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Abstract
While the capabilities of generative foundational
models have advanced rapidly in recent years,
methods to prevent harmful and unsafe behaviors
remain underdeveloped. Among the pressing chal-
lenges in AI safety, machine unlearning (MU) has
become increasingly critical to meet upcoming
safety regulations. Most existing MU approaches
focus on altering the most significant parameters
of the model. However, these methods often re-
quire fine-tuning substantial portions of the model,
resulting in high computational costs and training
instabilities, which are typically mitigated by ac-
cess to the original training dataset.
In this work, we address these limitations by lever-
aging Singular Value Decomposition (SVD) to
create a compact, low-dimensional projection that
enables the selective forgetting of specific data
points. We propose Singular Value Decomposi-
tion for Efficient Machine Unlearning (SEMU), a
novel approach designed to optimize MU in two
key aspects. First, SEMU minimizes the number
of model parameters that need to be modified, ef-
fectively removing unwanted knowledge while
making only minimal changes to the model’s
weights. Second, SEMU eliminates the depen-
dency on the original training dataset, preserving
the model’s previously acquired knowledge with-
out additional data requirements.

1. Introduction
Machine unlearning is the process of modifying a model
to ensure it does not memorize specific knowledge (Bour-
toule et al., 2021). Depending on the context, this knowl-
edge might involve harmful biases or private human data
that must be removed for privacy reasons. However, im-
plementing machine unlearning in deep neural networks is
particularly challenging due to their tangled structure, where
complex systems of neurons encode the learned informa-
tion (Kurmanji et al., 2023).

In typical machine unlearning setups, two datasets are
used: the forget dataset, containing samples representing
the knowledge to be removed, and the remaining dataset,
which represents the knowledge to be retained (Kurmanji
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Figure 1. Illustration of the differences between the standard ma-
chine unlearning setup (top row) and our SEMU method (bottom
row). Unlike the standard approach, SEMU does not need a re-
maining dataset, making it highly efficient in terms of data uti-
lization. Moreover, SEMU modifies only a small fraction of the
model’s weights to remove specific knowledge. This sparsity is
achieved through SVD projection (diamonds), which disentangles
the weights and identifies the crucial ones for forget batch.

et al., 2023). The entire neural network is then adjusted to
forget the unwanted information. However, this approach
leads to two major inefficiencies. First, a large number of
model parameters are altered (Sekhari et al., 2021), usually
the entire model or a significant subset of its weights (Fan
et al., 2024). Second, the process heavily depends on the
remaining dataset (Jia et al., 2023; Kurmanji et al., 2023),
which is used to preserve model’s accuracy but requires
additional computational costs.

To address these inefficiencies, we propose Singular Value
Decomposition for Efficient Machine Unlearning (SEMU),
a novel method leveraging SVD to identify a critical subset
of model weights that need modification to forget specific
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data. By altering only a small subset of the model’s weights,
SEMU removes the need for the remaining dataset dur-
ing the unlearning process. This makes SEMU not only
efficient in terms of parameter alteration but also signif-
icantly reduces the iterations and data points required to
retain knowledge. This efficiency is particularly valuable
in scenarios where access to the training data during the
unlearning is restricted due to privacy concerns.

SEMU achieves its improvements through a combination of
gradient information and SVD. Gradients guide the model
on how to adjust to satisfy unlearning loss, while SVD
decomposes the model to pinpoint the weights critical to
forgetting. As a result, SEMU minimizes the number of
altered parameters and the usage of remaining dataset.

Through extensive validation on classification and genera-
tion tasks, we demonstrate that SEMU achieves competitive
performance compared to state-of-the-art methods in ma-
chine unlearning. Moreover, it surpasses current approaches
in efficiency, altering fewer model parameters and eliminat-
ing the need for the remaining dataset, making it an effective
and data-efficient solution.

2. SVD Disentanglement for Efficient Machine
Unlearning (SEMU)

To overcome the challenges of gradient-based unlearning,
we propose a novel, theoretically grounded method for se-
lecting the most significant subspace of weights, θs, derived
from the forgetting dataset Df .

Our approach employs Singular Value Decomposition
(SVD) to derive an orthogonal projection onto a lower-
dimensional, critical subspace of weights for each layer
of a neural network. By normalizing singular values (or
eigenvalues), we further refine these subspaces, retaining
only the most relevant directions. The level of dimension-
ality reduction is controlled by a single hyperparameter γ
in the range [0, 1]. This framework forms the basis of our
proposed method, Singular Value Decomposition for Effi-
cient Machine Unlearning (SEMU), presented in Figure 2.

2.1. Singular Value Decomposition
In the context of deep learning models, certain properties
of SVD are relevant. Since the layers of neural networks
are typically represented as linear operators in RN , we can
simplify Eq. 16 from Theorem C.1 (Horn & Johnson, 2012)
to the following form:

A = UΣVT, (1)

where the parameters σ1, . . . , σR are the positive square
roots of the eigenvalues of AAT and ATA, ordered in
decreasing magnitude.
Truncated SVD. Although computing the full SVD of a
linear operator A ∈ Mn,m is computationally expensive,
with a complexity of O(nmmin(n,m)), we can instead
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Figure 2. The image illustrates the process of fine-tuning our pre-
trained model using unlearning data. The model is analyzed with
a focus on its convolutional and linear layers. The weight matrices
of these layers undergo a process called ”weight disentanglement,”
where only a small subset of parameters within the matrix Ã is
modified. These modified parameters are represented by colored
(blue) empty cells in the matrix. A portion of the Ã matrix remains
unchanged, as indicated by the gray cells filled with numbers. Dur-
ing the fine-tuning process, the other matrices, U and V , remain
unaltered and they are derived from the gradient projection.

focus on a more efficient alternative: the truncated SVD.
This approach seeks a low-rank approximation Ã (rank
r ≪ R) of the original matrix A.

The truncated SVD is expressed as:

A ≈ Ã = UrΣrV
T
r , (2)

where Σr ∈Mr,r, Ur ∈Mn,r, and Vr ∈Mm,r.

This approach allows for a computationally efficient ap-
proximation of SVD, while retaining the most significant
components of A. By focusing on the largest singular val-
ues, the truncated SVD captures the most critical structure
in the data, making it especially useful in high-dimensional
applications.

2.2. Singular Value Decomposition for Efficient
Machine Unlearning

Consider a pretrained model θo as a sequence of L linear
operators (layers) θo = {Ai}Li=1, where each operator Ai

acts on the input of its corresponding layer xi as xi →
Aixi. Our goal is to disentangle each of these operators
into subspaces such that the gradient of a loss function is
concentrated in only a specific part of the such space. In
other words, we aim to find the null space of a linear operator
Ai with respect to its gradient.

Following the gradient-based MU procedure, the gradient

2
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of the forgetting loss −ℓf (θ;Df ) with respect to the model
weights θ under the forgetting dataset Df is given by:

∇θ (−ℓf (θ;Df )|θ=θo) . (3)

This gradient can be divided into components corresponding
to each layer Ai of the neural network as:

Gi = ∇θi (−ℓf (θ;Df )|θi⊆θo) , (4)

where Gi is the gradient for the weights of the i-th layer.

To disentangle a specific operator A, we aim to project it as
follows:

A = UUTAVTV, (5)

where U and V are orthogonal matrices. Intuitively, the goal
is to find matrices U and V such that, for any corresponding
gradient matrix G, the gradient information is concentrated
into as few coefficients as possible.

The matrices U and V can be efficiently obtained via SVD
projection (see Eq. 16) of the gradient matrix G:

G = UΣVT, (6)

where Σ contains the singular values that indicate the rela-
tive importance of each direction.
Selecting most important subspace of Σ. While the
aforementioned approach effectively provides a projection
onto a lower-dimensional subspace, we can refine it further
by focusing on the crucial directions. These directions are
indicated by the largest eigenvalues of the square matrix
GGT corresponding to the largest singular values σi of
G, i = 0 . . . R. By truncating the Σ matrix, we isolate
dominant directions.

Formally, given truncated matrices Ar ∈ Rn×r and Br ∈
Rm×r, we define the subspace Sr

A,B as:

Sr
A,B = {AXBT : X ∈ Rr×r}. (7)

This subspace has a dimensionality of r2 and allows for ef-
ficient computation of the orthogonal projection onto Sr

A,B.
Specifically, the projection operator is defined as:

pA,B(X) = A[ATXB]BT for X ∈ Rn×n, (8)

where pA,B(X) represents the orthogonal projection with
respect to the Frobenius scalar product on the space of ma-
trices in Sr

A,B. This projection is particularly useful when
applied to the gradient matrix G. Additionally, perform-
ing truncated SVD on G yields the optimal solution, as
guaranteed by Theorem 2.1.

To formalize the optimality of truncated SVD in identifying
the most important subspaces, we provide the following
theorem:

Theorem 2.1. Let G denote the gradient matrix. Let Ur,
Σr and Vr be obtained through the truncated SVD decom-
position on G. Then

Ur, Vr = argmin
A,B

d(G;Sr
A,B), (9)

where d is the distance in terms of the Frobenius metric.
As truncated SVD provides the best low-rank matrix approx-
imation, the next challenge is the selection of the hyperpa-
rameter r a priori. It determines the rank of the approxima-
tion and may vary significantly across layers and also lacks
interpretability.

To address this, we note that truncated SVD can be derived
by retaining only the largest singular values in Σ. This is
equivalent to selecting the top r eigenvalues of GGT .

Inspired by Principal Component Analysis (PCA), we intro-
duce the concept of explained variance, defined as:

ek =

∑k
j=1 σ

2
j∑R

i=1 σ
2
i

, (10)

where σi is the i-th singular value of G in descending order.

Using this measure, we aim to select the smallest r such
that the explained variance exceeds a given threshold γ:

r = argmin
k

ek ≥ γ. (11)

Due to the fact that ek is normalized (ek ∈ [0, 1]), γ be-
comes an interpretable factor to determine the rank of the
approximation.
Unlearning procedure To implement the unlearning pro-
cedure, we modify each layer Ai of the neural network θo
as follows:

Ai + Ui,rRiV
T
i,r, (12)

where Ui,r and V T
i,r are obtained via SVD on the correspond-

ing gradient matrix Gi, with r selected based on the hyper-
parameter γ. Ri is the only trainable r × r-dimensional
matrix, initialized to Ri = 0.
Projection gradient improvement. To minimize the neg-
ative impact of unlearning procedure on other weights of
the existing model θo, we aim to update the weights in a
direction perpendicular to the existing weights. For this,
we first project the gradient matrix G onto the subspace
perpendicular to A using:

G⊥A = G− ⟨G,A⟩
∥A∥2

A. (13)

We then apply the SVD to the modified gradient matrix
G⊥A rather than G.

Information on unlearning objectives (loss functions) as
well as exact algorithms are presented in the Appendix.
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Methods I2P Prompts
P1 P2 P3 P4 P5 P6 P7
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Figure 3. Examples of generated images using Stable Diffusion (top row) and SEMU (bottom row), which generates samples removing
nudity concept, while preserving the samples semantically close to the original model.

3. Results
We present the detailed description on experimental setup
in Appendix G, and the results for image classification prob-
lems in Appendix H. We evaluate SEMU on image gener-
ation tasks in both class and concept unlearning settings.
Our experiments cover two diffusion model architectures:
DDPM and Stable Diffusion, applied to CIFAR-10 and Ima-
genette datasets.

For class unlearning, we first consider the CIFAR-10 dataset
using a pretrained conditional DDPM model. The model is
fine-tuned to remove its ability to generate a selected class
(e.g., airplanes) while maintaining comparable performance
for the remaining classes. We compare SEMU against state-
of-the-art unlearning methods, including ESD and SalUn,
using a fully retrained model as the gold standard. We
evaluate SEMU in three different scenarios: (1) without
access to the remaining dataset Dr; (2) with full access to
Dr; and (3) with access to only a small subset ofDr (similar
to a replay buffer).

Table 6 presents results across key metrics, including Un-
learning Accuracy (UA), Task Accuracy (TA), and Fréchet
Inception Distance (FID), along with the percentage of train-
able parameters used in each method. Our findings indicate
that SEMU achieves competitive or superior UA perfor-
mance while requiring only a small fraction of the trainable
parameters (see Fig.K.1 and Fig. K.1). We hypothesize that
the best trade-off is achieved when SEMU has access to a
limited subset of the remaining dataset.

Next, we scale our experiments to Stable Diffusion and per-
form class-wise forgetting for each class in the Imagenette
dataset. We compare SEMU against SalUn, ESD, and FMN,
evaluating performance with and without access to Dr (see
Table 7).

Our results show that SEMU performs comparably to state-
of-the-art methods across most Imagenette classes, particu-
larly in terms of UA. While SEMU is on par with or slightly
behind SalUn and ESD, it significantly outperforms FMN.

Notably, SEMU requires only a small number of trainable
parameters and does not depend on access to remaining
dataset samples in its standard configuration. However, ac-
cess to Dr generally improves UA performance, though its
impact on FID is less consistent.

Moreover, the images in Figure 3 show that after SEMU
Stable Diffusion generates images of similar composition to
the original ones but without harmful concepts. We observe
that SEMU is semantically closer to the SD’s samples than
competitive methods (see Appendix J).

In the concept unlearning setting, we focus on preventing
Stable Diffusion from generating NSFW images, specifi-
cally those containing nudity. To evaluate this, we generate
samples using Stable Diffusion with and without unlearn-
ing, using a subset of ”dangerous” I2P (Schramowski et al.,
2023) prompts from those used by Fan et al. (2023). Our
results demonstrate that SEMU effectively removes nudity
from generated images. However, when no samples from
Dr are used during unlearning, the sample quality may de-
grade in certain cases.

Our experiments demonstrate that SEMU is a competitive
unlearning method for image generation, achieving results
comparable to state-of-the-art approaches while updating
only a small subset of parameters. Unlike other methods,
SEMU is a general framework that does not rely on model-
specific tricks, such as architectural modifications tailored
to Stable Diffusion.

4. Conclusions
In this work, we introduce SEMU, a Machine Unlearning
method that uses Singular Value Decomposition (SVD) and
gradients to identify critical weights that need to be modified.
Our experiments demonstrate that SEMU performs compet-
itively with state-of-the-art methods while altering less than
1% of the model’s parameters. Consequently SEMU outper-
forms other methods in preserving the original expression
of the model, and we showcase SEMU’s ability to erase
knowledge from generative models in a real-world use case.
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A. Preliminaries on Machine Unlearning
A.1. Machine Unlearning setup

MU has gained attention due to the rise of foundational models, which, despite their generative capabilities, can unintention-
ally produce harmful or illegal content. While blocking harmful prompts or retraining models from scratch is theoretically
possible (to exclude problematic data, e.g., content lacking copyright permission), these approaches are often impractical
due to their high computational cost.

MU provides a more efficient solution by allowing the removal of specific data points, classes, or concepts from a model
without full retraining. Its goal is to effectively erase the influence of a forgetting dataset while preserving the model’s
performance. The resulting model should closely match the one that would be retrained on a remaining dataset where the
forgetting dataset is excluded.

Formally, let us consider a training dataset D = {zi}Ni=1, consisting of N samples, where zi = (xi,yi) in supervised
learning. We define the forgetting dataset as Df ⊆ D, with the remaining dataset being its complement, Dr = D \ Df .

Let θo denote the original model trained on D using a standard training. Following prior research, retraining the model
parameters θ from scratch on Dr serves as the gold standard for MU (Kurmanji et al., 2023). Therefore, the primary
objective of MU methods is to derive an unlearned model θu from θo, effectively removing the influence of Df while being
a computationally efficient alternative to Retrain. Depending on the MU method, the deriving procedure has access to Df

and/or Dr dataset.

In this work, we consider the following vision tasks: image classification and image generation.

Image Classification. In this scenario we can typically define two settings: random data forgetting and class-wise
forgetting. The setting depends on how the forgetting dataset Df is constructed. In the first scenario, the goal is to remove
the influence of randomly selected data points from the training set, simulating cases such as the removal of content that
lacks copyright permissions. In the second, the objective is to eliminate the influence of an entire class.

Here, we adopt standard MU evaluation metrics to assess the model performance. Specifically, we evaluate

• unlearning accuracy (UA): 1 - accuracy of the unlearned model θu on the forgetting dataset Df ;

• membership inference attack (MIA): a privacy metric measuring the vulnerability of θu to MIA on Df ;

• remaining accuracy (RA): accuracy of θu on the remaining dataset Dr;

• testing accuracy (TA): accuracy of θu on a test set.

Image Generation with Conditional Diffusion Models. In this work, we focus on two popular classes of conditional
diffusion models: denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) with classifier-free guidance and
stable diffusion (Rombach et al., 2022), which are based on the latent diffusion models (LDMs).

To better understand MU in the image generation, we first provide an overview of the diffusion process. Let ϵθ(xt|c)
represent the noise estimator parameterized by θ and conditioned on c, where xt denotes the data (or latent features)
corrupted by noise at step t in the forward diffusion process. The objective of ϵθ is to estimate the noise in the reverse
diffusion process. Here, the condition c can be an image class (in DDPMs), or a text prompt or concept (in LDMs).

The diffusion process is defined as:

ϵ̂θ(xt|c) = (1− w)ϵθ(xt|∅) + wϵθ(xt|c), (14)

where ϵ̂θ(xt|c) is the noise estimator conditioned on c, w ∈ [0, 1] is the guidance factor, and ϵθ(xt|∅) is the unconditional
noise estimator. For inference (image generation), the process begins with Gaussian noise zT ∼ N (0, 1). Using the noise
estimator ϵ̂θ(xT|c), the model iteratively denoises to obtain zT−1, zT−2, . . . , eventually producing the generated image
zt=0.

A.2. Challenges in Machine Unlearning

MU faces several significant challenges that should be addressed before it can be effectively adopted by practitioners. These
challenges are particularly pressing due to the constantly evolving issues posed by foundational models.
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One of them is the lack of unlearning stability and generality, which gradient-based methods such as SalUn (Fan et al.,
2024) recently attempted to mitigate. These methods identify a subset of parameters, θs ⊆ θo, that are most relevant for the
forgetting dataset Df , based on the gradient magnitude of a loss. Fine-tuning this subset with standard MU methods, such as
random labeling (RL) and gradient ascent (GA), optimize the unlearning objective using data from Df , and often Dr.

Although these methods are effective, they introduce challenges that have not been extensively researched. First, estimating
the size of the parameter subset θs is difficult, relying on heuristics, computationally intensive analyses, or arbitrary
choices (e.g., SalUn modifies 50% of parameters). This often leads to unnecessarily large parameter subsets. Second,
large-scale fine-tuning increases computational cost and instability, especially in image generation, negatively impacting
the generalization. These increased costs arise from fine-tuning on the full remaining dataset Dr, which is impractical for
large foundation models.

B. Related Works
Numerous unlearning approaches are grounded in knowledge distillation. In (Kurmanji et al., 2023), the authors introduce a
teacher-student framework to selectively forget specific data while retaining other instances across various scenarios. Their
approach incorporate a rewinding mechanism to obscure the identification of deleted instances. Similarly, in (Chundawat
et al., 2023), a distillation-based method is proposed for scenarios where no training data is available to the algorithm.
In (Kong & Chaudhuri, 2024), another distillation-driven technique is tailored for conditional generative models, though its
evaluation is primarily focused on text-to-image and text-to-speech applications.

A recent study, (Sun et al., 2025), introduces the concept of forget vectors, which perturb input data without altering the
original model weights. However, this method is specifically designed for image classification and is not applicable to
generative models. Meanwhile, the authors of (Kodge et al., 2024) propose a singular value decomposition-based approach
that diverges from SEMU in its methodology. By analyzing the activation of samples from the forget and retain classes, they
estimate the corresponding feature spaces and quantify the mutual information. Subsequently, they adjust the weights to
suppress activations specific to the targeted class. Nevertheless, this method is not designed to handle the unlearning of
arbitrary subsets of data.

The authors of (Jia et al., 2023) utilize model sparsification through weight pruning to minimize the discrepancy between
an approximate unlearning model and a model retrained from scratch. Similarly, in (Thudi et al., 2022), the authors aim
to reduce this discrepancy by introducing a standard deviation loss. In (Fan et al., 2024), the SalUn approach is proposed,
which leverages a weight saliency map that can be applied independently or in conjunction with other unlearning methods.
SalUn identifies the most influential weights, referred to as salient weights, based on the forgetting loss and prioritizes
parameter updates on these weights. It is considered in classification and generation.

Several methods focus on the unlearning of generative models. For instance, (Li et al., 2024) is designed for models that
reconstruct images from incomplete inputs, such as masked autoencoders (MAEs), vector-quantized GANs, or diffusion
models. Similarly, (Moon et al., 2024) is tailored for both GANs and VAEs, while (Sun et al., 2023) and (Bae et al., 2023)
are specifically dedicated to GANs and VAEs.

Another approach, (Chen et al., 2023a), shifts focus from modifying network parameters, to adjusting the decision boundary
of the class targeted for forgetting, similar to adversarial attack strategies. Variants of gradient descent methods have also
been proposed for unlearning tasks, as exemplified by (Neel et al., 2021). In (Chourasia & Shah, 2023), the authors propose a
noisy gradient descent-based solution and argue that indistinguishability from retraining does not guarantee deletion privacy
due to residual internal data states. Meanwhile, (Tarun et al., 2023) introduces an unlearning method for deep regression and
forecasting models, and (Chen et al., 2023c) addresses the removal of biases from models using counterfactual samples.

C. SVD.
In Theorem C.1, we present the formal definition of Singular Value Decomposition from (Horn & Johnson, 2012).

Theorem C.1. Let consider a linear operator A ∈Mn,m, let q = min{m,n}, and suppose that R is a rank of A.

1. There are unitary matrices U ∈Mn and V ∈Mm, and a square diagonal matrix

8
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Σq =

[
σ1 0

. . .
0 σq

]
(15)

such that σ1 ≥ σ2 ≥ · · · ≥ σR ≥ 0 = σR+1 = · · · = σq and

A = UΣV∗ (16)

in which: Σ = Σq if m = n; Σ =
[
Σq 0

]
∈Mn,m if m > n; and Σ =

[
Σq

0

]
∈Mn,m if m < n.

2. The parameters σ1, . . . , σR are the positive square roots of the decreasingly ordered nonzero eigenvalues of AA∗,
which are the same as the decreasingly nonzero eigenvalues of A∗A.

D. Proof of Theorem 4.1.
Proof. Observe that every element of Sr

A,B is of rank at most r. By the matrix approximation lemma, known as the
Eckart–Young–Mirsky theorem, the optimal approximation of a matrix G in the Frobenius norm among the rank-r matrices
is given by Ur, Σr,V T

r , where the decomposition G = UΣVT is the SVD of G.

E. Unlearning losses.
To finetune the set of parameters {Ri}Li=1 for unlearning, we follow the random labeling unlearning losses proposed by
SalUn. Specifically, we use the classification loss Lc:

min
∆θ

Lc(θu)E(x,y)∼Df ,y′ ̸=y [ℓCE(θu;x, y
′)] + αE(x,y)∼Dr

[ℓCE(θu;x, y)] , (17)

where ℓCE denotes the cross-entropy loss, and α controls the contribution of the remaining dataset Dr.

For the generation task, we apply the generation loss Lg:

min
∆θ

Lg(θu)E(x,c)∼Df ,t,ϵ∼N (0,1),c′ ̸=c

[
∥ϵ(xt|c′)− ϵ(xt|c)∥22

]
+ βℓMSE(θu;Dr), (18)

where ℓMSE is the mean squared error loss, and β controls the contribution of Dr.

Moreover, our method effectively handles both situations, i.e. with access to the remaining dataset Dr and without it. In the
case where the remaining dataset is unavailable, the situation is equivalent to setting α = 0 and β = 0.

9
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F. Algorithms for SEMU unlearning.
In this, we present the pseudo-codes for each algorithm used for SEMU. The Section is structured as follows – firstly, we
present the general procedure for selecting weights in SEMU, Alg. 1. Then, we introduce using SEMU in a classification
setting (2), and in the image generation one (3).

Algorithm 1 Pseudo code of SEMU selecting weights procedure.
Require: Forgetting set Df , original model θo, explanation parameter γ, and forgetting loss function ℓ.

procedure SEMU WEIGHTS SELECTION(Df , θo, γ, ℓ)
g← ∅ ▷ Array of accumulated gradients corresponding to θo
for b← all batches of Df do

g← g +∇θo (−ℓ(θo;b)) ▷ Accumulating gradients according to Eq. 4
end for
θc ← ∅ ▷ Original model with changed layers
θu ← ∅ ▷ Trainable parameters for unlearning procedure
for layer ← 1 . . . L do

gl ← g|θl⊆θo ▷ Selecting gradients corresponding to l-th layer
gl⊥θl ← gl − ⟨gl,θl⟩

∥θl∥2 θl ▷ Perpendicular projection onto the l-th layer weights space θl from Eq. 13
Ul, Σl Vl ← SVD( (gl⊥θl)) ▷ SVD projection on the gl⊥θl via Eq. 6
rl ← argmink ek ≥ γ ▷ Selecting the low-rank rl in the SVD projection with Eq. 11
Rl,rl ← 0 ▷ Initializing the trainable parameters
θl ← θl + Ul,rlRl,rlV

T
l,rl

▷ Updating the l-th layer parameters with truncated SVD matrices (Eq. 12)
θc ← θc ∪ θl ▷ Updating original model
θu ← θu ∪Rl,rl ▷ Updating the set of trainable parameters

end for
return θc, θu

Algorithm 2 Pseudo code of SEMU in classification tasks.
Hyper-parameters: learning rate η, explanation parameter γ, forgetting loss function ℓ, and number of epochs E.
Require: Relabeled forgetting set D′

f = {(xi, c
′)|(xi, ci) ∈ Df , c

′ ̸= ci}
θo, θu ← SEMU WEIGHTS SELECTION(Df , θo, γ, ℓ) ▷ Updating θo and setting trainable parameters θu with Alg. 1

D′ ← D′
f ∪∅

(
D′ ← D′

f ∪ Dr

)
▷ When using retrain mode

for epoch← 0 . . . E − 1 do
for b← all batches of D′ do

g← ∇θLc(θ;b)|θ=θu ▷ Batch-wise loss from eq. 17
θu ← θu − ηg ▷ One step SGD

end for
end for
return

10
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Algorithm 3 Pseudo code of SEMU in generation tasks.
Hyper-parameters: learning rate η, explanation parameter γ, forgetting loss function ℓ, and number of iterations T .
Require: Relabeled forgetting set D′

f = {(xi, c
′)|(xi, ci) ∈ Df , c

′ ̸= ci}
θo, θu ← SEMU WEIGHTS SELECTION(Df , θo, γ, ℓ) ▷ Updating θo and setting trainable parameters θu with Alg. 1

D′ ← D′
f ∪∅

(
D′ ← D′

f ∪ Dr

)
▷ When using retrain mode

for it← 0 . . . T − 1 do
Sampling batch b from D′

g← ∇θLg(θ;b)|θ=θu ▷ Batch-wise loss from eq. 18
θu ← θu − ηg ▷ One step SGD

end for
return

G. Experimental setup details.
G.1. Image Classification.

Following the methodology outlined by Fan et al. (2023), we conduct a series of experiments to evaluate the performance of
data forgetting in image classification tasks. Specifically, we focus on two scenarios of random data forgetting: 10% and
50% of the training data. These experiments are performed on widely used datasets, namely CIFAR-10 and CIFAR-100,
and employ popular deep learning architectures such as ResNet-18 and VGG-16. Additionally, we explore a class-wise
forgetting setup in image classification, where we specifically target the removal of entire classes from the training data. For
this task, we utilize the ResNet-18 architecture and the CIFAR-10 dataset. Within experiments we run grid search to find
the best parameter γ ∈ [60%− 95%] and report the best performing model. We compare SEMU with FT (Warnecke et al.,
2021), RL (Golatkar et al., 2020), GA (Thudi et al., 2022), IU (Izzo et al., 2021), ℓ1-sparse (Jia et al., 2023), 2 boundary
unlearning methods (Chen et al., 2023b), boundary shrink (BS) and boundary expanding (BE).

G.2. Image generation.

Similarly to the image classification setup, we conduct extensive experiments following the evaluation procedure presented
in Fan et al. (2023). Specifically, we consider diffusion models, which are the current state-of-the-art methods for image
generation. Our experiments encompass two distinct families of diffusion models: denoising diffusion probabilistic models
(DDPMs) and latent diffusion models (LDMs), such as Stable Diffusion. DDPMs operate directly in image space, which
makes them suitable for lower-dimensional generation tasks but limits their applicability to high-resolution images. In
contrast, LDMs employ a pretrained autoencoder to encode images into a lower-dimensional latent space, enabling scalable
high-resolution generation. We evaluate our method in two scenarios:

Class Unlearning In this setting, we aim to remove a specific class from a pretrained diffusion model. For DDPM, we
attempt to unlearn the ”airplane” class from CIFAR-10. For Stable Diffusion, we unlearn each class from the Imagenette
dataset (Howard & Gugger, 2020), a subset of ImageNet containing ten high-resolution categories. We measure the
effectiveness of unlearning using Unlearning Accuracy (UA) on generated samples from the forgotten class and evaluate the
impact on generation quality by computing the Fréchet Inception Distance (FID) on the remaining classes. Our approach is
compared against ESD (Gandikota et al., 2023) and SalUn for DDPM, and against ESD, SalUn, and FMN (Zhang et al.,
2024) for Stable Diffusion.

Concept Unlearning. Here, we focus on forgetting a broad concept rather than a specific class. We choose the NSFW
concept of nudity as the target for unlearning in Stable Diffusion. To evaluate effectiveness, we first generate 800
images of both nude and clothed individuals using Stable Diffusion. After applying our unlearning method, we assess
the model’s ability to generate images conditioned on a subset of I2P’s ”dangerous” prompts. Additionally, we mea-
sure its effectiveness in reducing NSFW generation across the full I2P dataset of harmful prompts (Schramowski et al., 2023).

For all experiments, we report results using the best-performing hyperparameters. We determine the explained variance
threshold γ based on empirical trade-offs:

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Embarrassingly Efficient Unlearning with SVD

• DDPM: γ ∈ [0.9, 0.95] for all layers;

• Stable Diffusion: γ = 1.0 for cross-attention layers, and γ ∈ [0.9, 0.95] for all other layers.

We found that cross-attention layers are particularly sensitive to lower values of γ, as reducing their rank too aggressively
leads to a loss of critical information—specifically, the ability to associate one concept with another. Importantly, setting
γ = 1.0 still results in a low-rank decomposition, as it retains all directions corresponding to nonzero singular values,
preserving the original rank of the matrix.

H. Results for SEMU in image classification task.
Image classification. We present results for the random data-forgetting, considering 10% and 50% of the data, in the
following tables: Table 1 for CIFAR100 with ResNet18, Table 2 for CIFAR10 with ResNet18, and Table 3 for CIFAR10
with VGG-16. Additionally, Table 4 shows results for class-wise forgetting on CIFAR10 with ResNet18.

The results demonstrate that SEMU can successfully perform unlearning by altering even less than 1% of the model weights
(only for CIFAR100 it is a bit more than 1%). Furthermore, SEMU achieves the smallest gap in Testing Accuracy (TA),
indicating that the model remains largely unchanged from its initial state. This minimal impact on test set accuracy suggests
that SEMU preserves the model’s ability to perform with high fidelity, even after unlearning. What is more, even class-wise
setup requires alteration of less than 1% weights to achieve unlearning (see Table 4).

We also evaluate SEMU when it has access to the remaining dataset (SEMUremain) to compare its performance with other
machine unlearning methods under the same experimental setup. When the remaining data is available, SEMU achieves
slightly better results. This indicates that, with a properly designed method, access to the remaining dataset is not strictly
necessary, offering computational savings while maintaining strong performance.

Lastly, we examine how SalUn, as the most similar approach, performs under conditions of reduced data availability and
decreased saliency sparsity (10% compared to the default 50%) in Table 5 and Figure 4. Notably, even a slight reduction in
the remaining dataset negatively impacts SalUn’s performance. Additionally, decreasing the proportion of altered parameters
to just 10% further decreases the model’s effectiveness. Those results show that SEMU is much more robust than competing
approaches.

Table 1. Comparison of methods for Random Data Forgetting (10% and 50%) on ResNet-18 with CIFAR-100 dataset. The table reports
Unlearning Accuracy (UA), Remaining Accuracy (RA), Testing Accuracy (TA), and Membership Inference Attack (MIA), with values in
parentheses showing differences from the Retrain baseline. TParams denotes the percentage of trained parameters relative to standard
ResNet-18 (not unforgetting). SEMU is the only method that achieves as close target accuracy as the retrain method while altering the
smallest portion of the model, meaning that the MU with SEMU is not changing the model a lot. Note that we bold results achieving the
closest TA accuracy to Retrain and those which alter the smallest portion of model’s weigths.

Methods Random Data Forgetting (10%) Random Data Forgetting (50%)

UA RA TA MIA TParams UA RA TA MIA TParams

Retrain 26.47 99.97 74.13 51.00 100% 32.69 99.99 67.22 61.15 100%

FT 2.42 (24.05) 99.95 (0.02) 75.55 (1.42) 11.04 (39.96) 100% 2.71 (29.98) 99.96 (0.03) 75.11 (7.89) 10.71 (50.44) 100%
RL 55.03 (28.56) 99.81 (0.16) 70.03 (4.09) 98.97 (47.97) 100% 50.52 (17.83) 99.47 (0.52) 56.75 (10.47) 95.91 (34.76) 100%
GA 3.13 (23.34) 97.33 (2.64) 75.31 (1.18) 7.24 (43.76) 100% 2.61 (30.08) 97.49 (2.50) 75.27 (8.05) 5.92 (55.23) 100%
IU 3.18 (23.29) 97.15 (2.82) 73.49 (0.64) 9.62 (41.38) 100% 12.64 (20.05) 87.96 (12.03) 62.76 (4.46) 17.54 (43.61) 100%
BE 2.31 (24.16) 97.27 (2.70) 73.93 (0.20) 9.62 (41.38) 100% 2.76 (29.93) 97.39 (2.60) 74.05 (6.83) 8.85 (52.30) 100%
BS 2.27 (24.20) 97.41 (2.56) 75.26 (1.13) 5.82 (45.18) 100% 2.99 (29.70) 97.24 (2.75) 73.38 (6.16) 8.76 (52.39) 100%
ℓ1-sparse 10.64 (15.83) 96.62 (3.35) 70.99 (3.14) 22.58 (28.42) 100% 39.86 (7.17) 78.17 (21.82) 55.65 (11.57) 40.43 (20.72) 100%
SalUn 27.53 (1.06) 97.00 (2.97) 67.79 (6.34) 70.79 (19.79) 50% 26.17 (6.52) 94.04 (5.95) 61.39 (5.83) 59.47 (1.68) 50%
SalUn-soft 24.24 (2.23) 98.95 (1.02) 70.48 (3.65) 79.13 (28.13) 50% 23.26 (9.43) 98.32 (1.67) 63.08 (4.14) 77.90 (16.75) 50%

SEMU 2.53 (23.94) 97.39 (2.58) 74.14 (0.01) 8.82 (42.18) 1.18% 3.80 (28.89) 96.44 (3.55) 71.24 (4.02) 12.25 (48.90) 1.18%
SEMUremain 2.93 (23.54) 97.33 (2.64) 74.16 (0.03) 11.93 (39.07) 1.18% 7.92 (24.77) 92.37 (7.62) 67.16 (0.06) 17.11 (44.04) 1.44%
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Table 2. Comparison of methods for Random Data Forgetting (10% and 50%) on ResNet-18 with CIFAR-10. The table reports Unlearning
Accuracy (UA), Remaining Accuracy (RA), Testing Accuracy (TA), and Membership Inference Attack (MIA), with values in parentheses
showing differences from the Retrain baseline. TParams denotes the percentage of trained parameters relative to standard ResNet-18 (not
unforgetting). Note that we bold results achieving the closest TA accuracy to Retrain and those which alter the smallest portion of model’s
weigths.

Methods Random Data Forgetting (10%) Random Data Forgetting (50%)

UA RA TA MIA TParams UA RA TA MIA TParams

Retrain 5.24 (0.00) 100.00 (0.00) 94.26 (0.00) 12.88 (0.00) 100% 7.91 (0.00) 100.00 (0.00) 91.72 (0.00) 19.29 (0.00) 100%

FT 0.63 (4.61) 99.88 (0.12) 94.06 (0.20) 2.70 (10.19) 100% 0.44 (7.47) 99.96 (0.04) 94.23 (2.52) 2.15 (17.14) 100%
RL 7.61 (2.37) 99.67 (0.33) 92.83 (1.43) 37.36 (24.47) 100% 4.80 (3.11) 99.55 (0.45) 91.31 (0.40) 41.95 (22.66) 100%
GA 0.69 (4.56) 99.50 (0.50) 94.01 (0.25) 1.70 (11.18) 100% 0.40 (7.50) 99.61 (0.39) 94.34 (2.63) 1.22 (18.07) 100%
IU 1.07 (4.17) 99.20 (0.80) 93.20 (1.06) 2.67 (10.21) 100% 3.97 (3.94) 96.21 (3.79) 90.00 (1.71) 7.29 (12.00) 100%
BE 0.59 (4.65) 99.42 (0.58) 93.85 (0.42) 7.47 (5.41) 100% 3.08 (4.82) 96.84 (3.16) 90.41 (1.31) 24.87 (5.58) 100%
BS 1.78 (3.47) 98.29 (1.71) 92.69 (1.57) 8.96 (3.93) 100% 9.76 (1.85) 90.19 (9.81) 83.71 (8.01) 32.15 (12.86) 100%
ℓ1-sparse 4.19 (1.06) 97.74 (2.26) 91.59 (2.67) 9.84 (3.04) 100% 1.44 (6.47) 99.52 (0.48) 93.13 (1.41) 4.76 (14.52) 100%
SalUn 2.85 (2.39) 99.62 (0.38) 93.93 (0.33) 14.39 (1.51) 100% 7.75 (0.16) 94.28 (5.72) 89.29 (2.43) 16.99 (2.30) 100%
SalUn-soft 4.19 (1.06) 99.74 (0.26) 93.44 (0.83) 19.49 (6.61) 100% 3.41 (4.49) 99.62 (0.38) 91.82 (0.11) 31.50 (12.21) 100%

SEMU 0.60 (4.64) 99.40 (0.60) 94.22 (0.04) 5.40 (7.48) 0.54% 1.77 (6.14) 98.12 (1.88) 91.80 (0.08) 7.20 (12.09) 0.64%
SEMUremain0.69 (4.55) 99.43 (0.57) 94.30 (0.04) 5.51 (7.37) 0.54% 1.82 (6.09) 98.12 (1.88) 91.72 (0.00) 7.54 (11.75) 0.72%

Table 3. Comparison of methods for Random Data Forgetting (10% and 50%) on VGG-16 with CIFAR-10 dataset. The table reports
Unlearning Accuracy (UA), Remaining Accuracy (RA), Testing Accuracy (TA), and Membership Inference Attack (MIA), with values in
parentheses showing differences from the Retrain baseline. TParams denotes the percentage of trained parameters relative to standard
VGG-16 (not unforgetting). Note that we bold results achieving the closest TA accuracy to Retrain and those which alter the smallest
portion of model’s weigths.

Methods Random Data Forgetting (10%) Random Data Forgetting (50%)

UA RA TA MIA TParams UA RA TA MIA TParams

Retrain 5.98 99.99 93.06 10.36 100% 9.47 100.00 90.18 16.64 100%

FT 1.51 (4.47) 99.54 (0.45) 92.64 (0.42) 3.76 (6.60) 100% 5.70 (3.77) 97.51 (2.49) 89.37 (0.81) 12.20 (4.44) 100%
RL 5.71 (0.27) 99.65 (0.34) 92.29 (0.77) 15.98 (5.62) 100% 4.09 (5.38) 96.77 (3.23) 89.91 (0.27) 13.88 (2.76) 100%
GA 0.93 (5.05) 99.37 (0.62) 93.63 (0.57) 1.36 (9.00) 100% 0.63 (8.84) 99.38 (0.62) 93.64 (3.46) 1.15 (15.49) 100%
IU 1.69 (4.29) 98.78 (1.21) 91.69 (1.37) 2.71 (7.65) 100% 5.71 (3.76) 94.56 (5.44) 87.23 (2.95) 8.34 (8.30) 100%
BE 0.80 (5.18) 99.39 (0.60) 93.68 (0.62) 1.42 (8.94) 100% 20.58 (11.11) 79.40 (20.60) 72.58 (17.60) 11.74 (4.90) 100%
BS 0.80 (5.18) 99.40 (0.59) 93.68 (0.62) 1.38 (8.98) 100% 2.44 (7.03) 97.56 (2.44) 89.69 (0.49) 4.90 (11.74) 100%
ℓ1-sparse 4.98 (1.00) 97.03 (2.96) 90.15 (2.91) 9.69 (0.67) 100% 3.13 (6.34) 98.77 (1.23) 91.01 (0.83) 7.06 (9.58) 100%
SalUn 3.89 (2.09) 98.74 (1.25) 91.62 (1.44) 9.96 (0.40) 100% 3.02 (6.45) 98.14 (1.86) 89.82 (0.36) 15.15 (1.49) 100%
SalUn-soft 5.24 (0.74) 99.70 (0.29) 92.26 (0.80) 12.31 (1.95) 100% 3.44 (6.03) 99.64 (0.36) 91.11 (0.93) 16.19 (0.45) 100%

SEMU 0.67 (5.31) 99.33 (0.66) 93.09 (0.03) 5.02 (5.34) 0.89% 3.31 (6.16) 96.32 (3.68) 90.01 (0.17) 18.92 (2.28) 0.34%
SEMUremain0.62 (5.36) 99.37 (0.62) 93.27 (0.21) 7.02 (3.34) 0.23% 2.56 (6.91) 96.98 (3.02) 90.21 (0.03) 16.06 (0.58) 0.29%

Table 4. Performance evaluation for class-wise forgetting on ResNet-18, pre-trained on the CIFAR-10 dataset. The table presents the
results of various methods in terms of Unlearning Accuracy (UA), Remaining Accuracy (RA), Testing Accuracy (TA), and Membership
Inference Attack (MIA). The values in parentheses indicate the difference compared to the Retrain baseline.

Methods UA RA TA MIA TParams

Retrain 100.0 100.0 92.47 100.0 100%

FT 31.69 (68.31) 99.92 (0.07) 94.78 (2.31) 93.53 (6.47) 100%
RL 89.33 (10.67) 99.92 (0.08) 94.52 (2.06) 100.0 (0.00) 100%
GA 99.91 (0.09) 38.92 (61.07) 38.18 (54.29) 99.98 (0.02) 100%
IU 97.02 (2.98) 94.78 (5.22) 89.10 (3.37) 99.13 (0.87) 100%
BE 79.13 (20.87) 97.71 (2.29) 91.88 (0.59) 93.60 (6.40) 100%
BS 79.60 (20.40) 97.79 (2.21) 91.94 (0.52) 93.42 (6.58) 100%
ℓ1-sparse 100.0 (0.00) 97.92 (2.08) 92.29 (0.18) 100.0 (0.00) 100%
SalUn 99.91 (0.09) 99.93 (0.07) 94.56 (2.09) 100.0 (0.00) 50%
SalUn-soft 97.13 (2.87) 99.88 (0.12) 94.64 (2.18) 100.0 (0.00) 50%

SEMU 99.83 (0.17) 98.22 (1.78) 92.26 (0.21) 100.00 (0.00) 0.87%
SEMUremain 99.99 (0.01) 99.48 (0.52) 94.76 (2.29) 100.00 (0.00) 0.63%
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Figure 4. Overview of SalUn results for the Class-Wise Forgetting scenario on ResNet-18 with CIFAR-10 for different percentages of
available data from the class selected to forget. The top row depicts results for 10%, while the bottom row shows scores for 50% of
the saliency sparsity. The plots in consecutive columns demonstrate Unlearning Accuracy (UA), Membership Inference Attack (MIA),
Remaining Accuracy (RA) and Testing Accuracy (TA), respectively. In all cases, results are compared to the Retrain baseline.

Table 5. Comparison of SalUn results for Class-Wise Forgetting on ResNet-18 with CIFAR-10 for different percentages of available data
from the class selected to forget (from 1 to 100%), and different saliency sparsity (10 and 50%). The table reports Unlearning Accuracy
(UA), Remaining Accuracy (RA), Testing Accuracy (TA), and Membership Inference Attack (MIA), with values in parentheses showing
differences from the Retrain baseline.

Available data Saliency sparsity (10%) Saliency Sparsity (50%)

UA RA TA MIA UA RA TA MIA

Retrain 100.00 100.00 92.47 100.00 100.00 100.00 92.47 100.00

1% 3.33 (96.67) 99.84 (0.16) 94.26 (1.79) 10.67 (89.33) 8.22 (91.78) 99.86 (0.14) 94.18 (1.71) 14.67 (85.33)
5% 1.07 (98.93) 99.89 (0.11) 94.30 (1.83) 3.47 (96.53) 1.42 (98.58) 99.89 (0.11) 94.22 (1.75) 4.04 (95.96)
10% 1.24 (98.76) 99.76 (0.24) 94.06 (1.59) 4.80 (95.20) 1.60 (98.40) 99.56 (0.44) 93.64 (1.17) 5.07 (94.93)
25% 0.64 (99.36) 99.87 (0.13) 94.38 (1.91) 4.01 (95.99) 0.83 (99.17) 99.89 (0.11) 94.18 (1.71) 3.82 (96.18)
50% 0.82 (99.18) 99.88 (0.12) 94.37 (1.90) 4.82 (95.18) 1.05 (98.95) 99.89 (0.11) 94.22 (1.75) 4.20 (95.80)
75% 1.68 (98.32) 99.86 (0.14) 94.28 (1.81) 10.51 (89.49) 1.98 (98.02) 99.89 (0.11) 94.06 (1.59) 8.85 (91.15)
90% 3.24 (96.76) 99.88 (0.12) 94.10 (1.63) 17.52 (82.48) 3.93 (96.07) 99.91 (0.09) 93.93 (1.46) 16.26 (83.74)
100% 98.76 (1.24) 99.88 (0.12) 94.84 (2.37) 100.00 (0.00) 99.71 (0.29) 99.90 (0.10) 94.72 (2.25) 100.00 (0.00)
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I. Additional results for SEMU in image generation task.
I.1. CIFAR10 generation with DDPM.

Table 6. Class-wise forgetting on classifier-free guidance DDPM.

Methods UA (↑) TA (↑) FID (↓) Params (↓)
Retrain 100.00 100.00 11.69 100%

ESD 100.00 – 17.37 –
SalUn 99.20 14.22 11.21 50%

SEMU 95.60 14.87 16.93 1.2%
SEMUsubset 99.40 14.71 13.93 1.5%
SEMUremain 100.00 14.64 14.51 1.8%

I.2. ImageNette generation with Stable Diffusion.

Table 7. Performance of class-wise forgetting on Imagenette using SD. The best unlearning performance for each forgetting class is
highlighted in bold for UA and FID, respectively. For SEMU, we averaged FIDs for the smaller number of classes due to biasing of FID
metric.

Forget. Class SEMUremain SEMU SalUn ESD FMN
UA (↑) FID (↓) UA (↑) FID (↓) UA (↑) FID (↓) UA (↑) FID (↓) UA (↑) FID (↓)

Tench 89.00 11.40 94.00 2.31 100.00 2.53 99.40 1.22 42.40 1.63
English Springer 94.00 4.14 94.00 2.27 100.00 0.79 100.00 1.02 27.20 1.75
Cassette Player 98.00 1.36 92.00 26.23 99.80 0.91 100.00 1.84 93.80 0.80

Chain Saw 96.00 8.54 64.00 1.12 100.00 1.58 96.80 1.48 48.40 0.94
Church 85.00 14.30 70.00 – 99.60 0.90 98.60 1.91 23.80 1.32

French Horn 100.00 0.81 98.00 4.20 100.00 0.94 99.80 1.08 45.00 0.99
Garbage Truck 99.00 2.51 86.00 – 100.00 0.91 100.00 2.71 41.40 0.92

Gas Pump 98.00 2.48 88.00 1.32 100.00 1.05 100.00 1.99 53.60 1.30
Golf Ball 95.00 5.77 84.00 1.46 98.80 1.45 99.60 0.80 15.40 1.05
Parachute 95.00 13.85 68.00 – 100.00 1.16 99.80 0.91 34.40 2.33

Average 94.90 6.52 83.80 5.56 ∗ 99.82 1.22 99.40 1.49 42.54 1.30
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J. Samples of nudity unlearning with different machine unlearning methods.

Methods I2P Prompts
P1 P2 P3 P4 P5 P6 P7

SD

ESD

FMN

SalUn

SEMU

Figure 5. Examples of generated images using Stable Diffusion and different machine unlearning methods. The samples for ESD, FMN,
and SalUn are from Fan et al. (2023). SEMU is presented in the bottom row and generates samples removing nudity concept, while
preserving the samples semantically closer to the original model, SD (top row), than the competitve solution SalUn.
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K. Samples from the diffusion models unlearned with SEMU.
In this Section, we present the samples from the DDPM model unlearned a CIFAR10’s class (airplanes) with SEMU.

K.1. Samples from DDPM on CIFAR10.

Figure 6. Comparison between SEMU with (left) and without (right) access to the remaining dataset. The DDPM model was pretrained
on CIFAR10, and with SEMU, we unlearned the class airplanes (top rows). We observe that the access to the remaining dataset stabilizes
generation and helps to change samples from one class to the other. On the other hand, lack of such an access prevent model from total
forgetting.

Figure 7. Setting in which the unlearned model have an access to the very limited number of samples from the remaining dataset. As we
can see, a limited number of additional datapoints is a sufficient for SEMU to have the same quality of samples as the when having access
to the whole remaining dataset.
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