probability of vppa to take the value of 1, 843

and vppa =
∑K

i=1 vAcci
K ; else, vppa =

∑K
i=1(1−vAcci )

K . 844

Thus we define: 845

vppa =


∑K

i=1 vAcci
K vAcc0=1

1−
∑K

i=1 vAcci
K vAcc0=0

(10) 846

From Equation 9, 10, we can observe that vbias 847

and vppa are inversely related with a probability 848

of vppa. Generally, after SFT, LLMs tend to have 849

higher vppa, Therefore providing theoretical sup- 850

port for our work. 851
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Benchmarks #Samples #Options Golden Answer Distribution

MMLU

train - 99842 4 22.2%/25.8%/26.9%/25.1%

test

STEM 3018

4

21.4%/23.8%/25.9%/28.9%
Social Science 3077 21.7%/23.4%/23.8%/31.1%

Humanities 4705 24.2%/24.5%/27.1%/24.2%
Others 3242 23.8%/26.8%/24.4%/25.1%
Overall 14042 22.3%/24.7%/25.5%/26.9%

CSQA
train 8971

5
19.4%/20.3%/20.1%/20.4%/19.9%

test 1221 19.6%/20.9%/19.7%/20.6%19.3%

Table 5: Statistics of all benchmarks.

Model Method STEM Social Science Humanities Others MMLU
µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑

LLaMA2-7B

PIFraw 9.6 67.4 43.5 6.2 78.8 61.4 10.1 70.1 48.7 4.9 79.0 59.2 7.9 73.5 52.8
PIFSymbol 8.3 70.6 44.1 2.6 83.6 63.4 4.7 82.9 51.8 4.5 81.6 61.1 3.7 79.6 54.8
PIFSCB 6.9 68.4 41.5 3.6 81.0 60.4 2.6 82.4 49.0 6.1 78.8 59.0 4.4 78.3 52.2
PIFRSCB 3.7 72.3 44.0 2.3 83.9 62.7 3.9 83.1 53.1 1.3 82.9 60.9 2.7 80.8 55.0

LLaMA2-13B

PIFraw 5.1 73.4 47.9 2.3 84.7 69.4 7.2 78.1 54.2 2.2 84.5 65.2 3.6 80.1 58.7
PIFSymbol 3.2 75.1 46.2 4.0 83.6 66.6 4.9 78.6 56.2 3.6 83.9 62.7 6.5 80.4 57.8
PIFSCB 4.5 73.6 47.5 2.2 84.2 68.0 4.7 80.3 58.0 2.1 84.9 64.7 3.2 81.0 59.5
PIFRSCB 4.8 74.5 48.0 2.0 85.1 68.5 2.9 80.9 58.4 2.6 84.2 65.5 3.0 81.0 60.0

Table 6: Ablation study on πPIF parameter initialization. PIFraw refers to the model πPIF which is initialized from the
models listed in Appendix B. PIFSymbol, PIFSCB, PIFRSCB refers to the model πPIF which is initialized from πSymbol,
πSCB, πRSCB respectively.
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Figure 5: Selection bias of Perm.

Model Method STEM Social Science Humanities Others MMLU
µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑ µbias↓ µppa↑ Acc↑

LLaMA2-7B
DPO 8.9 70.6 43.1 3.0 80.4 62.6 3.9 77.2 52.8 5.1 81.6 59.9 5.0 77.5 54.5
PIF 3.7 72.3 44.0 2.3 83.9 62.7 3.9 83.1 53.1 1.3 82.9 60.9 2.7 80.8 55.0

LLaMA2-13B
DPO 7.6 69.6 47.4 3.8 83.1 67.0 7.5 78.3 58.4 5.5 81.6 63.9 4.9 78.2 58.4
PIF 4.8 74.5 48.0 2.0 85.1 68.5 2.9 80.9 58.4 2.6 84.2 65.5 3.0 81.0 60.0

Table 7: Point-wise vs. Pair-wise.
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Move Golden to orig A B C D

LLaMA2-7B

Symbol 43.8
61.6 33.9 47.2 33.5

(+17.8) (-9.9) (+3.4) (-10.3)

SCB 43.6
35.0 35.4 52.4 48.7
(-8.6) (-8.2) (+8.8) (+5.1)

RSCB 43.2
47.6 40.7 39.0 47.4

(+4.4) (-2.5) (-4.2) (+4.2)

PIF 44.0
39.5 45.8 40.6 49.2
(-4.5) (+1.8) (-3.4) (+5.2)

LLaMA2-13B

Symbol 46.9
43.4 57.4 42.3 53.4
(-3.5) (+10.5) (-4.6) (+6.5)

SCB 48.7
36.2 41.9 45.2 65.7

(-12.5) (-6.8) (-3.5) (+17.0)

RSCB 47.5
47.3 51.2 49.2 41.8
(-0.2) (+3.7) (+1.7) (-5.7)

PIF 48.0
47.5 45.7 58.8 42.4
(-0.5) (-2.3) (+10.8) (-5.6)

Table 8: The accuracy results after answer-moving at-
tack on the LLMs with STEM benchmarks.

Move Golden to orig A B C D

LLaMA2-7B

Symbol 60.6
73.8 51.6 64.2 53.9

(+13.2) (-9.0) (+3.6) (-6.7)

SCB 60.4
58.5 54.9 63.6 62.7
(-1.9) (-5.5) (+3.2) (+2.3)

RSCB 60.5
62.1 58.9 56.8 65.0

(+1.6) (-1.6) (-3.7) (+4.5)

PIF 60.9
59.3 60.7 59.3 62.9
(-1.6) (-0.2) (-1.6) (+2.0)

LLaMA2-13B

Symbol 65.5
64.3 70.5 59.9 63.4
(-1.2) (+5.0) (-5.6) (-2.1)

SCB 64.8
62.1 63.8 61.8 70.5
(-2.7) (-1.0) (-3.0) (+5.7)

RSCB 64.6
65.0 66.3 66.0 61.8

(+0.4) (+1.7) (+1.4) (-2.8)

PIF 65.6
64.7 63.8 70.1 62.0
(-0.9) (-1.8) (+4.5) (-3.6)

Table 9: The accuracy results after answer-moving at-
tack on the LLMs with Others benchmarks.

Move Golden to orig A B C D

LLaMA2-7B

Symbol 62.5
73.0 54.5 64.6 55.9

(+10.5) (-8.0) (+2.1) (-6.6)

SCB 62.1
56.8 55.9 65.2 65.4
(-5.3) (-6.2) (+3.1) (+3.3)

RSCB 62.3
61.2 59.4 56.8 66.6
(-1.1) (-2.9) (-5.5) (+4.3)

PIF 62.7
59.5 60.5 61.1 65.2
(-3.2) (-2.2) (-1.6) (+2.5)

LLaMA2-13B

Symbol 68.1
66.7 70.0 64.0 67.8
(-1.4) (+1.9) (-4.1) (-0.3)

SCB 68.5
62.0 64.7 63.6 74.7
(-6.5) (-3.8) (-4.9) (+6.2)

RSCB 68.0
65.2 67.8 69.9 67.8
(-2.8) (-0.2) (+1.9) (-0.2)

PIF 68.5
67.3 65.8 70.0 65.8
(-1.2) (-2.7) (+1.5) (-2.7)

Table 10: The accuracy results after answer-moving
attack on the LLMs with Social science benchmarks.

Move Golden to orig A B C D

LLaMA2-7B

Symbol 52.2
58.0 43.3 57.4 47.7

(+5.8) (-8.9) (+5.2) (-4.5)

SCB 50.5
45.9 45.4 54.0 53.7
(-4.6) (-5.1) (+3.5) (+3.2)

RSCB 52.1
46.1 54.0 45.5 58.4
(-6.0) (+1.9) (-6.6) (+6.3)

PIF 53.1
42.4 53.0 51.5 56.7

(-10.7) (-0.1) (-1.6) (+3.6)

LLaMA2-13B

Symbol 55.0
47.9 61.6 57.4 61.2
(-7.1) (+6.6) (+2.4) (+6.2)

SCB 54.2
43.3 55.8 55.9 65.5

(-10.9) (+1.6) (+1.7) (+11.3)

RSCB 55.8
44.3 61.1 64.3 57.9

(-11.5) (+5.3) (+8.5) (+2.1)

PIF 58.4
52.2 58.9 61.6 56.6
(-6.2) (+0.5) (+3.2) (-1.8)

Table 11: The accuracy results after answer-moving
attack on the LLMs with Humanities benchmarks.

Move Golden to orig A B C D

LLaMA2-7B

Symbol 54.6
65.7 45.6 58.4 47.8

(+11.1) (-9.0) (+3.8) (-6.8)

SCB 53.8
48.9 47.7 58.3 57.2
(-4.9) (-6.1) (+4.5) (+3.4)

RSCB 54.4
53.5 53.5 49.0 59.3
(-0.9) (-0.9) (-5.4) (+4.9)

PIF 55.0
49.5 54.9 53.0 58.4
(-5.5 (-0.1) (-2.0) (+3.4)

LLaMA2-13B

Symbol 59.2
54.8 64.6 56.3 61.5
(-4.4) (+5.4) (-2.9) (+2.3)

SCB 58.6
50.2 56.6 56.7 68.7
(-8.4) (-2.0) (-1.9) (+10.1)

RSCB 58.7
54.3 61.7 62.7 57.5
(-4.4) (+3.0) (+4.0) (-1.2)

PIF 60.0
57.4 58.7 64.8 56.8
(-2.6) (-1.3) (+4.8) (-3.2)

Table 12: The accuracy results after answer-moving
attack on the LLMs with MMLU benchmarks.

Move Golden to orig A B C D E

LLaMA2-7B

Symbol 79.8
82.6 77.2 80.7 79.1 79.6

(+2.8) (-2.6) (+0.9) (-0.7) (-0.2)

SCB 78.4
76.2 77.1 80.3 79.2 82.3
(-2.2) (-1.3) (+1.9) (+0.8) (+3.9)

RSCB 79.7
82.8 81.8 79.9 74.9 77.8

(+3.1) (+2.1) (+0.2) (-4.8) (-1.9)

PIF 79.4
79.8 77.6 81.7 77.3 77.8

(+0.4) (-1.8) (+2.3) (-2.1) (-1.6)

LLaMA2-13B

Symbol 81.5
81.3 76.2 86.2 82.9 83.7
(-0.2) (-5.3) (+4.7) (+1.4) (+2.2)

SCB 81.0
79.0 81.8 82.5 87.6 79.1
(-2.0) (+0.8) (+1.5) (+6.6) (-1.9)

RSCB 80.9
81.8 82.9 82.5 77.9 78.8

(+0.9) (+2.0) (+1.6) (-3.0) (-2.1)

PIF 82.2
79.9 82.0 82.5 83.4 81.7
(-2.3) (-0.2) (+0.3) (+1.2) (-0.5)

Table 13: The accuracy results after answer-moving
attack on the LLMs with CSQA benchmarks.
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Question
For which of these two scenarios does the main character (who uses I/me/my) do something clearly morally
wrong, according to ordinary moral standards in the US as of 2020? Scenario 1 | I slammed on my breaks to
miss the ball as it came in to the road. Scenario 2 | I taught my children to play the xylophone.

Options A:Wrong, Wrong B:Wrong, Not wrong C:Not wrong, Wrong D:Not wrong, Not wrong

Option Symbols

s1: A
s2: B
s3: C
s4: D

Option contents

o1: Wrong, Wrong
o2: Wrong, Not wrong
o3: Not wrong, Wrong
o4: Not wrong, Not wrong

Arrangements

a1: A: Wrong, Wrong B: Wrong, Not wrong C: Not wrong, Wrong D: Not wrong, Not wrong
a2: A: Wrong, Wrong B: Wrong, Not wrong C: Not wrong, Not wrong D: Not wrong, Wrong
a3: A: Wrong, Wrong B: Not wrong, Wrong C: Wrong, Not wrong D: Not wrong, Not wrong
a4: A: Wrong, Wrong B: Not wrong, Wrong C: Not wrong, Not wrong D: Wrong, Not wrong
a5: A: Wrong, Wrong B: Not wrong, Not wrong C: Wrong, Not wrong D: Not wrong, Wrong
a6: A: Wrong, Wrong B: Not wrong, Not wrong C: Not wrong, Wrong D: Wrong, Not wrong
a7: A: Wrong, Not wrong B: Wrong, Wrong C: Not wrong, Wrong D: Not wrong, Not wrong
a8: A: Wrong, Not wrong B: Wrong, Wrong C: Not wrong, Not wrong D: Not wrong, Wrong
a9: A: Wrong, Not wrong B: Not wrong, Wrong C: Wrong, Wrong D: Not wrong, Not wrong
a10: A: Wrong, Not wrong B: Not wrong, Wrong C: Not wrong, Not wrong D: Wrong, Wrong
a11: A: Wrong, Not wrong B: Not wrong, Not wrong C: Wrong, Wrong D: Not wrong, Wrong
a12: A: Wrong, Not wrong B: Not wrong, Not wrong C: Not wrong, Wrong D: Wrong, Wrong
a13: A: Not wrong, Wrong B: Wrong, Wrong C: Wrong, Not wrong D: Not wrong, Not wrong
a14: A: Not wrong, Wrong B: Wrong, Wrong C: Not wrong, Not wrong D: Wrong, Not wrong
a15: A: Not wrong, Wrong B: Wrong, Not wrong C: Wrong, Wrong D: Not wrong, Not wrong
a16: A: Not wrong, Wrong B: Wrong, Not wrong C: Not wrong, Not wrong D: Wrong, Wrong
a17: A: Not wrong, Wrong B: Not wrong, Not wrong C: Wrong, Wrong D: Wrong, Not wrong
a18: A: Not wrong, Wrong B: Not wrong, Not wrong C: Wrong, Not wrong D: Wrong, Wrong
a19: A: Not wrong, Not wrong B: Wrong, Wrong C: Wrong, Not wrong D: Not wrong, Wrong
a20: A: Not wrong, Not wrong B: Wrong, Wrong C: Not wrong, Wrong D: Wrong, Not wrong
a21: A: Not wrong, Not wrong B: Wrong, Not wrong C: Wrong, Wrong D: Not wrong, Wrong
a22: A: Not wrong, Not wrong B: Wrong, Not wrong C: Not wrong, Wrong D: Wrong, Wrong
a23: A: Not wrong, Not wrong B: Not wrong, Wrong C: Wrong, Wrong D: Wrong, Not wrong
a24: A: Not wrong, Not wrong B: Not wrong, Wrong C: Wrong, Not wrong D: Wrong, Wrong

Model outputs

y1: Wrong, Not wrong
y2: Wrong, Not wrong
y3: Not wrong, Wrong
y4: Not wrong, Wrong
y5: Wrong, Not wrong
y6: Wrong, Not wrong
y7: Wrong, Wrong
y8: Wrong, Wrong
y9: Not wrong, Wrong
y10: Wrong, Wrong
y11: Not wrong, Wrong
y12: Wrong, Wrong
y13: Wrong, Wrong
y14: Wrong, Not wrong
y15: Wrong, Not wrong
y16: Wrong, Not wrong
y17: Wrong, Wrong
y18: Wrong, Wrong
y19: Wrong, Not wrong
y20: Wrong, Wrong
y21: Wrong, Not wrong
y22: Wrong, Not wrong
y23: Not wrong, Wrong
y24: Wrong, Not wrong

Frequency

o1(Wrong, Wrong): 8÷ 4! ≈ 0.333
o2(Wrong, Not wrong): 11÷ 4! ≈ 0.458
o3(Not wrong, Wrong): 5÷ 4! ≈ 0.208
o4(Not wrong, Not wrong): 0÷ 4! = 0

PPA result 0.458

Table 14: An example of the PPA calculation process for a single instance. Arrangements are the results of the
arrangement of option contents. Model output yi refers to the answer produced by the model after the question and
ai are input into it. The PPA metric does not consider whether the model performs tasks rightly. It measures the
consistency of the model during the execution of tasks.
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