
Towards a Universal Scaling Law of LLM Training
and Inference

Chuhan Wu
Huawei Noah’s Ark Lab
wuchuhan15@gmail.com

Ruiming Tang
Huawei Noah’s Ark Lab

tangruiming2015@163.com

Abstract

Guided by the prophecy of scaling law, large language models (LLMs) demonstrate
higher levels of intelligence with increased sizes and computational power. Mean-
while, the overall outcome of small LLMs seems to show a scaling trend when a
higher inference cost is paid in prompting and sampling. However, the inherent
relatedness between training and inference in the path of scaling up is less studied.
In this article, we present a universal theory on the joint computational scaling of
LLM training and inference, which characterizes the general behaviors of LLM
in various settings. Based on simple modeling of several key hyperparameters,
we give intuitive explanations for the effectiveness of various techniques at both
training and inference time. To explain the limitation of the current inference
paradigm, we further propose the concept of meta-scaling to address the problem
of error accumulation in the inference scaling process. We hope that this work can
provide insight into future LLM research, development, and applications.

1 Introduction

On the upscaling path of computation power given by the scaling law [9, 7], the general capabilities
of large language models (LLMs) have become more impressive and appealing [6]. Training larger
models on more tokens has allowed LLMs to develop abilities beyond mere data memorization,
such as solving math problems and demonstrating logical reasoning [1]. However, researchers face
significant challenges, including limitations in high-quality data, computational resources, and the
instability of training large models [15, 14, 20, 19]. These issues may restrict the upscaling potential
of ultra-large language models.

Faced with the difficulties in upscaling LLM training, an alternative way has emerged, i.e., investing
more in the inference stage. Techniques such as chain-of-thought (CoT) prompting [18] and its
successors [23, 3] using advanced search and prompting techniques have shown that LLMs can
perform better in real-world applications by optimizing inference strategies. Based on the successful
practice of existing works, an inference scaling law of LLMs is primarily formed, suggesting the
scaling potential at test time [5, 13]. In particular in domains such as mathematics and code, smaller
models can outperform larger ones given adequate trials [2, 4]. The release of GPT-o11 is also
a successful signal to create the second scaling curve at the test time. This shift highlights the
practicality of turning more computation into model inference under the stagnated growth of the
training cost budget. This naturally leads to an interesting question: is there a unified scaling law that
connects both training and inference?

Here, we provide an initial answer to this question with a qualitative theory that connects the joint
effects of training and inference. We propose a unified scaling formulation to describe the joint effects
of training and inference on the final outcome of LLMs in downstream tasks. We argue that both

1https://openai.com/index/introducing-openai-o1-preview/

Personal Opinions of the Authors.



Training Steps

Lo
ss

S

S S ′

Original Model
Expanded Model

(a) Training loss.

Training Steps

D
ow

ns
tre

am
 P

er
fo

rm
an

ce
 I

S S ′

I

Original Model
Expanded Model

(b) Downstream performance

Figure 1: An illustrative example of the training loss and downstream performance of a base model
and an expanded version from the base model at the S-th step. Although the two models have the
same loss at step S′, the expanded model has slightly better performance in downstream tasks.

model size and model depth have major impacts on downstream performance, meanwhile, proper
sampling and prompting strategies are also important in achieving optimal results. Our qualitative
analysis can provide rational explanations for various techniques and phenomena in the practical use
and development of LLMs. It naturally leads to a new concept of meta-scaling that aims to build a
more ideal verification environment for LLMs to search and pick correct answers. It is expected to
offer new insights on optimizing the design of LLM architectures under limited training budgets to
boost the scaling effects at test time.

2 Universal Scaling Law

2.1 Preliminary: Is Model Expansion a “Free Lunch”?

We start our deduction from a practical problem in LLM development, i.e., model expansion. As
shown in Fig. 1, we expand a model from a basic model at step S through self-merging [22] techniques
by copying a certain number of layers. After training on a relatively small amount of data (1̃00B
tokens), the expanded model achieves a lower loss than the original model trained on the same data.
However, we observe that the performance of the expanded model in downstream tasks is slightly
better than that of the original model, although they have the same scale of loss at step S′. This
phenomenon is difficult to explain by the scaling law, as it seems almost like a free lunch of LLM
training. Therefore, a question arises: What factor leads to this surprising performance improvement?

In fact, the main difference between the two models at step S′ is that the expanded model pays more
cost at the inference stage, since it has more layers. Thus, we can assert that there exists a joint scaling
effect on downstream performance that depends on the settings of both training and inference. In this
unified scaling law, the depth of LLMs may generate a critical impact on the final performance.

2.2 Formulation of Universal Scaling Law

Motivated by the standard LLM training scaling law, we propose a unified scaling law that synthesizes
the effects of both training and inference techniques. The vanilla scaling law is mainly based on the
size of the training data and the size of the model, where the influence of the model shape is neglected.
In fact, previous studies [8, 21] have demonstrated the importance of model depth in performing
complex tasks. Thus, we reformulate the standard scaling law into a finer-grained one that considers
the number of layers N and the hidden dimension d. It predicts the loss function L as follows:

L =
x1

Nw1
+

x2

dw2
+

x3

Sw3
+ b, (1)

where w{1,2,3}, x{1,2,3} and b are parameters, and S reflects the training tokens. For mixture-of-
expert (MoE) models, inspired by [10] we further modify this loss prediction by introducing an

2



additional coefficient that reflects the expansion of model parameters:

L = (
x1

Nw1
+

x2

dw2
)
x4

Ew4
+

x3

Sw3
+ b, (2)

where w4 and x4 are parameters, and E is the expansion factor that depends on the design of MoE
architecture (e.g., number of experts and expert granularity).

In downstream tasks, the probability p of generating correct responses is determined by the corre-
sponding loss, i.e., p = e−L (we assume that the final answer is a single token). Denote the logits of
the i-th token as µi (the correct token logits is µj), then the correct probability is computed below:

p =
exp(µj)∑V
i=1 exp(µi)

=
1

1 + exp(−µ)
, (3)

where V is the vocabulary size and we use a single term exp(−µ) to replace the accumulated term
for simplicity. Thus, the relatedness between loss and the equivalent “logits” of the correct token is:

µ = − log(eL − 1). (4)

In the non-CoT mode, the response accuracy I is given by p since it is already the expectation over
data distribution. However, for more complicated decoding and sampling scenarios, we assume that
the equivalent correct token logits are sampled from a Gaussian distribution y ∼ N (µ, σ2), where σ
depends on the data distribution and decoding strategies. Based on this assumption, we can model
the behaviors of LLMs in CoT prompting strategies. Since most tokens in the thinking steps are
less informative, we assume that the entire generation process has C ≥ 2 critical steps, and the final
response is corrected only when all critical steps are correct (here we ignore cases where wrong steps
lead to correct answers). In CoT generation, the depth of reasoning inherent in LLMs is determined
by the number of critical steps C and the model depth N . We use the following equation to adjust the
sampled equivalent logits y by introducing an additional term that characterizes the effects of CoT:

y′ = y + y0 · tanh(
C log(N)

C0
)

= y + y0 ·
N

2C
C0 − 1

N
2C
C0 + 1

(5)

where y0 and C0 are task-dependent constants, where a larger y0 value means the task can benefit
more from CoT prompting, while a larger C0 indicates more complex reasoning steps. In general,
more difficult tasks usually produce smaller coefficients y0 and larger C0. In addition, deeper models
and more CoT steps usually bring a higher increase in the probability of generating correct tokens,
whereas this benefit is not unlimited when we increase the reasoning step and model depth. The
overall accuracy expectation is computed as follows:

I = Ey′(
1

1 + e−y′ )
C . (6)

Repeated sampling without verification. Based on the above modeling, we further discuss scenarios
with repeated sampling in the inference phase. If the system only conducts repeated inference, its
main effect can be regarded as reducing the variance of equivalent logits across data distributions:

y ∼ N (µ,
σ2

f(R)
), (7)

where R is the number of trials, f(·) is usually a sublinear function since different trials may not be
independent. This formula implies that repeated sampling techniques such as self-consistency [16]
may improve the performance of LLMs to some extent under certain scenarios, but the improvement
is not unlimited and does not show a scaling effect.

Repeated sampling with perfect verification.

In some domains, such as mathematics and code, we have gold standards to verify the correctness of
generated responses. For example, on the HumanEval benchmark, we can run the generated code to

3



2 4 6 8

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

= 1, = 1, y0 = 1, C0 = 5
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.35

0.40

0.45

0.50

0.55

0.60

0.65

= 1, = 1, y0 = 1, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.35

0.40

0.45

0.50

0.55

0.60

= 1, = 1, y0 = 1, C0 = 20
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

= 1, = 1, y0 = 3, C0 = 5
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.80

0.82

0.84

0.86

0.88

= 1, = 1, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.70

0.72

0.74

0.76

0.78

0.80

= 1, = 1, y0 = 3, C0 = 20

N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8
Critical Steps

0.965

0.970

0.975

0.980

0.985

0.990

Ac
cu

ra
cy

= 1, = 1, y0 = 5, C0 = 5
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8
Critical Steps

0.93

0.94

0.95

0.96

0.97

0.98
= 1, = 1, y0 = 5, C0 = 10

N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8
Critical Steps

0.800

0.825

0.850

0.875

0.900

0.925

0.950

= 1, = 1, y0 = 5, C0 = 20

N = 20
N = 40
N = 60
N = 80
N = 100

Figure 2: The answer accuracy w.r.t. different task constants, model depths, and critical steps.

check whether it passes all the test cases. Repeated sampling may show a scaling effect under this
setting, where the final accuracy I ′ is formulated as follows:

I ′ = 1− (1− I)f(R). (8)

We see that all test cases can be correctly solved under sufficient trials regardless of their difficulties,
as shown by the infinite monkey theorem.

Repeated sampling with imperfect verification.

In most scenarios such as RLHF [11] and LLM-as-judge [25, 24], LLMs generate multiple responses
and evaluate them with an imperfect judger. We assume that the judge has an ϵ probability of
mistakenly rejecting a correct response. In this setting the final accuracy I ′ is computed as follows:

I ′ = (1− (1− I)f(R))(1− ϵ)f(R). (9)

This equation indicates that too many trials may be suboptimal for the final performance since the
judger system may mislead the model to pick the wrong results.

3 Analysis and Implications

Here we use our qualitative model to explain the phenomena in practical LLM usage.

3.1 Effects of CoT in Different Types of Tasks

We vary the value of the task-dependent constants y0 and C0 to see the accuracy change w.r.t. different
numbers of critical steps and model depths, as shown in Fig. 2 (we set µ = σ = 1 here). We have
several implications from the results:

4



2 4 6 8
0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

= 2, = 0.2, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.10

0.15

0.20

0.25

0.30

= 2, = 0.5, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.15

0.20

0.25

0.30

= 2, = 1, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Ac
cu

ra
cy

= 0, = 0.2, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
= 0, = 0.5, y0 = 3, C0 = 10

N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8

0.600

0.625

0.650

0.675

0.700

0.725

0.750

= 0, = 1, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8
Critical Steps

0.940

0.945

0.950

0.955

0.960

0.965

0.970

Ac
cu

ra
cy

= 2, = 0.2, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8
Critical Steps

0.935

0.940

0.945

0.950

0.955

0.960

0.965

= 2, = 0.5, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

2 4 6 8
Critical Steps

0.91

0.92

0.93

0.94

0.95

= 2, = 1, y0 = 3, C0 = 10
N = 20
N = 40
N = 60
N = 80
N = 100

Figure 3: Influence of µ and σ on the effectiveness of CoT reasoning.

• Small y0, large C0 (upper right figure): tasks with high reasoning difficulty and large
exploration space in the reasoning step. MMLU is a representative benchmark of this type,
where the CoT mode may not be better than the non-CoT mode in a few-shot setting. Solving
these tasks usually requires sufficient knowledge storage, and step-by-step reasoning does
not help much. Model depth is quite important in solving MMLU-like problems [21].

• Large y0, large C0 (lower right figure): tasks with a complex combination of multiple easy
steps. GSM8K can be regarded as this type, where the performance can substantially benefit
from using more layers and finer-grained reasoning chains.

• Small y0, small C0 (upper left figure): tasks with high reasoning difficulties but limited
steps. Riddle solving is a task of this type, where step-by-step reasoning does not help, and
strong creative thinking ability is needed.

• Small y0, small C0 (lower left figure): easy tasks such as simple arithmetic. Only a few
steps are sufficient to give accurate results, while too long reasoning steps may be confusing.

Based on these discussions, we can see that our formulation can explain the behaviors of models in
various types of tasks.

3.2 Influence of Training Loss and Repeated Sampling

In our qualitative modeling, the equivalent correct token logits are determined by the training loss.
Thus, we can vary the value of µ and σ to simulate the performance of models with different training
losses and different inference trials (Fig. 3). Based on our modeling, LLMs may not benefit from
CoT reasoning if they have a high loss in a given task. We also observe this phenomenon in our
practice on very difficult benchmarks like MMLU-Pro [17] and GPQA [12]. Combining responses in
different trials fails to solve problems better than using fewer chances in this situation, which has

5



5 10 15
f(R)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ac
cu

ra
cy

= 3, = 1, y0 = 3, C = 5, C0 = 10

N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.5

0.6

0.7

0.8

0.9

= 1, = 1, y0 = 3, C = 5, C0 = 10

N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

= 1, = 1, y0 = 3, C = 5, C0 = 10

N = 20
N = 40
N = 60
N = 80
N = 100

Figure 4: Model performance with perfect verification under different µ and f(R).

5 10 15
f(R)

0.10

0.15

0.20

Ac
cu

ra
cy

= 3, = 1, y0 = 3, C = 5, C0 = 10, = 0.05

N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

= 1, = 1, y0 = 3, C = 5, C0 = 10, = 0.05
N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.4

0.5

0.6

0.7

0.8

= 1, = 1, y0 = 3, C = 5, C0 = 10, = 0.05
N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.02

0.04

0.06

0.08

0.10

Ac
cu

ra
cy

= 3, = 1, y0 = 3, C = 5, C0 = 10, = 0.2
N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.0

0.1

0.2

0.3

0.4

= 1, = 1, y0 = 3, C = 5, C0 = 10, = 0.2
N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.0

0.2

0.4

0.6

= 1, = 1, y0 = 3, C = 5, C0 = 10, = 0.2
N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.00

0.01

0.02

0.03

0.04

Ac
cu

ra
cy

= 3, = 1, y0 = 3, C = 5, C0 = 10, = 0.5
N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.00

0.05

0.10

0.15

0.20

0.25
= 1, = 1, y0 = 3, C = 5, C0 = 10, = 0.5

N = 20
N = 40
N = 60
N = 80
N = 100

5 10 15
f(R)

0.0

0.1

0.2

0.3

0.4

= 1, = 1, y0 = 3, C = 5, C0 = 10, = 0.5
N = 20
N = 40
N = 60
N = 80
N = 100

Figure 5: Influence of the verification error on the final performance.

been verified by existing work [5]. In contrast, voting strategies are more effective in tasks when
LLMs have a good mastery of task-related knowledge, which is consistent with our intuition.

3.3 Influence of Response Verification

Finally, we discuss the effectiveness of response verification in different settings. As shown in Fig. 4,
the performance is consistently better when f(R) is larger, which is intuitive because even monkeys
can almost surely type any text given an infinite time. A more practical simulation with imperfect
verification is shown in Fig. 5. When the judger is relatively reliable, using complicated sampling
techniques at the inference stage may achieve substantial performance gains, especially when the

6



2 4 6 8 10
f(R)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Lg = 0.01

Lv = 0.01
Lv = 0.1
Lv = 0.5
Lv = 1

2 4 6 8 10
f(R)

0.0

0.2

0.4

0.6

0.8

1.0
Lg = 0.1

Lv = 0.01
Lv = 0.1
Lv = 0.5
Lv = 1

2 4 6 8 10
f(R)

0.0

0.2

0.4

0.6

0.8

Lg = 0.5

Lv = 0.01
Lv = 0.1
Lv = 0.5
Lv = 1

2 4 6 8 10
f(R)

0.0

0.2

0.4

0.6

0.8

Lg = 1

Lv = 0.01
Lv = 0.1
Lv = 0.5
Lv = 1

Figure 6: Influence of generation and verification losses on final accuracy.

model is weak on the given task. However, it is ineffective to scale up the inference cost if the judger
is inaccurate, which is consistent with our intuition that low-quality verification will mislead the
system to pick wrong or inaccurate results. This can explain why the new GPT-o1 system does not
improve impressively in subjective tasks.

4 Concept of Meta-scaling: Towards Perfect Verification

Based on the analysis in the previous sections, we find that the error ϵ of the verification environment
is the bottleneck of inference scaling. We use a virtual loss function Lg to indicate the accuracy of
generation by I = exp(−Lg) and a verification loss Lv that reflects the quality of the evaluation by
1− ϵ = exp(−Lv). Then the final accuracy I ′ of repeated sampling is reformulated as follows:

I ′ = (1− (1− e−Lg )f(R))e−Lvf(R). (10)

We show the relations between I ′ and these two losses in Fig. 6. We can see that performance can be
significantly improved by increasing inference cost if Lg >> Lv, while improvement is limited or
even negative when Lg is comparable to Lv. This result implies that inference scaling relies on an
accurate verification environment to achieve optimal performance. However, the accuracy of LLM
verification is usually limited, especially in complex scenarios. Does this mean that the upscaling
potential of LLM inference is unsustainable?

To answer this challenge, we propose the concept of “meta-scaling”. We use a meta-function g(x,R)
to represent the verification of the input x using R different trials. For example, in [25] the reward
system can be represented by this function g(x,R). In fact, we can further verify the verification of x
by using a nested meta-scaling function: g2(g1(x,R1), R2). Based on our previous analysis, if we
regard the verification task as another generation task, its performance can be improved when there is
a verification system. Motivated by this assumption, we propose the function of meta-scaling:

mK(x) = gK(...g2(g1(x,R1), R2), ..., RK), (11)
where K is the meta-scaling order. For example, we can first verify each LLM response using
10 different trials, then verify each judge result with another 10 trials, and finally generate 10
justifications for these meta-judgements. In this paradigm, the complexity of the computational cost
of inference scaling is O(e

∑K
i=1 Ri). This leads to a much faster growth of computational complexity

compared to the standard exponential increase. In this recursive evaluation of generated responses, the
overall evaluation error can be greatly eliminated, and correct answers can be searched and picked.

5 Conclusion

In this paper, we present a unified scaling law that connects the impact of model architecture, data
size, and inference strategies on the final model performance. We show that the depth of LLMs is a
critical factor in training and inference that generates substantial impacts on overall performance. By
setting different parameters in our qualitative model, we can explain various phenomena in practical
LLM development and applications and reveal the potential way of meta-scaling. We hope that our
modeling can offer useful insight to help optimize resource allocation and strategies in the unified
scaling path of LLM training and inference.

7



References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).

[2] Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. 2024.
Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling. arXiv
preprint arXiv:2408.16737 (2024).

[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. 2024.
Graph of thoughts: Solving elaborate problems with large language models. In AAAI, Vol. 38.
17682–17690.

[4] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. 2024. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787 (2024).

[5] Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. 2024. Are more llm calls all you need? towards scaling laws of compound inference
systems. arXiv preprint arXiv:2403.02419 (2024).

[6] Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. 2024. Understanding emergent abilities
of language models from the loss perspective. arXiv preprint arXiv:2403.15796 (2024).

[7] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
2022. Training compute-optimal large language models. In NeurIPS. 30016–30030.

[8] Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua,
Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding, et al. 2024. Exploring Concept Depth:
How Large Language Models Acquire Knowledge at Different Layers? arXiv preprint
arXiv:2404.07066 (2024).

[9] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361 (2020).

[10] Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. 2024.
Scaling laws for fine-grained mixture of experts. arXiv preprint arXiv:2402.07871 (2024).

[11] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language
models to follow instructions with human feedback. NeurIPS 35 (2022), 27730–27744.

[12] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. 2023. Gpqa: A graduate-level google-proof
q&a benchmark. arXiv preprint arXiv:2311.12022 (2023).

[13] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling llm test-time
compute optimally can be more effective than scaling model parameters. arXiv preprint
arXiv:2408.03314 (2024).

[14] Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. 2023. Spike No More: Stabilizing
the Pre-training of Large Language Models. arXiv preprint arXiv:2312.16903 (2023).

[15] Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson
Ho. 2022. Will we run out of data? an analysis of the limits of scaling datasets in machine
learning. arXiv preprint arXiv:2211.04325 (2022).

[16] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171 (2022).

8



[17] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. 2024. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574
(2024).

[18] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models.
NeurIPS 35 (2022), 24824–24837.

[19] Sarah Wild. 2024. Millions of research papers at risk of disappearing from the Internet. Nature
627, 8003 (2024), 256–256.

[20] Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. 2023. Small-scale proxies for
large-scale transformer training instabilities. arXiv preprint arXiv:2309.14322 (2023).

[21] Chuhan Wu and Ruiming Tang. 2024. Performance Law of Large Language Models. arXiv
preprint arXiv:2408.09895 (2024).

[22] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng
Tao. 2024. Model merging in llms, mllms, and beyond: Methods, theories, applications and
opportunities. arXiv preprint arXiv:2408.07666 (2024).

[23] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with large language models.
NeurIPS 36 (2024).

[24] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. 2024. Self-rewarding language models. arXiv preprint arXiv:2401.10020 (2024).

[25] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. 2024. Generative Verifiers: Reward Modeling as Next-Token Prediction. arXiv
preprint arXiv:2408.15240 (2024).

9


	Introduction
	Universal Scaling Law
	Preliminary: Is Model Expansion a ``Free Lunch''?
	Formulation of Universal Scaling Law

	Analysis and Implications
	Effects of CoT in Different Types of Tasks
	Influence of Training Loss and Repeated Sampling
	Influence of Response Verification

	Concept of Meta-scaling: Towards Perfect Verification
	Conclusion

