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Abstract

Large language models (LLMs) are vulnerable
to data extraction attacks due to their tendency
to memorize precise training data. In contrast,
Federated Learning (FL) has the potential to
mitigate privacy leakage. This underscores the
need for an assessment of the privacy risks asso-
ciated with LLMs trained with FL algorithms,
which remains an underexplored question. In
this study, we evaluate the privacy leakage of
LLMs trained with FL algorithms on the pub-
lic datasets extended with automatically anno-
tated Personally Identifiable Information (PII)
to evaluate the leakage of PII and training ex-
ample outputs. Through extensive experiments,
we find out that FL algorithms indeed mitigate
privacy leaks compared to their counterparts
on centralized data. In addition, we discover
a novel data extraction attack method, called
cross-client security theft, which can recover up
to 40% of unique PII mentions in target devices
by accessing only one of the FL participants.
These findings highlight the potential privacy
risks of FL for LLMs and underscore the need
to explore new protective mechanisms in future
research.

1 Introduction

With the rise of Large Language Models (LLMs),
there is a growing interest in developing and de-
ploying LLMs for privacy-preserving applications
in the areas with rich sensitive data, such as fi-
nance, law, and healthcare (Awosika et al., 2024,
Zhang et al., 2023; Oh and Nadkarni, 2023). Feder-
ated learning (FL) algorithms allow training mod-
els on sensitive data in a collaborative and dis-
tributed manner without letting data leave local
devices (McMahan et al., 2017), hence various FL
algorithms are proposed recently to improve the
performance of LLMs or reduce training costs in a
distributed environment, without investigating the
issue of privacy leakage (Yao et al., 2024).
However, it has been reported that LLMs can
effectively memorize substantial training data in
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Figure 1: Ilustration of the Cross-Client Attack. An
honest-but-curious client receives aggregated LLM
checkpoints from the server, and attempts to extract
private information from other clients. We introduce
two distinct scenarios based on different levels of prior
knowledge regarding the victim’s dataset and the at-
tacker’s goal to extract either complete training exam-
ples or specific PII. The personal information depicted
in the image has been anonymized.

the centralized setting (Brown et al., 2022; Carlini
et al., 2023). It is possible to uncover training data
from LLMs trained on centralized data via data
extraction attacks (Yu et al., 2023; Schwarzschild
et al., 2024; Dong et al., 2024; Carlini et al., 2021).
Such data extraction attacks aim to recover ei-
ther training data outputs or mentions of Person-
ally Identifiable Information (PII) (Yu et al., 2023;
Lukas et al., 2023). It raises a novel research ques-
tion: whether or to what extent the LLMs trained
with FL algorithms are vulnerable to data extrac-
tion attacks.

To answer the research question, we evaluate
the vulnerability of LLMs trained with SOTA FL
algorithms in terms of data extraction attacks in two
practical settings: i) attackers have the complete
knowledge of data inputs, and ii) attackers have
partial knowledge of data inputs by having access
to the data residing in only one of the participating
devices in an FL environment. The key difference
between the two settings lies in whether an attacker
needs to estimate data inputs similar or identical to



the training data in a target device. In both settings,
we assess the effect of attack by evaluating the
amount of recovered output sequences and PII. To
evaluate the attack effect on PII, we extend the
datasets (Yue et al., 2023) with rich real-world PII
mentions in the legal domain by annotating those
PII mentions using GPT-4 (OpenAl et al., 2024).

Surprisingly, we discover a simple but effective
attack method, referred to as cross-client secret
theft in the latter setting. In particular, in one FL
participating device, we apply a SOTA frequent
sequence mining algorithm (Miliaraki et al., 2013)
to identify a set of word sequences that co-occur
frequently with mentions of PII. Those word se-
quences are fed to LLMs to generate diverse out-
puts. The rationale behind this is that the data in
various FL participants should share some common
statistical patterns so that the sensitive information
hidden in model outputs can be triggered by the
designated shared inputs. We further find out that
the amount of recovered sensitive information can
be dramatically increased if an FL trained LLM
is fine-tuned on the automatically mined frequent
sequences in the attacker device.

Our extensive experiments reveal three novel
findings. Firstly, on the same dataset, with both In-
dependent and Identically Distributed (IID) and
non-IID data partitioning, the LLMs fine-tuned
with three different FL algorithms demonstrate a
significant reduction in training data leakage com-
pared to the ones trained on centralized data on
average. Secondly, the LLMs trained with Fe-
dAvg (McMabhan et al., 2017) expose up to 40%
of unique PII mentions using our cross-client se-
cret theft attack, as illustrated in Figure 2. Lastly,
an attacker can recover different sensitive informa-
tion, e.g. PII, in different FL rounds. As a result,
the longer an attacker participates in FL, the more
sensitive information it can detect.

Our contributions are summarized as follows:

1. We conduct the first empirical study to evalu-
ate the privacy leakage of fine-tuning LLMs
with FL algorithms in terms of training data
extraction attack. For the evaluation of leaked
PII, we extend the datasets (Yue et al., 2023)
by annotating PII mentions with GPT-4.

2. We discover a novel data extraction attack
method, called cross-client secret theft, which
is able to recover up to 40% unique PII men-
tions in a practical setting that the attacker has
access to the data of only one FL participant.

2 Related Work

Privacy Attacks in Federated LLMs. Partici-
pants of Federated Learning (FL) can be catego-
rized as either semi-honest or malicious (Apple-
baum, 2017). The semi-honest participant adheres
to the FL protocol and can only passively analyze
information of interest, while malicious partici-
pants actively manipulate the inputs/outputs of the
FL algorithm. Recent research focusing on attack-
ing algorithms aimed at extracting specific privacy
information from FedLLMs can be classified into
two scenarios based on their assumptions regarding
the threat model: 1) malicious server and 2) semi-
honest client. The majority of studies concentrate
on the malicious server scenario (Chu et al., 2023;
Vu et al., 2024; Rashid et al., 2023), where the at-
tacker adjusts the model’s weights or architecture
to improve the extraction of specific privacy-related
data.

Research conducted by Rashid et al. (2023)
also explored experiments under the assumption
of semi-honest client attacks (referred to as static
attacking mode), where attackers solely observe
global models received from the server, storing
their analysis results and intermediate products
locally. Comparatively, attacks originating from
semi-honest clients tend to be more covert than
those in the malicious server setting. Our work
also considers semi-honest client settings.

In contrast to FLTrojan by Rashid et al. (2023),
which analyzes the changes of model parameter
through fine-tuning with inserted datasets of pri-
vacy canaries and adjusts the model output distri-
bution to leak privacy by modifying specific layer
weights, our study approaches this issue from a fun-
damentally different angle. First and foremost, we
utilize real-world legal domain datasets encompass-
ing personally identifiable information (PII) instead
of artificially inserted canaries to address the pri-
vacy risks of FedLLMs regarding data extraction
attacks. Additionally, we make two assumptions
about the attacker’s knowledge levels and conduct
more comprehensive experiments utilizing three FL.
algorithms (FedAvg, FedProx, and Scaffold), under
both IID and Non-IID partitions. Furthermore, our
Frequent Prefix Sampling method is rooted in text
mining the attacker’s local data and optionally fine-
tuning the global models with (Frequent prefix, PII)
sequences to enhance the sampling attack efficacy.



Privacy Extraction Attacks of LLMs. The
study by Lukas et al. (2023) examines the potential
for extracting Personally Identifiable Information
(PII) sequences from GPT-2 series models fine-
tuned on datasets containing PIIs. It explores three
levels of extraction methods based on the attack-
ers’ level of knowledge: 1) Random generation
of a large number of tokens followed by counting
the generated PII tokens; 2) Filling masked PII se-
quences given the context of the prefix and suffix;
3) Selection of the correct PII from a candidate
pool based on the context. This study also explores
the effectiveness of common defense mechanisms
such as dataset scanning and differential privacy
learning. Conversely, Xiao et al. (2023) investi-
gates various techniques to prevent LLMs from
generating PII tokens in specific tasks, assuming
attackers have only black-box access to the LLMs.
In contrast, our work is based on assumptions from
practical federated learning scenarios where attack-
ers receive global models each round and do not re-
quire knowledge of victims’ training data in cross-
client attacks.

Memorization Measurement via Data Extrac-
tion Attacks. Training data completion is an ef-
fective method for quantifying the memorization of
Large Language Models (LLMs) (Yu et al., 2023;
Schwarzschild et al., 2024; Carlini et al., 2023). It
assesses whether a specific training sequence has
been fully memorized by providing an initial por-
tion of the tokens and verifying if the model can
accurately complete the remainder. Following this
definition, metrics have been developed by Dong
et al. (2024) to measure the degree of data contam-
ination in LLMs.

Efforts have been made to enhance the accuracy
of completions of desired sequences, thereby more
precisely indicating the actual memorization ca-
pability of LLMs. For completing a fixed prefix
from the exact training sample, Yu et al. (2023)
evaluates a range of existing and proposed algo-
rithms to enhance the performance of prefix-suffix
generation. These algorithms focus on improving
the decoding process of LLMs, as well as the se-
lection, correction, and collaboration in the suffix
completion generation. Other studies concentrate
on identifying the optimal prefix that can lead to the
desired suffix completion, achieved through prompt
optimization (Kassem et al., 2024), adversarial opti-
mization (Schwarzschild et al., 2024; Kassem et al.,
2024; Zou et al., 2023), or reverse language mod-

eling (Pfau et al., 2023). Our cross-client attack
falls within this latter category. Unlike algorithms
that necessitate direct access to the exact training
sample, our proposed method leverages statistical
information derived from the local training data of
a client. The outcomes of our attacks can be em-
ployed as gray-box memorization measurements
within the privacy-preserving context of federated
learning.

3 Training Data Extraction Attack

3.1 Settings

We describe our overall settings in this section.

Threat Model. We assume the attacks are from
semi-honest (Applebaum, 2017) clients which can
only passively analyze information of interest from
the received global models without applying any
changes to their local adapted models uploading
to the server. The procedure of cross-client secret
theft is detailed in Algorithm 1.

Algorithm 1 Cross-Client Secret Theft Framework

Input: Clients set C' and corresponding local datasets
D = {d.,|Ve¢; € C}; Total FL rounds R; Initial global
model M?; Server aggregation algorithm f; Fine-tuning
objective L£; Privacy attack algorithm A

Output: Stealed secrets S

. ServerExecute:
: forroundr =1...R do
Sample clients ¢,
for each client ¢} in ¢, do
m; < CLIENTUPDATE(c; , M")
end for
M™T = f({mi})
: end for

S R o

9: ClientExecute:

10: function CLIENTUPDATE(c], M)

11: m; < argmin L(M", d.,)
MT

12: if ¢} is the Attacker then

13: S+ SUA(M",d.,) > Attacker client keeps its
attacking results locally.

14: end if

15: return m;

16: end function

Two Scenarios. We propose two practical sce-
narios of training data extraction attack. In the first
scenario, called Training Data Theft, the attackers
are familiar with the training examples in victim
client datasets, in particular their inputs, which are
referred to as prefixes hereafter. The output of a
training example is hence referred to as a suffix.
Given a prefix, an attacker aims to obtain either



the entire output of the corresponding training ex-
ample or any PII within the output. In the second
scenario, called PII Secrets Theft, the attackers pos-
sess no knowledge of datasets belonging to other
clients besides their own, and aim to steal specific
confidential information from these other clients.

3.2 Training Data Theft

Suppose an attacker knows the prefix of certain
training examples from a victim’s dataset, it aims
to recover the remainder portion or relevant PII.

Preliminary. Given a LLM 6 and a subset of
training (fine-tuning) dataset D, a common data ex-
traction approach involves dividing each data sam-
ple d; € D into a prefix p; and a suffix s; such that
d; = p;si. Subsequently, the model 6 generates a
sequence g; based on the prefix p;. A data sample
is considered as extracted if g; exactly matches the
suffix s;. Studies have revealed that LMs often pro-
duce outputs that are not exact matches but closely
resemble the ground truth suffix, differing only in
small tokens. Therefore, instead of strictly requir-
ing an exact match, a training sample could also be
viewed as successfully extracted if the similarity
generated output g; and the true suffix s; surpasses
a certain defined threshold ¢.

Metric. In this study, following Dong et al.
(2024), we use Edit Distance (Levenshtein, 1965)
as the similarity measurement function. Given the
recieved global model M" and the subset of the
victim dataset D, the performance of Training Data
Theft is defined as

e(M",D) =Ep,s,~p [ED (si, gi ~ Py(pi))]

3.3 PII Secrets Theft

Compared to the previous scenario, it is novel and
is more practical by assuming that the attacker can
participate in FL as a client but cannot see the data
of the other clients except its own. It can happen
when a FL client is compromised or a malicious
user joins a FL process.

Secret Extraction via Frequent Prefix. The FL
client can reasonably possess some level of prior
knowledge K regarding the private data of other
clients through an analysis of its own dataset. In the
federated fine-tuning of an LLM, the training data
comprises tuples (Instruction, Input, Output) inte-
grated into a unified predefined prompt template as
input for the LLM. In a given task, each client is

expected to use the same Instruction and its private
(Input, Output) pairs from its local dataset. Despite
this, the private data points may still exhibit simi-
larities in terms of writing style, tone, vocabulary,
and idiomatic expressions. By examining its own
dataset, a curious attacker client can readily acquire
such knowledge K. Given the nature of the next-
token prediction of LLLMs, the prior knowledge K
can be viewed as natural language prefixes.

In this study, we employ the MG-FSM algorithm
(Miliaraki et al., 2013) to identify Frequent Word
Sequences (FWS) from the local dataset and utilize
them as the prefixes (defined as Frequent Prefix)
for the attack sampling. Considering the next-token
modeling capability of LLMs we capture only con-
tinuous word sequences. Once the Frequent Prefix
set is identified, the attacker use them to extract
secret information from other clients within the
global model recieved from the server. The pro-
cedure for such attacks from a malicious client is
outlined in Algorithm 2.

Algorithm 2 Frequent Prefix Sampling

Input: Client’s local dataset D.;, Total FL rounds R.
Output: Cumulatively extracted Secrets Ce

: Identify Frequent Prefixes as prior knowledge /X from D;

: for roundr =1... R do

Receive the global model 6,

Sample secrets: Ce,. < Pg(K)

Ce + CcUCe,

: end for

SARAI A

Enhancing Leakage through Alignment. To ex-
tract confidential information using prefixes mined
in the previous step, we propose an alignment
method that effectively enable an LLM to uncover
more secrets. In particular, we fine-tune a global
model in a FL round on pairs of (ps,, ¢;), where
ps; and ¢; denote a frequent prefix and a token se-
quence containing sensitive information, e.g. PII.
The rationale behind this is that this step enhances
the correlations between frequent prefixes and sta-
tistical patterns of sensitive information inside an
LLM.

Algorithm 3 Leakage Enhancing Alignment

Input: Global model of round r M"; The attack’s identi-
fied Frequent Prefix set P, and the set of corresponding
following secrets sequence D;
Output: Aligned global model 6,
1: Dy «— Concat(Ps, Des)
2: 0, < argmin L(M", Dy;)
Mr




Exam RC Sum Match Cls
Train | 2159 3150 2551 3464 3996
Test 240 350 100 384 200

Table 1: Dataset Statistics of all tasks.

Metrics. We use the Exclusive Precision of re-
covered PII as our metric. To elaborate, given a
PII set held by the victim C;,, a PII set owned by
the attacker C;,, and the extracted PII sequences
by the attacker C{ , the Exclusive Precision is then
calculated as

ICs N (Ci, — Ciy)
ICi, — Ci,|

Exclusive-Pr =

We also employ the modifier "Per-Round" to de-
note the attack performance within a single round,
and "Cumulative" to represent the performance per-
taining to the cumulative extraction of PII across
multiple rounds after deduplication.

4 Experiment

This section elaborates on our experiments. We
start by explaining the general settings, which in-
cludes datasets, models, and a utility fine-tuning
experiment. Following this, we delve into the de-
tails of our privacy experiments conducted in the
two proposed scenarios.

4.1 General Setup

Dataset Collection. We obtained dataset (Yue
et al., 2023) from authentic Chinese court doc-
uments to create three Natural Language Under-
standing (NLU) tasks and two Natural Language
Generation (NLG) tasks. These tasks are Legal
Case Classification (Cls), Similar Case Matching
(Match), Legal Exams (Exam), Judicial Document
Summarization (Sum), and Judicial Document
Reading Comprehension (RC). These datasets con-
tain real-world Personally Identifiable Information
(PII) that appear in legal documents, such as human
names, places, and dates. Detailed statistics for our
datasets are provided in Table 1.

Partitioning. In the realm of federated learn-
ing, the datasets are partitioned among individual
clients based on independent and identically dis-
tributed (IID) and Non-IID distributions. As a com-
mon practice(Li et al., 2023), a language encoder
is used to encode the dataset, followed by K-means
clustering to group the embeddings into clusters.
Next, a Dirac distribution with o« = 0.5 is applied

0.4
c 0.3 %
kel
1]
‘O
8 0.2 %
)

0.1 f %

6
Exam RC Sum Match Cls

[ Vanilla FP Sampling 3 Enhanced FP Sampling

Figure 2: Cumulative recovery of our cross-client at-
tacks on 5 different tasks. The resutls are reported as
recovery precision with global models after 10 rounds
of FedAvg aggregation, using Frequent Prefix (FP) sam-
pling with and without Leakage-Enhancing Alignment
(labled as "Vanilla" and "Enhanced" in the legend).
Cross-validation was performed for all potential combi-
nations of attacker and victim per task, and the results
are displayed using box plots.

to create a label-skewed partitioning, where the
cluster IDs serve as labels. Moreover, each client
is allocated a comparable number of data samples
to maintain a balanced non-iid partitioning scheme.
In this study, the total number of clients to 5.

PII Labeling. We utilized GPT-4 (OpenAl et al.,
2024) to automatically label all PII in our datasets.
To ensure the quality of the labeled PII, we further
instructed GPT-4 to assess the sensitivity level of
each training sample during labeling, filtering out
those with low scores. Table 2 details of the number
PII occurrence across all clients under the Non-IID
partition. We have also included the statistics of
victim-exclusive PII (Sec. 3.3) in Table 3 to provide
a more meaningful setting for potential attacks in
subsequent sections. We also list the statistics of
victim-exclusive PII in Table 3 for a more meaning
full attack setting later.

Models and Training Details. We utilize two
large language models (LLMs) primarily pre-
trained on a Chinese corpus: QWen1-8B (Bai et al.,
2023) and Baichuan2-7B (Yang et al., 2023). We
fine-tune the pre-trained models on our five tasks
employing three prominent FL algorithms, FedAvg,
FedProx, and Scaffold, under both the IID and Non-
IID partitioned dataset. This is done with the ver-
satile OpenFedLLM Framework (Ye et al., 2024).
Following prior works in data extraction attack (Yu
et al., 2023; Lukas et al., 2023) and the common
practice of FedLLM, we use the same objective as



Client ID # PIIs # Identified Frequent Prefixes
Exam RC Sum  Match Cls Exam RC Sum  Match Cls
0 108 2644 3864 15319 2100 111 1199 1376 13491 1387
1 67 2781 5355 15575 2138 111 1269 1246 12441 1601
2 78 2681 5444 15069 2272 101 1246 1191 12897 1600
3 72 3003 5174 14584 2124 93 1223 958 14257 1635
4 88 2908 5171 14185 2049 111 1290 996 13766 1631

Table 2: Statistics on Personally Identifiable Information (PII) and Identified Frequent Prefixes of each client across

all five tasks.
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41.68
0.60
Match 32.20+6.83
42.66
16.03
Cls 41.03+1.16
44,24
0 10 20 30 40 50 60 70

Edit Distance

Centralized

BaiChuan2-7B

16.86
Exam 24.50+0.67
41.06
29.08
RC 44.25+0.34
44.73
35.83
Sum 40.27+0.24
42.03
8.25
Match 36.29+3.74
41.91
31.88
Cls 40.44+0.60
43.07
0 10 20 30 40 50 60 70

Edit Distance

Federated Untrained

Figure 3: Attack results of exact training example prefix sampling after 10 epochs/rounds of training. For the
Federated setting, we aggregated all six combinations of three algorithms (FedAvg, FedProx, Scaffold) with two
distributions (IID, Non-IID), and illustrated the mean values along with standard deviations. Additionally, the results

of untrained models are included as a baseline.

in the pre-training stage and employ Parameter-
Efficient Fine-tuning techniques of LoRA with
r = 16 and o = 32. We store multiple check-
points during training to facilitate later privacy at-
tack experiments. We set the total number of FL
rounds for all experiments to 10. Additionally, we
centralizely fine-tune a set of models for future
comparison use with a total of 10 training epochs.

4.2 Privacy Experiments Setup
4.2.1 Training Data Theft

First we create the extraction set D for each client,
which are assumed prefix leaked to the attack. 40
data points are randomly selected from its local
training set. Then we combine all local extraction
sets to form a global extraction set DI = U; Dy.
During the FL process, each sample d; € DY
is divided into an equal-length prefix p; and suffix
s;. A set of generations § = U;g; is generated
using the individual prefix p;, where |G| = 20. The
Edit Distance (ED) (See Sec. 3.2) between the

actual suffix s; and all generated suffixes in G is
then calculated, considering only the initial tokens
up to a maximum length of 50. The average ED
for a single sample is obtained by averaging these
distances. The overall ED metric for a model is
determined by averaging the ED values across all
samples.

4.2.2 PII Secrets Theft

Frequent Prefix Identification. Initially, we
identify all possible continuous Frequent Word Se-
quences (FWS) within the entire dataset with an
off-the-shelf implementation of the MG-FSM al-
gorithm (Miliaraki et al., 2014). The algorithm
accepts three parameters: g, s, and [, which control
the maximum gap allowed between words, the min-
imum support threshold for a sequence to be con-
sidered, and the maximum length of the mined se-
quence, respectively. Because of LLMs’ next-token
modeling capability, we set g = 0 to only capture
continuous word sequences. Considering practical
limitations such as computational resources (e.g.,
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Table 3: Statistics of the victim-exclusive PII over all (attacker, victim) combinations.
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presented both per-round and cumulatively. The uncovered per-round PII amounts of the centralized model in the
last round are plotted as a Ref line. Each plot features error bars representing the 95% confidence interval calculated

across all (attacker, victim) combinations.

RAM and time), we set s to 30 and [ to 50. Subse-
quently, we extract the FWS that proceed with PII
token sequences to create the Frequent Prefix (FP)
dictionary. For each client, we select the prefixes
that are part of its dataset, recalculating their fre-
quency value based on the occurrence in the client’s
local dataset. This process results in a frequent pre-
fix set P! for each client. Statistics of the identified
frequent prefixes can be found in Table 2.

Frequent Prefix Sampling. We assign each fed-
erated learning (FL) client a unique identifier,
where the client with ID 7, aims to unveil the se-
cret information of client 7,. In each round, client
14 receives the global models from the server and
leverages its frequent prefix set Pl for generating
LM completions. We perform 50 samplings for
each prefix with temperature = 1.0 and top-p = 0.8.

Leakage-Enhancing Alignment. We create the
alignment fine-tuning dataset by extracting each
unique tuple of (frequent prefix, subsequent PII)
from client i, ’s dataset and update the global model
for 1 epoch. The fine-tuned model is utilized for PII
extraction attacks via Frequent Prefix Sampling.

Cross-Validation. The precision of uncovered
PII is influenced by various factors, including the
frequency of prefixes held by the attacker, the num-
ber of targeted PII sequences owned by the victim,
and the characteristics of the victim’s data sam-
ples. To ensure the effectiveness of our proposed
attacks across all possible (attacker, victim) pair-

ings among clients, we conducted cross-validation
experiments where pairs of clients were iteratively
selected as attacker and victim.

4.3 Results

Federated Aggregation is An Implicit Alignment
Against Training Data Theft. Figure 3 sum-
marizes the attacking results of our first scenario
across all five tasks. For each task, we report the
Edit Distance metric (Sec. 3.2) of all six com-
binations of three algorithms (FedAvg, FedProx,
Scaffold) with two distributions (IID, Non-IID), as
long as the centralized and untrained models for
comparison. The results show that, in comparison
to centralized training, federated learned models
exhibit significantly lower levels of vulnerability
against training data theft attacks, regardless of the
FL learning algorithms or data distributions used.
This difference may be attributed to the federated
aggregation operation, which smoothes the model
output distribution. Consequently, when a model
is provided with a training sample prefix, it is less
likely to generate the exact suffix. We also noticed
that in certain tasks (e.g., Match and Exam), the
Edit Distance metric is much lower than in others.
This can be potentially attributed to the characteris-
tics of these tasks that the training samples differ a
lot from each other.

FedLLLLMs leak up to 40% exclusive PII Figure
2 demonstrates the effectiveness of our proposed
Frequent Prefix Sampling and Leakage-Enhancing
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Al | 0216 - 0212 0.219 0.223 | 0311 - 0292  0.297 0.308
RC A2 | 0233 0.247 - 0.208 0.233 | 0324 0.339 - 0.286 0.326
A3 | 0220 0.245 0.208 - 0.228 | 0.320 0.336  0.290 - 0.316

A4 | 0220 0.250 0214 0.210 - 0.310 0336 0303 0.295 -
A0 | - 0.111  0.107 0.112 0.103 | - 0.180 0.165 0.186 0.171
Al | 0.138 - 0.109 0.115 0.100 | 0.181 - 0.161 0.168 0.153
Sum | A2 | 0.132 O0.111 - 0.106  0.099 | 0.182 0.160 - 0.162 0.151
A3 | 0.125 0.107 0.101 - 0.091 | 0.179 0.160 0.152 - 0.152

A4 | 0.127 0.103 0.103 0.108 - 0.172  0.159 0.153 0.164 -
AO | - 0410 0427 0424 0428 | - 0404 0428 0424 0423
Al | 0413 - 0422 0427 0423 | 0413 - 0419 0421 0424
Match | A2 | 0.398 0.391 - 0.407 0412 | 0393 0.383 - 0.405 0.402
A3 | 0425 0424 0442 - 0.441 | 0413 0412 0431 - 0.420

A4 | 0404 0405 0427 0424 - 0.398 0398 0415 0411 -
A0 | - 0.172  0.135 0.179 0.176 | - 0211 0.175 0230 0.214
Al | 0.170 - 0.136  0.174 0.180 | 0.214 - 0.178 0.221 0.216
Cls A2 | 0.175 0.174 - 0.187 0.179 | 0.211 0.216 - 0.234 0.226
A3 | 0.177 0.175 0.135 - 0.178 | 0.200 0.211 0.181 - 0.218

A4 | 0.173 0.171 0.140 0.185 - 0216 0.216 0.189 0.225 -

Table 4: Cross-validation results of the Frequent Prefix Sampling attack showing precision values of cumulatively
uncovered Personally Identifiable Information (PII) after 10 rounds of FedAvg under Non-IID partitioning. Each cell
represents a specific attacker client denoted as A; against a victim client denoted as V}, where 4, j € {0, 1,2,3,4}.

Alignment, by which the attacker client success-
fully extracts a significant ratio of potential PII in-
stances. The leakage-enhancing alignment boosts
the frequency sampling performance across most
tasks, except for the match task. This discrepancy
may arise from the Match task involving a large set
of PII, leading to an extensive fine-tuning set Dy,
for alignment, causing the global model to overfit
on the attacker’s PII mentions and consequently
lowering the precision in recovering the victim’s
exclusive PII. To ensure the generalizability of our
results across various clients, we conducted cross-
validation on all possible combinations of attackers
and victims. These results are presented in Table 4.
These findings suggest that the FedLLM can mem-
orize precise, sensitive information, which can be
extracted without precise knowledge of the training
samples.

An actively participating attacker can steal even
more. We visualize the attacking performance
across different FL rounds in Figure 4 and find that
the nature of interactive learning between the server
and clients in FL causes great privacy risks. Figure
4 shows that an active attacker client that partic-
ipates in every FL round can receive a series of
global model checkpoints and cumulatively steal a
great number of PIL. This is not always the case for

Centralized LLM, where only the final checkpoint
will be released.

5 Conclusion

We have conducted comprehensive evaluations of
FedLLMs to assess their privacy risks in the con-
text of five real-world legal tasks, considering both
Training Data Theft and PII Secrets Theft scenarios.
Our findings indicate that although the FedLLM
shows resistance against Training Data Theft attack,
it fails to protect PII secrets against the Frequent
Prefix Sampling attacks. Furthermore, the inter-
active nature of FL process enable the attacker to
access checkpoints at different stages, which pose
greater privacy vulnerability compared to Non-FL
LLMs. This study highlights the privacy risks aris-
ing from memorization effects in FedLLMs and
underscores the necessity for innovative protective
measures during FedLLM training.



6 Limitations

This study only focused on a scenario where clients
are curious but honest, where the attacker adheres
strictly to the Federated Learning (FL) protocol.
Future researches could explore situations where
attackers upload leakage-enhanced models to in-
troduce malicious weights into the global models,
potentially leading to the aggregated model becom-
ing susceptible to memorizing confidential informa-
tion. Additionally, this study employed simplistic
FL client sampling strategies, with all clients par-
ticipating across rounds in a cross-silo manner. It
would be beneficial for future research to investi-
gate more advanced sampling strategies, such as
those related to Fairness in FL, and assess their
impact on mitigating cross-client attacks.
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