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Abstract

The growing literature on “benign overfitting” in overparameterized models has
been mostly restricted to regression or binary classification settings; however, most
success stories of modern machine learning have been recorded in multiclass set-
tings. Motivated by this discrepancy, we study benign overfitting in multiclass
linear classification. Specifically, we consider the following popular training algo-
rithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy
loss, which converges to the multiclass support vector machine (SVM) solution;
(ii) ERM with least-squares loss, which converges to the min-norm interpolating
(MNI) solution; and, (iii) the one-vs-all SVM classifier. Our first key finding is
that under a simple sufficient condition, all three algorithms lead to classifiers that
interpolate the training data and have equal accuracy. When the data is generated
from Gaussian mixtures or a multinomial logistic model, this condition holds under
high enough effective overparameterization. Second, we derive novel error bounds
on the accuracy of the MNI classifier, thereby showing that all three training algo-
rithms lead to benign overfitting under sufficient overparameterization. Ultimately,
our analysis shows that good generalization is possible for SVM solutions beyond
the realm in which typical margin-based bounds apply.

1 Introduction

Modern deep neural networks are overparameterized with respect to the amount of training data
and achieve zero training error, yet generalize well on test data. Recent analysis has shown that
fitting of noise in regression tasks can in fact be relatively benign for sufficiently high-dimensional
linear models [BLLT20, BHX20, HMRT19, MVSS20, KLS20]. However, these analyses do not
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directly extend to classification, which requires separate treatment. In fact, very recent progress on
sharp analysis of interpolating binary classifiers [MNS+20, CL21, WT21, CGB21] revealed high-
dimensional regimes in which binary classification generalizes well, but the corresponding regression
task does not work and/or the success cannot be predicted by classical margin-based bounds.

In an important separate development, these same high-dimensional regimes admit an equivalence
of loss functions used at training time. The support vector machine (SVM), which arises from
minimizing the logistic loss using gradient descent [SHN+18, JT19], was recently shown to sat-
isfy a high-probability equivalence to interpolation, which arises from minimizing the squared
loss [MNS+20, HMX21]. This equivalence suggests that interpolation is ubiquitous in very overpar-
maeterized settings, and can arise naturally as a consequence of the optimization procedure even
when this is not explicitly encoded or intended. Moreover, this equivalence to interpolation and
corresponding analysis implies that the SVM can generalize even in regimes where classical learning
theory bounds are not predictive. In the logistic model case [MNS+20] and Gaussian binary mixture
model case [CL21, WT21, CGB21], it is shown that good generalization of the SVM is possible
beyond the realm in which classical margin-based bounds apply. These analyses lend theoretical
grounding to the surprising hypothesis that squared loss can be equivalent to, or possibly even
superior, to the cross-entropy loss for classification tasks. This hypothesis was supported empirically
on kernel machines in Ryan Rifkin’s doctoral dissertation work [Rif02, RK04], and more recently in
overparameterized neural networks [HB20, PL20].

These compelling perspectives have thus far been limited to regression and binary classification
settings. In contrast, most success stories and surprising new phenomena of modern machine
learning have been recorded in multiclass classification settings, which appear naturally in a host of
applications that demand the ability to automatically distinguish between large numbers of different
classes; for example, the popular ImageNet dataset [RDS+15] contains on the order of 1000 classes.
Whether a) good generalization beyond effectively low-dimensional regimes where margin-based
bounds are predictive is possible, and b) equivalence of squared loss and cross-entropy loss holds in
multiclass settings remained open problems.

This paper makes significant progress towards a complete understanding of the optimization and gener-
alization properties of high-dimensional linear multiclass classification, both for unconditional Gaus-
sian covariates (where labels are generated via a multinomial logistic model), and high-dimensional
Gaussian mixture models. Our contributions are listed in more detail below.

1.1 Our Contributions

Figure 1: Contributions and organization.

• We establish a deterministic sufficient condi-
tion under which the multiclass SVM solution
has a very simple and symmetric structure: it is
identical to the solution of the One-vs-All (OvA)
SVM classifier that uses the one-hot encoded la-
bels. Moreover, the constraints at both solutions
are active. Geometrically, this means that all
data points are support vectors.
• This implies a surprising equivalence be-
tween traditionally different formulations of
multiclass SVM, which in turn are equivalent
to the minimum-norm interpolating (MNI) clas-
sifier on one-hot label vectors. Thus, the out-
comes of training with cross-entropy (CE) loss
and squared loss are identical.
• Next, for data following a Gaussian-mixtures model (GMM) or a Multinomial logistic model
(MLM), we show that the above sufficient condition is satisfied with high-probability under sufficient
effective overparameterization depending on the number of classes, and on quantities related to the
data covariance. Our numerical results show excellent agreement with our theoretical findings.
• Subsequently, we provide novel bounds on the error of the MNI classifier for data generated
either from the GMM or the MLM and characterize overparmeterization conditions under which
benign overfitting occurs. A direct outcome of our results is that benign overfitting occurs under these
conditions regardless of whether the cross-entropy loss or squared loss is used during training.
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Figure 1 describes our contributions and their implications through a flowchart. To the best of
our knowledge, these are the first results characterizing a) equivalence of loss functions, and b)
generalization of interpolating solutions in the multiclass setting. The multiclass setting poses several
challenges over and above the recently studied binary case. When presenting our results in later
sections, we discuss in detail how our analysis circumvents these challenges.

1.2 Related Work

Multiclass classification and the impact of training loss functions. There is a classical body of
work on algorithms for multiclass classification, e.g., [WW98, BB99, DB95, CS02, LLW04] and
several empirical studies of their comparative performance [RK04, F0̈2, ASS01] (also see [HYS16,
GCOZ17, KS18, BEH20, DCO20, HB20, PL20] for recent such studies in the context of deep nets).
Many of these (e.g. [RK04, HB20, BEH20]) have found that least-squares minimization yields
competitive test classification performance to cross-entropy minimization. Our proof of equivalence
of the SVM and MNI solutions under sufficient overparameterization provides theoretical support
for this line of work. This is a consequence of the implicit bias of gradient descent run on the CE
and squared losses leading to the multiclass SVM [SHN+18, JT19] and MNI [EHN96] respectively.
Numerous classical works investigated consistency [Zha04, LLW04, TB07, PGS13, PS16] and finite-
sample behavior, e.g., [KP02, CKMY16, LDBK15, Mau16, LDZK19] of multiclass classification
algorithms in the underparameterized regime. In contrast, our focus is on the highly overparameterized
regime, where the typical uniform convergence techniques cannot apply.

Binary classification error analyses in overparameterized regime. The recent wave of analyses
of the minimum-`2-norm interpolator (MNI) in high-dimensional linear regression (an incomplete
list is [BLLT20, BHX20, HMRT19, MVSS20, KLS20]) prompted researchers to consider to what
extent the phenomena of benign overfitting and double descent [BHMM19, GJS+20] can be proven
to occur in classification tasks. Even the binary classification setting turns out to be significantly
more challenging to study owing to the discontinuity of the 0� 1 test loss function. Sharp asymptotic
formulas for the generalization error of binary classification algorithms in the linear high-dimensional
regime have been derived in several recent works [Hua17, SC19, MLC19, SAH19, TPT20, TPT21,
DKT21, MRSY19, KA21, LS20, SAH20, AKLZ20, Lol20, DL20]. These formulas are solutions
to complicated nonlinear systems of equations that typically do not admit closed-form expressions.
A separate line of work provides non-asymptotic error bounds for both the MNI classifier and the
SVM classifier [CL21, MNS+20, WT21, CGB21]; in particular, [MNS+20] analyzed the SVM
in a Gaussian covariates model by explicitly connecting its solution to the MNI solution. Subse-
quently, [WT21] also took this route to analyze the SVM and MNI in mixture models, which turn
out to be more technically involved. Even more recently, [CGB21] provided extensions of the result
by [WT21] to sub-Gaussian mixtures. While these non-asymptotic analyses are only sharp in their
dependences on n and p, they provide closed-form generalization expressions in terms of easily
interpretable summary statistics. Interestingly, these results imply good generalization of the SVM
beyond the regime in which margin-based bounds are predictive. Specifically, [MNS+20] identifies
a separating regime for Gaussian covariates in which corresponding regression tasks would not
generalize. In the Gaussian mixture model, margin-based bounds [SFBL98, BM03] (as well as
corresponding recently derived mistake bounds on interpolating classifiers [LR21]) would require the
intrinsic signal-to-noise-ratio (SNR) to scale at least as !(p1/2) for good generalization; however,
the analyses of [CL21, WT21, CGB21] show that good generalization is possible for significantly
lower SNR scaling as !(p1/4) The above error analyses are specialized to the binary case, where
closed-form error expressions are easy to derive [MNS+20]. The only related work applicable to
multiclass settings is [TOS20], which also highlights the numerous challenges of obtaining a sharp
error analysis in multiclass settings. Specifically, [TOS20] derived sharp generalization formulas for
multiclass least-squares in underparameterized settings; extensions to the overparameterized regime
and other losses beyond least-squares remained wide open. Finally, [KT21] recently derived sharp
phase-transition thresholds for the feasibility of OvA-SVM on multiclass Gaussian mixture data
in the linear high-dimensional regime. However, their result does not cover the more challenging
multiclass-SVM that we investigate here.

Other SVM analyses. The number of support vectors in binary SVM has been characterized in low-
dimensional separable and non-separable settings [DOS99, BG01, MO05] and scenarios have been
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identified in which there is vanishing fraction of support vectors, as this implies good generalization1

via PAC-Bayes sample compression bounds [Vap13]. In the highly overparameterized regime that
we consider, perhaps surprisingly, the opposite behavior occurs: all training points become support
vectors with high probability [DOS99, BG01, MO05, MNS+20, HMX21]. In particular, [HMX21]
provided sharp non-asymptotic sufficient conditions for this phenomenon for both isotropic and
anisotropic settings. The techniques in [MNS+20, HMX21] are highly specialized to the binary
SVM and its dual, where a simple complementary slackness condition directly implies the property
of interpolation. In contrast, the complementary slackness condition for the case of multiclass SVM
does not directly imply interpolation; in fact, the operational meaning of “all training points becoming
support vectors" is unclear in the multiclass SVM. Our proof of deterministic equivalence goes
beyond the complementary slackness condition and uncovers a surprising symmetric structure2 by
showing equivalence of multiclass SVM to a symmetric OvA classifier.

Notation For a vector v 2 Rp , let kvk2 =
pP

p

i=1
v
2

i
, kvk1 =

P
p

i=1
|vi|, kvk1 = maxi{|vi|}.

v > 0 is interpreted elementwise. 1 / 0 denote the all-ones / all-zeros vectors and ei denotes the
i-th standard basis vector. For a matrix M, kMk2 denotes its 2 ! 2 operator norm and kMkF

denotes the Frobenius norm. � denotes the Hadamard product. [n] denotes the set {1, 2, ..., n}.
We also use standard “Big O" notations ⇥(·), !(·), e.g., see [CLRS09, Chapter 3]. Finally, we
write N (µ,⌃) for the (multivariate) Gaussian distribution of mean µ and covariance matrix ⌃, and,
Q(x) = P(Z > x), Z ⇠ N (0, 1) for the Q-function of a standard normal. Throughout, constants
refer to numbers that do not depend on the problem dimensions n or p.

2 Problem setting

We consider the multiclass classification problem with k classes. Let x 2 Rp denote the feature
vector and y 2 [k] represent the class label associated with one of the k classes. We assume that
the training data has n feature/label pairs {xi, yi}

n

i=1
. We focus on the overparameterized regime,

i.e., p > Cn, and will frequently consider p � n. For convenience, we express the labels using the
one-hot coding vector yi 2 Rk, where only the yi-th entry of yi is 1 and all other entries are zero,
i.e., yi = eyi

. With this notation, the feature and label matrices are given in compact form as follows:
X = [x1 x2 · · · xn] 2 Rp⇥n and Y = [y1 y2 · · · yn] = [v1 v2 · · ·vk]

T
2 Rk⇥n

,

where we have defined vc 2 Rn
, c 2 [k] to denote the c-th row of the matrix Y.

2.1 Data models

We assume that the data pairs {xi, yi}
n

i=1
are generated IID. We will consider two models for the

distribution of (x, y). For both models, we define the mean vectors {µ
j
}
k

j=1
2 Rp, and the mean

matrix is given by M := [µ1 µ2 · · · µ
k] 2 Rp⇥k

.

Gaussian Mixture Model (GMM). In this model, the mean vector µ
i

represents the conditional
mean vector for the i-th class. Specifically, each observation (xi, yi) belongs to to class c 2 [k] with
probability ⇡c and conditional on the label yi, xi follows a multivariate Gaussian distribution. In
summary, we have

P(y = c) = ⇡c and x = µ
y
+ q, q ⇠ N (0,⌃). (1)

In this work, we focus on the isotropic case ⌃ = Ip. Our analysis can likely be extended to more
general settings, but we leave this to future work.

Multinomial Logit Model (MLM). In this model, the feature vector x 2 Rp follows N (0,⌃), and
the conditional density of the class label y is given by the soft-max function. Specifically, we have

x ⇠ N (0,⌃) and P(y = c|x) = exp(µT

c
x)
.X

j2[k]

exp(µT

j
x). (2)

For this model, we analyze both the isotropic and anisotropic cases.
1In this context, the fact that [MNS+20, WT21] provide good generalization bounds in the regime where

support vectors proliferate is particularly surprising. In conventional wisdom, a proliferation of support vectors
was associated with overfitting but this turns out to not be the case here.

2This symmetric structure is somewhat reminiscent of the recently observed neural collapse phenomenon in
deep neural networks [PHD20], although the details of the obtained solutions are quite different.
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2.2 Data separability

We consider linear classifiers parameterized by W = [w1 w2 · · · wk]
T
2 Rk⇥p

. Given input
feature vector x, the classifier is a function that maps x into an output of k via3 x 7! Wx 2 Rk.
We will operate in a regime where the training data are linearly separable. In multiclass settings,
there exist multiple notions of separability. Here, we focus on (i) multiclass/k-class separability (ii)
one-vs-all (OvA) separability, and, recall their definitions below.
Definition 1 (multiclass and OvA separability). The dataset {xi, yi}i2[n] is multiclass linearly sepa-
rable when 9W = [w1,w2, . . . ,wk]

T
2 Rk⇥p

: (wyi
�wc)

Txi � 1, 8c 6= yi, c 2 [k], and 8i 2

[n]. The dataset is one-vs-all (OvA) separable when 9W = [w1,w2, . . . ,wk]
T
2 Rk⇥p

: wT

c
xi � 1

if yi = c and wT

c
xi  �1 if yi 6= c , 8c 2 [k], and 8i 2 [n].

In the overparameterized regime p > n with Gaussian data, we have rank(X) = n almost surely,
which implies OvA separability. It turns out that OvA separability implies multiclass separability, but
not vice versa (see [BM94] for a counterexample).

2.3 Classification error

Consider a linear classifier cW and a fresh sample (x, y) generated following the same distri-
bution as the training data. As is standard, we predict ŷ by a “winner takes it all strategy",
i.e., ŷ = argmaxj2[k] bwT

j
x. Then, the classification error conditioned on the true label be-

ing c, which we refer to as the class-wise classification error, is defined as Pe|c := P(ŷ 6=

y|y = c) = P(bwT

c
x  maxj 6=c bwT

j
x). In turn, the total classification error is defined as

Pe := P(ŷ 6= y) = P(argmaxj2[k] bwT

j
x 6= y) = P(bwT

y
x  maxj 6=y bwT

j
x).

2.4 Classification algorithms

Next, we review several different training strategies for which we characterize the total/class-wise
classification error in this paper.

Multiclass SVM. Consider training W by minimizing the popular cross-entropy (CE) loss
L(W) := � log

�
e
wT

yi
xi

�P
c2[k]

e
wT

c
xi

�
with the gradient descent algorithm (with constant

step size ⌘). In the separable regime that we consider, the CE loss L(W) can be driven to
zero. Moreover, [SHN+18, Thm. 7] showed that the normalized iterates {Wt

}t�1 converge as
limt!1

��Wt
/ log t�WSVM

��
F
= 0,

4 where WSVM is the solution of the multiclass SVM [WW98]
given by

WSVM := argmin
W

kWkF sub. to (wyi
�wc)

Txi � 1, 8i 2 [n], c 2 [k] s.t. c 6= yi. (3)

One-vs-all SVM. In contrast to Eqn. (3) that optimizes the hyperplanes {wc}c2[k] jointly, the one-
vs-all (OvA)-SVM classifier solves k separable optimization problems maximizing the margin of
each class with respect to all the rest. Concretely, the OvA-SVM solves for all c 2 [k]:

wOvA,c := argmin
w

kwk2 sub. to wTxi � 1, if yi = c; wTxi  �1 if yi 6= c, 8i 2 [n]. (4)

In general, the solutions to Equations (3) and (4) are different. While the OvA-SVM does not have
an obvious connection to any training loss function, its relevance will become clear in Section 3.
Perhaps surprisingly, we will prove that in the highly overparameterized regime the multiclass SVM
solution is identical to a slight variant of (4).

Min-norm interpolating (MNI) classifier. An alternative to the CE loss is the square loss L(W) :=
1

2n
kY �WXk

2
2
=

1

2n

P
n

i=1
kWxi � yik

2
2
. While the square-loss appears to be more tailored to

regression, it in fact has competitive classification accuracy to the CE loss in practice [Rif02, HB20,
PL20]. Since rank(X) = n almost surely, the data can be linearly interpolated, i.e. the square-loss

3For simplicity, we ignore the bias term throughout.
4Note that the scaling factor log t here does not depend on the class label; hence, in the limit of GD iterations,

the solution Wt decides the same label as multiclass SVM for any test sample.
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can be made zero. Then, it is well-known [EHN96] that gradient descent with sufficiently small step
size and appropriate initialization converges to the minimum-norm -interpolating (MNI) solution:

WMNI := argmin
W

kWkF , sub. to XTwc = vc, 8c 2 [k]. (5)

Since XTX is invertible, the solution above is given in closed form as WT

MNI = X(XTX)
�1YT .

From here on, we refer to (5) as the MNI classifier.

3 Proliferation of support vectors

In this section, we show equivalence of the solutions of the three classifiers defined above.

3.1 A key deterministic condition

We first establish a key deterministic property of SVM that holds for generic multiclass datasets
(X,Y) (not necessarily generated by either the GMM or MLM), as long as rank(X) = n. Specif-
ically, Theorem 1 below derives a sufficient condition (cf. (8)) under which the multiclass SVM
solution has a surprisingly simple structure. First, the constraints are all active at the optima (cf. (9)).
Second, and perhaps more interestingly, the equality of the constraints is satisfied in a very symmetric
way such that (cf. (10)) for all i 2 [n], c 2 [k], we have

ŵT

c
xi = zci :=

⇢
(k � 1)/k , c = yi

�1/k , c 6= yi
. (6)

Theorem 1. For a multiclass separable dataset with feature matrix X = [x1,x2, . . . ,xn] 2 Rp⇥n

and label matrix Y = [v1,v2, . . . ,vk]
T
2 Rk⇥n, let WSVM = [ŵ1, ŵ2, . . . , ŵk]

T be the multiclass
SVM solution in (3). For each class c 2 [k] define vectors zc 2 Rn such that

zc = vc � (1/k)1n, c 2 [k]. (7)

Assume that the Gram matrix XTX is invertible and that the following condition holds

zc � (XTX)
�1zc > 0, 8c 2 [k]. (8)

Then, the SVM solution WSVM is such that all the constraints in (3) are active. That is,

(ŵyi
� ŵc)

Txi = 1, 8c 6= yi, c 2 [k], and 8i 2 [n]. (9)
Moreover, it holds that

XT ŵc = zc, 8c 2 [k]. (10)

For k = 2 classes, it can be checked that Eqn. (8) reduces to the condition in Eqn.(22) of [MNS+20]
for the binary SVM. Compared to the binary setting, the conclusion for multiclass is richer: provided
that Eqn. (8) holds, not only do we show that all data points are support vectors, but also, that they
satisfy a set of symmetric OvA-type constraints. The proof of Eqn. (10) is particularly subtle and
involved: unlike in the binary case, it does not follow directly from a complementary slackness
condition on the dual of the multiclass SVM. We provide a short proof sketch in Section 3.1.1 and
defer details to the supplementary material (SM).

We make the following additional remarks on the interpretation of Eqn. (10). First, our proof shows a
somewhat stronger conclusion: when inequality (8) holds, the multiclass SVM solutions ŵc, c 2 [k]

are same as the solutions to the following symmetric OvA-type classifier (cf. Eqn. (4)):

min
wc

1

2
kwck

2

2
sub. to xT

i
wc

⇢
� (k � 1)/k , yi = c,

 �1/k , yi 6= c,
8i 2 [n], (11)

for all c 2 [k]. The OvA-type classifier above can be interpreted as a binary cost-sensitive SVM
classifier [IMSV19] that enforces the margin corresponding to all other classes to be (k � 1) times
smaller compared to the margin for class c .

The second remark regarding (10) is crucial for the rest of this paper. Precisely, (10) shows that
when (8) holds, then the multiclass SVM solution WSVM has the same classification error as that of
the minimum-norm interpolating solution. This conclusion, stated as a corollary below, drives our
classification error analysis in Section 4.
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Corollary 1 (SVM=MNI). Under the same assumptions as in Theorem 1, and provided that the
inequality in Eqn. (8) holds, it holds that Pe|c(WSVM) = Pe|c(WMNI) for all c 2 [k]. Thus, the total
classification errors of both solutions are equal: Pe(WSVM) = Pe(WMNI).

Proof sketch. First, it follows from Eqn. (10) that ŵc, c 2 [k] coincides with the unique solution
of a MNI classifier on shifted labels, given by ewc = ewc := X(XTX)

�1zc. Second, using the
affine relation between zc and vc in Eqn. (7), we get Pe|c(WMNI) = Pe|c(fWMNI), where we denote
fWMNI = [ew1, . . . , ewk]. This completes the proof of the corollary. More details given in the SM.

3.1.1 Proof sketch of Theorem 1

To prove Theorem 1, we constructed a new parameterization of the dual of the multiclass SVM (given
in Eqn. (14)). Letting dual variables {�c,i} for every i 2 [n], c 2 [k] : c 6= yi corresponding to the
constraints on the primal form in (3), the standard form of the dual of multiclass SVM is written as

max
�c,i�0

X

i2[n]

� X

c 6=yi

�c,i

�
�

1

2

X

c2[k]

��
X

i2[n]:yi=c

� X

c0 6=yi

�c0,i

�
xi �

X

i2[n]:yi 6=c

�c,ixi

��2
2
. (12)

Let �̂c,i be the maximizers in Eqn. (12). By complementary slackness, we have

�̂c,i > 0 =) (ŵyi
� ŵc)

Txi = 1. (13)

Thus, to prove Eqn. (9), it will suffice showing that �̂c,i > 0, 8i 2 [n], c 2 [k] : c 6= yi provided that
Eqn. (8) holds. The challenge is that it is hard to work directly with (12) because the variables �c,i

are coupled within the objective. Our key idea is to re-parameterize the dual objective in terms of
new variables �c,i and of coefficients involving the vectors zc we introduced in Eqn. (7). Deferring
the detailed derivations to the SM, we can show that (12) is equivalent to the following program:

max
�

c
2Rn,c2[k]

X

c2[k]

�T

c
zc �

1

2
kX�

c
k
2

2
(14)

sub. to �yi,i
= �

X

c 6=yi

�c,i, 8i 2 [n] and �
c
� zc � 0, 8c 2 [k],

where, for each c 2 [k] we let �
c
= [�c,1,�c,2, . . . ,�c,n] 2 Rn

. Moreover, the new dual variables
are related to the original ones in that

zc,i�c,i > 0 () �c,i > 0, for all c 2 [k] and i 2 [n] : yi 6= c. (15)

The next step is to consider the unconstrained maximizer in (14), that is �̂
c
= (XTX)

�1zc, 8c 2 [k],
and show that �̂

c
, c 2 [k] is feasible in (14). Skipping the detailed argument here, by doing so,

we prove that �̂
c
, c 2 [k] is in fact the unique optimal solution of (14). But now, realizing that

Eqn. (8) is equivalent to zc � �̂
c
> 0, we have found that �̂

c
, c 2 [k] further satisfies the n strict

inequality constraints in (14). Thus, from Eqn. (15), the original dual variables {�c,i} are also all
strictly positive, which completes the proof of the first part of the theorem (Eqn. (9)).

Next, we outline the proof of Eqn. (10). We consider the OvA-classifier in (11). The proof has two
steps. First, using similar arguments to what was done above, we show that when Eqn. (8) holds,
then all the inequality constraints in (11) are active at the optimal. That is, the minimizers wsym-OvA,c

of (11) satisfy Eqn. (10). Second, to prove that Eqn. (10) is satisfied by the minimizers ŵc of the
multiclass SVM in Eqn. (3), we need to show that wsym-OvA,c = ŵc for all c 2 [k]. We do this by
showing that, under Eqn. (8), the duals of (3) and (11) are equivalent. By strong duality, the optimal
costs of the primal problems are also the same. Then, because the objective is the same for the two
primals and because w⇤

c
is feasible and (3) is strongly convex, we can conclude with the desired.

3.2 Connection to effective overparameterization

Theorem 1 establishes a deterministic condition that applies to any multiclass separable dataset as long
as the data matrix X is full-rank. In this subsection, we show that the inequality (8) occurs with high-
probability under both the GMM and MLM models for data, with sufficient overparameterization.
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Figure 2: Fraction of support vectors satisfying Eqn. (10). (a) GMM: k = 4 and 7, (b) MLM:
k = 3, 4, 5, 6. In (a), "(4) 0.2" means 4 classes and kµk2/

p
p = 0.2. The curves nearly overlap when

plotted versus k1.5n1.5
kµk2/p as predicted by the second condition in Eqn. (16) of Theorem 2. In

(b), the curves overlap when plotted versus k2n log(
p
kn)/p as predicted by Thm. 4.

3.2.1 Gaussian mixture model

We focus on an equal-energy, equal-prior setting for ease of exposition. Our proofs extend rather
naturally to more general settings, but the results are more complicated to state and offer no new
insights for our purpose.
Assumption 1 (Equal energy/prior). The mean vectors have equal energy and the priors are equal,
i.e. we have kµk2 := kµ

c
k2 and ⇡c = ⇡ = 1/k, for all c 2 [k].

Theorem 2. Assume that the training set follows a multiclass GMM with ⌃ = Ip and Assumption 1,
and that the number of training samples n is large enough. There exist constants c1, c2, c3 > 1 and
C1, C2 > 1 such that inequality (8) holds with probability at least 1� c1

n
� c2ke

� n

c3k2 , provided that

p > C1k
3
n log(kn) + n� 1 and p > C2k

1.5
n
1.5

kµk2. (16)

Our theorem establishes a set of two conditions under which inequality (8) and the conclusions of
Theorem 1 hold, i.e. WSVM = WMNI. The first condition requires sufficient overparameterization
p = ⌦(k

3
n log(kn)), while the second one requires that the signal strength is not too large. Intuitively,

we can understand these conditions as follows. Note that inequality (8) is satisfied provided that the
inverse Gram matrix (XTX)

�1 is “close" to identity, or any other positive-definite diagonal matrix.
(This is the proof strategy that is also followed in [MNS+20] for the case of Gaussian features;
here, we show this for the more difficult mixture-of-Gaussians case.) Recall from Eqn. (1) that
X = MY +Q =

P
k

j=1
µ

j
vT

j
+Q where Q is a p⇥ n standard Gaussian matrix. Our theorem’s

first condition is sufficient for (QTQ)
�1 to have the desired property; the major technical challenge is

that (XTX)
�1 involves additional terms that intricately depend on the label matrix Y itself. Our key

technical contribution is showing that these extra terms do not drastically change the desired behavior,
provided that the norms of the mean vectors are well controlled. At a high-level we accomplish
this with a recursive argument as follows. Denote X0 = Q and Xi =

P
i

j=1
µ

j
vT

j
+Q for i 2 [k].

Then, at each stage i of the recursion, we show how to bound quadratic forms involving
�
XT

i
Xi

��1

using bounds established previously at stage i� 1 on quadratic forms involving
�
XT

i�1
Xi�1

��1. A
critical property for the success of our proof strategy is the observation that the rows of Y are always
orthogonal, that is, vT

i
vj = 0, for i 6= j. The complete proof of the theorem is given in the SM.

Next, we present numerical results that confirm our theoretical statement. We also discuss the
tightness of the two sufficient conditions in Eqn. (16). Throughout the paper, in all our figures, we
show averages over 100 Monte-Carlo realizations. In Fig. 2(a), we plot the fraction of training points
in the multiclass SVM satisfying Eqn. (10) as a function of training size n for k = 4 and k = 7

classes (please see SM for other experiment details and more results). To verify the second condition
in Eqn. (16), Fig. 2(a) also plots the same set of curves over a re-scaled axis k1.5n1.5

kµk2/p. The
6 curves corresponding to different settings nearly overlap in this new scaling, which suggests the
correct order of the corresponding condition. We conjecture that our second condition is tight up to
an extra

p
n factor which we believe is an artifact of the analysis. We also believe that the k

3 factor
in the first condition can be relaxed slightly to k

2 (as is done for the MLM case; see Fig. 2(b)).
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3.2.2 Multinomial logistic model

We now consider the MLM data and the anisotropic setting. The eigendecomposition of the covariance
matrix is given by ⌃ =

P
p

i=1
�iuiuT

i
, where � = [�1, · · · ,�p]. Following [HMX21], we also

define the effective dimensions d2 := k�k2
1
/k�k2

2
and d1 := k�k1/k�k1. The following result

contains sufficient conditions for the SVM and MNI solutions to coincide.

Theorem 3. Assume n training samples following the MLM defined in (2). There exist constants
c and C1, C2 > 1 such that inequality (8) holds with probability at least (1 �

c

n
) provided that

d1 > C1k
2
n log(kn) and d2 > C2(log(kn) + n). In fact, the only conditions we require on the

generated labels is conditional independence.

The sufficient conditions in Theorem 3 require that the spectral structure in the covariance matrix ⌃
has sufficiently slowly decaying eigenvalues (corresponding to sufficiently large d2), and that it is
not too “spiky" (corresponding to sufficiently large d1). For the special case of k = 2 classes, our
conditions reduce to those in [HMX21] for binary classification; in fact under the MLM model we
can leverage a more sophisticated deterministic equivalence to Eqn. (8) provided in that work. The
dominant dependence on k, given by k

2, is a byproduct of the “unequal" margin in (6). Fig. 2(b)
empirically verifies the tightness of this factor. For the isotropic case ⌃ = Ip, we can prove a slightly
sharper result in logarithmic factors, which we state next.

Theorem 4. Assume n samples from the MLM with ⌃ = Ip. There exist a constant c > 1 such that
inequality (8) holds with probability at least (1� c

n
) provided that p > 10k

2
n log(

p
kn) + n� 1.

Our numerical results in Fig. 2(b) suggest that this sufficient condition is order-wise tight. Specifically,
in Fig. 2, we fixed p = 1000, varied n from 10 to 100 and the numbers of classes from k = 3 to k = 6.
We chose orthogonal mean vectors for each class with equal energy kµk2

2
= p. Fig. 2(b) shows the

fraction of training points in the multiclass SVM satisfying Eqn. (10) as a function of n. Clearly,
smaller k results in higher proportion of support vectors for the same number of measurements
n. To verify the condition in Theorem 4, Fig. 2(b) plots the same curves over a re-scaled axis
k
2
n log(

p
kn)/p (as suggested by Thm.4). These curves nearly overlap.

4 Generalization bounds and benign overfitting

In this section, we derive non-asymptotic bounds on the error of the MNI classifier, and discuss
sufficient conditions for the multiclass SVM to satisfy benign overfitting. We focus on the case of
GMM data due to space constraints, and discuss corresponding results on MLM data in the SM.

4.1 Generalization bounds for the MNI classifier

We present classification error bounds under the additional assumption of orthogonal means for ease
of exposition — this can be relaxed with some additional work as described in the SM.

Assumption 2 (Orthogonal means). In addition to Assumption 1, assume that the means are orthog-
onal, that is µT

c
µ

j
= 0, for all c 6= j 2 [k].

Theorem 5. Let Assumption 2 and condition in Eqn.(16) hold. Further assume constants
C1, C2, C3 > 1 such that

�
1 �

C1p
n
�

C2n

p

�
kµk2 > C3

p
k. Then, there exist additional constants

c1, c2, c3 and C4 > 1 such that Pe|c  (k� 1) exp
�
� kµk2

2

�
(1� C1p

n
�C2n

p
)kµk2�C3

p
k

�2

C4(kµk2
2+

kp

n
)

�
with prob-

ability at least 1� c1
n
� c2ke

� n

c3k2 , for every c 2 [k]. Moreover, the same bound holds for the total
classification error Pe.

For large enough and finite n, our bound reduces to the results in [WT21, CGB21] when k = 2 (with
slightly different constant numbers). There are two major challenges in the proof, which is presented
in the SM. First, in contrast to the binary case the classification error does not simply reduce to
bounding correlations between vector means µ

c
and their estimators ŵc. Second, just as in the proof

of Theorem 2, technical complications arise from the multiple mean components in X. We use a
variant of the recursion-based argument described in Section 3.2.1 to obtain our final bound.
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4.2 Conditions for benign overfitting

In our results thus far, we have studied the classification error of the MNI classifier (Theorem 5),
and shown equivalence of the multiclass SVM and MNI solutions (Theorems 1, 2 and Corollary 1).
Combining these results, we now provide sufficient conditions under which the classification error of
the multiclass SVM solution (also of the MNI) approaches 0 as model size p increases.
Corollary 2. Let the same assumptions as in Theorem 5 hold. Then, for finite number of classes k
and finite sample size n, there exist positive constants ci’s and Ci’s > 1, such that the multiclass
SVM classifier WSVM in (3) satisfies the symmetric interpolation constraint in (10) and its total
classification error approaches 0 as p ! 1 with probability at least 1� c1

n
� c2ke

� n

c3k2 , provided
kµk2 = ⇥(p

�
) for � 2 (1/4, 1).
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Figure 3: The plot shows the classification error
and fraction of support vectors with k = 4. We
can see the classification errors approach 0 and
the fractions of support vectors approach 1 as p

gets larger. Different colors correspond to different
mean norms.

We compare our result with the binary case
result in [CL21, WT21, CGB21]. When k

and n are both finite, condition kµk2 =

⇥(p
�
) for � 2 (1/4, 1) is the same as the bi-

nary result. Note that, like in the binary case,
Corollary 2 applies beyond the regime in which
margin-bounds would be predictive of good gen-
eralization, which would require � 2 (1/2, 1).

We now present numerical illustrations validat-
ing our results. We set the number of classes
k = 4, fix n = 40, and vary p = 50, . . . , 1200

to guarantee sufficient overparameterization.
We consider the case of orthogonal and equal-
norm mean vectors kµk2 = µ

p
p, with µ =

0.2, 0.3 and 0.4. In Fig. 3, we plot the classi-
fication error as a function of p for both MNI
estimates (solid lines) and multiclass SVM solutions (dashed lines). As we now expect, the solid and
dashed curves almost overlap. Further, as p increases, we see that the classification error decreases
towards zero. Fig. 3 shows the fraction of support vectors satisfying (10) among all the constraints
in (3). We see that the classification error goes to zero very fast when µ is large, but the proportion
of support vectors increases at a slow rate. In contrast, when µ is small, the proportion of support
vectors increases fast, but the classification error decreases slowly.

5 Conclusion and future work

Our work provides, to the best of our knowledge, the first results characterizing a) equivalence of
loss functions, and b) generalization of interpolating solutions in multiclass settings. Like almost
all benign overfitting analysis, our techniques are tailored to high-dimensional linear models with
Gaussian or independent sub-Gaussian features. Extending these results to kernel machines and
other nonlinear settings is of substantial interest. It would also be interesting to explore the potential
connections of the symmetric structure shown in Theorem 1 with the recently discovered neural
collapse phenomenon on deep nets [PHD20].
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