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ABSTRACT
Reinforcement Learning (RL) agents often exhibit learning
behaviors that are not intuitively interpretable by human ob-
servers, which can result in suboptimal feedback in collab-
orative teaching settings. Yet, how humans perceive and in-
terpret RL agent’s learning behavior is largely unknown. In
a bottom-up approach with two experiments, this work pro-
vides a data-driven understanding of the factors of human ob-
servers’ understanding of the agent’s learning process. A novel,
observation-based paradigm to directly assess human infer-
ences about agent learning was developed. In an exploratory
interview study (N=9), we identify four core themes in hu-
man interpretations: Agent Goals, Knowledge, Decision Mak-
ing, and Learning Mechanisms. A second confirmatory study
(N=34) applied an expanded version of the paradigm across
two tasks (navigation/manipulation) and two RL algorithms
(tabular/function approximation). Analyses of 816 responses
confirmed the reliability of the paradigm and refined the the-
matic framework, revealing how these themes evolve over time
and interrelate. Our findings provide a human-centered under-
standing of how people make sense of agent learning, offering
actionable insights for designing interpretable RL systems and
improving transparency in Human-Robot Interaction.
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1 INTRODUCTION
Hybrid Intelligence (HI) refers to collaborative human–machine
systems that combine strengths to accomplish tasks neither
could perform alone [2]. A key example is Human-in-the-loop
Reinforcement Learning (RL), where human teachers guide
learning agents using signals such as feedback or demonstra-
tions [1, 12, 28]. While humans can provide insight, expert
knowledge, or common sense [11], feedback is often subopti-
mal—delayed [3], inconsistent [39], or based on misinterpre-
tation of the agent’s behavior [30]. These signals reflect the
teacher’s view of the agent’s learning process—views which
may be inaccurate or biased [10]. Prior work has only exam-
ined such inferences indirectly, via interaction patterns (see
e.g. [10, 23, 30]) or simulated settings [16]. Moreover, exist-
ing paradigms confound observation with interaction: when
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humans actively teach, their expectations shape not only the
feedback but also the agent’s behavior, making it hard to iso-
late what they actually understand [23, 35]. This may obstruct
an unbiased examination of the human’s perspective of the
learning progress, especially at later learning stages.

To the best of our knowledge, no study has so far exam-
ined human inferences about the RL agent learning process
from behavior observation alone. Open questions include the
correct setting, time-chunking of observations, how to even
query inferences about an RL agent’s learning process from
human observers, and which aspects of learning do humans
attend to when making sense of agent behavior.

The main Research Question for this study therefore is:
What do human teachers infer about RL agents’ learning pro-
cesses from observing the agents’ learning behavior? This work
takes a human-centered, bottom-up approach by introducing
a novel observational paradigm specifically designed to elicit
human inferences about RL agent behavior. Across two ex-
periments — spanning different tasks and RL algorithms— a
set of four recurring inference themes are identified and vali-
dated: Agent Goals, Knowledge, Decision Making, and Learn-
ing Mechanisms. A detailed analysis further examines how
these themes evolve over time and contribute to structuring
observers’ understanding of agent learning.

2 BACKGROUND AND RELATEDWORK
The mechanisms of Reinforcement Learning (RL) are inher-
ently difficult for human observers to interpret from behavior
alone, both due to algorithmic complexity [18] and the chal-
lenge of intuitively interpreting concepts like reward func-
tions [19]. In interactive settings, a teacher’s perception of an
agent’s behavior can recursively shape their interpretation
of the learning process and thereby influence the course of
the interaction [30]. For instance, Ho and colleagues demon-
strate that teachers are strongly inclined to use rewards in
the teaching process intuitively as a communicative signals
rather than a reinforcement signal [22–24], indicating a per-
sistent misalignment between users’ assumptions and actual
RL mechanisms. Although RL agents are designed to opti-
mize cumulative rewards, the observed interaction pattern
suggests that human teachers seem to interpret their actions
as if the agent were responding to the communicative intent
rather than reinforcement signals. Specifically, the researchers
showed that the pattern persisted, even when it explicitly hin-
dered agent learning progress [23]. The authors explained this



through assumed differences in how teachers interpret the
agent’s state space, and that teachers seem to evaluate the
agent by comparing its inferred policy to the teacher’s own
desired policy [23]. While such judgments may reflect a rea-
sonable teaching strategy from the human perspective, the
formation of positive reward cycles in the teaching process
based on the resulting feedback [23] highlights a disconnect
between human interpretations of learning and the underlying
mechanisms of RL.

Further work indicates that these communicative assump-
tions about feedback generalize to Human-Human Interaction,
where punishment and reward are also interpreted through
inference [35]. More broadly, the Inferential Social Learning
framework describes behavior interpretation as a process of
"probabilistic inferences, guided by an intuitive understand-
ing about how people plan and act" [17]. This suggests that
individuals acquire knowledge about their interaction part-
ners by inferring insights from behavior observation. Under-
standing how this process applies in the context of Human
Agent-Interaction settings, is therefore crucial in order to de-
sign effective Human-in-the-loop RL frameworks. However,
research in Human-Agent Interaction has primarily studied
teacher inferences indirectly, by analyzing interaction behav-
iors. The inferences (what teachers actually think about how
an agent learns) have rarely been studied directly.

The present work addresses this gap by directly examin-
ing how human observers infer and interpret the learning
processes of RL agents from behavior observation alone.

3 EXPERIMENT 1: EXPLORATORY
INTERVIEW STUDY

In this first exploratory study, an observational experimental
paradigm is developed and its exploratory results presented.

3.1 Methodology
3.1.1 Participants: A total of n=9 (n=3 female, n=6 male) were
recruited. Five were bachelor students with RL exposure, four
had no RL background.

3.1.2 Set-up & Procedure: In the absence of a validated par-
adigm to directly examine observer inferences about agent
learning processes, an adapted version of the Grounded The-
ory framework was used to develop a reliable experimental
procedure [15]. For this, an exploratory qualitative interview
setting was selected for this experiment, due to the suitability
of this method for studying undirected perceptual data [38].
Participants observed an RL agent’s learning process with a
framing of being a teacher, but no possibility for interven-
tion. Firstly, participants received a short introduction to RL
together with an example video similar to the later stimuli
and were asked to imagine helping the agent learn the task
by teaching. Secondly, they were presented with videos of an
RL agent learning to solve a task and were given the oppor-
tunity to share their observations about the learning process
in a think aloud protocol [33] in order to elicit a verbal report
that is as undirected, undisturbed and constant as possible [6].

Interviews (on average 45 minutes were conducted in person,
audio-recorded; recordings were erased after an anonymized
transcription A written consent for this procedure was ob-
tained from the participants beforehand; after the experiment,
they were debriefed.

3.1.3 Stimuli: The agent to be examined was a tabular Q-
learning agent with temporal difference update. Stimuli con-
sisted of rendered recordings of this agent solving the default
4x4 and 8x8 grids of the OpenAI gym toolkits’ FrozenLake en-
vironment [8]. To support coherent perception of the learning
process, but also assess whether chunking affects richness of
observations, two presentation formats were used. One group
viewed two full-length videos (entire learning process); the
other viewed six shorter clips, each showing a third of the
process. Participants were balanced across these conditions
and RL backgrounds (2 per condition).

3.1.4 Measurements: Participants were instructed to explic-
itly report on the agent’s learning process (rather than learning
behavior) while watching the videos. With no validated ques-
tionnaire available, a pilot session with an RL expert helped
refine question phrasing in line with Grounded Theory princi-
ples [15], sepcifically formulations that queried most sensibly
the human inferences about the learning process. Based on
their input, two open-ended questions were conceived: "What
do you think is going on in the brain of the agent?" and "Why
do you think the agent is doing what it is doing?" Furthermore,
an additional question about teaching intentions reinforced
the interactive teaching framing (results reported elsewhere).

3.1.5 Analysis: Data preparation:Audio recordings were tran-
scribed and participant answers were pooled per video, to
ensure full anonymization. Individual statements were then
isolated to enable systematic analysis of the think-aloud data.

Qualitative Analysis: An iterative, three-step thematic anal-
ysis [7] was used to systematically cluster qualitative reports.
First, the core meaning of each statement was extracted. Then,
thematically similar statements were clustered and labeled.
Finally, themes were reviewed and refined against the full
dataset. This process of clustering and refinement was re-
peated three times to ensure stability.

3.2 Results
Data collection with the presented paradigm resulted in 264
isolated statements. Thematic analysis revealed four common
emergent themes in participants’ inferences about agent learn-
ing processes in the data, which together accounted for 127
(approximately 48%) of all statements.

Agent Goals: includes statements in which participants
infer the agent’s learning process is based on a set of goals. It
was identified in 23 participant statements. Examples include
statements such as "The agent wants to explore and understand
the environment that it is in", "It is trying to avoid the ice", "It
is trying to find a way that it can navigate the environment as
quick as possible" and "seems not to realize what the idea is".



Agent Knowledge: includes statements in which partici-
pants infer that the agent’s learning process involved acquiring
and using knowledge about the environment or task (36 men-
tions). Examples include "It seems to have gathered some sort of
sense of the second row being a bad row", "it remembers, “alright
I was in that tile and then I moved to that tile and there was a
lake right there"", "he knows exactly which tiles to not step onto,
because he memorized it".

Agent Decision Making: includes statements in which
participants infer how the agent takes decisions during the
learning process, including individual actions, action sequences,
and overall policies (50 mentions). Examples include "It is just
trying out different moves and it only learns something when
it actually tried the action", "He follows a system: 1 down, one
right, then 2 down one right, then three down and falling in", "He
realized he cannot take the first second rows and thinks whether
he can take the third one".

Agent Learning Mechanisms: includes statements in
which participants infer mechanisms by which the agent up-
dated its internal representations during the learning process
(18 mentions). Examples include "it seems that it is just map-
ping certain actions to certain states", "He has moved two tiles
to the right in the first try and realized it was not a mistake".

Other: includes additional themes that were mentioned too
infrequently to be classified as separate themes. These include
inferences about the agent’s perception (e.g., vision), feelings,
communicative signals, descriptions of the environment or its
behavior, and general remarks about learning progress.

Participants in the split-up video condition produced ap-
proximately three times as many statements as those in the
full-length video condition, suggesting that this format sup-
ports more differentiated and richer observer inferences in
future applications of the paradigm.

3.3 Discussion
This experiment introduced a new observational paradigm
to examine how human observers infer an agent’s learning
process from its behavior. A data-driven analysis revealed four
recurring themes in these inferences — Agent Goals, Knowl-
edge, Decision Making, and Learning Mechanisms — offering
insight into how participants made sense of reinforcement
learning agents over time.

Agent Goals emerging as a distinctive theme indicates, task
understanding seems to play a key role in observer inferences
of the agent’s learning process. It reveals observer assumptions
about the agent’s understanding of the task structure, but
could also reflect the observers’ own interpretation of the
task and environment. This is especially important, as every
user approaches each task with their own set of assumptions,
which can shape or even distort their interpretation of learning.
For instance, inferring that the agent aims to reach the exit
“as safely as possible,” despite safety not being encoded in
the reward structure. This highlights a broader challenge in
human-agent interaction, where users project task goals that
may misalign with an agent’s actual goals.

The emergence of Agent Knowledge indicates that partici-
pants inferred some form of internal representation of its past
experiences or task structure. Unlike Goals, knowledge is a
latent, less directly observable concept, yet participants ap-
peared to attribute it readily. This indicates a more cognitively
rich, anthropomorphized mental model of intelligence of the
agent, using assumed knowledge to explain how learning un-
folds. To what extent these inferences align with the agent’s
actual internal representations remains an open question.

The emergence of Agent Decision Making indicates that
observers constructed a procedural view of the agent’s learn-
ing process, beyond only structural components like goals and
knowledge. Rather than seeing the agent as passively react-
ing to stimuli, participants infer it actively weighing options,
selecting actions, or following strategies. This suggests that
observers interpret learning not just as an internal update, but
as an active process of deliberation — attributing a sense of
control or strategy to the agent, similar to human-like deci-
sion making. This may hint at a potential over-attribution of
deliberate strategy to the agent’s processes.

The emergence of Learning Mechanisms suggests that ob-
servers inferred not just behavior, but processes of adaptation.
This portrays agents as actively learning entities.

Taken together, the four themes suggest that observers
employ an integrated, procedural view of agent learning. This
framework appears to be anthropomorphized, aligning with
prior findings in cognitive science [17, 23] and Human-Agent
Interaction [5, 21, 27, 36] showing the attribution of human-
like structure to make complex behavior more understandable.

Limitations and learned lessons Given the small sample
size of the experiment and the exploratory nature of the par-
adigm, the findings should be viewed as preliminary. While
the interview data provide useful insights into how partici-
pants interpret agent learning, their self-reported nature may
only indirectly capture actual inference processes [4]. A larger-
scale study is needed to validate these initial results in a more
systematic and robust manner.

Secondly, while the collected data in the split-up condi-
tion proved to be rich, the resulting themes remain broad
and undifferentiated. To develop and expand them, the next
step requires refining the experimental paradigm with a more
structured, differentiated, quantitative questioning format.

Next, the framework proved to be highly anthropomor-
phized. This could in part be due to the human tendency to
apply pre-existing knowledge to virtual agents to facilitate
understanding [37], but also due to the stimulus material (i.e.
the human-like agent in FrozenLake) and the question formu-
lation (i.e. referring to the agent’s brain processes). A next step
should examine whether the anthropomorphizing of themes
replicates in a modification of the paradigm with less anthro-
pomorphized stimuli and questioning. Lastly, this study ex-
amined observer inferences about an agent’s learning process
only for a very simple tabular agent. Since most interactive
teaching settings - especially in robotic applications - employ
more sophisticated forms of RL agents, future work should
also validate this framework for other types of agents.



4 EXPERIMENT 2: CONFIRMATORY
QUESTIONNAIRE STUDY

Building on the exploratory findings of Experiment 1, this
second experiment aimed to confirm and extend those results
through a larger-scale study. Specifically, it pursued three
primary objectives:

(1) Validating the initial findings on a larger sample size
(2) Adding granularity to the four common emergent in-

ference themes by examining them in greater detail
(3) Generalizing the findings by expanding the experimen-

tal paradigm to a range of RL algorithms and tasks
To address these objectives, a larger-scale confirmatory

questionnaire study was designed and implemented.

4.1 Methodology
In line with open research practices [13, 40], this experiment
was preregistered and all materials (Questionnaire, coding
plan, instructions, scripts, stimuli, annotated data corpus and
the preregistration protocols) are openly available on the OSF1.

4.1.1 Participants: Participants were recruited through Pro-
lific. Inclusion criteria required participants to be 18 years
or older, with a minimum of 95% approval rate on Prolific
and 100 completed tasks, and self-reported fluency in English,
confirmed by country of residence. A total of 35 participants
was recruited of which one was excluded due to inattentive re-
sponses, resulting in a final sample ofN = 34 (26Male, 8 Female,
0 Non-binary, self-assigned or undisclosed). The participants
ranged from 19 to 65 years old (M = 38.79 years, SD = 10.68
years). 23 participants owned a pet, 20 participants reported
to have children. Participants received on average £10.42.

Figure 1: a): NT: The cleaning robot needs to clean the
dirt patches (yellow) and avoid breaking the furniture
(blue). b) MT: the assistive robot needs to push "medica-
tion" (blue) to the target position (yellow).

4.1.2 Expanded experimental paradigm: To test the general-
izability of the findings in the first study, the experimental
paradigm was expanded in two key ways. First, a second task
involving a Deep Deterministic Policy Gradient (DDPG; an
1https://osf.io/fumd8/?view_only=9cec60dccbd446f08bd818d0b3612705

off-policy, actor-critic algorithm for continuous action spaces)
agent was introduced, to assess whether human inferences
about agent learning extend to function approximation set-
tings. Second, to reduce anthropomorphism and increase eco-
logical validity, both tasks were reframed as service robots
performing everyday activities (see Figure 1).

In the navigation task (NT), the original tabular Q-learning
agent operated in a modified 8x8 FrozenLake environment.
Visual elements were adapted to depict a cleaning robot nav-
igating a room: the elf was replaced with a conic robot icon
(indicating orientation), ice tiles with white floor tiles, holes
became vases, and the goal tile marked with an "exit" label.
Two dynamic dirt patches were added, granting the agent an
additional reward (+1) upon visit and disappearing afterwards,
providing visible milestones to support observer inferences.
The task logic and underlying algorithm remained unchanged.

The manipulation task (MT) featured a DDPG agent framed
as an assistive robot pushing a box of medication across a table
to a target zone (where a patient that has trouble reaching
could more easily pick it up). This was implemented using
a modified Push task from the PandaGym environment [14],
with fixed object/target positions near the table’s edge. The
reward function combined distance-based shaping rewards
with a large terminal reward (+1000) upon successful delivery.

4.1.3 Set-up& Procedure: Participants observed the RL agents’
learning in a non-interactive, teaching framing. After recruit-
ment via Prolific, they were directed to a study landing page
outlining the procedure, ethical rights, and withdrawal op-
tions, followed by an informed consent form and commitment
check. Next, participants then received a lay-level introduc-
tion to reinforcement learning concepts, designed to ensure
baseline comprehension.2 They were then presented with two
task scenarios (see Section 4.1.2), each comprising three videos
of an agent’s learning trajectory (see Section 4.1.4), for a total
of six videos. Following each video, participants completed a
modular block of questions (see Section 4.1.5). The question-
naire took an average of 57 minutes to complete, after which,
participants were redirected to Prolific and received compen-
sation within 24 hours. This exploratory phase served to refine
the observational paradigm and ground subsequent quantita-
tive inquiry in authentically reported user perceptions. The
study was approved by the university’s ethics board.

4.1.4 Stimuli: To reflect genuine learning processes, stimu-
lus videos were generated by training each agent to conver-
gence and rendering roll-outs from saved checkpoint poli-
cies. Convergence was defined as five consecutive successful
episodes. For the NT, the agent was trained for 10000 episodes,
with checkpoints saved every 500 episodes. For the MT, the
agent was trained for 100000 steps, with checkpoints saved
every 1,000 steps. This yielded two full-length videos: 94 (NT)
and 192 seconds (MT). Each source video was divided into

2Instructions, questionnaire and stimuli were piloted with N=4 test participants
before recruiting in order to ensure understandability
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three equal-length clips representing the early, middle, and
late stages of learning, resulting in six stimulus videos in total.

4.1.5 Measurements: To examine observer inferences about
the agents’ learning process in greater detail, a modular ques-
tionnaire was designed, combining qualitative and quantita-
tive assessments. It was divided into two equal blocks, one
per task scenario. Each block began with a briefing describing
the agent’s objectives and the environment’s reward structure.
This was followed by 11 question pairs—each comprising a
qualitative and a corresponding quantitative query—presented
after each stimulus video. The video stimulus at hand was
available for rewatching above each question pair. The first
item served as a manipulation check: participants rated, in
percent, how much they believed the agent had learned the
task, to assess perceived learning progress (LP). A baseline
qualitative prompt—"What do you think is happening in this
video?"—followed, ensuring participants had engaged with the
stimulus. Each of the four inference themes (Goals, Knowl-
edge, Decision Making, and Learning Mechanisms) was then
assessed using a 7-point relevance rating (1 = irrelevant, 7
= very relevant), followed by a theme-specific open-ended
question. For example: "What goals/knowledge do you think
the robot has in this video?" or "How do you think the robot
makes decisions/learns in this video?" Finally, participants were
asked to describe their teaching intentions, reinforcing the
interactive framing of the setting. This block of questions was
repeated for each of the six videos. The questionnaire con-
cluded with demographic questions assessing age, gender, and
yes/no questions on pet ownership and having children.

4.1.6 Analysis: The analysis process of experiment 1 was
reapplied to the newly collected data in to cluster the state-
ments regarding each of the four common themes.

4.2 Results
This experiment examined observers’ inferences about agent
learning processes across two task scenarios and three learning
stages. Subjective ratings on perceived learning progress (LP),
theme relevance over time, and open-ended responses linked
to the four common inference themes were collected.

Figure 2: Perceived vs. Actual Learning Progress

As a first step, perceived LP was assessed to confirm that
participants recognized agent improvement, validating subse-
quent inference analysis. Figure 2 shows, that perceived LP
increased steadily over time in both tasks. Early in the learning,
observers rated the NT agent as learning more quickly; later,
this pattern reversed, with the MT agent rated as showing
stronger progress. This trajectory closely mirrored the agents’
actual LP curves based on cumulative rewards.

A second step of validation consisted of a relevance rating
to assess whether the common themes of inferences are also
perceived as influential by the observers themselves (see Figure
3). One-sample t-tests revealed that for each of the 3 time
points, observers assigned a relevance significantly above a
"neutral" rating of 4. Additionally, relevance ratings showed
an increasing trend over time, suggesting growing salience of
these themes as learning progressed.

Finally, the qualitative analysis examined thematic clus-
ters of observer inferences within Goals (G), Knowledge (K),
Decision Making (DM) & Learning Mechanisms (LM) (for an
overview see Table 1). Figure 4 presents the distribution of
subcluster mentions by task and learning phase. From 816 par-
ticipant responses, a total of 1,105 individual statements were
extracted and coded, reflecting instances where responses con-
tained multiple distinct inferences.

Goals : Observer inferences regarding agent goals could
largely be clustered into four categories.

(A) Outcome-related Goals: Inferred goals concerning task
achievement, that define what constitutes success and failure
in the task respectively. Outcome-related goals were men-
tioned a total of 276 times across all tasks and time points. For
the NT, this included all statements about achieving subgoals
such as "find the dirt and clean it", "avoid breaking any furni-
ture" and "find the exit" but also "finding a pathway". For the
MT, such subgoals included "locate the medicine", "hold onto
it", "not to have it fly off of the table" as well as "move the box
to the target zone".

(B) Execution-related Goals: Inferred goals concerning im-
provement and optimization of task execution, that relate to
how the agent aimed to improve or optimize its task perfor-
mance (55 mentions). For both tasks, this included specific
statements about efficiency (e.g. "to clean the room efficiently")
or speed (e.g. "the robot wants to push the box quick").Additionally,
in the MT, this encompassed statements about solving the task
with a high accuracy ("to achieve accuracy of movement") and
safety ("safley place it across the table for the patient") as well as
control in executing the pushing ("To improve the force, angle
and direction in which it pushes the box").

(C) Learning about Environment: Inferred the explicit goal
of learning about and understanding the environment (13
mentions). For both tasks, this encompassed statements on
learning the overall layout (e.g. "Map the area out in more
detail") and learning about individual components (e.g. "Learn
what constitutes "furniture""). Additionally, for the MT, this
included statements about testing the limits (e.g. "how far its



Goals Knowledge Decision Making Learning Mechanisms

Outcome-related Goals Outcome Knowledge Undirected DM Learning by Exploring

Execution-related Goals Procedural Knowledge Experience-based DM Learning by Feedback

Learning (about Environment) Knowledge about Environment Expected Outcome-based DM Learning by Reasoning

Lack of Goals Lack of Knowledge Absence of DM Absence of Learning

Table 1: Four common inference themes and their respective subclusters

arm can extend"") and understanding possible movements (e.g.
"how the box moves on the table").

(D)Absence of Goals: Statements in which observers explic-
itly inferred an absence of goals (e.g. "I’m not sure this robot
has any idea of a goal in mind"), a total of 4 mentions.

A total of 8 statements could not be assigned to one of these
clusters, while still referring to some sort of a goal (e.g. "To
help the elderly achieve certain duties that can not be done alone
by them"). Similarly, 9 statements were classified as Unclear.

Knowledge : For observer inferences regarding agent knowl-
edge a similar pattern of four clusters emerged.

(A) Outcome Knowledge: The agent’s understanding of its
overall objectives and tasks including specific goals within
the environment (86 mentions). For both tasks this included
statements of its overall purpose (e.g. "It knows that it needs to
pick up the dirt and to get out especially", "it’s realised it had to
touch the medicine in order to get it to do anything") as well as
the consequences of specific actions (e.g. "it’s dangerous to go
near furniture in case it breaks.").

(B) Procedural Knowledge: Inferences describing the agent’s
understanding of task execution (78 mentions), for both set-
tings knowledge on how to move (e.g. "Being able to stretch"),
implement behavior (e.g. "It knows that it needs more deliberate
and softer pushes and to stay down on the table more"), interact
with the environment (e.g. "The robot probably has the knowl-
edge to identify which is a vase and which is a piece of dirt")
and how to solve the task (e.g. "There’s some knowledge here in
that it learns to do the dirt first before it heads for the exit").

(C) Knowledge about the Environment: Inferences describ-
ing the agent’s understanding of its environment (89 men-
tions). For both settings, this included the "knowledge of the
layout of the room", certain elements (e.g. "Once it has learned
what furniture is") and their location (e.g. "location of the target
and destination of the target") and, additionally for the MT, its
boundaries (e.g. "It is using its knowledge on boundaries").

(D) Lack of Knowledge: Statements in which observers ex-
plicitly attested a lack of knowledge (e.g. "The robot currently
does not seem to have enough knowledge"), 43 mentions.

A total of twelve statements were classified as Unclear.
Decision Making (DM): Observer inferences regarding

the agent’s DM could be clustered into four categories.
(A) Undirected DM: Inferences in both settings about DM

processes that are described as undirected (e.g. "By trying to

move about"), random (e.g. "mostly moves at random"), explo-
rative (e.g. "The robot learns completely through discovery in
this video") or trial-and-error (e.g. "It is making its decision
through trial and error"), 49 mentions in total.

(B) Experience-based DM: Inferences in both settings de-
scribing DM that repeats previous behavior or relies on previ-
ous experiences and assumed sensory feedback (65 mentions).
For the NT, a strong focus on past mistakes seemed to prevail
(e.g. "due to already having experienced manymistakes i.e wrong
moves, breaking vases"), while for the MT, such statements in-
cluded more general inferences (e.g. "by following what it has
learned overtime"). For both tasks repetition (e.g. "by deciding
to repeat movements that have been successful") and sensing
(e.g. "The robot is making its decisions based seeing the object
there") were inferred to be the basis of DM.

(C) Expected Outcome-based DM: Inferences that assume
the DM to be based on expected outcomes (90 mentions). For
both settings, this included statements such as DM to target
specific subgoals (e.g. "Once it cleans both spills, it makes the
decision to go to the exit as quickly as possible."), perform sys-
tematic exploration (e.g. "the robot is systematically learning
the shape of the room and the objects within") or DM based on
planning or weighing of expected outcomes (e.g. "Calculating
the right path where the dirt is")

(D) Absence of DM: Explicitly inferred absence of DM (e.g.
"I don’t think the robot is making decisions"), 28 mentions.

A total of ten statements were classified as Unclear.
Learning Mechanisms (LM): Observer inferences regard-

ing the agent’s LM could be clustered into 4 categories.
(A) Learning by Exploring: Inferences that assume the agent

to be learning the task by exploring (59 mentions). This in-
cludes learning by trial-and-error and exploration behavior.
It indicates a specific focus on learning through new experi-
ences. For both settings, statements such as "It learns through
trial and error", "By exploring around" and "The robot learns by
trying different patterns" appeared.

(B) Learning by Feedback: Inferences that assume the agent
in both settings to be learning by feedback it gets on its behav-
ior (81 mentions), including general feedback (e.g. "learning
from the decisions it has been making throughout the whole
learning process"), reward and punishment (e.g. "Via positive
and negative feedback"), but also statements about learning
by repeating successful patterns (e.g. "by repeating its moves")



and practice (e.g. "the robot learns by practicing"). Further, this
also encompasses learning from assumed sensory feedback
(e.g. "it learns by perception").

(C) Learning by Reasoning: Inferences that assume the agent
in both settings to be learning from processes of higher reason-
ing (e.g. "It tries to detect the furniture which it breaks to under-
stand where it is"), internal representation (e.g. "remembering
where the vases, patches and exit are located"), abstraction (e.g.
"I think this time it split the room into four quadrants and went
from right to left learning where the obstacles were") or from
pieces of memory (e.g. "storing the data of everything learnt
[sic!]"), 27 mentions.

(D) Absence of Learning: Statements in which observers
explicitly denied the agent to engage in learning (e.g. "I see no
evidence of learning here"), a total of 12 mentions.

Additionally, in eight cases observers explicitly attributed
Machine Learning or RL mechanisms to the agent. Further, a
total of ten statements were classified as Unclear.

Figure 3: Relevance ratings across three time points for
Goals (G), Knowledge (K), Decision Making (DM), and
Learning Mechanisms (LM). Dashed line: neutral rating
of 4; red stars: significant deviation from neutrality

4.3 Discussion
This experiment had 3 main goals: Validating the four common
themes, found in experiment 1, adding granularity by examin-
ing the observer inferences in greater detail and generalizing
the framework across multiple RL tasks and algorithms. The
experimental paradigm in this study was designed to collect
data in a direct way, unbiased by interaction and resulting
expectations. Participants rated all four inference themes as
highly relevant to the agent’s learning process, with perceived
relevance generally increasing across learning stages. This sup-
ports their importance not only conceptually, but also in terms
of how observers subjectively make sense of agent behavior,
which validates the thematic structure identified in Experi-
ment 1. Participant responses were differentiated enough to
identify at least four conceptual subclusters within each of
the four themes. The findings generalized across both task
types (navigation, manipulation) and RL algorithms (tabular,

function approximation), further supporting the robustness of
the experimental paradigm for eliciting observer inferences.

On a conceptual level, this experiment confirmed that ob-
servers seem to make sense of RL agent’s learning processes
along their interpretation of Agent Goals, Knowledge, Deci-
sion Making and Learning Mechanisms. Together, they seem
to reflect a coherent teacher mental model, consistent with
prior work in Human-Robot Interaction [5, 34]. While individ-
ual aspects have been reported before [29], this work offers
a systematic framework of observer inferences about RL pro-
cesses that indicates an integrated representation of a proac-
tive and adaptive interaction partner. The first experiment sug-
gested that participant observations distinguish between what
the agent intends to do and what it knows. Notably, they re-
flect a meaningful distinction between structural assumptions
(e.g., goals and knowledge) and procedural ones (e.g., decision
making and learning mechanisms). However, the larger study
revealed considerable overlap: participants made both task-
related and execution-based inferences within each theme,
attributing to the agent a detailed understanding of its envi-
ronment. Furthermore, building on these four common themes
as a high-level framework of understanding agent learning,
this experiment also revealed subclusters of inferences that
ground each theme in the specific demands of the learning
tasks and demonstrate interdependencies between them. The
distribution of these inferences over time supports a mental
model that is both interconnected and dynamic, with distinct
yet evolving components (see Figure 4). On a theoretical level,
this integrated framing makes sense: learning inherently up-
dates knowledge, supports decision making, and reflects goal
evaluation.While these functions are distinct descriptively, the
observer’s use of anthropomorphized categories may serve as
an explanatory bridge, making algorithmic learning processes
more understandable. This aligns with social learning theo-
ries, suggesting that the inferential frameworks humans use
to understand other minds [17], previously studied in Human-
Human [35] and Agent-Agent settings [16], may also shape
their interpretations of artificial agents. When these inferences
misalign with an agent’s actual learning mechanisms, they can
lead to mismatches in expectations and behavior—potentially
resulting in counterproductive teaching strategies [23]. This
highlights the importance of designing systems that anticipate
and adapt to human assumptions.

5 IMPLICATIONS FOR FUTUREWORK
These results provide an important first step understanding
how observers perceive and interpret agent learning processes.
While the thematic analysis was based on subjective coding,
it followed a rigorous, iterative method with high internal
stability. Nonetheless, future replications should incorporate
inter-rater reliability to further strengthen the framework. Al-
though the study included both RL experts and non-experts,
exploratory comparison did not suggest major differences in
theme salience. Yet this may warrant systematic analysis in
future work. Further, the data was collected in deliberately



Figure 4: Themes+Subclusters across time split by task. Letters correspond to subclusters for each theme, see 4.2

observational experiments. All in all, researchers should in-
terpret the present results as an approximate guideline for
understanding observer inferences, not a definitive model.

A key next step is to validate this framework in more com-
plex, real-world HRI settings where observer inferences may
interact with task realism, embodiment, and time constraints.
It remains to be seen how these themes shift when users move
from passive observation to active teaching, especially as their
expectations about how agents receive and use teaching sig-
nals come into play. Connecting observer inferences with
actual teaching strategies could reveal systematic patterns and
help anticipate breakdowns in communication.

Future analyses could link observer inferencesmore directly
to the agent’s internal learning state or policy structure, to
assess where alignment or divergence occurs. An important
extension of this work could be to formalize a metric of human-
centric interpretability grounded in the four-theme framework,
enabling direct evaluation of agent transparency from a user
perspective. Further, the framework allowsmodeling the users’
current agent interpretation to facilitate real-time perspective
alignment [31]. These insights also offer concrete implica-
tions for system design. The identified subclusters suggest
specific areas where users tend to form strong—but poten-
tially inaccurate—assumptions. For instance, distinguishing
experience-based from outcome-based decision making could
clarify misunderstandings about agent behavior.

While there is a considerable amount of recent work on
making RL and interactive robot learning more explainable
[32] and human understandable (e.g. [18, 25, 26]), most of these
methods are founded in the architecture and functioning of
the learning algorithms. The results of this work encourage a
human-first approach, that could inform the design of trans-
parency mechanisms that anticipate how users conceptualize
agent learning, such as interface cues aligned with inferred

goals or decision strategies. This could be done by specifi-
cally designing transparency methods around user-inferred
concepts—such as Goals, Knowledge, Decision Making, and
Learning Mechanisms to better align system behavior with
human expectations. A concrete example could be to use the
insights about a teacher’s expectation of goals to prevent teach-
ers creating positive reward cycles in the teaching interaction
[23] by specifically correcting this misalignment in terms that
align with observer inferences about agent learning processes.
This opens up new possibilities for human-centered inter-
faces, explainability mechanisms and agent-teacher commu-
nication methods (e.g. [9, 20]). Overall, transparency mecha-
nisms should be designed along the lines of observer inferences
to which the insights in this work could contribute.

6 CONCLUSION
This work investigated how humans infer RL agents’ learning
processes through observation alone. To this end, we intro-
duced a novel experimental paradigm and applied it across
two tasks and RL algorithms. The results revealed a coherent
framework of observer inferences structured around four com-
mon inference themes, with a detailed structure of interrelated
subclusters, along the lines of which observer inferences about
the agent learning process are organized: Agent Goals, Knowl-
edge, Decision Making, and Learning Mechanisms. These find-
ings offer a data-driven foundation for designing more trans-
parent and interpretable learning agents. By aligning agent
communication and behavior with these human inference pat-
terns, future systems can foster better understanding, reduce
misalignment, and enable more effective collaboration and
synergy between human teachers and learning agents. Taken
together, this work marks a step toward more human-centered
RL systems and contributes to the broader vision of Hybrid
Intelligence, combining human and machine intelligence to
solve tasks neither can tackle alone.
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