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Abstract— Embodied visual tracking is a fundamental skill
in Embodied Al enabling an agent to follow a specific target in
dynamic environments using only egocentric vision. This task is
inherently challenging as it requires both accurate target recog-
nition and effective trajectory planning under conditions of
severe occlusion and high scene dynamics. Existing approaches
typically address this challenge through a modular separation of
recognition and planning. In this work, we propose TrackVLA,
a Vision-Language-Action (VLA) model that learns the synergy
between object recognition and trajectory planning. Leveraging
a shared LLM backbone, we employ a language modeling
head for recognition and an anchor-based diffusion model
for trajectory planning. To train TrackVLA, we construct an
Embodied Visual Tracking Benchmark (EVT-Bench) and collect
diverse difficulty levels of recognition samples, resulting in a
dataset of 1.7 million samples. Through extensive experiments
in both synthetic and real-world environments, TrackVLA
demonstrates SOTA performance and strong generalizability.
It significantly outperforms existing methods on public bench-
marks in a zero-shot manner while remaining robust to high
dynamics and occlusion in real-world scenarios at 10 FPS
inference speed. Our project page is: https://pku-epic.
github.io/TrackVLA-web.

I. INTRODUCTION

Embodied visual tracking (EVT) [1]-[6] requires the agent
to persistently track a given target, which is a fundamental
capability of embodied AI [7] and widely demanded in
robotics [8], [9]. This task is particularly challenging due to
its reliance on two tightly coupled skills: (1) Target recog-
nition, the ability to accurately identify and distinguish the
target, and (2) Trajectory planning, the capacity to determine
optimal actions for effective tracking. The interplay between
recognition and planning becomes especially demanding
under challenging conditions, such as the presence of severe
occlusion and highly dynamic scenes.

Toward achieving robust embodied visual tracking, exist-
ing methods [1]-[5], [10] typically address this challenge
by decoupling recognition and trajectory planning into a
detection model and a planning model, respectively. These
approaches benefit from rapid advancements in visual foun-
dation models [11]-[13] and policy learning techniques (e.g.,
imitation learning [14] and reinforcement learning [3], [15]).
Despite demonstrating early progress, these methods are
limited to category-level tracking in relatively open areas.
This is because their loosely coupled design causes error ac-
cumulation between the recognition model and the planning
model—e.g., an incorrect recognition may result in faulty
planning, and vice versa.
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Fig. 1: TrackVLA is a vision-language-action model capable of
simultaneous object recognition and visual tracking, trained on a
dataset of 1.7 million samples. It demonstrates robust tracking, long-
horizon tracking, and cross-domain generalization across diverse
challenging environments.

To achieve synergy between target recognition and trajec-
tory planning, a versatile model must master both recognition
and tracking capabilities. In this work, we propose Track-
VLA, a vision-language-action model featuring a unified
framework that integrates target recognition and trajectory
planning. Specifically, both tasks utilize the same token
encoding and LLM forwarding mechanism to predict the next
token, while decoding is task-dependent. For the recognition
task, TrackVLA employs a language modeling head to
decode textual responses. For the planning task, TrackVLA
leverages an anchor-based diffusion head to generate way-
point trajectories. Both tasks are trained jointly, optimizing
TrackVLA to achieve tight coupling between recognition and
planning.

To enable TrackVLA’s acquisition of both recognition and
planning capabilities, we collect 855K video recognition
samples and 855K robot tracking samples. For recogni-
tion, we construct a human recognition dataset based on
a public ReID dataset [16] and leverage open-world VQA
datasets [17]-[19]. For embodied visual tracking data, we
gather samples from a self-developed embodied visual track-
ing benchmark (EVT-Bench), which includes over 100 high-
fidelity humanoid avatars moving randomly in simulated
scenes. Both recognition and tracking samples were collected
at varying difficulty levels to enable comprehensive training
of TrackVLA.

We conduct extensive experiments on both synthetic and
real-world environments, and we find that TrackVLA demon-
strates superior performance with strong generalizability.
TrackVLA archives SOTA performance in public benchmark
Gym-UnrealCV [20] in a zero-shot manner, and significantly
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outperforms baselines in self-built benchmark EVT-Bench
that involves detailed language input and crowded environ-
ments. Furthermore, TrackVLA exhibits exceptional sim-to-
real generalization capability, enabling robust tracking of
previously unseen objects in novel environments at 10 FPS
inference speed.

II. RELATED WORKS

The task requires agents to continuously pursue dynamic
targets based on visual observations, relying on accurate
target recognition and optimal trajectory planning. In real-
world applications, human following [21]-[23] represents the
most extensively studied scenario within this domain. While
many recent works [9], [15], [24]-[29] decouple perception
and planning into two separate modules—often incorporating
visual foundation models [11] to enhance perception and
employing reinforcement learning for planning—they fre-
quently suffer from error accumulation due to the separation
of detection and planning, as well as low training efficiency.
To address this, some approaches leverage offline RL [6],
[30] to boost training efficiency. However, the aforemen-
tioned approaches lack support for natural language inputs,
which significantly limits their applicability in real-world
human-robot interaction scenarios. To address this limitation,
Uni-NaVid [14] introduced a vision-language-action (VLA)
model that enables human following via large-scale imita-
tion learning in simulation. Nonetheless, its reliance on a
discrete action space hinders adaptability in complex, real-
world environments. In contrast, Track VLA integrates target
recognition and trajectory planning into a unified training
framework, achieving synergy between robust perception and
flexible motion control, and demonstrating superior embod-
ied visual tracking performance in real-world deployments.

I11. METHOD
A. Embodied Visual Tracking Formulation

We formulate embodied visual tracking task as: At each
timestamp 7, given a natural language instruction .#,
which describes the appearance of a specific target, and
an egocentric RGB observation consisting of a sequence of
frames Or = {xi,---,xr}, the agent is required to output
the next action ar € A = {v,w} to continuously follow the
described target in unseen environments, where A is the
action space including linear velocity v and angular velocity
o of the agent. The task is considered successful if the agent
is able to consistently maintain an appropriate following
distance (1-3 m) from the target while facing toward it.

B. TrackVLA Overview

As shown in Fig. 2, TrackVLA extends video-based
VLM/VLA approaches [14], [31], [32] by introducing a par-
allel prediction branch for both trajectory planning and target
recognition. For trajectory planning, TrackVLA organizes
online-captured video data, combining historical and current
observations, and concatenates them with tracking instruc-
tions and a special tracking token. A diffusion transformer
then decodes the output tokens from a large language model
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Fig. 2: TrackVLA is a vision-language-action model capable of
simultaneous object recognition and visual tracking, trained on a
dataset of 1.7 million samples. It demonstrates robust tracking, long-
horizon tracking, and cross-domain generalization across diverse
challenging environments.

(implemented with Vicuna-7B [33]) into waypoints. For
recognition tasks, all video frames are encoded identically
and processed in a conventional autoregressive manner.

C. TrackVLA Architecture

Observation Encoding. Given the egocentric RGB se-
quence Or = {xy,---,Xr}, we employ a pre-trained vision
encoder (EVA-CLIP [34]) to extract visual features Vi.7 €
RVXC where N is the number of patch (set to 256) and C
represents the embedding dimension. Here, we apply a grid
pooling strategy [14], [32] (Fig. 2, left) to the visual features,
generating more compact representations. Specifically, we
use two resolution scales:

fine/coarse __ . % i

\% = GridPool(V, N orN) (D)
where Vipe € RO4%C provides fine-grained observations,
while Veoarse € R**C offers coarse-grained observations. To
optimally balance token length and performance, we empir-
ically use fine-grained features Vi € RO*C for the latest
tracking observation to enhance target identification, while
coarse-grained tokens are used for historical tracking and
VQA-based recognition.

To ensure consistent inference speed during tracking, we
employ a sliding window mechanism to retain only the latest
k frames (set to 32 in our implementation). For embodied
visual tracking, we structure the visual token sequence
as: ygrack = [ygoase | yeoarse yiiney - ywhile for the video
question answering (VQA) recognition task, we construct
the sequence as: “VTVQA = {v{oase . VPasel Following
established Vision-Language Models (VLMs) [31], [35], we
use a cross-modality projector Z(-) (a 2-layer MLP) to
project visual features into the latent space of the Large
Language Model: EY. = 22 (7).

Large Language Model Forwarding. We concatenate the
visual tokens E‘; with the language tokens E/ (adding a spe-
cial [Track] token for the tracking task) and feed them into
the LLM (Fig. 2 Right) to obtain the predicted token EF.
The predicted token is then processed differently depending
on the task (determined by the presence of the [Track]
token). For recognition tasks, we use the standard language



modeling head to decode the token auto-regressively into a
vocabulary word [36]. For tracking tasks, P! serves as
conditional input to our action head model, which generates
waypoint trajectories for navigation.
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Fig. 3: Anchor-based Diffusion Action Model.

Anchor-based Diffusion Action Model. We employ an
anchor-based diffusion model [37] that performs denoising
from predefined anchors to generate waypoints. These prede-
fined anchors provide initial coarse trajectories that signifi-
cantly reduce the required denoising iterations, yielding a 5x
speedup compared to vanilla diffusion policies [38], [39]. As
shown in Fig. 3, we first collect all trajectories from the train-
ing data and apply K-means clustering [40] to obtain a set
of trajectory anchors {7;}*,, where M denotes the number
of anchors. Each anchor 1; = (x;,y;, 9,-)?2’1 represents a robot
trajectory pattern, where N,, is the number of waypoints in
each trajectory. We then perturb each anchor with Gaussian
noise to create noised anchors {%}*,. Our action model
p(-) takes the set of noised anchors {%}¥, and the con-
dition Er}red as input, and outputs: the denoised trajectories
{#}, and the corresponding trajectory classification scores

{fi}?iﬁ

{5, 8}, = o ({fi}?il 7El}red) 2

For each sample, we label the anchor trajectory closest to
the ground truth Ty as positive (Spearest = 1), and all others as
negative (se;se = 0). We then jointly optimize the trajectory
regression loss and the score prediction loss. The tracking
loss Zyack 1s defined as:

M
Lirack = Y [SiMSE (%1, Tyt) + ABCE (8, 51)] 3)

i=1

where A is a balancing parameter. Here, we adopt the
Diffusion Transformer (DiT) [41] for denoising and the
anchor-based diffusion policy only needs two denoising
steps. Given a batch of input sequences, the overall training
loss .Z is defined as a weighted combination of the tracking
loss % uck and the text prediction loss %y, formulated as
L = Lirack + 06 L exs, Where @ is also a balancing parameter.
More details can be found in the Appendix.

D. Implementation Details

Training Details. During training, we follow the standard
practice in vision-language modeling (VLM) [35] by training
for only one epoch. Additionally, we freeze the parameters
of the vision encoder throughout training. Inference Details.
During inference, we use a special token [Track] to
indicate the current task. When the [Track] token is
present, LLM performs only a single-step autoregression
and passes the output hidden state to the action model to
predict trajectories. We apply the DDIM [42] update rule
for denoising with only two steps, and select the trajectory
7, corresponding to the top-1 score §; as the final output.
Otherwise, LLM conducts full autoregressive decoding to
answer the given question based on visual observations.
More details are provided in the Appendix.

IV. DATA COLLECTION

To train our parallel branch TrackVLA, we collect both
embodied visual tracking data (855K samples) and video-
based question-answering data (855K samples). For tracking
samples (Sec. IV-A), we develop a custom avatar-following
simulator and collect a diverse dataset spanning challenging
scenarios. For recognition samples (Sec. [V-B), we construct
a video question-answering dataset that requires the agent
to describe or distinguish target objects amidst complex
backgrounds and distractors.

A. Embodied Visual Tracking Data

Embodied Visual Tracking Simulator. We build our
embodied visual tracking simulator based on Habitat 3.0 [9],
which provides an off-the-shelf simulation engine for colli-
sion detection and rendering. Our main enhancements in-
clude two aspects: (1) Humanoid Avatar Generation. We
implement a fully automated pipeline for generating and
annotating diverse humanoid avatars (Fig. 4 (A)). Specif-
ically, we adopt the SMPL-X human model and initialize
the avatars with random shapes and randomly sampled UV
texture maps (ATLAS dataset [43]). We then use a vision-
language model (Qwen-VL2.5 [44]) to obtain corresponding
textual descriptions of the avatars. (2) Natural Human
Behaviors. We assign each avatar a series of targets that
it must reach in order, with on-and-off walking states. The
walking speed is randomly sampled from a natural human
walking speed range of [1.0 m/s - 1.5 m/s] [45]. Furthermore,
we employ the ORCA algorithm [46] to enable dynamic
collision avoidance and responsive interactions, resulting in
more natural behavior. For more details, please refer to the
Appendix.

Embodied Visual Tracking Benchmark. Based on our
simulator, we construct the Embodied Visual Tracking
Benchmark (EVT-Bench) to comprehensively evaluate em-
bodied visual tracking capabilities. We generate 100 diverse
humanoid avatars and corresponding descriptions and utilize
804 scene environments from HM3D [47] and MP3D [48].
A total of 25,986 episodes are generated and subsequently
divided into training and testing sets, ensuring no overlap
of avatars or scenes between the two splits. The training
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We collect 855K embodied visual tracking samples and 855K open-
world recognition samples to jointly enhance the robust recognition
and tracking capabilities of TrackVLA.

set consists of 21,771 episodes across 703 scenes, while the
testing set includes 4,215 episodes across 101 unseen scenes.
To comprehensively evaluate algorithm performance across
different scenarios, EVT-Bench is divided into three sub-task
categories of increasing difficulty. Each sub-task contains
7,257 episodes for training and 1,405 episodes for testing.
Tracking Data Collection. We collect 885K embodied
visual tracking samples in the EVT-Bench training split,
covering three sub-tasks of varying difficulty. Each sample
includes a navigation history (RGB sequence), a target
description, and the corresponding expert trajectory T,,. Ad-
ditional details regarding the benchmark and data collection
are provided in the Appendix. The EVT-Bench will be made
publicly available to benefit the research community.

B. Video Question Answering Dataset

Despite our considerable efforts to incorporate diverse
avatars and indoor scenes, the tracking samples remain
limited to synthetic environments. To equip TrackVLA with
open-world recognition capabilities (beyond tracking sam-
ples), we further collect a total of 855K recognition samples
and jointly train them with the tracking samples. Specifically,
the recognition video question-answering (VQA) samples
consist of 362K human recognition samples and 493K open-
world VQA samples.

For the human recognition VQA data, we leverage
SYNTH-PEDES [16], a large-scale person-text dataset, to
construct VQA samples that require TrackVLA to identify or
describe individuals in videos featuring randomly composed
human subjects and background scenes. Each sample is
created by placing 1-3 randomly selected human images onto
diverse backgrounds, with accompanying textual descriptions
detailing each individual’s attributes, their relative spatial
positions, and whether they represent the same identity. In
addition to human recognition samples, we also incorporate
publicly available VQA samples [17]-[19] that provide open-
world captions. These samples enhance TrackVLA’s ability
to recognize open-world targets.

V. EXPERIMENTS

Performance on EVT-Bench. We further evaluate our
method on the proposed benchmark, EVT-Bench, as shown
in Table I. TrackVLA significantly outperforms existing
approaches across all three tasks (STT, DT, and AT),
demonstrating its robust and comprehensive tracking ca-
pabilities, particularly in comparison to the VLA method

Use SoM [50]+GPT-40 [51] as the visual foundation model.
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Fig. 5: Real-world qualitative results of TrackVLA. TrackVLA
is deployed in a zero-shot manner across diverse environments,
executing diverse tracking instructions in challenging scenarios.

Uni-NaVid [14]. However, despite these improvements, we
observe a noticeable performance drop when transitioning
from single-target tracking (STT) to distracted tracking (DT)
and ambiguity tracking (AT), highlighting the challenges
of accurately recognizing and following a specified target
in complex environments with distractors. We believe our
benchmark can benefit the research community by providing
a well-defined target for future studies.

A. Qualitative Results in Real-World

We provide qualitative real-world results in Fig. 5, where
we evaluate our method in challenging scenarios, including:
(A) cluttered environments, (B) low-lighting conditions, (C)
pursuit-evasion tasks, and (D) multi-person recognition. The
experimental results demonstrate that TrackVLA exhibits
strong sim-to-real transfer capabilities in both recognition
and tracking, while maintaining high-frequency inference in
real-world scenarios, thereby enabling zero-shot deployment
in highly dynamic environments. For additional real-world
performance demonstrations, we refer the audience to our
supplementary video.

VI. CONCLUSIONS

In this work, we propose TrackVLA, a Vision-Language-
Action (VLA) model designed for the embodied visual
tracking task. TrackVLA supports the output of both tracking
trajectories and text-based responses. It is jointly trained
on both embodied visual tracking data and open-world
recognition data, enabling it to learn the synergy between
these two modalities. To support this, we collect a large-
scale dataset consisting of 855K embodied visual tracking
samples and 855K open-world recognition samples. Exten-
sive experiments demonstrate its state-of-the-art performance
in simulation and strong generalization, enabling zero-shot
deployment in real-world scenarios.
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APPENDIX
VII. TRAINING DETAILS

Similar to conventional vision-language models (VLMs),
TrackVLA follows a two-stage training pipeline. In the first
stage, we train the projector of the visual encoder using a
large amount of image-caption data [35] to align the visual
embedding space with the LLM’s latent space. In the second
stage, we jointly train the visual projector, the large language
model, and the action model using a mixture of the training
data. During training, we truncate the diffusion schedule of
the action model to at most 50 out of a total of 1000 steps to
diffuse the trajectory anchors, which introduces only a small
amount of noise.

TrackVLA is trained on a cluster server equipped with 24
NVIDIA H100 GPUs for approximately 15 hours, totaling
360 GPU hours. The vision encoder (EVA-CLIP [34]) and
the large language model (Vicuna-7B [33]) are initialized
with their respective pretrained weights, and the vision en-
coder remains frozen throughout the entire training process.
Following standard VLM practices, we train the model for

only one epoch. The training is conducted with a learning
rate of 2e-5, a total batch size of 196, and a cosine learning
rate schedule with linear warm-up. We use the AdamW op-
timizer for optimization. See Table II for detailed parameter
settings.

VIII. INFERENCE DETAILS

During inference, each input frame is resized to 224 x224
and fed into the vision encoder. After obtaining visual tokens,
we organize the tokens according to the task type. For
the embodied visual tracking task, we prepend a special
[Track] token before the instruction tokens and perform
only a single-step autoregression with the LLM. The final-
layer hidden state output from the LLM is then passed
to the action model. We apply 10 out of 1000 diffusion
steps to the trajectory anchors and use DDIM to perform 2
denoising steps, resulting in a set of predicted trajectories and
corresponding score vectors. The trajectory corresponding to
the anchor with the top 1 score is selected as the final output.
For the VQA task, we follow the standard autoregressive
decoding process of the LLM, and the language modeling
head detokenizes the predicted tokens into textual answers.
See Table II for detailed parameter settings.

IX. EVT-BENCH
A. Episode Generation

For each episode, we first sample a motion trajectory for
the target humanoid avatar within the navigable area. Each
trajectory consists of a start point, a random number of
intermediate waypoints (0-2), and an end point. The distance
between any two consecutive waypoints must exceed a
predefined minimum threshold d,,;, = 3 m. After generating
the trajectory for the target avatar, the agent is placed near
the target’s starting point, with its initial orientation roughly
facing the target but perturbed by a random offset within 30°.
For the DT and AT tasks, distractors are initialized near the
target’s trajectory, and their paths are designed to intersect
with the target’s trajectory as much as possible to enhance
the level of distraction.

B. Evaluation

In each episode, the target humanoid and distractors move
along their predefined trajectories. The evaluated algorithm
receives the agent’s observation at each time step and
performs inference to generate the corresponding control
command, consisting of linear and angular velocities of
the agent. The agent then moves according to the speed
command. The episode terminates when the target humanoid
reaches its destination or when the agent collides with the
humanoid.

C. Metric Definitions

o Success Rate (SR): This metric evaluates the agent’s
tracking ability. An episode is considered successful if,
by its end, the agent remains oriented toward the target
and maintains a safe distance of 1-3 meters. The success
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Notation Shape & Params. Description

Ir 2e-5 learning rate

B 196 batch size

T 1000 total diffusion steps

T rain 50 number of noise addition steps during training
Tinfer 10 number of noise addition steps during training
Nstep 2 denoising steps during inference

X 224 %224 input observation size

N 256 the number of image patch

C 1408 embedding dimension of visual feature

o 1 balancing parameter 1

A 100 balancing parameter 2

M 40 the number of trajectory anchors

Ny 10 the number of waypoints

TABLE II: Hyperparameters and notation used in our model.

rate is defined as the proportion of successful episodes
over the total number of episodes.

o Tracking Rate (TR): This metric evaluates the tracking
quality of the aggent. It is defined as the proportion of
steps S where the agent successfully tracks the target to
the total number of steps L, i.e., TR =S/L.

o Collision Rate (CR): This metric evaluates the safety
of the agent. It is defined as the proportion of episodes
that terminate due to a collision between the agent and
the target humanoid avatar.

D. Humanoid Avatar Gallery

T

The woman wearing a red | [The woman dressed in The woman wearing a red
and black leather a white lace long- long-sleeve top and

The man wearing a black
tuxedo with a white
jacket and black pants. sleeve shirt and dark black leather pants. shirt and black bow tie.

trousers.

TT

‘The man with a blue- The man wearing black- ‘ The woman wearing a ’

The man dressed in a
light gray suit jacket
and white shirt.

colored shirt and brown | | colored clothing, white cardigan and
trousers. including pants and a beige pants.

shirt.

Fig. 6: Visualization of the custom humanoid avatars with captions.

We provide visualizations of several custom-designed hu-
manoid avatars paired with their descriptive captions, as
shown in Fig. 6

E. Visualization of Training Data
We provide visualizations of the training set of self-built
EVT-Bench, as shown in Fig. 10

F. Qualitative Results on EVT-Bench

We provide visual results of TrackVLA on EVT-Bench,
shown in Fig. 11.

X. DETAILED EXPERIMENTS OF GYM-UNREALCV
A. Evaluation

The evaluation setting of Gym-UnrealCV follows [6],
where each episode has a maximum length of 500 steps.
The agent’s tracking region is defined as a 90-degree fan-
shaped sector with a radius of 750 cm. Success is achieved
if the agent keeps the target within this region for the entire
episode. A failure occurs if the target remains outside the
region for more than 50 consecutive steps.

B. Metric Definitions

« Episode Length (EL): The average number of steps per
episode over 100 episodes, reflecting the model’s long-
term tracking capability under predefined termination
conditions.

o Success Rate (SR): The percentage of successful
episodes out of the total 100 episodes, measuring the
model’s robustness in active visual tracking.

C. Testing Scenes

o SimpleRoom: A basic environment designed to verify
the model’s fundamental tracking capability.

o Parking Lot: An environment featuring occlusions and
low-light conditions.

o UrbanCity: A typical urban street scene with reflective
road surfaces.

o UrbanRoad: Similar to UrbanCity with fewer obsta-
cles.

o Snow Village: A challenging terrain with uneven sur-
faces and complex backlighting.

D. Baselines

o DIMP [52]: Utilizes a pre-trained video tracker to
generate target bounding boxes as scene representations
and applies a PID controller for motion control.

o SARL [24]: An online reinforcement learning (RL)
approach that encodes RGB observations into latent
visual features and trains an end-to-end Conv-LSTM
policy via RL.

o AD-VAT [3]: Introduces an asymmetric dueling mech-
anism and trains an RL-based tracker with a learnable
adversarial target to improve robustness.



Methods SimpleRoom  Parking Lot ~ UrbanCity = UrbanRoad  Snow Village Mean

DiMP 500/1.00 327/0.48 401/0.66 308/0.33 301/0.43 367/0.58
SARL 500/1.00 301/0.22 471/0.86 378/0.48 318/0.31 394/0.57
AD-VAT 500/1.00 302/0.20 484/0.88 429/0.60 364/0.44 416/0.62
AD-VAT+ 500/1.00 439/0.60 497/0.94 471/0.94 365/0.44 454/0.76
TS 500/1.00 472/0.89 496/0.94 480/0.84 424/0.63 474/0.86
RSPT 500/1.00 480/0.80 500/1.00 500/1.00 410/0.80 478/0.92
EVT 500/1.00 484/0.92 500/1.00 496/0.96 471/0.87 490/0.95
Ours 500/1.00 500/1.00 500/1.00 500/1.00 500/1.00 500/1.00

TABLE III: Quantitative results compared with baselines in unseen environments. The two metrics of each cell represent the Average

Episode Length (EL) and Success Rate (SR).

o AD-VAT+ [4]: An enhanced version of AD-VAT that
incorporates a two-stage training scheme, aiming to
improve performance in cluttered and obstacle-rich en-
vironments.

o TS [5]: A teacher-student framework that extends be-
havior cloning by leveraging a pose-based teacher to
provide real-time supervision for the vision-based stu-
dent policy during interaction.

o EVT [6]: An offline RL-based framework designed for
dynamic target following, which integrates vision foun-
dation models to enhance perception and robustness.

« IBVS [49]: A model-based method that takes the target
bounding box as input and applies a Kalman filter-based
visual servoing algorithm to follow the target.

« PoliFormer [26]: A reinforcement learning-based nav-
igation framework that explicitly encodes target bound-
ing boxes into the observation space to enhance tracking
accuracy.

o Uni-NaVid [14]: A unified vision-language-action
(VLA) model designed for general navigation tasks,
including human following.

E. Experiment Results

Single Human Tracking Evaluation The single human
tracking task spans five distinct environments mentioned
above, covering a wide range of variations in lighting condi-
tions, viewpoints, and scene layouts. As shown in Table III,
TrackVLA achieves state-of-the-art performance across all
five environments and successfully passes all test cases.
Notably, TrackVLA is trained without any data from this
simulator, highlighting its strong generalization under a zero-
shot transfer setting.

Distraction Robustness Evaluation In this experiment,
distractors with appearances identical to the target are in-
troduced, requiring the agent to consistently track the first
observed target. TrackVLA addresses this challenge using
instructions such as “Follow the first person you see”. Ex-
perimental results in Table IV show that Track VLA achieves
state-of-the-art performance across all scenarios, demonstrat-
ing its strong capability in understanding and reasoning about
human motion.

Unseen Object Generalization Evaluation We further
evaluate the object-level generalization ability of TrackVLA
using the Gym-UnrealCV benchmark. Specifically, in the
SimpleRoom environment, we test the model’s tracking per-

Methods Parking Lot (2D)  UrbanCity (4D)  ComplexRoom (4D)
DiMP 271/0.24 348/0.32 307/0.26
SARL 237/0.12 221/0.16 263/0.15
AD-VAT 232/0.13 204/0.06 223/0.16
AD-VAT+ 166/0.08 245/0.11 262/0.18
TS 331/0.39 381/0.51 401/0.54
EVT 425/0.63 472/0.92 479/0.88
Ours 467/0.90 476/0.92 479/0.91

TABLE IV: Evaluating the distraction robustness in the environ-
ment with distractors. (4D) represents that there are 4 distractors
in the environment.

formance on four unseen animal categories: horse, dog,
sheep, and pig. As shown in Table V, TrackVLA successfully
tracks all four categories, consistent with its performance on
the single-person tracking task. This demonstrates its strong
generalization capability to novel object types.

Methods Horse Dog Sheep Pig
EVT 500/1.00  469/0.90  471/0.93  472/0.94
Ours 500/1.00 500/1.00 500/1.00  500/1.00

TABLE V: Evaluating the generalization on the unseen category
of the target in SimpleRoom. We directly adopt the agent on the
unseen animals: horse, dog, sheep, and pig.

F. Visualization of Humanoid Avatar in Gym-UnrealCV

We showcase several humanoid avatars used in Gym-
UnrealCV in Fig. 7.

Fig. 7: Examples of humanoid avatars used in Gym-UnrealCV.

G. Qualitative Results on Gym-UnrealCV
We provide visual results of TrackVLA on Gym-
UnrealCV, shown in Fig. 12.
XI. VISUAL RECOGNITION EXPERIMENT

A. Baselines

o RexSeek [53]: A Multimodal Large Language Model
(MLLM) designed to detect people or objects in images
based on natural language descriptions.



o LISA++ [54]: A Multimodal Large Language Model
capable of both language understanding and mask gen-
eration.

e SoM+GPT-40 [50], [51]: A visual prompting method
that guides large multimodal models like GPT-40 to per-
form visual grounding by overlaying segmented image
regions with identifiable marks.

B. Evaluation

During testing, each test image contains two unseen per-
sons positioned on the left and right sides, and two corre-
sponding descriptions are provided for each person. Given
the differing output formats of the evaluated methods, we
define task-specific evaluation criteria. RexSeek is an object
detection model that outputs bounding boxes; we evaluate its
performance by checking whether the predicted box correctly
selects the target person. LISA++ is an instance segmentation
model that outputs a mask for the target; we assess whether
the mask covers the correct individual. The SoM+GPT-40
pipeline first performs image segmentation, then uses SoM
to overlay numerical marks on the original image at the
location of each segmentation mask. The annotated image is
then passed to GPT-40, which selects the number that best
matches the given description. For this method, we evaluate
whether the mask corresponding to the selected mark covers
the correct individual. As for TrackVLA, which outputs
a future trajectory, we determine correctness by checking
whether the trajectory direction aligns with the corresponding
target person.

XII. MORE ABLATION STUDY
A. Action Model Architecture

The architectures evaluated in this ablation study include
Multi-Layer Perceptrons (MLPs) with 3 and 6 layers, respec-
tively, as well as diffusion transformers of varying scales.
The hidden state dimensions for the two MLPs are set to
1024 and 4096. The base diffusion transformer is configured
with a depth of 12, hidden size of 768, and 12 attention
heads, while the small diffusion transformer uses a depth of
6, hidden size of 384, and 4 attention heads.

Model Params. SRT TRT CR| time(ms) |
Autoregressive 131M 426 569 117 460
MLP (3-Layers) ™ 458 599 10.1 0.5
MLP (6-Layers) 89M 527 619 942 0.8
DP-Base 39M 179 338 277 65
Ours-Small 13M 49.8 602 6.67 8
Ours-Base 89M 576 63.2 5.80 13

TABLE VI: Comparison of different action models.

B. History Window Length

Incorporating historical observations helps the model bet-
ter infer the target’s motion pattern and relative position.
Here, we investigate how varying the length of the his-
tory observation window Lj; affects model performance.
Table VII shows that removing history observations leads

to a significant performance drop. We empirically select 32
as the optimal window length.

Lus SRt TRT CRJ

0 299 496 694
32 576 632 5.80
64 565 633 649

TABLE VII: Comparison of different history window lengths.

C. Future Trajectory Horizon

TrackVLA predicts a future trajectory consisting of L;.,;
waypoints. In Table VIII, we investigate the impact of
varying the number of predicted waypoints on overall perfor-
mance. Experimental results show that using 10 waypoints
yields the best performance.

Lyaj SRT TRT CR|

1 443 606 144
10 576 632 5.80
20 513 602 754

TABLE VIII: Comparison of different predicted waypoint lengths.

D. Human Recognition Dataset

Furthermore, we investigate the impact of different types
of human recognition data on the model’s recognition capa-
bility. Specifically, we categorize the data into three types:
Single Human, Multiple Human, and Same Human, cor-
responding to images containing one person, 2-3 different
individuals, and two identical individuals, respectively. For
each category, we construct dedicated human recognition
datasets and evaluate the model’s recognition performance
under each data setting. Table IX presents the model’s
recognition performance under different types of human
recognition data. The experimental results demonstrate that
the inclusion of each type of human recognition data leads
to improved model recognition performance.

In addition, we conduct another analysis to evaluate the
impact of removing random backgrounds by replacing all
the human recognition data with a plain white background.
As presented in Table IX, removing the random background
leads to a notable performance drop.

Single ~ Multiple Same Random

Human  Human  Human  Background ACCT  ACC Drop
X X X X 62.0 22.9% |
v X X v 72.3 10.4% |
4 v X 4 76.7 4.60% |
v 4 v X 67.4 16.2% |
v v v v 80.7 -

TABLE IX: Comparison of different human recognition data.
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Fig. 8: Real-world system architecture. TrackVLA is deployed
on a remote server, and the robot communicates with it via the
Internet.

XIII. REAL-WORLD DEPLOYMENT
A. Robot Platform

We provide a visualization of our robotic platform in
Fig. 8. The platform is based on the Unitree GO2 quadruped
robot, equipped with an Intel RealSense D455 camera. In
our work, only RGB frames with a resolution of 640x480
are utilized, under a horizontal field of view (HFOV) of 90°.
Additionally, a portable Wi-Fi is mounted on the back of
the robot to enable communication with the remote server
through the Internet.

B. Real-world System Architecture

TrackVLA is deployed on a remote server equipped with
an NVIDIA RTX 4090 GPU. During tracking, the server
receives the instructions and images captured by the Intel
RealSense D455 camera via the Internet. To ensure efficient
communication, the images are compressed before trans-
mission. After processing the incoming images, the model
performs inference and predicts the future trajectory, which
is then transmitted to the quadruped robot for execution.
Upon receiving the predicted trajectory, the robot employs a
pure pursuit algorithm, combined with its pose information,
to perform closed-loop control of its linear and angular
velocities, enabling it to follow the trajectory accurately.
Additionally, the robot leverages LiDAR point cloud data
and implements an elastic band algorithm to achieve obstacle
avoidance.

XIV. REAL-WORLD EXPERIMENTS

To further evaluate the tracking capability of TrackVLA,
we conducted extensive real-world experiments comparing a
quadruped robot powered by TrackVLA with a leading com-
mercial tracking drone (DJI Flip). We tested the following
three levels of tracking scenarios with increasing difficulty,
each repeated 10 times:

e Easy: tracking in open outdoor environments without

obstacles;

e Medium: tracking in complex environments with occlu-

sions such as walls;

e Hard: tracking a target moving at high speed.

The results are shown in Table X. Both TrackVLA and
DIJI Flip achieved a 100% success rate in the Easy setting.
However, as task difficulty increased, the performance of
DIJI Flip dropped significantly, falling well below that of

TrackVLA. Figure 9 further illustrates several representative
cases where TrackVLA succeeded while DJI Flip failed.
Additional details of the real-world experiments are provided
in the supplementary video.

Method Easy Medium  Hard
DII Flip 100% 70% 50%
TrackVLA  100% 90% 70%

TABLE X: Real-world tracking experiments. We compare Track-
VLA with the commercial tracking drone.

TrackVLA views

Steps

UVA views

TrackVLA views

Steps

(b) A hard level case

Fig. 9: Visualization of the real-world experiments. TrackVLA
demonstrates robust tracking performance under challenging con-
ditions such as occlusions and fast target motion, outperforming
existing commercial tracking drones.
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Fig. 11: Visualization of TrackVLA on EVT-Bench.
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Fig. 12: Visualization of TrackVLA on Gym-UnrealCV.



