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Abstract001

Vision-Language Models (VLMs) have demon-002
strated remarkable capabilities in interpreting003
visual layouts and text. However, a signifi-004
cant challenge remains in their ability to in-005
terpret robustly and reason over multi-tabular006
data presented as images, a common occur-007
rence in real-world scenarios like web pages008
and digital documents. Existing benchmarks009
typically address single tables or non-visual010
data (text/structured). This leaves a critical011
gap: they don’t assess the ability to parse di-012
verse table images, correlate information across013
them, and perform multi-hop reasoning on the014
combined visual data. We introduce MTab-015
VQA, a novel benchmark specifically designed016
for multi-tabular visual question answering to017
bridge that gap. MTabVQA comprises 3,745018
complex question-answer pairs that necessi-019
tate multi-hop reasoning across several visually020
rendered table images. We provide extensive021
benchmark results for state-of-the-art VLMs on022
MTabVQA, revealing significant performance023
limitations. We further investigate post-training024
techniques to enhance these reasoning abilities025
and release MTabVQA-Instruct, a large-scale026
instruction-tuning dataset. Our experiments027
show that fine-tuning VLMs with MTabVQA-028
Instruct substantially improves their perfor-029
mance on visual multi-tabular reasoning. Code030
and dataset are available online1.031

1 Introduction032

In recent years, vision language models (VLMs)033

and multimodal systems have demonstrated re-034

markable capabilities in interpreting complex vi-035

sual layouts and text (Luo et al., 2024), en-036

abling tasks ranging from document understanding037

(Zhang et al., 2024a), visual information extraction038

(Cao et al., 2023), and structured data QA (An-039

tol et al., 2015) to interactive processes like au-040

tonomous web navigation (He et al., 2024; Zheng041

et al., 2024a).042

1MTabVQA-EMNLP

Figure 1: MTabVQA Benchmark, illustrative example show-
ing three tables (Customers, Reviews, Services), a question
requiring multi-table reasoning, the reasoning steps involved,
and the final answer derived by a vision-language model.

Yet, as these models evolve into sophisticated 043

visual agents capable of browsing screen data and 044

performing agentic tasks, a new challenge has 045

emerged: the robust interpretation and reasoning 046

over multi-tabular data presented as images (Deng 047

et al., 2024; Zheng et al., 2024b). This challenge is 048

particularly relevant in real-world scenarios, where 049

tables often appear as images on web pages, PDFs, 050

or digital documents, and extracting actionable in- 051

sights may require the agent to reference multiple 052

tables simultaneously. 053

Traditional benchmarks (Yu et al., 2018; Chen 054

et al., 2020; Zhong et al., 2017) in table under- 055

standing and question answering have primarily 056

focused on single-table scenarios, often relying on 057

textual or HTML representations (Zhu et al., 2021; 058

Sui et al., 2024). However, such benchmarks are 059

unable to evaluate model performance on visually 060

complex, multi-tabular data, which requires inter- 061

preting layout and structure beyond simple text 062

or HTML. In many practical applications, such as 063
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financial analysis, e-commerce, and scientific re-064

search (Lautert et al., 2013), key information is065

distributed across several tables, each with distinct066

layouts and visual structures. Current benchmarks067

(Wu et al., 2024; Pal et al., 2023; Wu et al., 2025;068

Li et al., 2024c), rooted in single-table, non-visual069

formats (like text/HTML or relational databases),070

fail to assess critical capabilities: (1) understanding071

diverse visual table layouts presented as images,072

(2) parsing and correlating information across mul-073

tiple, physically separate tables, and (3) executing074

multi-hop reasoning grounded in visual data.075

To bridge this gap, we propose Multi-Tabular076

Visual Question Answering (MTabVQA), a novel077

benchmark specifically designed for assessing the078

visual reasoning capabilities of models on multi-079

tabular data represented as images. Distinct from080

prior benchmarks that primarily focus on single ta-081

bles (Pasupat and Liang, 2015; Zhong et al., 2017;082

Zheng et al., 2024b) or utilize non-visual (textual,083

structured) formats for multi-table reasoning (Wu084

et al., 2025; Yu et al., 2018; Li et al., 2023a), MTab-085

VQA uniquely evaluates the integration of informa-086

tion across multiple tables. Our benchmark, com-087

prising 3,745 question-answer pairs, challenges088

models with complex queries across 14 distinct089

reasoning categories. These queries are designed090

to necessitate multi-hop reasoning (e.g., involving091

aggregation, comparison, or fact-checking) by inte-092

grating information from two to five visually table093

images. MTabVQA enables a targeted evaluation094

of how well current models handle the process of095

extracting information from multiple table images096

and performing the multi-hop reasoning necessary097

to synthesize answers. Our main contributions are:098

• We introduce MTabVQA, a novel benchmark099

designed to evaluate multi-hop reasoning over100

multiple tables presented as images, address-101

ing a key gap in existing table QA bench-102

marks.103

• We provide extensive benchmark results for104

SOTA open-source and proprietary VLMs on105

MTabVQA, revealing significant challenges106

posed by this task.107

• We release MTabVQA-Instruct, a108

instruction-tuning dataset. To demonstrate109

its effectiveness, we introduce TableVision,110

a VLM fine-tuned on MTabVQA-Instruct,111

which shows significant improvements on112

visual multi-tabular reasoning.113

2 Related Work 114

Research in table understanding (Wu et al., 2024) 115

and multimodal reasoning (Zheng et al., 2024b) has 116

advanced significantly. Initial efforts often centered 117

on converting tables into text-based representations 118

like Markdown or HTML (Li et al., 2024b; Zhang 119

et al., 2023), allowing traditional language models 120

to process them. While effective in controlled envi- 121

ronments, this approach encounters limitations in 122

real-world settings where tables frequently appear 123

only as images within documents or web interfaces. 124

Processing visually rendered tables through multi- 125

stage text-conversion pipelines (Nassar et al., 2022) 126

presents inherent limitations, they are complex and 127

susceptible to OCR errors, often discard essential 128

visual layout cues (e.g., merged cells, alignment), 129

and risk compounding inaccuracies across stages. 130

This highlights a critical need for models capable 131

of interpreting and reasoning over tables directly 132

from pixel data. Moreover, most systems rely on 133

OCR combined with LLMs, which makes them 134

more error-prone compared to developing a single 135

unified model. Our work focuses squarely on the 136

challenge of extracting information and performing 137

reasoning directly from visual table data, address- 138

ing the complexities inherent in image-based table 139

structures. 140

2.1 Table Understanding and Extraction 141

Effective reasoning over visual tables fundamen- 142

tally relies on accurate underlying table under- 143

standing, including tasks like detection, segmen- 144

tation, and structure interpretation (Bonfitto et al., 145

2021). These foundational challenges were often 146

addressed by specialized methods leveraging object 147

detection and OCR, exemplified by systems like 148

TableFormer (Nassar et al., 2022), which improved 149

the extraction of cell structures from images. De- 150

spite these advances, such methods frequently en- 151

countered difficulties with complex visual layouts 152

and the semantic alignment crucial for interpreting 153

elements like multirow headers or merged cells. 154

Although recent large-scale datasets like MMTab 155

(Zheng et al., 2024b) have significantly advanced 156

benchmarking for table extraction and understand- 157

ing from table images, they primarily focus on 158

single-table scenarios. The challenge of integrating 159

information and reasoning across multiple visually 160

presented tables, which MTabVQA addresses, re- 161

mains less explored. 162
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Benchmark Question Format # Tables/Databases # QA Pairs Task Modality

WTQ (Pasupat and Liang, 2015) NL Questions 2,108 22,033 Single-table QA Text

SQA (Iyyer et al., 2017) NL Questions N/A 17,553 Single-Table QA Text

WikiSQL (Zhong et al., 2017) SQL Query 24,241 80,000+ Single-table QA Text

Spider (Yu et al., 2018) NL Questions & SQL Query 200 10,181 Text-to-SQL Text

HybridQA (Chen et al., 2020) NL Questions 13,000 70k Table-text QA Text

FeTaQA (Nan et al., 2022) NL Questions 10,330 10k Single tables Text

BIRD (Li et al., 2023a) NL Questions & SQL Query 95 12,751 Text-to-SQL Text

TableBench (Wu et al., 2024) NL Questions 3,681 886 Single Table Text

SPINACH (Liu et al., 2024b) NL Questions & SQL Query N/A 320 Text-to-SQL Text

MMQA (Wu et al., 2025) NL Questions & SQL Query 3,312 3,312 Text-to-SQL, Multi-table QA Text

MMTab (Zheng et al., 2024b) NL Questions 23K 49K Single-Table QA Images

MTabVQA (ours) NL Questions 8499 3,745 Multi-Table QA Images

Table 1: Differences between our MTabVQA and previous table QA benchmarks. We here abbreviate NL = Natural
Language and SQL = Structured Query Language.

2.2 Multimodal Question Answering163

In parallel, multimodal question answering has164

made significant progress with models like LLaVA165

(Liu et al., 2024a), BLIP-2 (Li et al., 2023b),166

and GPT-4.12 demonstrating strong capabilities on167

image-based tasks. While many of these models ex-168

cel in general visual understanding, they typically169

treat tabular content as static images, lacking the170

ability to navigate or reason across multiple tables.171

Prior benchmarks, such as WikiTableQuestions (Pa-172

supat and Liang, 2015) and WikiSQL (Zhong et al.,173

2017), focus on single-table scenarios and text-174

based table representations. MMQA (Wu et al.,175

2025), a recent advancement in this area, extends176

the evaluation framework to multi-table and multi-177

hop reasoning. However, MMQA relies on textual178

inputs rather than raw images.179

2.3 Multi-Tabular Reasoning180

Reasoning across multiple tables demands corre-181

lating information from potentially disparate struc-182

tures via multi-hop operations, a known challenge183

for current models (Pal et al., 2023). While prior184

work explored multi-table QA (Pal et al., 2023),185

summarization (Zhang et al., 2024b), and text-to-186

SQL (Wu et al., 2025), these efforts predominantly187

relied on textual or structured data representations.188

They often bypassed the complexities of interpret-189

ing combined visual table layouts, a critical re-190

quirement for agents interacting with screen data.191

MTabVQA directly addresses this research gap192

by focusing on multi-tabular visual reasoning.193

As in Table 1, prominent prior benchmarks like194

WTQ (Pasupat and Liang, 2015), WikiSQL (Zhong195

2GPT 4.1

et al., 2017), and even multi-table focused ones 196

such as Spider (Yu et al., 2018) and MMQA (Wu 197

et al., 2025), primarily operate on textual or struc- 198

tured (e.g., SQL) representations of tables. While 199

MMTab (Zheng et al., 2024b) introduced image- 200

based tables, its focus remained on single-table sce- 201

narios. In contrast, MTabVQA specifically requires 202

models to answer complex, multi-hop questions by 203

integrating information presented across multiple 204

table images. This necessitates visual parsing of 205

diverse table layouts from images, a capability not 206

comprehensively evaluated by existing benchmarks 207

that are either non-visual or single-table centric. 208

Thus, MTabVQA’s unique combination of multi- 209

table reasoning and image-based input directly tar- 210

gets this underexplored area. 211

3 MTabVQA Dataset 212

We introduce Multi-Tabular Visual Question 213

Answering (MTabVQA), a benchmark specifically 214

designed to assess the capacity of multimodal mod- 215

els to perform multi-hop reasoning across multiple 216

tables presented as images. MTabVQA dataset 217

includes four sub-datasets based on the primary 218

source databases from which the underlying table 219

data was derived, as detailed in Table 2. Figure 2 220

illustrates the multi-stage process used to construct 221

MTabVQA, encompassing data sourcing, relational 222

analysis, controlled data sampling, image render- 223

ing, question-answer pair generation, and rigorous 224

verification. 225

3.1 Tabular Data Collection 226

MTabVQA utilizes tabular data from diverse 227

sources: BIRD (Li et al., 2023a), Spider (Yu et al., 228
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Dataset Split Source Sub-dataset #QA Pairs #Tables Proportion (%)

MTabVQA-
Eval

QFMTS (Zhang et al., 2024b) MTabVQA-Query 2456 5541 65.7%
Spider (Yu et al., 2018) MTabVQA-Spider 1048 2363 27.9%
Atis (Dahl et al., 1994) MTabVQA-Atis 112 429 3.0%
MiMoTable (Li et al., 2024c) MTabVQA-Mimo 129 166 3.4%

Total Eval Set 3745 8499 100.0%

MTabVQA-
Instruct

MultiTabQA (Pal et al., 2023) – 10,990 21,976 69.3%
Spider (Yu et al., 2018) – 2395 5845 15.2%
BIRD (Li et al., 2023a) – 1572 3144 9.9%
Atis (Dahl et al., 1994) – 384 1780 2.4%
MiMoTable (Li et al., 2024c) – 512 719 3.2%

Full Instruct Set 15853 33464 100.0%

Table 2: Detailed composition of the MTabVQA-Eval and MTabVQA-Instruct datasets. The table shows the original
data sources and provides statistics for each sub-dataset, including the number of QA pairs and unique tables.

2018), MiMoTable (Li et al., 2024c), QFMTS229

(Zhang et al., 2024b), and ATIS (Dahl et al., 1994).230

We prioritized text-to-SQL datasets as their associ-231

ated complex SQL queries often involve multi-table232

joins, naturally lending themselves to multi-table233

reasoning tasks.234

To ensure our benchmark targets multi-table rea-235

soning, we first identified relevant database subsets236

(Figure 2, Step 1). We parsed SQL queries from237

the source datasets, specifically selecting those re-238

quiring multi-table join operations. This analysis239

confirmed rich inter-table dependencies suitable for240

our task. Based on this query analysis, we extracted241

data instances for the MTabVQA-Eval split: 1,048242

multi-join queries from Spider (Yu et al., 2018)243

forming MTabVQA-Spider, 2,578 multi-table in-244

stances from QFMTS (Zhang et al., 2024b), and245

112 and 129 multi-table pairs from ATIS (Dahl246

et al., 1994) and MiMoTable (Li et al., 2024c),247

respectively. The large and complex BIRD (Li248

et al., 2023a) dataset, over 7,200 join queries across249

69 databases, was primarily used to generate the250

MTabVQA-Instruct dataset. This query-driven se-251

lection ensures that the underlying data inherently252

necessitates multi-table reasoning.253

3.2 Data Extraction and Preprocessing254

Following the identification of relevant database255

subsets (Section 3.1), we employed a pipeline to256

process the data. For each subset, the pipeline ex-257

tracted the database schemata, including table def-258

initions, column types, primary keys, and foreign259

key relationships defining inter-table links, and con-260

verted the relational data from its native storage261

(e.g., SQLite) into a standardized JSON format.262

Recognizing that full database tables can be exces-263

sively large for visual rendering and efficient model264

processing, we implemented a controlled sampling 265

strategy. Tables exceeding a predefined row thresh- 266

old (Nmax = 50) were sampled down. While the 267

proportion of excluded data varied depending on 268

the original table sizes in each source dataset, this 269

threshold aimed to balance visual complexity and 270

data representativeness across the benchmark. 271

To preserve crucial relational information be- 272

tween multiple tables during sampling, we utilized 273

a graph-based approach detailed in Algorithm 1 274

(Appendix A). This method ensures referential 275

integrity by preferentially sampling rows linked 276

across related tables via foreign keys, focusing on 277

connections relevant to the multi-table queries iden- 278

tified earlier. The final output for each instance con- 279

sists of the sampled table data and corresponding 280

schemata, serialized into JSON. 281

3.3 Visual Table Rendering 282

To ensure MTabVQA evaluates visual reasoning 283

over image-based inputs, the sampled tabular data 284

for each QA pair was rendered into images. This 285

step forces models to interpret visual layouts over 286

structured text. We utilized a rendering pipeline 287

employing dataframe_image3 (with selenium or 288

matplotlib backends) and custom Pillow scripts. 289

This process introduced significant visual diversity 290

by systematically varying structural aspects (e.g., 291

column/row dimensions, relative table positioning) 292

and appearance features (e.g., color schemes, ty- 293

pography, grid styles) across 10 distinct, randomly 294

applied styling themes. This approach simulates 295

the varied appearances of tables in real-world doc- 296

uments and web pages. Further details on the spe- 297

cific themes are provided in Appendix D. 298

3dexplo/dataframe_image
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Figure 2: MTabVQA Construction Framework Overview. (1) Data Sourcing & Sampling: Identify multi-table relational
data via SQL joins, extract tables, apply relational sampling. (2) Visual QA Generation: Generate multi-hop QA pairs via
SQL-to-question conversion or LLM-guided generation from sampled tables/taxonomy; render tables as images. (3) Verification
& Finalization: Apply automated (LLM) and human verification for quality and multi-table necessity.

3.4 Multi-Hop QA Pair Generation299

The pairs of our dataset are designed for multi-hop300

reasoning across table images, generated via two301

strategies (Figure 2, Steps 2-3):302

1. SQL-to-Question (Step 2): We converted com-303

plex, multi-table SQL queries (from Sec 3.1) into304

natural language questions. For each SQL query,305

we executed it on sampled table subsets (SA, SB)306

for a ground-truth answer. An LLM4 then para-307

phrased the SQL (given schemas and instructions;308

Figure 2, bottom-left prompt) into a question, cre-309

ating QA pairs grounded in verifiable SQL logic.310

2. Taxonomy-Guided Generation (Step 3): To311

diversify reasoning types, an LLM generated novel312

QA pairs from sampled table subsets and a prede-313

fined question taxonomy. This taxonomy, adapted314

from (Wu et al., 2024) to cover common multi-table315

reasoning patterns (e.g., multi-hop fact-checking,316

aggregation), guided the LLM (with few-shot ex-317

amples; Figure 2, upper-right prompt) to create318

questions requiring data from ≥2 tables, plus an-319

swers and reasoning steps in structured JSON. Fig-320

ure 3 shows the distribution of the question cat-321

egories, showing that most of the questions are322

fact-checking, analysis, aggregation, or ranking.323

4Gemini-2.0-Flash

Figure 3: Distribution of Verified Question Categories
in the MTabVQA dataset, "Other" includes categories
like Anomaly Detection, Arithmetic Calculation, and
Multi-hop Numerical Reasoning (total 3,745 QA Pairs).

3.5 Verification and Filtering 324

To ensure QA quality and multi-table focus, our 325

verification process (Figure 2, Step 3) was done by 326

automated assessment from three LLM agents4, 327

guided by a verification prompt (Appendix C). 328

These agents evaluated question validity, multi-hop 329

needs, answer accuracy, reasoning soundness, and 330

multi-table necessity (≥2 tables). LLM outputs 331

(JSON with scores/flags) were aggregated by ma- 332

jority vote. 333
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Model MTabVQA-Spider MTabVQA-Query MTabVQA-ATIS MTabVQA-MiMo Overall

EM F1 P R EM F1 P R EM F1 P R EM F1 P R EM F1

Open-Source VLMs (Zero-Shot)

Gemma-3-12B-IT 15.6 48.0 48.2 53.4 10.3 38.1 39.4 42.6 11.6 35.1 34.2 40.8 9.3 18.6 22.0 18.8 11.8 40.1
Qwen2.5-VL-7B 8.0 39.8 40.4 44.0 7.8 33.9 34.8 38.0 6.3 32.6 29.0 48.6 9.3 22.2 25.9 22.8 7.8 35.1
InternVL3-8B-Instruct 6.1 32.4 33.0 39.1 5.2 24.8 26.9 29.6 3.6 20.3 19.5 31.9 7.0 19.1 22.3 21.3 5.4 26.6
Phi-3.5-Vision-Instruct 2.9 26.1 25.9 39.6 2.4 22.0 22.3 34.7 1.8 15.0 15.3 24.8 0.8 3.2 3.6 3.3 2.5 22.3
LLaVA-OV-Qwen2-7B 2.2 20.0 19.5 29.3 2.3 15.7 15.9 23.6 0.0 9.2 5.9 33.8 0.7 5.5 4.3 19.1 2.1 18.4

Proprietary VLMs (Zero-Shot)

GPT-4.1 49.0 74.3 74.7 76.6 34.2 58.5 59.2 60.8 6.3 39.9 30.0 86.3 20.2 39.6 44.9 38.8 37.0 61.7
Gemini-2.0-Flash 42.9 68.5 69.2 71.2 31.4 57.3 58.2 60.5 22.3 36.0 37.2 37.5 24.0 42.3 49.2 41.2 34.1 59.3

Fine-tuned Model (Ours)

TableVision (Ours) 32.4 64.3 66.6 66.1 49.8 72.6 74.0 73.5 33.0 45.9 48.4 47.8 20.1 36.2 40.8 36.4 43.4 68.2

Table 3: Performance Comparison of VLMs on MTabVQA-Eval Splits (%), and Overall EM/F1 (%). Models
categorized and sorted by overall F1 score within categories. Overall scores are weighted averages. Best overall and
best open-source zero-shot overall scores are bolded. EM denotes Exact Match, P Precision, and R Recall.

Pairs meeting criteria (majority valid, confirmed334

multi-table use, average score ≥7.0) advanced to335

human verification using a Streamlit app (Appendix336

6) for final checks on correctness, especially for337

complex cases. Human Validation was conducted338

by one annotator. Only pairs passing both au-339

tomated and human checks were integrated into340

MTabVQA. This LLM-assisted human oversight341

yielded a high-quality benchmark by filtering in-342

valid tables or incorrect QA pairs. The resulting343

verified data formed two entirely disjoint splits, en-344

suring no overlap between training and evaluation:345

• MTabVQA-Eval: 3,745 QA pairs for bench-346

marking VLM performance.347

• MTabVQA-Instruct: 15,853 instruction-348

following examples for post-training VLMs.349

4 Experiments350

This section details the experiments conducted to351

evaluate VLM capabilities on visual multi-tabular352

reasoning using our MTabVQA benchmark. Our353

experiments encompass three key areas:354

1. Benchmarking Current VLMs: We first es-355

tablish baseline performance by evaluating lead-356

ing open-source and proprietary VLMs on the357

MTabVQA-Eval split and compare it with our fine-358

tuned model. (Section 4.1).359

2. Evaluating Post-Training Strategies: We360

investigate methods to improve VLM perfor-361

mance for multi-table VQA. Using our MTabVQA-362

Instruct dataset, we explore and compare the ef-363

fectiveness of different post-training techniques,364

such as Supervised Fine-Tuning (SFT), Chain-of-365

Thought (CoT), and Group Relative Policy Opti-366

mization (GRPO) (Shao et al., 2024) (Section 4.2).367

3. Investigating Impact of Post-training Data 368

Composition: We further analyze how VLM per- 369

formance is affected by the scale and source of 370

the data used for instruction fine-tuning (Section 371

4.3). Specifically, we fine-tune models on pro- 372

gressively larger and differently sourced subsets 373

of MTabVQA-Instruct and evaluate their general- 374

ization on MTabVQA-Eval (Section 4.3). 375

4.1 Benchmarking 376

We conducted a comprehensive benchmarking 377

study on MTabVQA-Eval to establish baselines 378

for multi-table visual reasoning. We evaluated 379

leading proprietary VLMs (GPT-4.12, Gemini5 380

and prominent open-source alternatives (Qwen2.5 381

(Yang et al., 2024), Gemma-3 (Kamath et al., 2025), 382

LLaVA-One-Vision (Li et al., 2024a), InternVL3 383

(Zhu et al., 2025), Phi-3.5 (Abdin et al., 2024)), 384

alongside our fine-tuned TableVision model. We 385

assessed models in a zero-shot setting across all 386

four MTabVQA-Eval splits (Spider, Query, ATIS, 387

and MiMo), instructing them to generate structured 388

JSON (Appendix G.1). Generation parameters 389

were set to a temperature of 1.0 and top-P of 1.0. 390

Evaluation Metrics. We primarily use EM for 391

its strict correctness assessment, especially suitable 392

for factual answers from tables. To capture seman- 393

tic similarity and partial correctness, we also report 394

F1 score, precision (P), and recall (R), providing a 395

more nuanced view of answer quality. 396

The results (Table 3) highlight MTabVQA’s diffi- 397

culty. Open-source VLMs like LLaVA-One-Vision 398

(2.2% EM, 16.7% F1 overall) and Phi-3.5-Vision 399

struggled significantly in zero-shot, with Gemma-3 400

being the strongest open-source baseline (11.8% 401

5https://aistudio.google.com/
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EM, 40.1% F1 overall). Even proprietary models402

like GPT-4.1 (37.0% EM, 61.7% F1 overall) did403

not achieve perfect scores and showed performance404

dips on certain splits (e.g., GPT-4.1 on ATIS scored405

6.3% EM), indicating varied challenges within the406

benchmark, which shows that there is space for407

improvement.408

TableVision, our model fine-tuned using LoRA409

(rank 128) on MTabVQA-Instruct with Qwen2.5-410

VL-7B as its base, demonstrated the value of tar-411

geted training by achieving the highest overall per-412

formance (43.4% EM, 68.2% F1). Notably, Table-413

Vision surpassed all other models, including GPT-414

4.1, on the MTabVQA-Query (49.8% EM, 72.6%415

F1) and MTabVQA-ATIS splits. This shows that416

fine-tuning can enable smaller open-source models417

to outperform larger proprietary systems on com-418

plex visual multi-tabular reasoning, underscoring419

MTabVQA-Instruct’s effectiveness.420

4.2 Post-training VLMs for Multi-Table421

Visual Reasoning422

To explore methods for enhancing VLM perfor-423

mance on visual multi-tabular reasoning, we inves-424

tigated several post-training techniques using a sub-425

set of our MTabVQA-Instruct dataset. Specifically,426

we utilized 2,395 QA pairs derived from the Spi-427

der data source, selected for its demonstrated fine-428

tuning effectiveness (Section 4.3) and manageable429

size for these intensive experiments. We selected430

the Qwen2.5-VL-3B model (Yang et al., 2024) as431

our base VLM, primarily due to the significant com-432

putational requirements associated with advanced433

post-training methods like reinforcement learning.434

Our investigation compared the effectiveness of435

different post-training techniques for multi-tabular436

visual reasoning. All evaluations were conducted437

on a corresponding MTabVQA-Eval split.438

First, we established a baseline by evaluating the439

zero-shot performance of the 3B model. Consistent440

with observations for larger models (Section 4.1),441

the base 3B model exhibited poor initial perfor-442

mance on this complex multi-hop reasoning task,443

achieving an EM of 2.8% and an F1 score of 22.9%444

(Figure 4). We then evaluated the efficacy of using445

step-by-step reasoning through Chain-of-Thought446

(CoT) prompting (See Appendix G.2). While this447

approach encouraged structured responses, it re-448

sulted in only marginal improvements, with EM449

increasing slightly to 3.0% and F1 to 24.5%.450

Next, recognizing the reasoning-intensive na-451

ture of multi-tabular VQA, we investigated GRPO452

Figure 4: Performance comparison of Qwen2.5-VL-
3B on the MTabVQA-Eval using different post-training
strategies.

(Shao et al., 2024), a reinforcement learning-based 453

post-training approach using the selected 2,395- 454

pair MTabVQA-Instruct subset. As shown in Fig- 455

ure 4, GRPO improved performance over the CoT 456

baseline, achieving an EM of 13.1% and an F1 457

score of 46.5%. 458

Subsequently, we performed SFT on the same 459

subset. For this, we employed LoRA (Hu et al., 460

2021) with a rank of 128 for parameter-efficient 461

optimization. SFT yielded substantial performance 462

gains over both CoT and GRPO, boosting EM to 463

28.0% and F1 to 55.9% (Figure 4). This demon- 464

strates the strong effectiveness of targeted instruc- 465

tion tuning with SFT for this task in our exper- 466

iments. While GRPO showed improvement, its 467

gains did not surpass SFT with LoRA. We hypoth- 468

esize that the effectiveness of GRPO in this context 469

might be limited by the challenge of defining a 470

more sophisticated reward function than a simple 471

exact match/F1 score, which could better capture 472

nuanced aspects of visual multi-tabular reasoning. 473

4.3 Impact of Post-training Data Scale and 474

Source 475

To understand how instruction-tuning data compo- 476

sition affects performance, we used Qwen2.5-VL- 477

7B as our base VLM. We then fine-tuned it on sev- 478

eral MTabVQA-Instruct subsets, each derived from 479

different original data sources (Table 2) to vary 480

both data scale and origin. These models were fine- 481

tuned using Supervised Fine-Tuning (SFT) with 482

7



Fine-tuning Subset (Source) # Samples MTabVQA-Spider MTabVQA-Query MTabVQA-ATIS MTabVQA-MiMo Overall

EM F1 EM F1 EM F1 EM F1 EM F1

Qwen2.5-VL-7B (Zero-Shot) 0 8.0 39.8 7.8 33.9 6.3 32.6 9.3 22.2 7.8 35.1

MiMo+ATIS Subset 896 13.7 45.7 11.5 37.5 35.7 46.5 17.1 39.7 13.0 40.0
Spider Subset 2,395 26.9 59.2 49.8 71.2 13.4 22.5 17.1 31.9 41.5 65.2
MultiTabQA Subset 10,990 10.1 33.2 8.7 28.6 16.1 41.9 11.6 25.5 9.4 30.2
MTabVQA-Instruct (Full) 15,853 32.4 64.3 49.8 72.6 33.0 45.9 20.2 36.2 43.4 68.2

Table 4: Performance of fine-tuned models on dataset splits of MTabVQA-Instruct measuring the influence of
dataset on the overall performance on MTabVQA-Eval. Performance is measured in EM and F1. Bold indicates the
best overall performance. Underline indicates best performance for each MTabVQA-Eval subset.

LoRA (rank 128) and benchmarked on the full483

MTabVQA-Eval suite. Table 4 presents the EM484

and F1 scores across MTabVQA-Eval’s sub-splits485

(Spider, Query, ATIS, MiMo) and overall. The fine-486

tuning subsets included a combined MiMo+ATIS487

set (896 examples), a Spider-derived set (2,395488

examples), a MultiTabQA-derived set (10,990 ex-489

amples), and our full MTabVQA-Instruct (15,853490

examples).491

The fine-tuning experiments, detailed in Table 4,492

reveal a complex relationship between data scale,493

source, and model performance. Generally, more494

fine-tuning data leads to better EM and F1 scores,495

as seen when comparing the MiMo+ATIS sub-496

set (896 examples) to the larger Spider subset497

(2,395 examples). The model trained on the full498

MTabVQA-Instruct dataset of 15,853 diverse exam-499

ples achieved the highest overall F1 score (68.2%),500

highlighting the benefit of scale when combined501

with relevant and varied data.502

However, the source of the fine-tuning data is503

critically important. The model trained only on504

the large MultiTabQA subset exhibited surprisingly505

low overall performance (30.2% F1), significantly506

underperforming compared to the model trained507

on the much smaller Spider subset and even the508

MiMo+ATIS subset. This suggests that the charac-509

teristics of the MultiTabQA data, while extensive,510

may not align well with the broader MTabVQA-511

Eval benchmark or could introduce a domain shift.512

For instance, its F1 score on MTabVQA-Query and513

MTabVQA-Spider was substantially lower than514

that achieved by TableVision or the Spider-tuned515

model. This highlights that a large volume of data516

from a single, potentially narrowly focused or mis-517

aligned source can be less effective than smaller,518

more targeted, or diverse datasets.519

Furthermore, domain-specific alignment proves520

beneficial. The model fine-tuned on the Spider sub-521

set, for example, demonstrated strong performance522

on the MTabVQA-Spider eval split. The superior523

overall performance of TableVision, trained on full 524

MTabVQA-Instruct, indicates that data diversity is 525

crucial for generalization across varied multi-table 526

reasoning scenarios. This shows that while scaling 527

instruction data is generally advantageous, the rele- 528

vance and diversity of this data with the target tasks 529

is important for achieving optimal performance. 530

5 Conclusion 531

In this work, we introduce MTabVQA-Eval, a 532

novel and challenging benchmark specifically de- 533

signed to evaluate the multi-tabular reasoning ca- 534

pabilities of vision-language models over tables 535

presented as images. MTabVQA-Eval, comprising 536

3,745 QA pairs, focuses on a critical yet under- 537

explored area of integrating and reasoning about 538

information distributed across several table im- 539

ages. This benchmark significantly contributes to 540

bridging the gap between existing table QA bench- 541

marks, which often rely on single or non-visual 542

tables. We evaluated a range of SOTA open-source 543

and proprietary VLMs on MTabVQA-Eval, reveal- 544

ing substantial challenges these models face with 545

visual multi-tabular reasoning. To address this, 546

we also release MTabVQA-Instruct, a large-scale 547

instruction-tuning dataset. Our experiments demon- 548

strate that our fine-tuned model, TableVision on the 549

MTabVQA-Instruct dataset, leads to considerable 550

performance improvements on this task. Despite 551

these advancements, the performance of VLMs 552

on MTabVQA-Eval indicates significant room for 553

growth, underscoring the complexities of robust 554

visual multi-tabular reasoning and highlighting key 555

areas for future research in developing more capa- 556

ble VLMs. 557

In future work, we plan to explore more program- 558

matically generated or real-world sourced table im- 559

ages exhibiting even greater visual diversity and 560

degradation to more rigorously test VLM visual 561

parsing and grounding capabilities. 562
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Limitations563

While MTabVQA represents a significant step to-564

wards evaluating visual multi-tabular reasoning, we565

acknowledge several limitations.566

English-Only. The current iteration of MTab-567

VQA is primarily English-centric. Its underly-568

ing tabular data, generated questions, and answers569

are predominantly in English, which limits the570

benchmark’s applicability for evaluating VLMs on571

multi-tabular reasoning in other languages. Extend-572

ing MTabVQA to include multilingual tables and573

queries would be a valuable contribution, allowing574

for a more comprehensive assessment of VLM ca-575

pabilities across diverse linguistic contexts and pro-576

moting research in multilingual visual document577

understanding.578

Synthetic Table Layout. While MTabVQA tasks579

require multi-hop reasoning across table images580

and incorporate varied visual renderings, the scope581

of this visual complexity could be further expanded.582

Real-world documents often contain tables with583

highly unconventional layouts, extensive cell merg-584

ing/spanning, embedded charts or icons within585

cells, and varying image quality (e.g., scanned doc-586

uments with noise), which makes the task even587

more challenging for LLMs.588

Limited Annoation. To verify that the QA pairs589

were correct, we used only one annotator to verify590

the judgments of the LLM’s agent. Although the591

annotation was carried out carefully, there may592

have been minimal errors in the data annotation, as593

there was no double-checking by two people.594
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A Relational Table Sampling823

Algorithm 1 details our method for creating smaller, interconnected samples from large databases. We824

start by randomly selecting a limited number of rows (up to a maximum, Nmax = 50) from one initial825

table. Then, using the database’s foreign keys, we identify other tables linked to this first one. When826

sampling from these linked tables, the crucial step is to find and prioritize rows that are directly related827

to the rows already chosen from the previous table. This is achieved by matching values in the specific828

columns that link the tables. This process of finding related data and sampling continues as the algorithm829

explores outwards to other connected tables, ensuring the final set of sampled tables forms a related subset830

of the original database.

Algorithm 1 Relational Table Sampling

Input:
D: Input database (collection of tables)
R: Set of foreign key relationships between tables in D
Nmax: Maximum number of rows per sampled table
(V : Set of table identifiers derived from D)
(G = (V,E): Relationship graph derived from D andR)

Output:
S: Set of pairs (t, St), where St is the sampled row subset for table t ∈ V

1: S ← ∅; P ← ∅ ▷ S: Output samples, P: Processed tables set
2: tstart ← SelectSeed(V,G) ▷ Select a starting table (e.g., highest degree)
3: Ststart ← Sample(tstart, Nmax) ▷ Sample initial rows for tstart
4: S ← {(tstart, Ststart)}; P ← {tstart} ▷ Update output set and processed set
5: Initialize Q; Q.Enqueue(tstart) ▷ Q: Queue for Breadth-First Search (BFS)
6: while Q is not empty do ▷ Perform BFS traversal
7: tcurr ← Q.Dequeue() ▷ tcurr: Current table being processed
8: for each trel ∈ Neighbors(tcurr, G) \ P do ▷ trel: Related, unprocessed neighbor table
9: Rlinked ← GetLinkedRows(trel, tcurr, Stcurr ,R) ▷ Get rows in trel linked to sampled rows

10: Strel ← SampleSubset(Rlinked, Nmax) ▷ Sample a subset from linked rows, max size Nmax

11: S ← S ∪ {(trel, Strel)} ▷ Add the new sample to the output
12: P ← P ∪ {trel}; Q.Enqueue(trel) ▷ Mark trel as processed and add to queue
13: end for
14: end while
15: return S ▷ Return the final set of sampled table subsets

831
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B Data Sourcing: Join and Filter Details 832

This section provides a detailed breakdown of the process used to identify and filter data instances requiring 833

multi-table join operations from the source datasets, as mentioned in Section 3.1. This formed the basis for 834

constructing both the MTabVQA-Eval and MTabVQA-Instruct splits, ensuring a focus on multi-tabular 835

reasoning. The primary method involved parsing SQL queries associated with text-to-SQL datasets to 836

detect explicit join clauses (e.g., ‘JOIN‘, ‘INNER JOIN‘, ‘LEFT JOIN‘). For datasets without explicit 837

SQL, we relied on provided metadata or question characteristics indicative of multi-table requirements. 838

B.1 Spider Dataset 839

The Spider dataset (Yu et al., 2018) is a large-scale text-to-SQL benchmark. We analyzed its train, 840

development (dev), and test splits to identify questions whose corresponding SQL queries involved joins. 841

• Train Split: 842

– Total Questions: 7,000 843

– Questions with SQL Joins: 2,771 844

– Selected for MTabVQA-Instruct (after filtering and processing): 2,395 instances. 845

• Development (Dev) Split: 846

– Total Questions: 1,034 847

– Questions with SQL Joins: 408 848

• Test Split: 849

– Total Questions: 2,147 850

– Questions with SQL Joins: 862 851

• MTabVQA-Eval (from Spider Dev/Test): 852

– Combined Join Questions from Dev & Test: 408 (Dev) + 862 (Test) = 1,270 853

– Selected for MTabVQA-Eval (MTabVQA-Spider-Eval split): 1,048 instances. These were 854

chosen from the 1,270 join questions based on criteria ensuring clear multi-hop reasoning paths, 855

unambiguous answers from sampled data, and visual representability. 856

B.2 QFMTS Dataset 857

The QFMTS dataset (Zhang et al., 2024b) focuses on query-focused multi-document summarization with 858

tables. We identified instances requiring information synthesis across multiple tables. 859

• Total Questions/Instances: 4,908 860

• Instances Identified as Requiring Multi-Table Reasoning (e.g., via SQL joins or inherent task nature): 861

2,578 862

• Selected for MTabVQA-Eval (MTabVQA-Query-Eval split, primarily from QFMTS): 2,456 in- 863

stances. Filtering ensured complexity and suitability for our visual QA benchmark. 864

B.3 BIRD Dataset 865

BIRD (Li et al., 2023a) is another challenging text-to-SQL benchmark designed to evaluate robustness on 866

large databases and complex queries. 867

• Total Identified SQL Join Queries (approx.): 7,900 868

• Generated QA pairs for MTabVQA-Instruct: 1,572 instances. These were generated from a diverse 869

selection of the join queries, focusing on creating complex multi-hop reasoning scenarios suitable 870

for instruction tuning. 871
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B.4 MultiTabQA Dataset872

The MultiTabQA dataset (Pal et al., 2023) is specifically designed for question answering over multiple873

tables.874

• Total QA pairs involving joins/multi-table lookups utilized: 10,990875

• These were directly incorporated into the MTabVQA-Instruct dataset due to their inherent multi-table876

nature.877

B.5 ATIS Dataset878

The Air Travel Information System (ATIS) dataset (Dahl et al., 1994) contains spoken language queries879

related to flight information, often mapped to relational database queries.880

• Total Questions Analyzed: 496881

• Instances identified/selected for MTabVQA-Eval (MTabVQA-Atis split): 112882

• Instances selected/generated for MTabVQA-Instruct: 384 (See Table 2).883

B.6 MiMoTable Dataset884

The MiMoTable dataset (Li et al., 2024c) focuses on multimodal table understanding.885

• Total Questions/Instances: 1,636886

• Questions Identified with Multi-Table Requirements (e.g., from problem descriptions or metadata887

indicating cross-table information needed): 641888

• Selected for MTabVQA-Instruct: 512 instances.889

• Selected for MTabVQA-Eval: 129 instances.890

B.7 Overall Summary891

Across all source datasets, we identified approximately 26,826 potential questions or instances that892

involved multi-table join operations or inherently required multi-table reasoning. Through our processing,893

filtering, and generation pipeline, a total of 19,608 high-quality, multi-tabular visual question-answering894

instances were curated to form the MTabVQA-Eval (3,745 pairs) and MTabVQA-Instruct (15,853 pairs,895

with some overlap in underlying source tables but disjoint QA pairs) datasets. The filtering criteria896

included ensuring genuine multi-hop reasoning, clarity of questions and answers, visual representability897

of the involved tables, and overall quality for benchmarking and instruction tuning.898
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C Verification Prompt 899

The following prompt was provided to the verification LLMs-based verification agents during the auto- 900

mated assessment phase described in Section 3.5.

You are a verification agent for table-based question answering.
You need to verify if the answer and reasoning for the given
question are correct based ONLY on the provided table data.

[Tables Used]
[Sampled Table Data (JSON Format)]

[Question-Answer Pair]
Question: [Generated Question Text]
Answer: [Generated Answer (JSON Format)]
Reasoning Steps: [Generated Reasoning Steps]
Question Type: [Designated Question Type]

Your task:
1. Check if the question is well-formed and genuinely requires multi-hop reasoning across
MULTIPLE provided tables. Single-table questions are invalid.
2. Verify if the answer is accurate based only on the information present in the given tables.
If the answer is incorrect, 'is_valid' must be 'false'.
3. Check if the 'tables_used' field correctly lists relevant tables and if at least
two tables were necessary.
4. Validate if the reasoning steps are logical, coherent, and correctly lead from the table
data to the answer.

Respond with ONLY a valid JSON object (no introductory text, markdown formatting,
or code blocks outside the JSON structure) containing the following keys:
{{

"is_valid": true/false,
"verification_comments": "Your detailed verification comments

explaining the validity/issues and
multi-table requirement.",

"score": <an integer score from 0 to 10, where 10 is
perfect adherence to all criteria>,

"uses_multiple_tables": true/false
}}

Figure 5: LLM prompt for automated QA pair verification. Placeholders like ‘[Generated Question Text]‘ represent
the actual data provided to the model.

901
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D Visual Table Rendering Details902

As described in Section 3.3, MTabVQA table images were generated with significant visual diversity to903

mimic real-world appearances. For each QA pair, the rendering process introduced controlled variations904

across several dimensions using 10 distinct styling themes, randomly selected per table. These themes905

systematically varied:906

• Structure and Layout:907

– Column widths and row heights were adapted to content to ensure readability while introducing908

natural variations.909

– The relative positioning of multiple table images within the final visual context presented to910

the model was also varied (e.g., tables rendered side-by-side, stacked vertically, or with other911

layout configurations).912

• Appearance (Themes, Fonts, Styles): The 10 distinct styling themes systematically manipulated913

the following:914

– Color Schemes: This included variations in header background colors (e.g., using specific hex915

codes like #4CAF50 (green), #1E88E5 (blue), #333 (dark grey)), cell background colors, text916

colors (e.g., white text on dark headers, black text on light backgrounds), and alternating row917

shading (’zebra striping’ with colors like #f2f2f2).918

– Typography: Different font families (e.g., common serif and sans-serif fonts) were used. Font919

weights were varied (e.g., bold headers, normal weight for cell content). Font sizes were920

adjusted within themes (e.g., a base size of 12pt in one theme, with relative adjustments for921

headers).922

– Styling Elements: The presence, style, and color of grid lines were varied (e.g., solid lines,923

dashed lines, varying thickness, or minimalist themes with no grid lines). Cell padding was924

adjusted to control spacing within cells. Border styles for the overall table and individual cells925

were also diversified (e.g., 1px solid black, 2px solid #000, or no borders).926

This deliberate introduction of visual diversity is key to challenging models on robust OCR and layout927

understanding across varied presentations before they engage in multi-tabular reasoning.928
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E Human Verification Interface 929

Figure 6 shows the interface of the Streamlit application used for the final human verification stage 930

(Section 3.5). This tool displayed the rendered table images, the generated question, the LLM-generated 931

answer and reasoning, and the automated verification scores, allowing reviewers to make the final 932

acceptance decision. 933

(a) Initial login screen for evaluator identification.

(b) Main evaluation screen displaying table images, question, predicted answer, and reviewer judgment options.

Figure 6: Screenshots of the Streamlit application interface used for human verification. Panel (a) shows the user
login step, and panel (b) presents the core evaluation interface with table images and QA details.
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F GRPO Training Details934

This section provides additional details on the Group Relative Policy Optimization (GRPO) (Shao et al.,935

2024) experiments discussed in Section 4.2 for fine-tuning the Qwen2.5-VL-3B model. We utilized the936

EasyR1 framework6 for these experiments, training for a total of 270 steps. The training was conducted937

on a subset of MTabVQA-Instruct derived from the Spider dataset (2,395 examples).

(a) Reward: Accuracy (EM) (b) Reward: F1 Score (c) Reward: Structural Format

(d) Reward: JSON Format (e) Reward: Overall

Figure 7: GRPO training reward component curves for Qwen2.5-VL-3B over 270 training steps. These plots
illustrate the learning progress for content accuracy (EM, F1), structural format adherence, JSON validity, and the
combined overall reward.

938
Reward Function: The reward function for GRPO was designed to encourage both semantic correct-939

ness and proper output formatting. It was a composite score derived from:940

• Content Correctness: Assessed by the weighted sum of Exact Match (EM) and F1 score between941

the generated answer and the ground truth.942

• Format Adherence: This included two components:943

– Structural Format Score: A binary score indicating whether the model’s output correctly944

included the required ‘<think>‘ and ‘<answer>‘ tags.945

– JSON Format Score: A binary score indicating whether the content within the ‘<answer>‘ tags946

was valid JSON.947

The overall reward signal aimed to maximize these components, guiding the model towards generating948

accurate and well-formatted responses.949

Figure 7 shows the progression of various reward components during the GRPO training process. The950

plots for ‘reward/accuracy‘ (EM) and ‘reward/f1‘ show a general upward trend, indicating learning of951

6https://github.com/hiyouga/EasyR1
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content correctness. The ‘reward/format‘ and ‘reward/json‘ plots demonstrate that the model quickly 952

learned to adhere to the specified output structure. The ‘reward/overall‘ plot reflects the combined 953

learning signal. The final checkpoint used for evaluation was selected based on the highest ‘reward/overall‘ 954

achieved during training. These settings were chosen to balance training stability, computational efficiency, 955

and exploration during the reinforcement learning process for the multi-tabular visual question answering 956

task, aiming for both accurate content and correctly formatted output. Key GRPO training parameters are 957

summarized in Table 5. 958

Parameter Value

Core Algorithm
Advantage Estimator GRPO
KL Coefficient (λKL) 0.01

Training Setup
Base Model Qwen/Qwen2.5-VL-3B-Instruct
Training Data MTabVQA-Instruct (Spider Subset) (2,395 ex.)
Max Training Steps 270
Total Epochs 15
Rollout Batch Size 128

Actor Model (Qwen2.5-VL-3B)
Learning Rate 1e-06
Optimizer AdamW (BF16)
Global Update Batch Size 32

Rollout Generation
Temperature (Training) 1.0
Top-p (Training) 0.99
Num. Generations per Prompt (n) 5

Table 5: GRPO Hyperparameters for Qwen2.5-VL-3B Fine-tuning.
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G Model Evaluation and Generation Prompts959

This section details the system prompts used for evaluating and generating responses from the Vision-960

Language Models (VLMs) in different experimental settings.961

G.1 Standard Zero-Shot Evaluation Prompt962

For standard zero-shot evaluations of VLMs (Section 4.1), including proprietary models and open-source963

baselines before specific post-training, the following system prompt was used. This prompt instructs the964

model on how to interpret multi-tabular image data, reason about the question, and provide an answer965

strictly in the specified JSON format.966

System Prompt: Zero-Shot Evaluation

You are an intelligent assistant capable of understanding and reasoning about multi-tabular data
given as images, each table is one image. You will be presented with one or more tables containing
information on a specific topic.
You will then be asked a question that requires you to analyze the data in the table(s) and provide a
correct answer in strict required format.

Your task is to:

1. Carefully examine the provided table(s) Pay close attention to the column headers, the data types
within each column, and the relationships between tables if multiple tables are given.
2. Understand the question being asked. Identify the specific information being requested and
determine which table(s) and columns are relevant to answering the question.
3. Extract the necessary information from the table(s). Perform any required filtering, joining,
aggregation, or calculations on the data to arrive at the answer.
4. Formulate a clear and concise answer in natural language. The answer should be directly responsive
to the question and presented in a human-readable format. It may involve listing data, presenting
a single value, or explaining a derived insight.
5. Do not include any SQL queries in the answer. But you can use it internally, to come up with answer.
6. Be accurate and avoid hallucinations. Your answer should be completely based on the data
in the provided table(s). Do not introduce any external information or make assumptions not supported
by the data.
7. Be specific and follow the instructions in the question. If the question ask to get specific
columns, return only mentioned columns.
8. If the question is unanswerable based on the provided tables, state "The question cannot be
answered based on the provided data.
9. Please provide only the answer which has been asked, without any additional text (try to use
few tokens). However, take the time to think and reason before
giving your answer. Also, try to provide an answer even if you are unsure.
10. Provide the answer in JSON format with given response schema as given
[['ans1','ans2'],['ans3','ans4']]. Respond only with valid JSON format.

Take your time to understand the question. Break it down into smaller steps. Come up with
an answer and examine your reasoning. Finally, verify your answer.
you need to extract answers based on the given multi-hop question [Question] and given multiple tables
[TABLE1], and [TABLE2]. Please only output the results without any other words.
Return the answer in the following JSON format.

Return the answer in JSON schema: : {
"type": "json_schema",
"json_schema": {

"name": "Response",
"type": "object",
"properties": {

"data": {
"type": "array",
"items": {"type": "array", "items": {"type": "string"}},

}
},
"required": ["data"],
"additionalProperties": False,

},
}

967
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G.2 Chain-of-Thought (CoT) Evaluation Prompt 968

For the Chain-of-Thought (CoT) prompting experiments (Section 4.2), a modified system prompt was 969

used. This prompt explicitly instructs the model to first generate a step-by-step reasoning process (the 970

chain of thought) and then provide the final answer. 971

System Prompt: Chain-of-Thought (CoT)

You are an intelligent assistant capable of understanding and reasoning about multi-tabular data
given as images, each table potentially being one image. You will be presented with one or more tables
containing information on a specific topic. You will then be asked a question that requires you to
analyze the data in the table(s) and provide a correct answer in the strictly required format.

Your task is to:

1. Carefully examine the provided table(s): Pay close attention to the column headers, the
data types within each column, and the relationships between tables if multiple tables are given.
2. Understand the question being asked: Identify the specific information being requested and
determine which table(s) and columns are relevant to answering the question.
3. Reason step-by-step (Chain of Thought): Before generating the final answer,
formulate a clear chain of thought outlining how you identified the relevant data,
performed necessary operations (filtering, joining, aggregation, calculations),
and arrived at the result. This reasoning is crucial and MUST be included in the final output.
4. Extract the necessary information from the table(s): Perform any required filtering, joining,
aggregation, or calculations on the data based on your chain of thought to arrive at the answer.
5. Do not include any SQL queries in the final answer JSON. You can use SQL logic internally during
your reasoning (Chain of Thought), but the final output should not contain raw SQL code.
6. Be accurate and avoid hallucinations: Your answer must be completely based on the data in
the provided table(s).
. Provide the output strictly in the specified JSON format: The output must be a single JSON object
containing two keys: `chain_of_thought` (a string detailing your reasoning steps) and `data`
(an array of arrays containing the answer).

Your entire response must be ONLY a valid JSON string conforming to the schema below.
JSON Schema:
```json
{

"type": "object",
"properties": {
"chain_of_thought": {

"type": "string",
"description": "A detailed step-by-step explanation of the reasoning process
used to arrive at the answer."

},
"data": {

"type": "array",
"items": {
"type": "array",
"items": {

"type": "string"
}

},
"description": "The result data, formatted as an array of arrays, where each
inner array represents a row."

}
},
"required": [

"chain_of_thought",
"data"

],
"additionalProperties": False

}
```

Take your time to understand the question and the data. Break the problem down using Chain of Thought.
Construct the final JSON containing both your reasoning and the extracted data. Verify
your answer and the format before outputting. Remember to output ONLY the JSON string.

972
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G.3 GRPO Thinking Prompt973

For the Group Relative Policy Optimization (GRPO) training and generation (Section 4.2 and Appendix974

F), the prompt was used. This prompt is similar to the CoT prompt in that it requires an internal975

reasoning process (‘<think>...</think>‘) before the final answer, but it is specifically tailored for the976

GRPO framework, which often involves distinct markers for thought processes versus final outputs used977

in reward calculation. The final answer is expected within ‘<answer>...</answer>‘ tags in a specific JSON978

format.979

System Prompt: GRPO Thinking Prompt

You are an intelligent assistant capable of understanding and reasoning about multi-tabular data
given as images, each table is one image. You will be presented with one or more tables containing
information on a specific topic.
You will then be asked a question that requires you to analyze the data in the table(s) and
provide a correct answer in strict required format using multi-hop reasoning.

Your task is to:

1. Carefully examine the provided table(s) Pay close attention to the column headers, the data types
within each column, and the relationships between tables if multiple tables are given.
2. Understand the question being asked. Identify the specific information being requested and
determine which table(s) and columns are relevant to answering the question.
3. Extract the necessary information from the table(s). Perform any required filtering, joining,
aggregation, or calculations on the data to arrive at the answer.
4. Formulate a clear and concise answer in natural language. The answer should be directly
responsive to the question and presented in a human-readable format.
It may involve listing data, presenting a single value, or explaining a derived insight.
5. Do not include any SQL queries in the answer. But you can use it internally, to come up with answer.
6. Be accurate and avoid hallucinations. Your answer should be completely based on the data in the
provided table(s). Do not introduce any external information or make assumptions not
supported by the data.
7. Provide the answer in JSON format with given response schema as given
[['ans1','ans2'],['ans3','ans4']].Respond only with valid JSON format, as shown in the example above.

Strictly, Give answer in this format, using the example below as reference:

You FIRST think about the reasoning process as an internal monologue and then provide the final answer.
The reasoning process MUST BE enclosed within <think> </think> tags. You will be presented with one
or more tables containing information on a specific topic.You will then be asked a question that
requires you to analyze the data in the table(s) and provide a correct answer.The final answer MUST BE
put in <answer> </answer> in json format.
Example JSON format inside <answer>{"data": [[‘ans1’, ‘ans2’], [‘ans3’, ‘ans4’]]}</answer>.

980
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