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Abstract
Large language models (LLMs) are vulnerable001
to data extraction attacks due to their tendency002
to memorize precise training data. In contrast,003
Federated Learning (FL) has the potential to004
mitigate privacy leakage. This underscores the005
need for an assessment of the privacy risks asso-006
ciated with LLMs trained with FL algorithms,007
which remains an underexplored question. In008
this study, we evaluate the privacy leakage of009
LLMs trained with FL algorithms on the pub-010
lic datasets extended with automatically anno-011
tated Personally Identifiable Information (PII)012
to evaluate the leakage of PII and training ex-013
ample outputs. Through extensive experiments,014
we find out that FL algorithms indeed mitigate015
privacy leaks compared to their counterparts016
on centralized data. In addition, we discover017
a novel data extraction attack method, called018
cross-client security theft, which can recover up019
to 40% of unique PII mentions in target devices020
by accessing only one of the FL participants.021
These findings highlight the potential privacy022
risks of FL for LLMs and underscore the need023
to explore new protective mechanisms in future024
research.025

1 Introduction026

With the rise of Large Language Models (LLMs),027

there is a growing interest in developing and de-028

ploying LLMs for privacy-preserving applications029

in the areas with rich sensitive data, such as fi-030

nance, law, and healthcare (Awosika et al., 2024;031

Zhang et al., 2023; Oh and Nadkarni, 2023). Feder-032

ated learning (FL) algorithms allow training mod-033

els on sensitive data in a collaborative and dis-034

tributed manner without letting data leave local035

devices (McMahan et al., 2017), hence various FL036

algorithms are proposed recently to improve the037

performance of LLMs or reduce training costs in a038

distributed environment, without investigating the039

issue of privacy leakage (Yao et al., 2024).040

However, it has been reported that LLMs can041

effectively memorize substantial training data in042

Figure 1: Illustration of the Cross-Client Attack. An
honest-but-curious client receives aggregated LLM
checkpoints from the server, and attempts to extract
private information from other clients. We introduce
two distinct scenarios based on different levels of prior
knowledge regarding the victim’s dataset and the at-
tacker’s goal to extract either complete training exam-
ples or specific PII. The personal information depicted
in the image has been anonymized.

the centralized setting (Brown et al., 2022; Carlini 043

et al., 2023). It is possible to uncover training data 044

from LLMs trained on centralized data via data 045

extraction attacks (Yu et al., 2023; Schwarzschild 046

et al., 2024; Dong et al., 2024; Carlini et al., 2021). 047

Such data extraction attacks aim to recover ei- 048

ther training data outputs or mentions of Person- 049

ally Identifiable Information (PII) (Yu et al., 2023; 050

Lukas et al., 2023). It raises a novel research ques- 051

tion: whether or to what extent the LLMs trained 052

with FL algorithms are vulnerable to data extrac- 053

tion attacks. 054

To answer the research question, we evaluate 055

the vulnerability of LLMs trained with SOTA FL 056

algorithms in terms of data extraction attacks in two 057

practical settings: i) attackers have the complete 058

knowledge of data inputs, and ii) attackers have 059

partial knowledge of data inputs by having access 060

to the data residing in only one of the participating 061

devices in an FL environment. The key difference 062

between the two settings lies in whether an attacker 063

needs to estimate data inputs similar or identical to 064

1



the training data in a target device. In both settings,065

we assess the effect of attack by evaluating the066

amount of recovered output sequences and PII. To067

evaluate the attack effect on PII, we extend the068

datasets (Yue et al., 2023) with rich real-world PII069

mentions in the legal domain by annotating those070

PII mentions using GPT-4 (OpenAI et al., 2024).071

Surprisingly, we discover a simple but effective072

attack method, referred to as cross-client secret073

theft in the latter setting. In particular, in one FL074

participating device, we apply a SOTA frequent075

sequence mining algorithm (Miliaraki et al., 2013)076

to identify a set of word sequences that co-occur077

frequently with mentions of PII. Those word se-078

quences are fed to LLMs to generate diverse out-079

puts. The rationale behind this is that the data in080

various FL participants should share some common081

statistical patterns so that the sensitive information082

hidden in model outputs can be triggered by the083

designated shared inputs. We further find out that084

the amount of recovered sensitive information can085

be dramatically increased if an FL trained LLM086

is fine-tuned on the automatically mined frequent087

sequences in the attacker device.088

Our extensive experiments reveal three novel089

findings. Firstly, on the same dataset, with both In-090

dependent and Identically Distributed (IID) and091

non-IID data partitioning, the LLMs fine-tuned092

with three different FL algorithms demonstrate a093

significant reduction in training data leakage com-094

pared to the ones trained on centralized data on095

average. Secondly, the LLMs trained with Fe-096

dAvg (McMahan et al., 2017) expose up to 40%097

of unique PII mentions using our cross-client se-098

cret theft attack, as illustrated in Figure 2. Lastly,099

an attacker can recover different sensitive informa-100

tion, e.g. PII, in different FL rounds. As a result,101

the longer an attacker participates in FL, the more102

sensitive information it can detect.103

Our contributions are summarized as follows:104

1. We conduct the first empirical study to evalu-105

ate the privacy leakage of fine-tuning LLMs106

with FL algorithms in terms of training data107

extraction attack. For the evaluation of leaked108

PII, we extend the datasets (Yue et al., 2023)109

by annotating PII mentions with GPT-4.110

2. We discover a novel data extraction attack111

method, called cross-client secret theft, which112

is able to recover up to 40% unique PII men-113

tions in a practical setting that the attacker has114

access to the data of only one FL participant.115

2 Related Work 116

Privacy Attacks in Federated LLMs. Partici- 117

pants of Federated Learning (FL) can be catego- 118

rized as either semi-honest or malicious (Apple- 119

baum, 2017). The semi-honest participant adheres 120

to the FL protocol and can only passively analyze 121

information of interest, while malicious partici- 122

pants actively manipulate the inputs/outputs of the 123

FL algorithm. Recent research focusing on attack- 124

ing algorithms aimed at extracting specific privacy 125

information from FedLLMs can be classified into 126

two scenarios based on their assumptions regarding 127

the threat model: 1) malicious server and 2) semi- 128

honest client. The majority of studies concentrate 129

on the malicious server scenario (Chu et al., 2023; 130

Vu et al., 2024; Rashid et al., 2023), where the at- 131

tacker adjusts the model’s weights or architecture 132

to improve the extraction of specific privacy-related 133

data. 134

Research conducted by Rashid et al. (2023) 135

also explored experiments under the assumption 136

of semi-honest client attacks (referred to as static 137

attacking mode), where attackers solely observe 138

global models received from the server, storing 139

their analysis results and intermediate products 140

locally. Comparatively, attacks originating from 141

semi-honest clients tend to be more covert than 142

those in the malicious server setting. Our work 143

also considers semi-honest client settings. 144

In contrast to FLTrojan by Rashid et al. (2023), 145

which analyzes the changes of model parameter 146

through fine-tuning with inserted datasets of pri- 147

vacy canaries and adjusts the model output distri- 148

bution to leak privacy by modifying specific layer 149

weights, our study approaches this issue from a fun- 150

damentally different angle. First and foremost, we 151

utilize real-world legal domain datasets encompass- 152

ing personally identifiable information (PII) instead 153

of artificially inserted canaries to address the pri- 154

vacy risks of FedLLMs regarding data extraction 155

attacks. Additionally, we make two assumptions 156

about the attacker’s knowledge levels and conduct 157

more comprehensive experiments utilizing three FL 158

algorithms (FedAvg, FedProx, and Scaffold), under 159

both IID and Non-IID partitions. Furthermore, our 160

Frequent Prefix Sampling method is rooted in text 161

mining the attacker’s local data and optionally fine- 162

tuning the global models with (Frequent prefix, PII) 163

sequences to enhance the sampling attack efficacy. 164
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Privacy Extraction Attacks of LLMs. The165

study by Lukas et al. (2023) examines the potential166

for extracting Personally Identifiable Information167

(PII) sequences from GPT-2 series models fine-168

tuned on datasets containing PIIs. It explores three169

levels of extraction methods based on the attack-170

ers’ level of knowledge: 1) Random generation171

of a large number of tokens followed by counting172

the generated PII tokens; 2) Filling masked PII se-173

quences given the context of the prefix and suffix;174

3) Selection of the correct PII from a candidate175

pool based on the context. This study also explores176

the effectiveness of common defense mechanisms177

such as dataset scanning and differential privacy178

learning. Conversely, Xiao et al. (2023) investi-179

gates various techniques to prevent LLMs from180

generating PII tokens in specific tasks, assuming181

attackers have only black-box access to the LLMs.182

In contrast, our work is based on assumptions from183

practical federated learning scenarios where attack-184

ers receive global models each round and do not re-185

quire knowledge of victims’ training data in cross-186

client attacks.187

Memorization Measurement via Data Extrac-188

tion Attacks. Training data completion is an ef-189

fective method for quantifying the memorization of190

Large Language Models (LLMs) (Yu et al., 2023;191

Schwarzschild et al., 2024; Carlini et al., 2023). It192

assesses whether a specific training sequence has193

been fully memorized by providing an initial por-194

tion of the tokens and verifying if the model can195

accurately complete the remainder. Following this196

definition, metrics have been developed by Dong197

et al. (2024) to measure the degree of data contam-198

ination in LLMs.199

Efforts have been made to enhance the accuracy200

of completions of desired sequences, thereby more201

precisely indicating the actual memorization ca-202

pability of LLMs. For completing a fixed prefix203

from the exact training sample, Yu et al. (2023)204

evaluates a range of existing and proposed algo-205

rithms to enhance the performance of prefix-suffix206

generation. These algorithms focus on improving207

the decoding process of LLMs, as well as the se-208

lection, correction, and collaboration in the suffix209

completion generation. Other studies concentrate210

on identifying the optimal prefix that can lead to the211

desired suffix completion, achieved through prompt212

optimization (Kassem et al., 2024), adversarial opti-213

mization (Schwarzschild et al., 2024; Kassem et al.,214

2024; Zou et al., 2023), or reverse language mod-215

eling (Pfau et al., 2023). Our cross-client attack 216

falls within this latter category. Unlike algorithms 217

that necessitate direct access to the exact training 218

sample, our proposed method leverages statistical 219

information derived from the local training data of 220

a client. The outcomes of our attacks can be em- 221

ployed as gray-box memorization measurements 222

within the privacy-preserving context of federated 223

learning. 224

3 Training Data Extraction Attack 225

3.1 Settings 226

We describe our overall settings in this section. 227

Threat Model. We assume the attacks are from 228

semi-honest (Applebaum, 2017) clients which can 229

only passively analyze information of interest from 230

the received global models without applying any 231

changes to their local adapted models uploading 232

to the server. The procedure of cross-client secret 233

theft is detailed in Algorithm 1. 234

Algorithm 1 Cross-Client Secret Theft Framework
Input: Clients set C and corresponding local datasets
D = {dci |∀ci ∈ C}; Total FL rounds R; Initial global
model M0; Server aggregation algorithm f ; Fine-tuning
objective L; Privacy attack algorithm A
Output: Stealed secrets S

1: ServerExecute:
2: for round r = 1 . . . R do
3: Sample clients cr
4: for each client cri in cr do
5: mr

i ← CLIENTUPDATE(cri ,M
r)

6: end for
7: Mr+1 = f({mr

i })
8: end for

9: ClientExecute:
10: function CLIENTUPDATE(cri ,M

r)
11: mr

i ← argmin
Mr

L(Mr, dci)

12: if cri is the Attacker then
13: S ← S ∪A(Mr, dci) ▷ Attacker client keeps its

attacking results locally.
14: end if
15: return mr

i

16: end function

Two Scenarios. We propose two practical sce- 235

narios of training data extraction attack. In the first 236

scenario, called Training Data Theft, the attackers 237

are familiar with the training examples in victim 238

client datasets, in particular their inputs, which are 239

referred to as prefixes hereafter. The output of a 240

training example is hence referred to as a suffix. 241

Given a prefix, an attacker aims to obtain either 242
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the entire output of the corresponding training ex-243

ample or any PII within the output. In the second244

scenario, called PII Secrets Theft, the attackers pos-245

sess no knowledge of datasets belonging to other246

clients besides their own, and aim to steal specific247

confidential information from these other clients.248

3.2 Training Data Theft249

Suppose an attacker knows the prefix of certain250

training examples from a victim’s dataset, it aims251

to recover the remainder portion or relevant PII.252

Preliminary. Given a LLM θ and a subset of253

training (fine-tuning) dataset D, a common data ex-254

traction approach involves dividing each data sam-255

ple di ∈ D into a prefix pi and a suffix si such that256

di = pisi. Subsequently, the model θ generates a257

sequence gi based on the prefix pi. A data sample258

is considered as extracted if gi exactly matches the259

suffix si. Studies have revealed that LMs often pro-260

duce outputs that are not exact matches but closely261

resemble the ground truth suffix, differing only in262

small tokens. Therefore, instead of strictly requir-263

ing an exact match, a training sample could also be264

viewed as successfully extracted if the similarity265

generated output gi and the true suffix si surpasses266

a certain defined threshold t.267

Metric. In this study, following Dong et al.
(2024), we use Edit Distance (Levenshtein, 1965)
as the similarity measurement function. Given the
recieved global model M r and the subset of the
victim dataset D, the performance of Training Data
Theft is defined as

e(M r, D) = Episi∼D [ED (si, gi ∼ Pθ(pi))]

3.3 PII Secrets Theft268

Compared to the previous scenario, it is novel and269

is more practical by assuming that the attacker can270

participate in FL as a client but cannot see the data271

of the other clients except its own. It can happen272

when a FL client is compromised or a malicious273

user joins a FL process.274

Secret Extraction via Frequent Prefix. The FL275

client can reasonably possess some level of prior276

knowledge K regarding the private data of other277

clients through an analysis of its own dataset. In the278

federated fine-tuning of an LLM, the training data279

comprises tuples (Instruction, Input, Output) inte-280

grated into a unified predefined prompt template as281

input for the LLM. In a given task, each client is282

expected to use the same Instruction and its private 283

(Input, Output) pairs from its local dataset. Despite 284

this, the private data points may still exhibit simi- 285

larities in terms of writing style, tone, vocabulary, 286

and idiomatic expressions. By examining its own 287

dataset, a curious attacker client can readily acquire 288

such knowledge K. Given the nature of the next- 289

token prediction of LLMs, the prior knowledge K 290

can be viewed as natural language prefixes. 291

In this study, we employ the MG-FSM algorithm 292

(Miliaraki et al., 2013) to identify Frequent Word 293

Sequences (FWS) from the local dataset and utilize 294

them as the prefixes (defined as Frequent Prefix) 295

for the attack sampling. Considering the next-token 296

modeling capability of LLMs we capture only con- 297

tinuous word sequences. Once the Frequent Prefix 298

set is identified, the attacker use them to extract 299

secret information from other clients within the 300

global model recieved from the server. The pro- 301

cedure for such attacks from a malicious client is 302

outlined in Algorithm 2. 303

Algorithm 2 Frequent Prefix Sampling
Input: Client’s local dataset Dci, Total FL rounds R.
Output: Cumulatively extracted Secrets Ce

1: Identify Frequent Prefixes as prior knowledgeK fromDci

2: for round r = 1 . . . R do
3: Receive the global model θgr
4: Sample secrets: Cer ← Pθ(K)
5: Ce ← Ce ∪ Cer
6: end for

Enhancing Leakage through Alignment. To ex- 304

tract confidential information using prefixes mined 305

in the previous step, we propose an alignment 306

method that effectively enable an LLM to uncover 307

more secrets. In particular, we fine-tune a global 308

model in a FL round on pairs of (psi , ci), where 309

psi and ci denote a frequent prefix and a token se- 310

quence containing sensitive information, e.g. PII. 311

The rationale behind this is that this step enhances 312

the correlations between frequent prefixes and sta- 313

tistical patterns of sensitive information inside an 314

LLM. 315

Algorithm 3 Leakage Enhancing Alignment
Input: Global model of round r Mr; The attack’s identi-
fied Frequent Prefix set Ps and the set of corresponding
following secrets sequence Dci

Output: Aligned global model θ′gr
1: Dft ← Concat(Ps,Dci)
2: θ′gr ← argmin

Mr
L(Mr, Dft)
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Exam RC Sum Match Cls
Train 2159 3150 2551 3464 3996
Test 240 350 100 384 200

Table 1: Dataset Statistics of all tasks.

Metrics. We use the Exclusive Precision of re-
covered PII as our metric. To elaborate, given a
PII set held by the victim Civ , a PII set owned by
the attacker Cia , and the extracted PII sequences
by the attacker Ce

ia
, the Exclusive Precision is then

calculated as

Exclusive-Pr =
|Ce

ia
∩ (Civ − Cia)|
|Civ − Cia |

We also employ the modifier "Per-Round" to de-316

note the attack performance within a single round,317

and "Cumulative" to represent the performance per-318

taining to the cumulative extraction of PII across319

multiple rounds after deduplication.320

4 Experiment321

This section elaborates on our experiments. We322

start by explaining the general settings, which in-323

cludes datasets, models, and a utility fine-tuning324

experiment. Following this, we delve into the de-325

tails of our privacy experiments conducted in the326

two proposed scenarios.327

4.1 General Setup328

Dataset Collection. We obtained dataset (Yue329

et al., 2023) from authentic Chinese court doc-330

uments to create three Natural Language Under-331

standing (NLU) tasks and two Natural Language332

Generation (NLG) tasks. These tasks are Legal333

Case Classification (Cls), Similar Case Matching334

(Match), Legal Exams (Exam), Judicial Document335

Summarization (Sum), and Judicial Document336

Reading Comprehension (RC). These datasets con-337

tain real-world Personally Identifiable Information338

(PII) that appear in legal documents, such as human339

names, places, and dates. Detailed statistics for our340

datasets are provided in Table 1.341

Partitioning. In the realm of federated learn-342

ing, the datasets are partitioned among individual343

clients based on independent and identically dis-344

tributed (IID) and Non-IID distributions. As a com-345

mon practice(Li et al., 2023), a language encoder346

is used to encode the dataset, followed by K-means347

clustering to group the embeddings into clusters.348

Next, a Dirac distribution with α = 0.5 is applied349

Exam RC Sum Match Cls

0.1

0.2

0.3

0.4

Pr
ec

isi
on

Vanilla FP Sampling Enhanced FP Sampling

Figure 2: Cumulative recovery of our cross-client at-
tacks on 5 different tasks. The resutls are reported as
recovery precision with global models after 10 rounds
of FedAvg aggregation, using Frequent Prefix (FP) sam-
pling with and without Leakage-Enhancing Alignment
(labled as "Vanilla" and "Enhanced" in the legend).
Cross-validation was performed for all potential combi-
nations of attacker and victim per task, and the results
are displayed using box plots.

to create a label-skewed partitioning, where the 350

cluster IDs serve as labels. Moreover, each client 351

is allocated a comparable number of data samples 352

to maintain a balanced non-iid partitioning scheme. 353

In this study, the total number of clients to 5. 354

PII Labeling. We utilized GPT-4 (OpenAI et al., 355

2024) to automatically label all PII in our datasets. 356

To ensure the quality of the labeled PII, we further 357

instructed GPT-4 to assess the sensitivity level of 358

each training sample during labeling, filtering out 359

those with low scores. Table 2 details of the number 360

PII occurrence across all clients under the Non-IID 361

partition. We have also included the statistics of 362

victim-exclusive PII (Sec. 3.3) in Table 3 to provide 363

a more meaningful setting for potential attacks in 364

subsequent sections. We also list the statistics of 365

victim-exclusive PII in Table 3 for a more meaning 366

full attack setting later. 367

Models and Training Details. We utilize two 368

large language models (LLMs) primarily pre- 369

trained on a Chinese corpus: QWen1-8B (Bai et al., 370

2023) and Baichuan2-7B (Yang et al., 2023). We 371

fine-tune the pre-trained models on our five tasks 372

employing three prominent FL algorithms, FedAvg, 373

FedProx, and Scaffold, under both the IID and Non- 374

IID partitioned dataset. This is done with the ver- 375

satile OpenFedLLM Framework (Ye et al., 2024). 376

Following prior works in data extraction attack (Yu 377

et al., 2023; Lukas et al., 2023) and the common 378

practice of FedLLM, we use the same objective as 379
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Client ID # PIIs # Identified Frequent Prefixes
Exam RC Sum Match Cls Exam RC Sum Match Cls

0 108 2644 3864 15319 2100 111 1199 1376 13491 1387
1 67 2781 5355 15575 2138 111 1269 1246 12441 1601
2 78 2681 5444 15069 2272 101 1246 1191 12897 1600
3 72 3003 5174 14584 2124 93 1223 958 14257 1635
4 88 2908 5171 14185 2049 111 1290 996 13766 1631

Table 2: Statistics on Personally Identifiable Information (PII) and Identified Frequent Prefixes of each client across
all five tasks.

Centralized Federated Untrained

Figure 3: Attack results of exact training example prefix sampling after 10 epochs/rounds of training. For the
Federated setting, we aggregated all six combinations of three algorithms (FedAvg, FedProx, Scaffold) with two
distributions (IID, Non-IID), and illustrated the mean values along with standard deviations. Additionally, the results
of untrained models are included as a baseline.

in the pre-training stage and employ Parameter-380

Efficient Fine-tuning techniques of LoRA with381

r = 16 and α = 32. We store multiple check-382

points during training to facilitate later privacy at-383

tack experiments. We set the total number of FL384

rounds for all experiments to 10. Additionally, we385

centralizely fine-tune a set of models for future386

comparison use with a total of 10 training epochs.387

4.2 Privacy Experiments Setup388

4.2.1 Training Data Theft389

First we create the extraction set Dc
i for each client,390

which are assumed prefix leaked to the attack. 40391

data points are randomly selected from its local392

training set. Then we combine all local extraction393

sets to form a global extraction set Dg = ∪iD
c
i .394

During the FL process, each sample di ∈ Dg395

is divided into an equal-length prefix pi and suffix396

si. A set of generations G = ∪igi is generated397

using the individual prefix pi, where |G| = 20. The398

Edit Distance (ED) (See Sec. 3.2) between the399

actual suffix si and all generated suffixes in G is 400

then calculated, considering only the initial tokens 401

up to a maximum length of 50. The average ED 402

for a single sample is obtained by averaging these 403

distances. The overall ED metric for a model is 404

determined by averaging the ED values across all 405

samples. 406

4.2.2 PII Secrets Theft 407

Frequent Prefix Identification. Initially, we 408

identify all possible continuous Frequent Word Se- 409

quences (FWS) within the entire dataset with an 410

off-the-shelf implementation of the MG-FSM al- 411

gorithm (Miliaraki et al., 2014). The algorithm 412

accepts three parameters: g, s, and l, which control 413

the maximum gap allowed between words, the min- 414

imum support threshold for a sequence to be con- 415

sidered, and the maximum length of the mined se- 416

quence, respectively. Because of LLMs’ next-token 417

modeling capability, we set g = 0 to only capture 418

continuous word sequences. Considering practical 419

limitations such as computational resources (e.g., 420
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Exam Rc Sum Match Cls
V0 V1 V2 V3 V4 V0 V1 V2 V3 V4 V0 V1 V2 V3 V4 V0 V1 V2 V3 V4 V0 V1 V2 V3 V4

A0 - 43 52 42 52 - 1475 1536 1624 1524 - 4483 4558 4388 4323 - 3262 3370 3507 3089 - 1799 1980 1882 1737
A1 53 - 54 45 53 1336 - 1481 1532 1476 3163 - 4460 4251 4185 3294 - 3388 3341 3043 1758 - 1972 1867 1742
A2 53 45 - 48 51 1363 1447 - 1554 1497 3167 4389 - 4237 4236 3004 2990 - 3043 2726 1774 1807 - 1879 1751
A3 49 42 54 - 51 1336 1383 1439 - 1394 3197 4380 4437 - 4214 3128 2930 3030 - 2523 1778 1804 1981 - 1748
A4 50 41 48 42 - 1339 1430 1485 1497 - 3210 4392 4514 4292 - 3124 3046 3127 2937 - 1765 1811 1985 1880 -

Table 3: Statistics of the victim-exclusive PII over all (attacker, victim) combinations.

0 1 2 3 4 5 6 7 8 9 10
Round
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# 
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I
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Figure 4: Variation trends in the amount of uncovered personally identifiable information (PII) across rounds,
presented both per-round and cumulatively. The uncovered per-round PII amounts of the centralized model in the
last round are plotted as a Ref line. Each plot features error bars representing the 95% confidence interval calculated
across all (attacker, victim) combinations.

RAM and time), we set s to 30 and l to 50. Subse-421

quently, we extract the FWS that proceed with PII422

token sequences to create the Frequent Prefix (FP)423

dictionary. For each client, we select the prefixes424

that are part of its dataset, recalculating their fre-425

quency value based on the occurrence in the client’s426

local dataset. This process results in a frequent pre-427

fix set P i
s for each client. Statistics of the identified428

frequent prefixes can be found in Table 2.429

Frequent Prefix Sampling. We assign each fed-430

erated learning (FL) client a unique identifier,431

where the client with ID ia aims to unveil the se-432

cret information of client iv. In each round, client433

ia receives the global models from the server and434

leverages its frequent prefix set P ia
s for generating435

LM completions. We perform 50 samplings for436

each prefix with temperature = 1.0 and top-p = 0.8.437

Leakage-Enhancing Alignment. We create the438

alignment fine-tuning dataset by extracting each439

unique tuple of (frequent prefix, subsequent PII)440

from client ia’s dataset and update the global model441

for 1 epoch. The fine-tuned model is utilized for PII442

extraction attacks via Frequent Prefix Sampling.443

Cross-Validation. The precision of uncovered444

PII is influenced by various factors, including the445

frequency of prefixes held by the attacker, the num-446

ber of targeted PII sequences owned by the victim,447

and the characteristics of the victim’s data sam-448

ples. To ensure the effectiveness of our proposed449

attacks across all possible (attacker, victim) pair-450

ings among clients, we conducted cross-validation 451

experiments where pairs of clients were iteratively 452

selected as attacker and victim. 453

4.3 Results 454

Federated Aggregation is An Implicit Alignment 455

Against Training Data Theft. Figure 3 sum- 456

marizes the attacking results of our first scenario 457

across all five tasks. For each task, we report the 458

Edit Distance metric (Sec. 3.2) of all six com- 459

binations of three algorithms (FedAvg, FedProx, 460

Scaffold) with two distributions (IID, Non-IID), as 461

long as the centralized and untrained models for 462

comparison. The results show that, in comparison 463

to centralized training, federated learned models 464

exhibit significantly lower levels of vulnerability 465

against training data theft attacks, regardless of the 466

FL learning algorithms or data distributions used. 467

This difference may be attributed to the federated 468

aggregation operation, which smoothes the model 469

output distribution. Consequently, when a model 470

is provided with a training sample prefix, it is less 471

likely to generate the exact suffix. We also noticed 472

that in certain tasks (e.g., Match and Exam), the 473

Edit Distance metric is much lower than in others. 474

This can be potentially attributed to the characteris- 475

tics of these tasks that the training samples differ a 476

lot from each other. 477

FedLLMs leak up to 40% exclusive PII Figure 478

2 demonstrates the effectiveness of our proposed 479

Frequent Prefix Sampling and Leakage-Enhancing 480
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Un-Aligned Aligned
V0 V1 V2 V3 V4 V0 V1 V2 V3 V4

Exam

A0 - 0.163 0.173 0.119 0.154 - 0.233 0.173 0.190 0.192
A1 0.189 - 0.185 0.089 0.151 0.245 - 0.204 0.156 0.226
A2 0.151 0.133 - 0.104 0.137 0.245 0.200 - 0.146 0.157
A3 0.163 0.119 0.167 - 0.157 0.245 0.167 0.204 - 0.196
A4 0.220 0.195 0.125 0.190 - 0.260 0.244 0.146 0.190 -

RC

A0 - 0.248 0.223 0.217 0.234 - 0.334 0.313 0.305 0.326
A1 0.216 - 0.212 0.219 0.223 0.311 - 0.292 0.297 0.308
A2 0.233 0.247 - 0.208 0.233 0.324 0.339 - 0.286 0.326
A3 0.220 0.245 0.208 - 0.228 0.320 0.336 0.290 - 0.316
A4 0.220 0.250 0.214 0.210 - 0.310 0.336 0.303 0.295 -

Sum

A0 - 0.111 0.107 0.112 0.103 - 0.180 0.165 0.186 0.171
A1 0.138 - 0.109 0.115 0.100 0.181 - 0.161 0.168 0.153
A2 0.132 0.111 - 0.106 0.099 0.182 0.160 - 0.162 0.151
A3 0.125 0.107 0.101 - 0.091 0.179 0.160 0.152 - 0.152
A4 0.127 0.103 0.103 0.108 - 0.172 0.159 0.153 0.164 -

Match

A0 - 0.410 0.427 0.424 0.428 - 0.404 0.428 0.424 0.423
A1 0.413 - 0.422 0.427 0.423 0.413 - 0.419 0.421 0.424
A2 0.398 0.391 - 0.407 0.412 0.393 0.383 - 0.405 0.402
A3 0.425 0.424 0.442 - 0.441 0.413 0.412 0.431 - 0.420
A4 0.404 0.405 0.427 0.424 - 0.398 0.398 0.415 0.411 -

Cls

A0 - 0.172 0.135 0.179 0.176 - 0.211 0.175 0.230 0.214
A1 0.170 - 0.136 0.174 0.180 0.214 - 0.178 0.221 0.216
A2 0.175 0.174 - 0.187 0.179 0.211 0.216 - 0.234 0.226
A3 0.177 0.175 0.135 - 0.178 0.200 0.211 0.181 - 0.218
A4 0.173 0.171 0.140 0.185 - 0.216 0.216 0.189 0.225 -

Table 4: Cross-validation results of the Frequent Prefix Sampling attack showing precision values of cumulatively
uncovered Personally Identifiable Information (PII) after 10 rounds of FedAvg under Non-IID partitioning. Each cell
represents a specific attacker client denoted as Ai against a victim client denoted as Vj , where i, j ∈ {0, 1, 2, 3, 4}.

Alignment, by which the attacker client success-481

fully extracts a significant ratio of potential PII in-482

stances. The leakage-enhancing alignment boosts483

the frequency sampling performance across most484

tasks, except for the match task. This discrepancy485

may arise from the Match task involving a large set486

of PII, leading to an extensive fine-tuning set Dft487

for alignment, causing the global model to overfit488

on the attacker’s PII mentions and consequently489

lowering the precision in recovering the victim’s490

exclusive PII. To ensure the generalizability of our491

results across various clients, we conducted cross-492

validation on all possible combinations of attackers493

and victims. These results are presented in Table 4.494

These findings suggest that the FedLLM can mem-495

orize precise, sensitive information, which can be496

extracted without precise knowledge of the training497

samples.498

An actively participating attacker can steal even499

more. We visualize the attacking performance500

across different FL rounds in Figure 4 and find that501

the nature of interactive learning between the server502

and clients in FL causes great privacy risks. Figure503

4 shows that an active attacker client that partic-504

ipates in every FL round can receive a series of505

global model checkpoints and cumulatively steal a506

great number of PII. This is not always the case for507

Centralized LLM, where only the final checkpoint 508

will be released. 509

5 Conclusion 510

We have conducted comprehensive evaluations of 511

FedLLMs to assess their privacy risks in the con- 512

text of five real-world legal tasks, considering both 513

Training Data Theft and PII Secrets Theft scenarios. 514

Our findings indicate that although the FedLLM 515

shows resistance against Training Data Theft attack, 516

it fails to protect PII secrets against the Frequent 517

Prefix Sampling attacks. Furthermore, the inter- 518

active nature of FL process enable the attacker to 519

access checkpoints at different stages, which pose 520

greater privacy vulnerability compared to Non-FL 521

LLMs. This study highlights the privacy risks aris- 522

ing from memorization effects in FedLLMs and 523

underscores the necessity for innovative protective 524

measures during FedLLM training. 525
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6 Limitations526

This study only focused on a scenario where clients527

are curious but honest, where the attacker adheres528

strictly to the Federated Learning (FL) protocol.529

Future researches could explore situations where530

attackers upload leakage-enhanced models to in-531

troduce malicious weights into the global models,532

potentially leading to the aggregated model becom-533

ing susceptible to memorizing confidential informa-534

tion. Additionally, this study employed simplistic535

FL client sampling strategies, with all clients par-536

ticipating across rounds in a cross-silo manner. It537

would be beneficial for future research to investi-538

gate more advanced sampling strategies, such as539

those related to Fairness in FL, and assess their540

impact on mitigating cross-client attacks.541
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