
I See You! Robust Measurement of Adversarial
Behavior

Lars L. Ankile
larsankile@g.harvard.edu

Harvard University

Matheus V. X. Ferreira
matheus@seas.harvard.edu

Harvard University

David C. Parkes
parkes@eecs.harvard.edu

Harvard University

Abstract

We introduce the study of non-manipulable measures of manipulative behavior
in multi-agent systems. We do this through a case study of decentralized finance
(DeFi) and blockchain systems, which are salient as real-world, rapidly emerging
multi-agent systems with financial incentives for malicious behavior, for the par-
ticipation in algorithmic and AI systems, and for the need for new methods with
which to measure levels of manipulative behavior. We introduce a new surveillance
metric for measuring malicious behavior and demonstrate its effectiveness in a
natural experiment to the Uniswap DeFi ecosystem. Find code and data here.

1 Introduction
As AI and multi-agent systems rapidly evolve, a pressing challenge is developing reliable metrics for
measuring manipulative behavior within these systems—can we develop non-manipulable measures
of the level of manipulative behavior in a multi-agent system? This is crucial for fostering robust and
trustworthy decentralized environments.

This paper uses decentralized finance (DeFi) and blockchain as case studies. These systems offer a
pertinent context due to their rapid emergence, clear incentives for malicious behavior, involvement
of algorithmic and AI systems, and the need for new methods to quantify manipulative actions (and,
in turn, the need for interventions to promote trustworthy behavior).

Figure 1: Bundles of transactions Db

originate from one of two sources, S0
(altruistic sequencer) or S1 (malicious
sequencer). Classifier h predicts source.

Decentralized exchanges such as Uniswap process over
$1 billion in daily trading volume and are primary appli-
cations for permissionless blockchains. Blockchains are
open systems where anyone can join and participate, and
decentralized exchanges have inherent security vulnera-
bilities and face attacks that require novel approaches to
detection. As researchers, the transparency of decentral-
ized exchanges is helpful, as much of the trading data is
public, enabling research into data-driven techniques to
detect manipulation.

We study detection algorithms for DeFi from the lens of
an external observer who must detect price manipulation
given only the sequences of transactions or, equivalently, the price trajectories of a particular asset.
The focus is on the role of sequencers, who receive transactions from a communication network and
decide what order the exchange executes them and may also inject and censor transactions. Concretely,
we formulate a classification problem, Figure 1, of detecting whether a communication network is

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

mailto:larsankile@g.harvard.edu
mailto:matheus@seas.harvard.edu
mailto:parkes@eecs.harvard.edu
https://github.com/ankile/defi-measurement/tree/main

connected to a malicious sequencer. A sequencer belongs to the class of altruistic sequencers S0 if
they do not manipulate transaction orders and belongs to the type of malicious sequencers, S1 if they
exploit traders. Given a database of execution orderings Db generated by a particular sequencer, the
task of h is to classify the sequencer as altruistic (i.e., b = 0) or malicious (i.e., b = 1).

Our approach defines a Surveillance metric S that maps an execution ordering T to a score S(T). We
ask if there is a surveillance metric that correlates with a high likelihood that a sequencer is malicious.
We summarize our findings as follows:

1. We introduce a new surveillance metric, Definition 1, and demonstrate by a natural experiment that
sequencers known to exploit traders have a higher surveillance metric than altruistic sequencers.

2. We argue that the metric is robust to obfuscation from an adversary using multiple identities or
more complex strategies. We provide a basis for this working hypothesis that the metric correlates
with a higher likelihood of sequencer manipulation.

Paper Organization Section 2 gives a brief introduction to DeFi. Section 3 defines the surveillance
metric S. Section 4 gives a motivating example of a sandwich attack. Section 5 gives the experimental
results. We conclude in Section 6.

2 Preliminaries: The DeFi Multi-Agent System

This section briefly describes the communication game between traders and a decentralized exchange
such as Uniswap. An exchange has a state Xt, at time t ≥ 1, and executes transactions sequentially.
In the case of Uniswap, Xt represents the capital liquidity providers have “locked" into a contract.
The communication game proceeds as follows:

1. Each trader i sends a transaction Ti to a communication network. For simplicity, assume a
transaction is either a buy order, BUY(q, p), that purchases q units of the asset at a price at most
p US Dollars or a sell order, SELL(q, p), that sells q units of the asset at a price at least p US
Dollars. We write BUY(q) = BUY(q,∞) and SELL(q) = SELL(q, 0).

2. A sequencer connects to the communication network and observes transactions T =
{T1, . . . , Tn}. The sequencer outputs some transaction ordering (Tσ1

, . . . , Tσn
) where

(σ1, . . . , σn) is a permutation of (1, . . . n). The transaction ordering a sequencer outputs differs
for each exchange. For example, a first-come-first-served sequencer would order transactions by
time—if the sequencer observes Ti before Tj , then σi < σj in the message ordering.

3. The exchange receives (Tσ1
, . . . , Tσn

) from the sequencer and consumes messages in this order;
i.e., it first consumes Tσ1

at state X1 and transitions to state X2, then it consumes Tσ2
at state X2

and changes to state X3, and so on.

We focus on detecting malicious sequencers that observe T and can choose any transaction ordering
(T ′

1, . . . , T
′
k) that contain transactions from T and may also include additional trades of their own.

An attack (or malicious behavior) happens under the following scenarios:

• Message injection. If T ′
i ̸∈ S, then T ′

i is a transaction the sequencer injects in the transaction
order. We are mainly concerned with the case where the sequencer uses their knowledge about
T to generate a transaction T ′

i that depends on S, which suggests the sequencer is using their
privileged position to profit from unsuspecting traders.

• Message deletion. If Ti ̸∈ T ′
j for any j, then the sequencer censored Ti from trader i.

• Message reordering. Given a set of transactions {T ′
1, . . . , T

′
k}, the sequencer picks any ordering

(T ′
1, . . . , T

′
k) they wish.

A sandwich attack is an especially salient example of an attack on a decentralized exchanges
(Example 1). A sandwich attach results in risk-free profits for the sequencer and contributes to
a phenomenon known as Maximal Extractable Value (MEV) [2]—which refers to the profits that
autonomous agents can “extract" from blockchain systems.

Example 1 (Sandwich attack). Suppose a single trader sends a buy order BUY(q). In the attack,
the sequencer picks the ordering (BUY(w), BUY(q), SELL(w)) where {BUY(w), SELL(w)} are the

2

attacker’s transactions. BUY(w) drives the asset’s price higher. This induces BUY(q) to the trade
at a higher price, increasing the asset’s price a second time. Finally, after SELL(w) executes, the
attacker sells w units of the token at a higher price than they bought, yielding risk-free profits.

Sandwich attacks can be detected via rule-based mechanisms [13, 4, 8]. For example, if an execution
ordering contains the pattern (. . . , BUY(w), BUY(q), SELL(w), . . .) where BUY(w) and SELL(w)
are transactions from the same trader, then we might flag the communication network as exploiting
trade BUY(q). Traders have options regarding the communication networks through which they
transmit their transactions and could use this simple detection mechanism to avoid risky networks.

However, these kinds of rule-based detection mechanisms are easy to obfuscate. In our example, if
BUY(w) and SELL(w) are transactions from different traders controlled by our attacker, then the
attack would pass undetected (See Appendix B for additional rule-based mechanisms and ways
attackers can circumvent them). Rule-based surveillance systems are not unique to DeFi. Financial
Industry Regulatory Authority (FINRA) surveillance program traditionally relies on rule-based
programming and, due to their limitations, there is interest in adopting data-driven approaches [7].

3 The Surveillance Metric

We now introduce our surveillance metric, which measures how much prices deviate from the initial
price p(∅), defined as the asset price before any transaction executes. Formally, let p(T) be the asset
price after transactions in T execute, and define T≤i := (T1, . . . , Ti) as the execution ordering of the
first i transactions in T .
Definition 1 (p-Surveillance Metric). The p-surveillance metric for p ≥ 1 is Sp(T) =

(
∑n

i=1 |p(T≤i)− p(∅)|p)
1
p .

There are instances where the surveillance metric will always be large for any permutation of T . For
example, consider a case with n identical buy orders BUY(q). Any permutation of these transactions
will have the same surveillance metric, and this grows proportionally with n.

Thus, we also normalize the metric as follows. Formally, let the optimal execution ordering T ∗ be
the permutation of T that minimizes the surveillance metric, that is T ∗ ∈ argminT ′ Sp(T

′).

Given this, the normalized surveillance metric is defined as S̄p(T) :=
Sp(T)
Sp(T∗) − 1. We devise a

polynomial time heuristic in Appendix D to approximate T ∗.

4 Motivating Example: Surveillance Metric on the Sandwich Attack

The surveillance metric quantifies how much prices deviate from the initial price before any transaction
is executed. This section uses a sandwich attack to explain why this metric correlates with a sequencer
manipulating the execution order.

Recall that a trader u will communicate a transaction Tu = BUY(1) in a sandwich attack. If the
execution ordering is (Tu), the asset price increases from p0 to p1 Figure 2a. Suppose instead
the adversary picks the execution ordering (BUY(2), Tu, SELL(2)). After (BUY(2), Tu, SELL(2))
execute, Figure 2b, the asset price increases first from p0 to p1 > p0, then from p2 > p1, and finally
decreases from p2 to p1. Although the final asset price is the same on both execution orderings (Tu)
and (BUY(2), Tu, SELL(2)), u gets a worse price, and the sequencer receives risk-free profits.

When we reorder the execution ordering (BUY(2), Tu, SELL(2)) to minimize the surveillance metric,
we obtain (BUY(2), SELL(2), Tu), Figure 2c. The metric minimizing ordering causes no harm to u
since it receives the same execution price as in the execution ordering (Tu). This example motivates
analyzing deviations from the baseline price p0.

Observe our surveillance metric is invariant to an adversary that obfuscates an attack by (1) having
multiple trader IDs and (2) splitting a transaction into multiple smaller transactions. For exam-
ple, BUY(2) and SELL(2) could be transactions from different trader IDs the adversary controls.
Moreover, the adversary can split BUY(2) into k transactions BUY(x1), . . . , BUY(xk) such that∑k

i=1 = 2 (potentially with each BUY(xi) coming from a different trader ID). Our surveillance
metric is invariant to either transformation. See Appendix C for another example and failure mode.

3

P
ric

e
(y

 /
 x

)

1

(a) Standalone execution of
Tu

P
ric

e
(y

 /
 x

)

1 2 3

(b) Sandwich attack

P
ric

e
(y

 /
 x

)

1 2 3

(c) Alternate permutation

Figure 2: (a) Fair transaction ordering. (b) Manipulated transaction ordering. (c) The transaction
ordering that minimizes the surveillance metric.

5 Experimental Results: A Natural Experiment on Ethereum

S1 S2 S
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Va

lu
e

S p
 o

ve
r B

lo
ck

s

Comparison of Sp by Building Mechanism
Altruistic
MEV-boost

Figure 3: Blocks built through the MEV-boost
auction mechanism show a significant in-
crease in our measure S̄p compared to blocks
built by altruistic sequencers. The mean is cal-
culated by finding S̄p for each block and tak-
ing the mean value over blocks within groups.

In this section, we report the results of a natural
experiment in the Uniswap DeFi ecosystem on the
Ethereum blockchain. In our empirical study, exe-
cution orderings originate from one of two sources.
This natural experiment takes advantage of MEV-
boost. This technology allows blockchain operators
to implement an auction where autonomous agents
can compete to be the sequencer. Although around
85% (Figure 10, [14]) of transactions are chosen via
MEV-boost, blockchain operators are not required to
auction their transaction sequencing on this auction.

Consider a malicious transaction sequencer. They
are likely to be more competitive on the MEV-boost
auction because they can redirect part of their prof-
its from manipulation to bids on the auction. Con-
versely, altruistic sequencers are likely less competi-
tive on MEV-boost. Indeed, sequencers participating
in MEV-boost are believed to extract value from ex-
ploiting the execution price of vulnerable traders [9].
Thus, execution orderings originating from an MEV-
boost sequencer provide our first source of sequenced
transactions. All remaining execution orderings constitute our second source. Our working hypoth-
esis (that we confirm) is that transaction orderings coming from the first source will have higher
surveillance metrics than in the second source.

We experiment with Uniswap trading data to validate that sequencers participating in MEV boost
have higher surveillance metrics. We collect all Uniswap V3 transactions on the Ethereum blockchain
since the launch of the MEV-boost auction, Sept. 15th, 2022, to Aug. 7th, 2023, 1,866,537 blocks
and 7,994,736 trades in total.1 For our experiments, we compute S̄p(T) for p = 1, 2, and∞ for
each execution ordering T that contains three or more transactions. We average the normalized
surveillance metric for execution orderings from the same source and plot the results in Figure 3. The
results show the average surveillance metric is substantially higher for sequencers who participate in
MEV-boost than those who do not (and this difference is highly statistically significant, Appendix G).
This holds for our choices of p. This validates our hypothesis that the surveillance metric is a valuable
measure of manipulative behavior in this complex blockchain ecosystem. We present further analysis
in Appendix F.

6 Conclusion

With the rise of multi-agent systems involving economic incentives, it is invaluable to develop tools
to detect manipulation. We take Uniswap DeFi as a case study due to clear evidence of manipulative
behavior. We propose a surveillance metric to detect price manipulations in Uniswap that is robust

1See Appendix E for details. We will make the full dataset and all code publicly available in the final version.

4

to an adversary attempting to obfuscate an attack. We validate our metric on a natural experiment
and show it can distinguish altruistic and malicious transaction sequencers with high confidence.
Our surveillance mechanism provides a quantitative measure of the credibility of DeFi by allowing
external observers to audit [5]. Our inquiry leaves many experimental and theoretical questions.
Theoretically, one could ask for sufficient conditions for a surveillance metric to be non-decreasing
with an adversary’s utility. That is particularly relevant because, although an adversary’s utility is
non-observable, any external observer can compute our surveillance metric.

Acknowledgments

We thank Austin Adams and Xin Wan from Uniswap Labs for their invaluable help with data
collection and deciphering.

5

References
[1] M. Allwood. The satterthwaite formula for degrees of freedom in the two-sample t-test. The

College Board, 2008.

[2] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels. Flash
boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus
instability. Proceedings - IEEE Symposium on Security and Privacy, 2020-May:1106–1120,
May 2020. ISSN 10816011. doi: 10.1109/SP40000.2020.00040. Publisher: Institute of
Electrical and Electronics Engineers Inc. ISBN: 9781728134970.

[3] B. Derrick, D. Toher, and P. White. Why welch’s test is type i error robust. The quantitative
methods for Psychology, 12(1):30–38, 2016.

[4] EigenPhi. Recognizing Cross-Transaction Sandwich MEV, May 2023. URL
https://eigenphi-1.gitbook.io/classroom/eigenphis-methodologies/
how-eigenphi-identifies-mev/recognizing-cross-transaction-sandwich-mev.

[5] M. V. X. Ferreira and D. C. Parkes. Credible Decentralized Exchange Design via Verifiable
Sequencing Rules. Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
2023. arXiv: 2209.15569v2.

[6] M. V. X. Ferreira and S. M. Weinberg. Proof-of-Stake Mining Games with Perfect Randomness.
In Proceedings of the 22nd ACM Conference on Economics and Computation, pages 433–453,
July 2021. doi: 10.1145/3465456.3467636. URL http://arxiv.org/abs/2107.04069.
arXiv:2107.04069 [cs, econ].

[7] FINRA, Jun 2022. URL https://www.finra.org/sites/default/files/2020-06/
ai-report-061020.pdf.

[8] Flashbots. Maximal extractable value inspector for Ethereum, to illuminate the dark forest,
2021. URL https://github.com/flashbots/mev-inspect-py.

[9] Flashbots. Flashbots mev-boost, 2023. URL https://github.com/flashbots/
mev-boost#how-does-mev-boost-work.

[10] K. Qin, L. Zhou, and A. Gervais. Quantifying Blockchain Extractable Value: How dark is the
forest? Proceedings - IEEE Symposium on Security and Privacy, 2022-May:198–214, 2022.
ISSN 10816011. doi: 10.1109/SP46214.2022.9833734. arXiv: 2101.05511 Publisher: Institute
of Electrical and Electronics Engineers Inc. ISBN: 9781665413169.

[11] G. D. Ruxton. The unequal variance t-test is an underused alternative to student’s t-test and the
mann–whitney u test. Behavioral Ecology, 17(4):688–690, 2006.

[12] D. S. Starnes, D. Yates, and D. S. Moore. The practice of statistics. Macmillan, 2010.

[13] C. F. Torres, R. Camino, and R. State. Frontrunner Jones and the Raiders of the Dark Forest:
An Empirical Study of Frontrunning on the Ethereum Blockchain. 30th USENIX Security
Symposium (USENIX Security 21), Feb. 2021. URL http://arxiv.org/abs/2102.03347.
arXiv: 2102.03347.

[14] A. Wahrstätter, L. Zhou, K. Qin, D. Svetinovic, and A. Gervais. Time to Bribe: Measuring
Block Construction Market. Cryptology ePrint Archive, Paper 2023/760, May 2023. arXiv:
2305.16468.

[15] Y. Wang wangye, e. ETH Zurich Zurich, S. Patrick Zuest, E. Zurich Zurich, S. Yaxing Yao,
Z. Lu, R. Wattenhofer wattenhofer, Y. Wang, P. Zuest, Y. Yao, and R. Wattenhofer. Impact and
User Perception of Sandwich Attacks in the DeFi Ecosys-tem. Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, 2022. doi: 10.1145/3491102.3517585.
URL https://doi.org/10.1145/3491102.3517585. ISBN: 9781450391573.

[16] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais. High-frequency trading on decentralized
on-chain exchanges. Proceedings - IEEE Symposium on Security and Privacy, 2021-May:428–
445, May 2021. ISSN 10816011. doi: 10.1109/SP40001.2021.00027. arXiv: 2009.14021
Publisher: Institute of Electrical and Electronics Engineers Inc. ISBN: 9781728189345.

6

https://eigenphi-1.gitbook.io/classroom/eigenphis-methodologies/how-eigenphi-identifies-mev/recognizing-cross-transaction-sandwich-mev
https://eigenphi-1.gitbook.io/classroom/eigenphis-methodologies/how-eigenphi-identifies-mev/recognizing-cross-transaction-sandwich-mev
http://arxiv.org/abs/2107.04069
https://www.finra.org/sites/default/files/2020-06/ai-report-061020.pdf
https://www.finra.org/sites/default/files/2020-06/ai-report-061020.pdf
https://github.com/flashbots/mev-inspect-py
https://github.com/flashbots/mev-boost#how-does-mev-boost-work
https://github.com/flashbots/mev-boost#how-does-mev-boost-work
http://arxiv.org/abs/2102.03347
https://doi.org/10.1145/3491102.3517585

[17] P. Züst, T. Nadahalli, and Y. Wang Roger Wattenhofer. Analyzing and Preventing Sandwich
Attacks in Ethereum. ETH Zürich, 2021. URL www.DeFi-Sandwi.ch.

7

www.DeFi-Sandwi.ch.

A Related Work

Besides the AMM DEXs considered in this work, many other decentralized exchanges, e.g., limit
order book-based, auction-based, off-chain matching, and payment channels, exist and are addressed
in the literature[16]. AMMs are still the most prevalent mechanism for trading on the blockchain.

Daian et al. [2] coined the term Miner Extractable Value (MEV), focusing on Priority Gas Auctions
(PGA) for exploiting unconditional profit through atomic transactions. With the transition to Proof-
of-Stake (PoS) Ethereum and the introduction of Proposer-Builder Separation (PBS), PGAs have
been replaced by Flashbots’ MEV-boost auctions. Sandwich attacks, central to this study, emerged as
revenue opportunities within MEV-boost auctions, as they cannot be executed atomically within a
single transaction.

Zhou et al. [16] offered a formal definition and early quantification of sandwich attacks, along with
estimating the attackers’ profit potential. Before PBS, these attacks required complex PGAs, where
attackers strategically outbid and underbid victims and other adversaries. Zhou et al. [16] identified
minimum victim transaction sizes of approximately 22 ETH and 15 ETH for Uniswap’s ETH/SAI and
ETH/DAI pools, respectively. They conducted an empirical analysis by establishing an adversarial
Ethereum node that monitored the mempool for victim transactions, focusing on those generated by
themselves, and executed attacks accordingly.

Wang wangye et al. [15] analyze the presence of sandwich attacks from the victims’ perspective,
i.e., regular users, thus focusing on the losses they incur instead of the gains the attackers accrue.
They show empirically that from May 2020 to April 2021, the absolute number of sandwich attacks
increased meaningfully, and the proportion of potential sandwich attacks exploited increased.

Torres et al. [13] empirically analyzed various attack vectors (displacement, insertion, and sup-
pression) from 2018 to 2020 before Uniswap V3 and PoS Ethereum. Their work highlighted the
prevalence of insertion attacks in Uniswap V2 and the challenges attackers faced in controlling
frontrunning and backrunning transactions through gas prices in PGAs.

Qin et al. [10] performed a 32-month-long study of Blockchain Extracted Value (BEV), i.e., what
we term MEV. The study considered the attack vectors of sandwiches, liquidations, arbitrage, and
transaction replay. They estimate BEV-extraction in the period to amount to $541M, with sandwich
attacks contributing $174M of them. As most other retrospective measurements of sandwich attack
revenue, they rely on rules or heuristics to detect explicit attacks.

Wahrstätter et al. [14] explored the changes in the block builder market after Ethereum’s transition
from Proof-of-Work (PoW) to PoS in September 2022, enabling PBS. They argued that PBS, despite
its decentralization goals, might have introduced more implicit trust assumptions. Under PBS, the
Ethereum blockchain involves three main actors: Searchers, Builders, and Relays, with MEV-boost
having a dominant share in block proposing. The study found that block proposers were compensated
approximately 160,000 ETH during the study period.

B Summary of other Sandwich Attack Detection Methods

In this section, we use the term frontrunning to mean any transaction inserted by an adversary such
that it executes on the exchange before the victim’s transaction executes. The opposite case, where
an adversary inserts a trade after the victim, is called backrunning. The combination of a frontrun
and backrun attack is known as a sandwich attack. All of the below methods are designed to detect
sandwich attacks.

Furthermore, in the context of the Ethereum-based exchange Uniswap,2 the most popular Decentral-
ized Exchange (DEX) currently, each market for a specific asset is called a pool. This comes from
the fact that markets function by letting users trade against a reserve of assets locked in the exchange
instead of having an explicit counterpart. This reserve is called a liquidity pool.

As on standard stock exchanges, any trade incurs trading fees. In the context of the Ethereum
blockchain, these fees are called gas fees. Gas fees incur whenever a computation happens on the
blockchain. So, as an example, a complex arbitrage strategy involving many trades will incur more
gas fees than a simple trade.

2https://docs.uniswap.org/

8

Lastly, when trading on the blockchain, there is no notion of Know Your Customer (KYC) as in
traditional finance. Instead, all participants are assigned a random and unique ID called an address.
One person can create as many addresses as they want very cheaply.

B.1 Summary of Limitations of Current Detection Methods

We examine various methods for detecting sandwich attacks on the Ethereum blockchain, focusing
on Flashbots’ MEV-inspect-py due to its prominence in the ecosystem. The code and heuris-
tics for these methods are detailed in Appendix B. Flashbots’ approach has three key limitations
(Appendix B.2):

1. Address Matching: Attackers can evade detection by using different addresses (accounts) for
frontrunning and backrunning and rebalance between them in a later block.

2. Indirect Calls: The method excludes transactions to Uniswap router contracts, as trading through
the router can incur higher fees. However, the gas cost is often not prohibitive.

3. Volume Splitting: By breaking the frontrunning or backrunning swap into smaller transactions,
attackers can make a profitable sandwich attack go undetected or appear unprofitable if it is.

Other models, such as those by EigenPhi [4] and Züst et al. [17], share similarities with Flashbots
and are discussed in Appendix B.3. The model by Torres et al. [13] employs heuristics like address
and amount matching but allows for a 1% variance in amounts (Appendix B.4). Qin et al. [10] is
more tolerant of volume discrepancies, allowing up to a 10% difference between frontrunning and
backrunning transactions. A common assumption in these models is the presence of a single victim
transaction, offering another avenue for attack obfuscation. Another interesting hidden assumption
in all methods studies is the implicit choice of utility function for the attacker (the subject of future
work).

Incentives for Obfuscation: Since blockchains are unregulated, adversarial behavior is not pros-
ecuted. Still, some actors, such as wallet providers and trusted block builders, may have strong
incentives to obscure their malicious activities to maintain user trust.

B.2 Flashbots sandwich detection code

This part contains a distillation of the detection code in the MEV-inspect-py package Flashbots
uses to calculate their estimates of MEV extracted. Please see the documentation3 and GitHub code4

for more.

In short, their heuristics-based approach relies on these rules:

1. If the suspected frontrunning swap comes from a router contract,5 abort detection. This is likely
done to make attribution easier and is probably deemed reasonable because the attacker will incur
slightly higher fees by employing this obfuscation tactic.

2. Frontrunning, victim, and backrunning transactions must be sent to the same liquidity pool.

3. For a transaction to be counted as a victim transaction, it must happen after the frontrunning
transaction and be in the same direction, i.e., be a buy transaction if the frontrunning transaction
buys.

4. For a transaction to be counted as a backrunning transaction, there has to be at least one victim,
and it needs to be in the opposite direction of the frontrunning transaction and needs to have
the same address as the frontrunning swap. At the first swap that satisfies these conditions, the
procedure terminates.

5. The estimated profit of the attack is calculated as the difference between the assets the attacker
got out in the backrunning transaction and the assets they put in in the frontrunning transaction.

3https://docs.flashbots.net/flashbots-data/mev-inspect-py/overview
4https://github.com/flashbots/mev-inspect-py/tree/main
5Essentially code that takes an order to any trading pool and sends it (reroutes it) to the correct market. See

more at https://docs.uniswap.org/contracts/universal-router/overview.

9

https://docs.flashbots.net/flashbots-data/mev-inspect-py/overview
https://github.com/flashbots/mev-inspect-py/tree/main
https://docs.uniswap.org/contracts/universal-router/overview

Most of these rules are reasonable and not possible to fool. Rules 4 and 5 are vulnerable, though.
This detector fails if the attacker performs the frontrunning and backrunning attacks from different
addresses. Also, suppose the attacker splits either frontrunning or backrunning transactions in two. In
that case, the profit calculation in rule 5 will wrongly calculate the profit (and the attack might seem
unprofitable if the attacker splits the backrunning transaction).

B.3 EigenPhi

Another important player in the space of detecting MEV is EigenPhi.6 They have a quite complex
detection engine that looks for several types of MEV besides sandwich attacks. All the detection
methods are rule-based. We summarize the heuristics they use in detecting sandwich attacks below.
See their documentation for more details.7

1. They analyze every block and look first for a pair of transactions that might constitute a fron-
trunning and backrunning transaction. This is done by looking for any two transactions that are
(1) sent to the same liquidity pool, (2) are in opposite directions, and (3) come from the same
address.

2. Whenever such a pair of transactions is located, they analyze the transactions executed between
them in the same block. If a transaction sent from a different address trades in the same direction
as the frontrunning transaction, it is deemed a victim. It is unclear whether there can be multiple
victims.

3. The profit is calculated by netting out the assets paid and received in the frontrunning attack with
the assets from the backrunning attack.

As in the case for Flashbots in Appendix B.2, the EigenPhi method fails if the attacker uses different
addresses for the frontrunning and backrunning attacks. Using additional addresses is simple and
only requires simple balancing between the accounts in later blocks. Also, with this method, the
profit estimate can be entirely wrong if the attacker splits one of the pieces of the sandwich in two.

B.4 Torres et al. [13] Sandwich Detection Heuristics

Torres et al. [13] presented a rigorous study of sandwich attacks. They rely on the same notions
we defined at the start of this appendix, Appendix B, but use a different notation. They use r and
s to denote the unique addresses assigned to users on the blockchain. more specifically, rj denotes
the reciving address of a transaction sent by user j, and sj denotes when the address of user j is
registered as the sender of a transaction. The above notation summarizes their detection rules in the
following 6 heuristics.

1. The frontrunning address and backrunning address must be equal (rA1 = sA2).

2. The number of tokens bought in the frontrunning transaction must be within 1% of the tokens
sold in the backrunning transaction.

3. All transactions must interact with the same pool (and be in the same block).

4. All sandwich transactions must have different transaction hashes.

5. The transaction indices of the frontrunning, victim, and backrunning transactions must be such
that that was the realized order.

6. The gas prices must be in descending order of frontrunning, victim, and backrunning transaction.

As with most methods, this one also fails if the attacker uses different addresses for the frontrunning
and backrunning transactions (rule 1). Furthermore, where Flashbots’ and EigeinPhi’s methods will
misestimate profits if the attacker splits transactions, this method will fail to detect the attack (rule 2).

6https://eigenphi.io/
7https://eigenphi-1.gitbook.io/classroom/eigenphis-methodologies/

how-eigenphi-identifies-mev/recognizing-cross-transaction-sandwich-mev, accessed
August 21st, 2023.

10

https://eigenphi.io/
https://eigenphi-1.gitbook.io/classroom/eigenphis-methodologies/how-eigenphi-identifies-mev/recognizing-cross-transaction-sandwich-mev
https://eigenphi-1.gitbook.io/classroom/eigenphis-methodologies/how-eigenphi-identifies-mev/recognizing-cross-transaction-sandwich-mev

B.5 Qin et al. [10] Sandwich Detection Heuristics

Qin et al. [10] also perform an insightful and rigorous analysis of sandwich attacks, but from the
perspective of the victim, not the attacker (which is customary). Here, as well, we need to introduce
some minor notation. Like us, they denote transactions as Tj , where transactions with j =∈ {A1, A2}
belong to the attacker, and j = V is the victim transaction. Where we denote the state of the liquidity
pool as X = (X1, X2), they use X = X1 and Y = X2. The heuristics they used are summarized
below.

1. Transactions for frontrunning TA1, victim TV , and backrunning TA2 must be in the same block
and executed in that order.

2. Each frontrunning transaction TA1 is matched with exactly one backrunning transaction TA2.

3. TA1 and TV transact in the same direction, e.g., from X to Y , and TA2 transaction in the opposite
direction, from Y to X .

4. The requirement of frontrunning and backrunning transactions coming from the same address is
relaxed, and they only require TA1 and TA2 to be sent to the same smart contract address.

5. The assets sold in TA1 must be within 90% ∼ 110% of the assets bought in TA2, further relaxing
the matching requirement.

Contrary to all other methods analyzed, this method places no requirement on the address of the fron-
trunning and backrunning transactions and is thus not prone to be fooled by this simple obfuscation
tactic (rule 4). However, the method will fail to recognize sandwich attacks where the attacker splits
either of their transactions such that the transaction volumes differ by at least 10% (rule 5).

C Additional motivating examples

In Section 4, we saw that extracting profits by constructing a sandwich attack is simple when only
one user transaction is in the block B. This attack is, however, not permissible if the sequencer is
subject to the verifiable sequencing rule put forth by Ferreira and Parkes [5] (defined in Definition 3
and pseudo code in Algorithm 1). In these simple cases, one can easily guarantee that no attack
occurred by checking whether the 3 swaps in a block satisfy the sequencing rule, i.e., requiring a
transaction order like (SELL, BUY, BUY) or (BUY, SELL, BUY).

The picture is more complicated in cases with more transactions in a block, |B| > 1. In the case
where all user transactions are either all BUY or all SELL, the finding above still applies, as they can
equivalently be considered pieces of one big transaction.

When user transactions are in opposite directions, values can be extracted while conforming to
the sequencing rule, making detecting attacks more difficult. Let us consider an example where
the original block has two user transactions B(a) = {Tu, Tv}, with Tu = BUY(qu, pu) and Tv =
SELL(qv, pv). The way to extract the maximal sandwich value given B(a) is to sandwich each user
transaction separately, subject to their respective limit prices pu and pv, by inserting transactions
{T1, T2, T3, T4} into B(a), creating B(b), ordered as T (b) = (T1, Tv, T2, T3, Tu, T4), as shown in
Figure 4b. Note: In practice, T2 = BUY(q2) and T3 = BUY(q3) would be merged into T2,3 =
BUY(q2 + q3).

Under the sequencing rule, however, T (b) would not have a valid transaction sequence. In this
case, the attacker can let Tv execute first, moving the baseline price to a new, lower level p1. From
this new level, the attacker can now insert a frontrunning BUY transaction that exactly undoes Tv,
T1 = BUY(qu), then let Tu execute, and perform the backrun T2 = SELL(qu) creating the order
T (c) = (Tv, T1, Tu, T2), as shown in Figure 4c. Again, the attacker’s profit (before fees) equals the
difference between the price that user u would have paid if starting from p1 and the one they did pay,
starting from p0. Interestingly, in this case, the optimal sandwich of Tu depends only on the volume
of Tv , qv , and not on qu or pu. This sequence of transactions has a decreased transaction order score
than the maximal sandwich shown in Figure 4b, Sp(T

(c)) < Sp(T
(b)).

If we consider the same set of transactions as in Figure 4c, B(c) = {Tu, Tv, T1, T2}, we can reorder
them to create the order T (d) with a smaller order score Sp(T

(d)) < Sp(T
(c)) < Sp(T

(b)), shown in

11

Figure 4d. With this order of transactions, no actor can have made risk-free profits from a sandwich
attack. This can be checked by partitioning the set of 4 transactions into two sets and checking for
risk-free profits in any partition. This order also motivates the heuristic presented in Appendix D, as
the important change between Figure 4d and Figure 4e is that the smallest transaction is first in the
former, but not in the latter.

Until now, a reduced order score Sp has meant less sandwich MEV extracted. However, by considering
Figure 4e, it becomes clear that a higher score does not necessarily imply the presence of an attack,
as no profitable sandwich exists in this block, B(e).

P
ric

e
(y

 /
 x

)

1 3 5

2

4 6

(a) Standalone execution of two
user transactions Tu and Tv .

P
ric

e
(y

 /
 x

)

1 3

5

2

4 6

(b) The optimal sandwich attack
on the two user transactions by at-
tacking each transaction indepen-
dently.

P
ric

e
(y

 /
 x

)

3 52

4

6

1

(c) A revised attack that conforms
to the sequencing rule (T c ∈ C)
through using Tv to change the
baseline before attacking Tu.

P
ric

e
(y

 /
 x

)

1 3 5

4

6

2

(d) By reordering the same set of
transactions in T c to minimize the
order score Sp.

P
ric

e
(y

 /
 x

)

3

54 6

1 2

(e) The greedy sequencing rule
can lead to execution orderings
that do not minimize Sp.

Figure 4: When there are 2 user transactions Tu and Tv (shown in the first plot), the problem of
detecting attacks. The second plot shows how much the deviation from the baseline increases when a
sandwich attack is inserted. With two user transactions, it is possible to create valid sandwich attacks
under the greedy sequencing rule. Notice that there is a successful attack in (c) but not in (e), but the
score for the order in (c) Sp(T

c) is larger than the order in (e) Sp(T
e).

D Heuristic Approximation to the Optimal Execution Order

In this section, we introduce the polynomial-time algorithm for approximating the optimal transaction
order T ∗. Before we present the algorithm, we start by introducing a concept crucial for constructing
valid transaction sequences, a verifiable sequencing rule Ferreira and Parkes [5].

Definition 2 (Verifiable Sequencing Rule). A sequencing rule, where all valid sequences under which
is defined as the set C, is verifiable if there is there exists a polynomial time algorithm to check for
any block order T if T ∈ C.

Ferreira and Parkes [5] also presents a greedy algorithm that is an efficient instance of a verifiable
sequencing rule, called a greedy sequencing rule, defined below. The complete algorithm is given in
Algorithm 1 in Appendix D.

Definition 3 (Greedy Sequencing Rule). In three steps, the greedy sequencing rule constructs valid
and verifiable sequences T ∈ C. (1) split the set of transactions into the set of buys and the set of
sells, B = QBuy ∪ QSell. (2) As long as |QBuy| > 0 ∧ |QSell| > 0, execute any remaining sell
order if current price pt ≥ p0, otherwise execute any buy. (3) When only buy or sell orders remain,
execute them in any order.

12

Since the set of transaction orders produced by the greedy sequencing rule is a subset of all orders,
we use the following theorem to restrict the search space from Bn to C.
Theorem 1. Any optimal T ∗ ∈ argmin

T∈Bn

S(T) is also a valid ordering under the greedy sequencing

rule, i.e., T ∗ ∈ C.

Proof. See Figure 5 for visual intuition. We show this by contradiction. Assume an optimal T ∗ is
not contained in C, i.e., ∃T ∈ Bn s.t. T ∈ argminT∈Bn

∧ T ̸∈ C. From T ̸∈ C, we know that at
least one set of two consecutive buy orders must execute at a price > p0 followed by a sell order.
Denote the sell order Tv and the buy order immediately preceding it Tu, shown in Figure 5a. From
here, we can swap the order of Tu, Tv to construct an alternate order T ′, shown in Figure 5b. Now,
it is easy to see that S(T) > S(T ′) since the prices before and after Tu, Tv executes, Pt, Pt+2, are
the same regardless of the order, while the price between Tu, Tv executes, Pt+1, is strictly smaller.
But since S(T ′) is smaller than for the assumed optimal T , T cannot be optimal, showing that our
original assumption is wrong, i.e., T ∗ ∈ C.

(a) The assumed optimal ordering
T .

(b) Alternative ordering T ′ that
complies with sequencing rule is
strictly better than the original.

Figure 5: Visual intuition for why any optimal transaction execution order must conform to the
verifiable sequencing rule.

Ferreira and Parkes [5] prove that when the greedy sequencing rule is applied, a large class of
exploitative attacks are no longer feasible, providing a solid level of user protection. We also
empirically see reduced deviations from baseline under the sequencing rule, providing more robust
evidence for the validity of our approach.

D.1 Volume Heuristic Greedy Sequencing Rule

In Algorithm 1, we present our version of the greedy sequencing rule put forth by Ferreira and
Parkes [5]. The main algorithm is the same, and the main addition is that where they allow any valid
transaction to execute in any order, we always complete the smallest transaction among the valid
ones. Looking at an example sequence in Figure 6 might be helpful to understand the algorithm.

Before the algorithm executes, it needs a vector X0 that defines the initial state of the exchange, in
terms of the currently locked up token reserves (X0,1, X0,2) at time t = 0. In the algorithm, we
represent the state by the current price in the exchange xt

Xt,2

Xt,1
. We also have an unordered set of

transactions B = {T1, ...Tn} that are available for execution that the sequencer might have picked up
from the public peer-to-peer network, received directly from MEV searchers through bribes [14], or
they created themselves. Each transaction Ti = Buy(qi, pi) (or Sell) defines the number of tokens qi
to trade and a limit price pi for the trade. The output of the algorithm will be an ordered sequence
of the n transactions in B, T = (Tσ1

, ..., Tσn
), with the permutation operator σi defined by the

algorithm.

The algorithm partitions the set of transactions B into the subset of buy orders Qbuy and the subset of
sell orders QSell before processing any transactions. The basic greedy sequencing rule by Ferreira
and Parkes [5] does not restrict how the transactions in each of these queues are ordered. In this
algorithm, though, we sort by the transaction volume qi in ascending order. Then, as long as both buy
and sell orders are left, we execute the next buy order if the current price xt is below the initial price

13

x0, or the next sell order otherwise. When there are only buy transactions or only sell orders, they are
all executed according to the order regardless of the current state xt. We analyze the performance of
the approximation in Appendix D.2.

Algorithm 1 Volume Heuristic Approximation to T ∗

1: Input: Initial pool state X0; Set of transactions B
2: Output: Execution ordering T s.t. S(T) ⪆ S(T ∗)

3: Initialize T to an empty list
4: Partition B into the subset of buy orders Qbuy ⊆ B and sell orders Qsell ⊆ B
5: Order Qbuy and Qsell according to transaction volume ascending

6: while |Qsell| > 1 and |Qbuy| > 1 do
7: t← |T |
8: if xt = x0 then
9: A← pop off the A ∈ {Qbuy

1 , Qsell
1 } that minimizes |xt+1 − xt|

10: else if xt ≤ x0 then
11: A← pop off the smallest buy order Qbuy

1
12: else
13: A← pop off the smallest sell order Qsell

1
14: end if
15: Append A to the end of T
16: xt+1 ← the result of executing A
17: end while
18: If Bbuy ∪Bsell is non-empty, append all A ∈ Bbuy ∪Bsell to T

(a) The observed transaction execution order in a
realized block B.

(b) A counterfactual order of B ordered according
to the volume-based heuristic in Algorithm 1.

Figure 6: This example shows how the realized block price trajectory can be effectively changed to
something with smaller Sp(T). Interestingly, the left figure contains an order that could constitute a
sandwich attack, while it is entirely removed in the order produced by the heuristic.

D.2 Empirical Comparison of Heuristic T̂∗ to T ∗

To empirically validate that the approximation to the optimal execution order T ∗ produced by
Algorithm 1, we calculate the true optimal T ∗ for each of the p-norms S1, S2, S∞ for blocks small
enough to allow for enumeration, |B| < 8. Note: This analysis is performed on a subset of the data
for which the realized order T has a different score than the optimal T ∗, i.e., S1(T) ̸= S1(T

∗) to
weed out possibly trivial cases. Figure 7a shows the distribution of values of S1(T) for the heuristic
ordering divided by the true S1(T

∗) on a log scale. This makes it apparent that the heuristic agrees
exactly with the optimal in most cases, even for the ‘hard’ subset of pool-block pairs. Figure 7b shows
the percentage of blocks where the heuristic exactly equals the true optimal for the subset of the data.
The heuristic agrees with the optimal in 71% to 87% of the pool-block pairs measured. Figure 7c
shows what the mean deviation from the optimal score is, i.e., we calculate 1

N

∑
B

Sp(T
′)

Sp(T∗) for each

14

block B for which S1(T) ̸= S1(T
∗). The mean deviation ranges from 1.031 to 1.050. Considering

that these numbers are for the subset of transactions that are not trivial, the numbers for the entire
dataset would be much closer to optimal. This makes us conclude that this approximation is serving
its purpose.

(a) Histogram for the distribution
of the heuristic order score di-
vided by the true optimal score
S1(T

′)
S1(T∗) for |B| < 8

(b) When removing cases where
the original order was not optimal,
the heuristic order T ′ is optimal
in 85%, 87%, and 71% of cases
for the S1, S2, and S∞ scoring
functions, respectively.

(c) The mean ratio between the
score Sp for the heuristic order T ′

to the true optimal T ∗ whenever
the realized is not optimal is 1.05,
1.04, and 1.03 for S1, S2, and S∞,
respectively.

Figure 7: Comparisons of the approximation to the optimal execution ordering T ∗ achieved with
Algorithm 1 of the true value of T ∗ in those cases where it is feasible to calculate it by enumeration
(|B| < 8).

E Dataset and Data Collection

E.1 Data Description

To perform the empirical analysis, we collect a dataset of all Uniswap V3 swaps written to the
Ethereum blockchain since the launch of the Proposer-Builder Separation (PBS) implementation
MEV-boost. The dataset encompasses data from 1,866,537 blocks, from block 15,537,940, written
September 15, 2022, to block 17,864,015, written August 7, 2023. There are 7,994,736 swaps in
6,292 different pools, and we analyze 6,864,029 block-pool pairs, i.e., the number of blocks with
swaps for each pool. The dataset includes a binary variable indicating whether the block was proposed
through the MEV-boost auction mechanism (i.e., the vanilla block-proposing mechanism). About
87% of the blocks in the dataset were proposed through the MEV-boost auction. All data used will be
publicly available for reproducibility and further analysis.

E.2 Data Collection System

To collect the data we used in the analyses in this work, we had to prepare some infrastructure.
See Figure 8 for a schematic overview of the system (made using Lucid Chart software8). The
system is built around the Ethereum full-node (marked A in Figure 8). This node is connected to
the wider Peer-to-Peer (P2P) Ethereum network, where it will contribute to securing the blockchain
by validating new blocks and rebroadcasting new candidate transactions in the public mempool.
The public mempool is volatile storage where transactions are held from the time a user sends it to
the network until the time it is permanently to the blockchain. Since it is volatile, i.e., there is no
permanence, we must continuously monitor it and store the members as they come in. This storage
we achieved by having a PostgreSQL relational database (B) and a MongoDB document database (C)
as a backup.

8https://lucid.app/

15

https://lucid.app/

Azure
Database for
PostgreSQL

Servers

Azure Cosmos
DB

Analysis Engine

SSH Connection

Azure Cloud

Any local computer

Ethereum
Fullnode

A

B C

D

E

D

Figure 8: Schematic overview of the data collection system we built in June of 2023 to continuously
collect data for analysis. All the important heavy lifting is happening in the Microsoft Azure cloud,
and the analysis computer exposes an SSH endpoint one can connect to from one’s local computer to
interact with the system.

E.3 Descriptive Analysis

In Figure 9, we show the distribution of how many transactions there are in each block within each
trading pool for all blocks in our dataset. The left plot clearly shows that most blocks contain only 1
transaction. The right subplot shows the distribution on a log scale (y-axis) to emphasize the tail of
the distribution as well. Interestingly, all extractive attacks happen in the subset of blocks with 2 or
more transactions (the tail).

0 10 20 30 40
Number of transactions in (pool, block) pair

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

Fr
ac

tio
n

of
 (p

oo
l,

bl
oc

k)
 p

ai
rs

Distribution of number of
transactions in (pool, block) pairs

0 10 20 30 40
Number of transactions in (pool, block) pair

100

101

102

103

104

105

106

107

Nu
m

be
r o

f (
po

ol
, b

lo
ck

) p
ai

rs

Distribution of number of
transactions in (pool, block) pairs (log scale)

Figure 9: Distribution of the number of transactions in each block across all blocks in our dataset.
Left: Frequency in percentage of all blocks (y-axis) for each number of transactions per block (x-axis).
Right: the same distribution is shown in absolute numbers with a log scaling of the y-axis.

16

As prior work has shown (see Appendix A), the MEV-boost auction mechanism has gained much
traction since its release in 2021. In Figure 10, we show the distribution of the share of books built
through each mechanism. In our data set of almost 2 million blocks, only 14% transactions are built
in the standard manner laid out by the Ethereum protocol [6], while the rest is built through the
auction mechanism where actors pay for the right to build blocks. This hints at the prevalence of
profitable attacks on the Ethereum blockchain currently.

Altruistic MEV-boost
0%

20%

40%

60%

80%

14.1%

85.9%
Share of blocks mined

Altruistic MEV-boost
0

1000

2000

3000

4000

5000

6000

4238 (110)

6182 (2054)
Number of unique pool addresses

Figure 10: Distribution of blocks built through each of the mechanisms we consider in this paper. The
blue bar is the share of blocks built through the standard method described in the Ethereum protocol,
while the red bar is the share of blocks built by actors who paid for the right to build the block in an
MEV-boost auction.

F Further Analysis of Empirical Data

In this section, we present more ways to slice the data we present in Appendix 5 for the interested
reader. In Figure 11, we present a comparison between the number of transactions the average block
has depending on whether that block was built in the standard manner defined by the Ethereum
protocol, i.e., a vanilla block or through the MEV-boost auction mechanism. Since most blocks have
only 1 transaction per pool, the groups look similar on average. However, among the subset of blocks
with 2 or more transactions, interesting differences arise (middle and right plot).

Altruistic MEV-boost
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.112±0.0 1.171±0.0

Mean number of transactions
in (pool, block) pairs

Altruistic MEV-boost
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

8.3%

11.9%
1.4x more frequent
(p = 0.0)

Share of (pool, block) pairs
with more than one transaction

Altruistic MEV-boost
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1.8%

3.3%
1.8x more frequent
(p = 0.0)

Share of (pool, block) pairs
with more than two transactions

Figure 11: When we look at the subset of transactions written to the blockchain through the MEV-
boost action mechanism vs. the standard protocol mechanism (called vanilla), we see that the mean
number of transactions in a block per pool is very similar (left). When we consider the subset of
blocks with more than 1 transaction, the picture changes, and we see that 12% of MEV-boost blocks
have 2 or more transactions vs. 8% for vanilla (middle). For blocks with 3 or more transactions, this
difference becomes even larger, and almost double the share of MEV-boost blocks are in this category
compared to vanilla blocks (right).

Figure 12 shows the same picture as in Figure 3 in Appendix 5, but also includes the bigger subset
of blocks that have 2 or more transactions in them (left) in addition to the subset with 3 or more

17

(right). The effect we observe is the same in both cases, only more pronounced when considering
only |B| > 2. However, when we look at the subset of blocks that contain exactly 2 transactions,
|B| = 2, the effect largely vanishes, as shown in Figure 12c. This indicates that the measure Dp

specifically picks up on attacks like the sandwich attack that requires at least 3 transactions in a block.

S1 S2 S
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Va

lu
e

S p
 o

ve
r B

lo
ck

s

Comparison of Sp where |B| > 1
Altruistic
MEV-boost

(a) For blocks with 2 or more
swaps, the measure Dp increased
between mechanism blocks and
those created through the MEV-
boost auction.

S1 S2 S
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Va

lu
e

S p
 o

ve
r B

lo
ck

s

Comparison of Sp by Building Mechanism
Altruistic
MEV-boost

(b) For the subset of blocks with
3 or more swaps, the difference of
the measure Dp increases several
times.

S1 S2 S
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Va

lu
e

S p
 o

ve
r B

lo
ck

s

Comparison of Sp where |B| = 2
Altruistic
MEV-boost

(c) For the subset of blocks with
exactly 2 transactions, the differ-
ence of the measure Dp largely
disappears.

Figure 12: The measure Dp is meaningfully larger for blocks built through the MEV-boost action
than vanilla blocks. Here, we only focus on the non-trivial blocks with more than 1 swap and see a
bigger difference for blocks with 3 or more swaps.

In Figure 12, we saw that when we look at the entire dataset, we can distinguish the altruistic group
from the malicious group with very high confidence. What happens if we want to classify a single
new sequencer? In Figure 13, we look at the average metric estimate and the standard error for
an increasing number of observations |D|. The experiment relies on random sampling of subsets
of the data, so we ran the procedure 50 times to make the results more reliable. What we observe
is that we can distinguish malicious and altruistic sequencers at a 58% confidence interval after
around 50 blocks (|D| ≥ 50), and at a 95% confidence interval, we need around 200 blocks observed
(|D| ≥ 200). Seeing that there is a new block produced every 12 seconds, and we have hundreds (and
thousands for some) for many sequencers, these numbers indicate that one can pick out malicious
actors with longitudinal observation.

0 50 100 150 200 250 300 350 400
Number of blocks observed

0.0

0.1

0.2

0.3

0.4

M
ea

n
S

 m
et

ric

Mean S and 1.0 × SE vs. number of blocks observed
Altruistic ±1.0 ×
MEV-boost ±1.0 ×

0 50 100 150 200 250 300 350 400
Number of blocks observed

0.2

0.0

0.2

0.4

0.6

M
ea

n
S

 m
et

ric

Mean S and 1.96 × SE vs. number of blocks observed
Altruistic ±1.96 ×
MEV-boost ±1.96 ×

Figure 13: Standard error of estimation of the within-group value of the surveillance metric S̄p with
an increasing number of blocks observed, i.e. |Db|. (a) At a 1 standard error level (68% confidence
interval), the metric estimates seize overlapping after 50 blocks have been observed. (b) For the 95%
confidence interval, we need |D| ≥ 200 to determine whether the source is adversarial or not.

Lastly, we consider what happens when we apply the surveillance metric for individual builders
and relays, Figure 14 and Figure 15. The results are fairly intuitive in that most participants in the
MEV-boost auctions have significantly higher values for the metric than the altruistic sequencer.
However, a couple of things are of note. First, there is a large range of surveillance metric values

18

between the builders and relays, indicating that some builders are much more active/successful in
extracting MEV. We want to investigate this assumption more closely in the future. Second, among
the bloxroute relays, the one advertised as being ‘ethical’ also scores the lowest on the surveillance
metric. The score is, however, higher than the altruistic baseline.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S1

nfactorial.x
yz

Altruistic

Titan
Builder

Manifold

eth-
builder.com

lightspeedbu
ilder.info

finest
artisanal

blocks

f1b.io

Geth Go

boba-
builder.com

payload.de

I can haz
block?

0x83bee51799

Blocknative

It's Free
Real Estate

BloXroute

gmbit.co

Flashbots

manta-
builder

rsync-
builder.xyz

builder0x69

beaverbuild.
org

Flashbots
SGX

Shared/Defau
lt

mars

buildai.net

edennetwork.
io

Bob the
builder

Top 28 builders by S1

(a) Top builders ordered by their
mean surveillance metric S̄1.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

S2

Altruistic

nfactorial.x
yz

Geth Go

manta-
builder

It's Free
Real Estate

finest
artisanal

blocks

Manifold

Titan
Builder

f1b.io

0x83bee51799

eth-
builder.com

I can haz
block?

Blocknative

lightspeedbu
ilder.info

gmbit.co

payload.de

Shared/Defau
lt

BloXroute

rsync-
builder.xyz

Flashbots

beaverbuild.
org

Flashbots
SGX

builder0x69

boba-
builder.com

edennetwork.
io

buildai.net

mars

Bob the
builder

Top 28 builders by S2

(b) Top builders ordered by their
mean surveillance metric S̄2.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

S

manta-
builder

It's Free
Real Estate

Geth Go

Altruistic

0x83bee51799

finest
artisanal

blocks

I can haz
block?

Shared/Defau
lt

f1b.io

Manifold

Blocknative

nfactorial.x
yz

Titan
Builder

rsync-
builder.xyz

gmbit.co

BloXroute

eth-
builder.com

payload.de

Flashbots

beaverbuild.
org

lightspeedbu
ilder.info

builder0x69

Flashbots
SGX

edennetwork.
io

boba-
builder.com

buildai.net

Bob the
builder

mars

Top 28 builders by S

(c) Top builders ordered by their
mean surveillance metric S̄∞.

Figure 14: We see significantly higher levels of the surveillance metric S̄p for almost all builders that
participate in the MEV-boost auction compared to the altruistic. One notable exception is Geth Go,
which has the lowest S̄∞ metric. This finding stands to reason since this is presumably the standard
Ethereum node implementation that does not implement any MEV searching.

19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S1

Altruistic

manifold

bloxroute
(ethical)

blocknative

aestus

agnostic
Gnosis

bloxroute
(regulated)

flashbots

bloxroute
(max profit)

ultrasound

relayooor

eden

Top 12 relays by S1

(a) Top relays ordered by their mean
surveillance metric S̄1.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

S2

Altruistic

bloxroute
(ethical)

manifold

aestus

blocknative

bloxroute
(max profit)

bloxroute
(regulated)

agnostic
Gnosis

ultrasound

flashbots

relayooor

eden

Top 12 relays by S2

(b) Top relays ordered by their mean
surveillance metric S̄2.

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

S

Altruistic

bloxroute
(ethical)

manifold

aestus

blocknative

agnostic
Gnosis

bloxroute
(max profit)

ultrasound

bloxroute
(regulated)

flashbots

relayooor

eden

Top 12 relays by S

(c) Top relays ordered by their mean
surveillance metric S̄∞.

Figure 15: An overview of the top relays according to their corresponding surveillance metric S̄p. All
relays who participate in the MEV-boost auction have significantly higher levels than the altruistic
relay.

G Tests of Significance in Empirical Results

We perform a standard student’s t test on the mean value of the metrics between the MEV-boost
and vanilla groups. The mean of the metric for the p-norm for the subset of swaps in group
g ∈ {Vanilla,MEV-boost} is denoted by Dp(Tg) = 1

|Tg|
∑

T∈Tg Dp(T), where Tg is the subset of
all observed block execution sequences where the block belongs to group g, i.e., Tg = {T |T ∈ g}.
The null hypothesis is H0 : Dp(TVanilla) = Dp(TMEV-boost). By the student’s t-test, we get p < 10−9,
i.e., a strong statistical significance.

In particular, the test we apply in this case is the more general statistical test called Welch’s t-test,
which adjusts for cases where there is an unequal sample size and variance in the two populations
[11, 3].

Welch’s t-test define the t-statistic as [12],

t =
∆X̄

s∆X̄

=
X̄1 − X̄2√
s2
X̄1

+ s2
X̄2

(1)

sX̄i
=

si√
Ni

, (2)

where X̄i is the sample mean, sX̄i
the corresponding standard error, with si being the corrected

sample standard deviation, and Ni the sample size of group i. This test statistic t will also be
approximately distributed according to the t distribution with ν degrees of freedom. We refer to
Allwood [1] for the exact formula for ν, as it will not further the narrative to include it herein. The
test concludes with constructing the cumulative density function and calculating a probability p that
we see any t′ ∼ tν exceeding our test statistic t in absolute value p = Pt′∼tν (|t′| > t | D) (i.e., we
condition on the observed data).

20

