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ABSTRACT

Theorem proving serves as a major testbed for evaluating complex reasoning abil-
ities in large language models (LLMs). However, traditional automated theorem
proving (ATP) approaches rely heavily on formal proof systems that poorly align
with LLMs’ strength derived from informal, natural language knowledge acquired
during pre-training. To fully leverage the theorem-proving knowledge acquired
from pre-training, in this work, we present DeepTheorem, a comprehensive in-
formal theorem-proving suite exploiting natural language to enhance LLM math-
ematical reasoning. DeepTheorem includes 1) a large-scale dataset of 121K
high-quality IMO-level informal theorems and proofs spanning diverse math-
ematical domains, rigorously annotated for correctness, difficulty, and topic cate-
gories, accompanied by systematically constructed verifiable theorem variants; 2)
adaptation of RL-Zero explicitly to informal theorem proving, leveraging the
verified theorem variants to incentivize robust mathematical inference; 3) com-
prehensive outcome and process evaluation metrics examining proof correct-
ness and the quality of reasoning steps; and 4) a novel informal theorem proving
benchmark consoliadted from three established math competitions, formatted for
automatic evaluation. Extensive experimental analyses demonstrate DeepTheo-
rem significantly improves LLM theorem-proving performance compared to ex-
isting datasets and supervised fine-tuning protocols, achieving state-of-the-art ac-
curacy and reasoning quality. Our findings highlight DeepTheorem’s potential
to fundamentally advance automated informal theorem proving and mathematical
exploration.

1 INTRODUCTION

Theorem proving is widely regarded as a pinnacle challenge for evaluating advanced reasoning ca-
pabilities of both human and artificial intelligence. It requires integrating diverse cognitive facets
such as abstraction, strategic inference, pattern recognition, and meticulous logical deduction. Re-
cent advancements in deep learning, especially in large language models (LLMs), have significantly
reshaped the landscape of automated theorem proving (ATP). Much prior work attempts ATP by in-
tegrating LLMs with either formal proof engines such as Lean, Coq, and Isabelle (Zheng et al., 2022;
Liu et al., 2023; Tsoukalas et al., 2024) or domain-specific languages from ProofWiki (Welleck et al.,
2022). However, these proof methods impose a significant barrier for LLMs whose primary strength
derives from the vast corpus of natural language and LaTeX-based mathematical texts used during
pre-training. This inherent misalignment limits LLMs’ capability in theorem proving, leaving a
considerable gap between their potential and actual performance.

In this paper, we present DeepTheorem, a novel, comprehensive suite expressly designed to lever-
age natural language to unleash the latent mathematical reasoning ability of LLMs for theorem
proving. Instead of relying on formal proof assistants, DeepTheorem offers a scalable, intuitive,
and flexible alternative, enabling LLMs to generate informal mathematical proofs aligning closely
with human mathematicians’ heuristic-driven thinking. Central to our approach is the construc-
tion of a large-scale benchmark comprising 121K IMO-level informal mathematical theorems with
precise annotations such as correctness labels, difficulty levels, diverse mathematical domains, and
verifiable theorem variants amenable to advanced reinforcement learning paradigms. Additionally,
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Figure 1: (a): Our dataset surpasses other informal theorem proving datasets in both scale and diffi-
culty; (b): RL-Zero training with our DeepTheorem datasets on 7B model achieves strong results.

we adapt reinforcement learning algorithms to the problem of informal theorem proving for the
first time, significantly enhancing LLM’s ability to reason mathematically beyond the constraints of
supervised fine-tuning (SFT). To evaluate existing and newly trained models on informal theorem
proving, we also construct a new benchmark sourced from established mathematics competitions,
and propose comprehensive evaluation metrics that rigorously assess the correctness of generated
proofs and the processes underlying the proofs themselves.

Through extensive experiments, we show that leading LLMs still exhibit significant limitations
in theorem proving. However, when trained with DeepTheorem, they achieve substantial perfor-
mance improvements over models trained using existing datasets, showcasing the effectiveness of
our natural-language-focused approach. Our results underscore the promise of DeepTheorem to
redefine LLM-driven mathematical reasoning, offering a robust platform for continued progress in
automated and scalable informal theorem proving.

To sum up, our key contributions are:

• We introduce the DeepTheorem framework, a comprehensive informal theorem-proving suite
exploiting natural language to enhance LLM mathematical reasoning;

• We open-source a large-scale natural-language theorem collection of 121K informal mathemati-
cal theorems and corresponding high-quality proofs at IMO-level difficulty, suitable for both SFT
and RL;

• We innovatively adapt the RL-Zero training method explicitly to informal theorem proving, sig-
nificantly enhancing LLM’s reasoning capacity beyond traditional SFT methods;

• We introduce a new benchmark for evaluating informal theorem proving, and develop a compre-
hensive evaluation framework assessing both the correctness of theorem proofs (outcome eval-
uation) and the completeness, logical validity, and correctness of generated reasoning processes
(process evaluation);

• Through extensive experiments, we establish the superiority of our DeepTheorem training
paradigm, achieving state-of-the-art performance and surpassing existing informal theorem
datasets and training methods;

2 DATASET

Overview The DeepTheorem dataset1 is a novel, large-scale resource designed to advance LLMs
in informal mathematical theorem reasoning. Mined from a diverse web corpus, it addresses the need
for challenging, decontaminated, and diverse topics to push LLMs toward frontier theorem proving.
As illustrated in Figure 2, each entry in the dataset offers distinct features tailored to support diverse
research objectives, including: 1) a mathematical theorem in standardized LaTeX format; 2) a True-
or-False correctness label, where a False label indicates that the theorem can be mathematically
disproved; 3) a fine-grained difficulty score ranging from level 5∼10; 4) mathematical topics for
targeted analysis; and 5) detailed step-by-step proof solutions generated by o3-mini.

1In the rest of this section, DeepTheorem dataset refers specifically to the DeepTheorem training dataset.
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Figure 2: A data sample from the DeepTheorem dataset.

Comprising approximately 121K curated samples, DeepTheorem empowers large-scale exploration
of LLM mathematical reasoning, curriculum learning, and cross-domain generalization. It serves as
a versatile resource for advancing automated theorem proving, enhancing model reasoning capabil-
ity, and developing adaptive learning frameworks, positioning it as a cornerstone for next-generation
NLP research in mathematical theorem proving and logical reasoning. The key features of DeepThe-
orem are:
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Figure 3: Statistics of DeepTheorem dataset hier-
archical topics. See Appendix A for details.

• Large scale: Unlike other informal theo-
rem proving datasets that focus on small-
scale studies of specific domains (Sheng
et al., 2025) or analyzing LLM-generated
proofs (Dekoninck et al., 2025; Guo et al.,
2025), DeepTheorem dataset leverages the
vastness of web-sourced content to construct
a training set, ensuring comprehensive cov-
erage of mathematical concepts and problem
types. As shown in Figure 1(a), our dataset
consists of approximately 121K theorems,
significantly outscaling prior datasets. The
only dataset comparable in size to DeepThe-
orem is OpenR1-Math (Face, 2025). How-
ever, this dataset is not explicitly anno-
tated for mathematical theorem proving and
thus not readily usable for training theorem-
proving models.

• Frontier and extremely challenging theo-
rems: DeepTheorem dataset is distinguished
by its inclusion of advanced mathematical
theorems, each annotated with difficulty lev-
els to enable targeted evaluation and training
across a spectrum of complexities. As shown in Figure 4, DeepTheorem dataset emphasizes the-
orems at high difficulty levels (6–9), surpassing existing corpora in complexity and challenge,
presenting significant challenges for state-of-the-art LLMs while aligning with frontier, IMO-
level benchmarks such as FIMO (Liu et al., 2023).

• Diverse topics: As shown in Figure 3, DeepTheorem dataset captures the breadth of informal
theorem-based reasoning by covering nearly the entirety of the mathematical landscape, including
algebra, discrete math, applied math, calculus, geometry, mathematical analysis, number theory,
etc. By encompassing this wide array of domains, DeepTheorem dataset enables researchers to
assess model performance on both specialized and interdisciplinary mathematical tasks, fostering
the development of LLMs that can generalize effectively across the full spectrum of mathematical
reasoning.

• Strict decontamination: To preserve evaluation integrity, DeepTheorem dataset employs rigor-
ous decontamination processes to avoid overlap with widely used benchmarks. The targets of
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Figure 4: Difficulty density histogram comparison across widely used benchmarks (i.e. miniF2F,
Putnam-Bench, FIMO, HMMT2425) and other recent theorem proving datasets (i.e. OPC, RFM-
Dataset, theorem subset of OpenR1-Math).

our decontamination includes general math reasoning benchmarks - MATH (Hendrycks et al.,
2021b), AIME (MAA, a), AMC (MAA, b), Minerva Math (Lewkowycz et al., 2022), Olympiad-
Bench (He et al., 2024), Omni-MATH (Gao et al., 2025), MathOdyssey (Fang et al., 2024),
GAOKAO (Zhong et al., 2024), JEEBench (Arora et al., 2023), MMLU-STEM (Hendrycks et al.,
2021a), CMATH (Wei et al., 2023), OlympicArena (Huang et al., 2024), GSM8K (Cobbe et al.,
2021), GPQA (Rein et al., 2024) - and theorem proving benchmarks: miniF2F (Zheng et al.,
2022), PutnamBench (Tsoukalas et al., 2024), FIMO (Liu et al., 2023), and HMMT (Harvard-
MIT Mathematics Tournament, 2024, 2025).

• Proofs from advanced LLMs: DeepTheorem dataset includes concise, high-quality proof so-
lutions generated by o3-mini, tailored for supervised fine-tuning (SFT). These proofs provide a
compact yet complete outline of the logical steps required to prove (or disprove) each theorem,
optimized for clarity and brevity. Unlike verbose or overly formal proofs, these proofs, expressed
in LaTeX, align with the informal nature of LLMs, making them an effective learning signal.
By incorporating these proofs, the dataset enables models to internalize structured reasoning pat-
terns, improving their ability to generate coherent and logically sound mathematical arguments.

2.1 CONSTRUCTING DeepTheorem DATASET

Figure 5: The process pipeline of constructing DeepTheorem dataset.

As shown in Figure 5, the construction pipeline of DeepTheorem dataset starts by aggregating raw
data from multiple sources, including MMIQC (Liu et al., 2025), WebInstruct (Yue et al., 2024), and
NuminaMath-CoT (LI et al., 2024).

Decontamination To ensure the integrity of DeepTheorem dataset, we implement a rigorous de-
contamination process to eliminate overlap between training and testing datasets. The process em-
ploys a recall-and-justify pipeline to identify and remove potential duplicates, consisting of three
key steps:

1. Embedding Generation: We use an embedding model2 (Reimers & Gurevych, 2019; Toshniwal
et al., 2025) to generate sentence embeddings for all theorem statements in the training and testing
datasets.

2 paraphrase-multilingual-MiniLM-L12-v2
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2. Similarity Recall: For each training sample, we compute its embedding cosine similarity to all
test samples, and recall the top five testing samples exceeding a similarity threshold (set to 0.7).

3. Contamination Justification: An LLM3 evaluates whether the recalled test samples are contami-
nated within the current training sample (Section F.1).

This process removed approximately 199K contaminated samples, effectively identifying identical
cases, generalized questions, and converse theorems, Removed contaminated examples are shown
in Appendix B. Approximately 2.6M samples remain for the next processing step.

Quality control and proof generation We also implement a rigorous quality control pipeline for
generating and validating theorem statements and their proofs. The process involves four key steps:

1. Theorem Justification: An LLM verifies that the question is complete, and indeed a theorem-
proving question (Section F.2).

2. Rationale Summarization: An LLM summarizes the original question and generates a formatted,
concise, self-contained theorem (Section F.3).

3. Proof Generation: o3-mini (high effort) generates the proof solution with True-or-False conclu-
sion about the theorem (Section F.4).

4. Logical Validation: The LLM performs an extra justification step to check that the theorem-proof
pair is logically coherent. (Section F.5)

This systematic approach yielded 1.08M high-quality, mathematically sound theorem-proof pairs.

Difficulty and single statement annotation We annotate the difficulty levels of DeepTheo-
rem dataset , and remove questions with multiple statements to prove.

1. Difficulty Annotation: An LLM analyzes each theorem statement following the strategy of Gao
et al. (2025), considering factors such as logical complexity, mathematical prerequisites, and
proof length, to assign a difficulty score on a scale of 1 to 9. Only questions with a difficulty
score of at least 5 are retained. (Examples in Section B, prompt in Section F.6)

2. Single-Statement Filtering: We filter out samples that query for proving multiple statements,
retaining only those with a single, well-defined theorem to ensure clarity and consistency with
evaluation.

3. Topic Annotation: Finally, we annotate the topic domain of the mathematical theorems with
LLMs. (Section F.7)

The difficulty and single statements filtering results in 121K challenging theorems, yielding the final
DeepTheorem dataset.

3 THEOREM PROVING VIA REINFORCEMENT LEARNING

Motivation Conventionally, informal theorem-proving datasets are utilized through supervised
fine-tuning (SFT), where models learn to generate proofs by imitating dataset examples. However,
recent studies on RL-Zero demonstrate its superior performance over SFT by leveraging a base
model’s pretrained knowledge and exploratory capabilities (Jaech et al., 2024; DeepSeek-AI et al.,
2025). This raises a natural question: Can we harness the base model’s exploration ability for infor-
mal theorem proving? In this section, we explore the possibility of utilizing RL-Zero for informal
theorem proving. The process involves three key steps: 1) data augmentation to generate contradic-
tory theorem variants for binary rewards; 2) RL-Zero training with GRPO (Shao et al., 2024); and
3) Evaluation of the theorem-proof generation.

3.1 THEOREMS WITH VERIFIABLE REWARDS

Theorems can be disproved To construct a theorem with rewards for RL-Zero, we make the key
observation:

3 GPT-4o is used for annotation in this section unless otherwise specified.
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Insight

A statement need not be correct but can be also proven incorrect, enabling a binary reward
structure compatible with RL-Zero.

This observation allows us to transform DeepTheorem’s theorems into true-or-false variants, facili-
tating RL training that incentivizes robust reasoning.

Table 1: An example of theo-
rem variants given an original
theorem.

Theorems Example

Original x > 1
Variant 1 x > 0
Variant 2 x < 1

To construct such training data, we use an LLM to expand the
original theorems into contradictory variants that can be disproved.
Specifically, we strictly limit the transformation made to the orig-
inal theorem, so that the resulting variant is either entailed by or
contradictory from the original theorem. Consider the example in
Table 1 (omitting the hypotheses for simplicity): if the original the-
orem can be proved, Variant #1 is also correct and can be mathemat-
ically proved in the same manner as the original one, while Variant
#2 must be incorrect and can be disproved.

With such logically entailing or contradictory transformations, we are able to construct variants
of a theorem that are guaranteed to be correct or incorrect by only accessing the theorem itself
but not the proof process, which makes this transformation task much easier than annotating new
math statements, and thus allowing a relatively weaker LLM (e.g. Qwen2.5-72B-Instruct, Yang
et al., 2024) to perform it. After this expansion phase, we further annotate the completeness of the
resulting theorem pool and finally acquire a training set of 242K mathematical theorems that can
either be proved or disproved, each with a complete proof trajectory (see Appendix F.8 for more
details).

3.2 BINARY REWARDS ACTIVATE THEOREM PROOF GENERATION

With the aforementioned theorem variants, we can now apply reinforcement learning to natural
language theorem proving. Specifically, we adopt the GRPO algorithm (Shao et al., 2024).

Proof generation with RL Inspired by the success of reasoning-specialized models such as R1
and its open-source reproductions (DeepSeek-AI et al., 2025; Hu et al., 2025), we encourage the
model to enclose its reasoning process in <think> </think> tags in the system prompt to incentivize
more detailed reasoning behaviours (see Appendix F.9), and then ask the model to end each proof
with either “\boxed{proved}” or “\boxed{disproved}”. In the reward function, we extract this
answer and compare it against the ground truth, giving a reward of 1 if the answer matches, and 0
otherwise. We also enforce several sanity checks to prevent model collapse: if the ratio of white
spaces in a model’s solution is less than 0.05 or the average character repetition count is greater than
300, then a reward of 0 is issued regardless of the answer.

3.3 EVALUATION

The theorem-proving questions used for evaluation are drawn from two challenging benchmarks —
FIMO (Liu et al., 2023) and Putnam (Tsoukalas et al., 2024) — and a newly constructed theorem-
proving subset of HMMT (Harvard-MIT Mathematics Tournament, 2024, 2025).

Table 2: Test data statistics. Each original theo-
rem is manually expanded into multiple entailing
or contradictory variants. Random accuracy indi-
cates the expected score of random guessing fol-
lowing the outcome criteria described below.

Bench Scale Variants (Avg.) Random Acc.
FIMO 172 2.7 17.4
HMMT 205 3.5 11.2
Putnam 281 2.9 15.4

Outcome evaluation Evaluating the correct-
ness of natural language (NL) proofs poses a
significant challenge, as it mirrors the complex-
ity faced by humans in assessing the logical co-
herence and mathematical validity of informal
reasoning. Unlike formal theorem-proving sys-
tems that rely on structured logic, NL proofs
lack a standardized format, making their evalu-
ation inherently subjective and difficult to auto-
mate. To address this, we propose a novel eval-
uation framework that leverages multiple en-
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tailing and contradictory variants derived from each theorem. By assessing the model’s ability to
consistently assign correct truth values across these variants, we indirectly estimate its theorem jus-
tification ability. When the number of variants is sufficiently large, this approach provides a robust
proxy for evaluating the correctness of NL proof generation.

Thus, we manually expand each question in the three data sources into multiple entailing or con-
tradictory variants following the same variant generation protocol in Section 3.1, and the resulting
benchmarks are shown in Table 2. When evaluating a model, we ask it to either prove or disprove
each theorem and corresponding variants, and evaluate the results with the criteria below:

Outcome Criteria

A test case in a theorem testing set is passed if and only if:
1. The model explicitly produces a truth value (true or false) for theorems and variants;
2. The predicted truth value for the original theorem is correct;
3. The predicted truth values for all entailing variants are the same as the original theorem;
4. The predicted truth values for all contradictory variants are the inverse of the original

theorem.

Process evaluation Since theorem proving requires generating logically validated proofs for each
reasoning step, we also develop a process evaluation framework that evaluates the quality of proof
along four dimensions:

• Logical Validity: Check if each step follows logically from the previous one. Flag any logical
errors.;

• Completeness: Verify if all necessary cases and steps are included to prove the theorem;
• Correctness: Confirm if the final conclusion is correct;
• Clarity: Assess if the proof is clear, unambiguous, and well-explained.

We use GPT-4o as the LLM judge and ask it to score the proof using a weighted sum of the four
dimensions (prompt given in Appendix F.10). In Appendix D, we also present the results using
o3-mini and Ling-1T (Team & AI, 2025) as the judge as well as human evaluation.

4 EXPERIMENTS

4.1 SETTINGS

We train two sets of models, using supervised fine-tuning (SFT) and zero reinforcement learning
(RL-Zero) respectively, starting from Qwen2.5-Base (Yang et al., 2024) (additional results with
Qwen3-Base (Yang et al., 2025) are provided in Appendix C). For SFT, we train the models for 3
epochs on the complete proof solutions in the dataset, using one machine for training each model.
For RL-Zero, we adopt GRPO with batch size 128, group size 64, and maximum rollout length 8192.
We train the models for 1000 steps, and distribute each model across two machines during training.
Following the settings of Hu et al. (2025), we do not apply any KL regularization or entropy loss,
as we find that KL regularization has a negligible impact on model performance, while entropy loss
leads to model collapse.

As a baseline, we select the theorem-proving subset of OpenR1-Math (Face, 2025), the highest-
quality existing theorem-proving dataset with complete questions and responses. We apply the same
processing pipelines to it as detailed in Section 2.1, which yields 66K original theorems and 130K
variants in total. We dub this processed dataset OpenR1-Math-Proof.

4.2 MAIN RESULTS

DeepTheorem with RL-Zero achieves the best performance The main results are presented in
Table 3. DeepTheorem demonstrates superior performance over OpenR1-Math-Proof, especially

7
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Table 3: Outcome (out.) and Process (proc.) evaluation of models trained on OpenR1-Math-Proof
and DeepTheorem.

Model Strategy Data FIMO HMMT Putnam Avg.
out. proc. out. proc. out. proc. out. proc.

1.5B
SFT OpenR1-Proof 20.63 8.66 11.86 4.80 35.42 18.98 22.64 10.81

DeepTheorem 31.75 18.86 15.25 9.41 36.46 21.43 27.82 16.57

RL OpenR1-Proof 34.92 8.54 16.95 5.10 55.21 17.92 35.69 10.52
DeepTheorem 31.75 15.23 23.73 10.15 52.08 22.79 35.85 16.06

3B
SFT OpenR1-Proof 23.81 12.85 15.25 6.90 43.75 27.96 27.60 15.90

DeepTheorem 33.33 20.38 20.34 12.15 36.46 25.43 30.04 19.32

RL OpenR1-Proof 34.92 14.33 23.73 11.72 57.29 35.11 38.65 20.39
DeepTheorem 38.10 23.39 25.42 13.56 52.08 33.84 38.53 23.60

7B
SFT OpenR1-Proof 30.16 18.23 15.25 8.63 48.96 32.95 31.46 19.94

DeepTheorem 34.92 26.69 22.03 15.41 41.67 33.50 32.87 25.20

RL OpenR1-Proof 42.86 22.79 25.42 13.15 60.42 38.94 42.90 24.96
DeepTheorem 55.56 39.07 28.81 20.85 57.29 42.20 47.22 34.04

for the 7B backbone and in terms of process evaluation. On the other hand, our RL-Zero train-
ing paradigm consistently outperforms SFT, validating the effectiveness of RL-Zero in pushing the
models’ reasoning capabilities beyond the limit of SFT.

Figure 6: Performance improvement of mod-
els trained with DeepTheorem over baselines on
theorem proving benchmarks.

DeepTheorem achieves strong parame-
ter efficiency We demonstrates that our
DeepTheorem-RL strategy achieves strong
parameter efficiency in Figure 6. Compared
to the Qwen2.5 series, training DeepTheo-
rem on 1.5 to 7B models significantly improves
the informal theorem proving boundary at
parameter-performance space. Moreover, when
extrapolated DeepTheorem parameter efficiency
also surpasses SOTA commercial models such as
o1 and o3-mini.

SOTA performance at equal model scale In
Table 4, we also provide the evaluation results
of SOTA LLMs on the three benchmarks. These
results suggest that theorem proving, especially
our newly constructed HMMT benchmark, is still
quite challenging for LLMs. On the other hand,
our 7B model, trained with RL-Zero on DeepTheorem, outperforms SOTA models of much larger
sizes, including those specialized in math and reasoning, demonstrating the superior quality of
DeepTheorem and our innovative outcome-supervised RL training approach for theorem proving.

Direct Proof 

Proof by 
Exhaustion 

Proof by 
Construction 

Closed Chain 
Inference 

Proof by 
contradiction 

Proof by 
mathematical 

induction 

Heuristic 
reasoning 

Proof by 
contraposition 

Other 
techniques

Other

Figure 7: Distribution of proof techniques used
by DeepTheorem-7B.

Reasoning with theorem proving skills In
Figure 7, we visualize the techniques used by
our 7B model trained with RL on DeepTheorem,
where direct proof is most commonly used, fol-
lowed by proof by exhaustion and construction.
In Appendix E, we provide a non-cherry-picked
example generation, finding the model to deliver
a clear and correct disproof, highlighting its effi-
cacy in tackling advanced mathematical problems
with precision and clarity.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Evaluation comparison of our model trained with RL on DeepTheorem with SOTA LLMs
for both commercial models and open source models. *: denotes our method. Inst: Instruct; DS:
Deepseek.

Model FIMO HMMT Putnam Avg. #Rank
out. proc. out. proc. out. proc. out. proc. out. proc.

Commercial Models

Claude3.7-Sonnet 34.92 26.28 13.56 8.29 45.83 38.33 31.44 24.30 12 12
Gemini2.5-Pro 57.14 54.06 57.63 49.82 64.58 58.75 59.78 54.21 4 4
Gemini2.5-Flash 30.16 28.95 25.42 22.02 42.71 38.98 32.76 29.98 11 8
GPT-4o 34.92 30.70 16.95 14.59 22.92 18.88 24.93 21.39 14 13
o1-mini 60.32 55.23 35.59 30.90 61.46 52.88 52.46 46.34 6 6
o1 66.67 61.00 47.46 47.30 62.50 57.55 58.88 55.28 5 3
o3-mini 80.95 77.61 45.76 43.47 78.12 75.12 68.28 65.40 2 1

Open Source Models

Qwen2.5-Inst-7B 30.16 21.13 10.17 6.83 33.33 25.39 24.55 17.78 15 15
Qwen2.5-Inst-72B 49.21 37.35 13.56 9.78 48.96 41.00 37.24 29.38 8 9
Qwen2.5-Math-Inst-7B 28.57 18.86 3.39 1.61 25.00 18.79 18.99 13.09 17 18
Qwen2.5-Math-Inst-72B 47.62 36.02 11.86 8.61 47.92 38.04 35.80 27.56 10 11
R1-Distill-7B 6.35 4.27 0.00 0.00 4.17 2.58 3.51 2.28 19 19
R1-Distill-70B 17.46 14.05 16.95 13.52 30.21 23.10 21.54 16.89 16 16
QwQ-32B 17.46 15.41 11.86 10.10 25.00 18.19 18.11 14.57 18 17
Llama3.3-Inst-70B 41.27 27.33 10.17 4.12 36.46 25.30 29.30 18.92 13 14
Qwen3-32B 73.02 55.04 52.54 36.88 79.17 57.81 68.24 49.91 3 5
Kimi-K2-Thinking-1T 25.40 19.49 32.20 25.77 51.04 40.40 36.21 28.56 9 10
Ling-1T 85.71 64.27 55.93 37.09 83.33 64.79 74.99 55.38 1 2
*DeepTheorem-RL-7B 55.56 39.07 28.81 20.85 57.29 42.20 47.22 34.04 7 7

5 RELATED WORK

Theorem proving Theorem proving is a non-trivial task for natural language processing. In the
context of LLMs, most works on theorem proving focus on formal languages such as Lean, Coq,
and Isabelle (Xin et al., 2024; Ren et al., 2025). NaturalProofs (Welleck et al., 2021) and Natu-
ralProver (Welleck et al., 2022) represent pioneering works that attend to informal theorem prov-
ing, though utilizing a domain-specific language from the ProofWiki website rather than the more
human-accessible LaTeX-based natural language. Concurrent to our work, several small-scale infor-
mal theorem proving datasets have been introduced to the community, including OPC (Dekoninck
et al., 2025), IneqMath (Sheng et al., 2025), and RFMDataset (Guo et al., 2025). However, these
datasets are designed for analyzing LLMs’ reasoning errors and failure modes in theorem proving,
whereas DeepTheorem represents the first attempt at scaling up the training of informal theorem
proving models.

Learning to reason with RL-zero RL-Zero (DeepSeek-AI et al., 2025) is a streamlined frame-
work designed to develop reinforcement learning capabilities in LLMs without SFT. While recent
advances in LLM reasoning have been significantly influenced by RL techniques (Jaech et al., 2024;
DeepSeek-AI et al., 2025; Team, 2024; xAI, 2025; Google, 2025), existing approaches predomi-
nantly focus on closed-form questions, addressing only a subset of reasoning problems. In contrast,
we investigate the application of RL-Zero in process-oriented reasoning, specifically in informal
theorem-proving. To the best of our knowledge, this is the first study to apply RL-Zero to infor-
mal theorem proving, marking a significant advance in enabling LLMs to address more diversified
reasoning tasks in mathematical and logical domains.

6 CONCLUSION

In this paper, we introduce DeepTheorem, a novel comprehensive theorem-proving suite involving a
large-scale annotated dataset of 121K IMO-level informal mathematical theorems and correspond-
ing high-quality natural-language proofs, alongside systematically constructed verifiable theorem
variants. We further adapt RL-Zero method to informal theorem reasoning, significantly surpass-
ing supervised fine-tuning in performance. Comprehensive evaluations involving outcome accuracy
and detailed process assessment on our newly constructed benchmark demonstrate the effectiveness
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of our approach, achieving state-of-the-art theorem-proving performance and significantly pushing
LLM reasoning boundaries. Through these contributions, DeepTheorem provides a robust founda-
tion for future advancements in automated mathematical theorem proving, leveraging natural lan-
guage flexibility to empower scalable, human-like reasoning abilities in large language models.
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A TOPIC DISTRIBUTION IN DeepTheorem DATASET

Table 5: Subject and topic distribution in the DeepTheorem dataset.
Subject Topic Frequency

Algebra

Abstract Algebra 23134
Linear Algebra 8858
Intermediate Algebra 6634
Matrices 3201
Sequences And Series 440
Vectors 383
Prealgebra 281
Algebraic Expressions And Inequalities 226
Other 448

Calculus

Integral Calculus 11844
Differential Calculus 8478
Differential Equations 3478
Limits 664
Other 232

Applied Mathematics

Statistical Methods 13199
Probability 632
Math Word Problems 557
Other 1583

Geometry

Differential Geometry 10951
Plane Geometry 2044
Solid Geometry 1082
Non Euclidean Geometry 433
Other 504

Discrete Mathematics

Logic 7710
Combinatorics 3590
Graph Theory 1790
Algorithms 1318
Other 225

Number Theory

Prime Numbers 1134
Congruences 1032
Factorization 318
Other 315

Mathematical Analysis

Calculus 407
Applied Mathematics 338
Geometry 221
Other 1746

Other Topology 317
Other 1007
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B EXAMPLES OF SAMPLE DIFFICULTIES AND DECONTAMINATED TRAINING
CASES

Table 6: Example questions in DeepTheorem dataset from different difficulty levels.
Level Example Topic

5 Let A be a commutative ring with identity, and let a, b ∈ A where a is in the Jacobson
radical of A. Prove or disprove that the element 1−ab is a unit in A, i.e., the principal
ideal (1− ab) generated by 1− ab is equal to A.

Abstract Algebra -
Ring Theory

6 Let M be a topological manifold with an open cover {Ui} such that each Ui is diffeo-
morphic to an open subset of Rn. Prove or disprove that if each Ui is diffeomorphic
to the open unit ball in Rn, then {Ui} forms a contractible open cover of M .

Differential Geom-
etry - Manifolds

7 Let N∗ denote the set of all positive integers. Suppose a > 0 is a real number, and
there exist n mutually disjoint infinite subsets A1, A2, . . . , An such that A1 ∪ A2 ∪
· · · ∪ An = N∗, and for each i = 1, 2, . . . , n, and any b, c in Ai, where b > c, the
condition b− c ≥ ai holds. Prove or disprove that a must satisfy 0 < a < 2.

Intermediate Alge-
bra - Polynomial
Operations

8 Let f(z) = eiz

z
, and consider the contour integral

∫
R f(z) dz over the real line. As-

sume the contour is closed by a semicircular arc in the upper half-plane. Prove or dis-
prove that the value of the improper integral

∫∞
0

sin x
x

dx is given by:
∫∞
0

sin x
x

dx =
π
2
.

Integral Calculus -
Techniques of Inte-
gration

9 Let F3(a, b1, b2, c1, c2;x, y) denote Appell’s hypergeometric function of two vari-
ables. For parameters α, β, γ, ν, ρ ∈ C such that Re(γ) > 0 and Re(ν − γ) > 0,
prove or disprove that the integral

I(α, β, γ, z; γ, ν, ρ, w) =

∫ 1

0

tγ−1(1− t)ν−γ−1(1− zt)−α(1− wt)−β dt

evaluates to

I(α, β, γ, z; γ, ν, ρ, w) =
B(γ, ν − γ)

(1− w)ρ
F3

(
ρ, α, ν − γ, β, ν;

w

w − 1
, z

)
,

where B(x, y) is the Beta function.

Integral Calculus -
Multi Variable

Table 7: Examples of benchmark contamination in polynomial and number theory problems. Gen-
eralizing and logically equivalent parts are highlighted.

Contaminated Example Benchmark Example Relationship

Let p(x) be a univariate polynomial. Then p(x) is nonneg-
ative for all x ∈ R if and only if p(x) can be expressed as
a sum of squares (SOS), i.e., p(x) =

∑k
i=1 q

2
i (x) for some

polynomials q1(x), . . . , qk(x).

Let p(x) be a polynomial that is
nonnegative for all real x. Prove
that for some k, there are poly-
nomials f1(x), . . . , fk(x) such that
p(x) =

∑k
j=1(fj(x))

2.

Identical

Let p(x1, x2, . . . , xn) be a real polynomial. If
p(x1, x2, . . . , xn) is non-negative for all (x1, x2, . . . , xn) ∈
Rn, then p(x1, x2, . . . , xn) can be expressed as a
sum of squares of polynomials if and only if p be-
longs to the quadratic module generated by the con-
straints of a certain semialgebraic set. Formally, there
exists a set of polynomials qi(x1, x2, . . . , xn) such
that p(x1, x2, . . . , xn) =

∑k
i=1 qi(x1, x2, . . . , xn)

2, pro-
vided certain conditions on p and the domain hold to ensure
the SOS representation.

Let p(x) be a polynomial that is
nonnegative for all real x. Prove
that for some k, there are poly-
nomials f1(x), . . . , fk(x) such that
p(x) =

∑k
j=1(fj(x))

2.

Generalizing

Let n be a positive integer. If n is not prime, then 2n − 1 is
not prime.

Show that if n is a positive integer and
2n − 1 is prime, then n is prime.

Logically
Converse

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTS

Table 8: Performance comparison and generation length of Qwen3-4B trained on different data, all
sampled to 100K size.

Strategy Data FIMO HMMT Putnam Avg. Gen. Length
out. proc. out. proc. out. proc. out. proc.

SFT

OpenR1-Proof 25.40 9.07 15.25 2.43 44.79 11.07 28.48 7.53 1572
DeepTheoremeasy 30.16 10.07 22.03 9.10 36.46 13.30 29.55 10.82 1305
DeepTheoremhard 30.16 13.09 15.25 4.35 40.62 16.08 28.68 11.17 1443

DeepTheorem 28.57 11.83 15.25 3.68 39.58 15.44 27.80 10.31 1266

RL

OpenR1-Proof 41.27 14.16 25.42 8.32 55.21 23.94 40.63 15.47 1197
DeepTheoremeasy 44.44 20.52 23.73 8.73 51.04 30.57 39.74 19.94 1072
DeepTheoremhard 47.62 22.32 27.12 9.78 54.17 27.62 42.97 19.91 1003

DeepTheorem 46.03 23.86 23.73 8.84 50.00 28.39 39.92 20.36 1022

Table 9: Results of Qwen3-4B trained on the full DeepTheorem dataset.

Strategy FIMO HMMT Putnam Avg. Gen. Length
out. proc. out. proc. out. proc. out. proc.

SFT 34.92 12.28 18.64 7.06 35.42 15.09 29.66 11.48 1151
RL 49.21 23.58 27.12 11.55 54.17 28.00 43.50 21.04 1122

In this section, we provide additional training results using Qwen3-4B (Yang et al., 2025) as the
backbone. To further analyze the impact of data difficulty, we train four sets of models on different
data mixtures:

- OpenR1-proof: the proof subset in OpenR1-Math;

- DeepTheorem-easy: samples in DeepTheorem that have a difficulty level from 5 to 7;

- DeepTheorem-hard: samples in DeepTheorem that have a difficulty level from 7 to 9;

- DeepTheorem: samples from all difficulty levels in DeepTheorem.

For all of these four mixtures, we sample the data to 100K theorem variants, ensuring a fair com-
parison, and the results are presented in Table 8. In Table 9, we also present the results of training
Qwen3-4B on the full-scale DeepTheorem, i.e. 121K theorems and 242K variants. The training
configurations are consistent with the experiments in Section 4 (i.e. 3 epochs for SFT and 1 epoch
for RL), which takes 11 hours on 8 A100-80G GPUs for SFT, and 80 hours on 32 A100-80G GPUs
for RL.

Analyzing these results, we find that

- SFT is more effective for the (relatively) easy data, while RL is more effective for the hard
data. However, simply combining the easy and hard data does not lead to better results in both
scenarios.

- Scaling data size improves model performance for both SFT and RL. Comparing Table 8 and
9, we find that utilizing the whole DeepTheorem dataset can mitigate the impact of mixing different
data difficulties and lead to better performance, highlighting the value of DeepTheorem as a large-
scale training dataset.

- There is no significant correlation between performance and generation lengths. When train-
ing on the sampled data (Table 7), SFT models consistently exhibit longer generation lengths than
RL models regardless of the data mixture, while training on the full data leads to similar generation
lengths.
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D COMPARISON OF PROCESS EVALUATION JUDGES

D.1 COMPARISON BETWEEN GPT-4O AND O3-MIN

In Table 10, we present the comparison between using GPT-4o, o3-mini, and Ling-1T (Team &
AI, 2025) as judges for process evaluation. While o3-mini is stricter and gives lower scores on
average, the relative ranks of all evaluated models are similar. The scores between different judges
also exhibit a high degree of correlation, with the following correlation coefficients: 0.955 between
GPT-4o and o3-mini, 0.987 between GPT-4o and Ling-1T, and 0.987 between o3-mini and Ling-1T,
highlighting strong consistency.

In the last two columns of Table 10, we also provide the scores given by Qwen2.5-Math-PRM-
72B (Zhang et al., 2025), a process reward model specifically trained for scoring mathematical
reasoning steps. The scores yield a correlation coefficient of 0.996 with GPT-4o, 0.948 with o3-
mini, and 0.982 with Ling-1T, also exhibiting high consistency.

Table 10: Comparison of process evaluation scores using three different judges and Qwen2.5-Math-
PRM-72B.

Model GPT-4o o3-mini Ling-1T Q2.5-PRM-72B
Score Rank Score Rank Score Rank Score Rank

Claude3.7-Sonnet 24.30 9 15.54 8 21.05 9 25.38 9
Gemini2.5-Pro 54.21 3 53.98 2 56.42 2 50.87 2
Gemini2.5-Flash 29.98 6 29.42 5 31.02 5 28.29 7
GPT-4o 21.39 10 14.29 12 16.90 11 20.32 11
o1-mini 46.34 4 36.02 4 42.34 4 42.17 4
o1 55.28 2 53.52 3 54.02 3 50.37 3
o3-mini 65.40 1 65.57 1 65.72 1 58.25 1

Qwen2.5-Inst-7B 17.78 12 8.03 15 14.08 14 16.95 14
Qwen2.5-Inst-72B 29.38 7 15.31 9 23.97 7 29.76 6
Qwen2.5-Math-Inst-7B 13.09 17 5.17 16 10.84 16 12.26 17
Qwen2.5-Math-Inst-72B 27.56 8 15.08 10 23.71 8 26.79 8
DS-Prover-v1.5-RL-7B 14.18 16 4.34 17 8.78 17 15.10 16
DS-Prover-v2-7B 17.37 13 8.36 14 12.95 15 18.80 12
R1-Distill-7B 2.28 18 1.90 18 2.38 18 2.58 18
R1-Distill-70B 16.89 14 16.46 6 18.40 10 18.53 13
QwQ-32B 14.57 15 14.89 11 16.32 12 15.86 15
Llama3.3-Inst-70B 18.92 11 10.05 13 14.13 13 21.45 10
DeepTheorem-RL-7B 34.04 5 15.95 7 27.03 6 31.74 5

D.2 HUMAN EVALUATION

To further validate our LLM-based process evaluation frameworks, we also conduct human evalua-
tions on a subset of the model outputs. Due to the mathematical difficulty of the questions involved,
we sampled 100 questions and their corresponding proofs generated by ten models, covering both
API-based and open-source models, as well as reasoning-specialized and general-purpose models.

We recruited 12 third-party expert annotators (all graduate students majoring in mathematics) to
conduct pairwise evaluations of the model responses, and the win rates are presented in Table 11.
The scores from o3-mini in Table 10 are also converted into pairwise binary scores by comparing
the scores assigned to responses from two models. The results suggest that the evaluation of the
LLM judge aligns well with human experts, resulting in consistent rankings.
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Table 11: Comparison of pairwise evaluations from human experts and o3-mini.

Model Human Evaluation o3-mini Evaluation
Win Tie Lose Rank Win Tie Lose Rank

R1-Distill-70B 0.217 0.450 0.333 5 0.600 0.100 0.300 4
Qwen2.5-Math-72B-Inst 0.306 0.486 0.208 4 0.417 0.000 0.583 6
Deepseek-Prover-V2-7B 0.021 0.646 0.333 10 0.062 0.000 0.938 10
DeepTheorem-7B 0.032 0.460 0.508 9 0.143 0.048 0.810 9
Gemini-2.5-Pro 0.722 0.204 0.074 1 0.889 0.111 0.000 1
GPT-4o 0.140 0.456 0.404 6 0.474 0.053 0.474 5
o1-mini 0.526 0.368 0.105 3 0.632 0.105 0.263 3
o3-mini 0.685 0.315 0.000 2 0.889 0.111 0.000 1
Qwen2.5-72B-Inst 0.079 0.587 0.333 8 0.333 0.095 0.571 7
QwQ-32B 0.125 0.472 0.403 7 0.333 0.000 0.667 8
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E CASE STUDIES ON MODEL-GENERATED PROOF

E.1 EXAMPLE FROM DEEPTHEOREM-RL-7B

Model-generated proof

Question:
Let P be a polynomial of degree n > 1 with integer coefficients and let k be any positive
integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), with k pairs of parenthe-
ses. Prove or disprove that Q has more than n integer fixed points, i.e. integers satisfying
the equation Q(x) = x.

Model Solution:
<think>
To determine whether the polynomial Q(x) = P (P (. . . P (P (x)) . . .)) with k pairs of
parentheses has more than n integer fixed points, we need to analyze the properties of the
polynomial P and how the composition of P affects its fixed points.

First, recall that P (x) is a polynomial of degree n > 1 with integer coefficients. The
number of integer roots of P (x)− x = 0 (i.e., the number of integer fixed points of P ) is at
most n by the fundamental theorem of algebra and properties of polynomials. Let’s denote
the integer fixed points of P by r1, r2, . . . , rm, where m ≤ n.

Now, consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)) with k pairs of parentheses.
We need to determine the number of integer solutions to the equation Q(x) = x. If r is an
integer fixed point of Q, then r must be an integer fixed point of some composition of P .
Specifically, if r is a fixed point of Q, there exists some m ≤ k such that P (m)(r) = r,
where P (m) denotes the m-th iterate of P .

The key observation is that the number of integer fixed points of Q is bounded by the
number of integer preperiodic points of P . Since P is a polynomial of degree n, the number
of integer preperiodic points of P is at most n for each iterate. However, we need to
consider the composition Q which is the k-th iterate of P .

The polynomial Q(x) is also of degree nk, and the number of integer roots of Q(x)−x = 0
is at most nk. However, we need to check if it is possible for Q(x) to have more than n
integer fixed points. Since each application of P can introduce at most n new fixed points,
the total number of integer fixed points of Q is still bounded by the number of preperiodic
points of P , which is at most n for each iterate.

To be more precise, let’s consider the fixed points. If r is a fixed point of Q, then r must be
a root of the polynomial P k(x)− x. The polynomial P k(x)− x is of degree nk, and by the
fundamental theorem of algebra, it can have at most nk roots. However, we are interested in
integer roots, and the number of integer roots is at most the number of integer preperiodic
points of P , which is at most n for each iterate.

Therefore, the number of integer fixed points of Q(x) is at most n, the same as the number
of integer fixed points of P for each iterate. Hence, Q(x) cannot have more than n integer
fixed points.

Thus, the statement that Q has more than n integer fixed points is false.
</think>
<answer> disproved </answer>

This is a non-cherry-picked example from our DeepTheorem-RL-7B model. We analyze this proof
in the following dimensions:
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• Correctness. The model accurately identifies that integer fixed points of Q(x) satisfy Q(x) = x,
and recognizes that Q(x) has degree nk, with Q(x)− x = 0 having at most nk roots. Its insight
that the number of integer fixed points is constrained by the fixed points of P , which are at most
n, effectively guides the solution. The model leverages the iterative structure of Q(x) to argue
that additional compositions do not increase the number of integer fixed points beyond n, aligning
with expected polynomial behavior.

• Clarity. The proof is well-structured, progressing logically from problem definition to conclu-
sion. Mathematical notation, such as P (m) for the m-th iterate, is precise and standard, enhancing
readability. The solution is concise, making it accessible and suitable for a mathematical audi-
ence.

• Strengths. The model’s ability to distill a complex problem into a clear argument showcases its
strength in handling polynomial compositions. Its focus on fixed points and iterative properties
demonstrates a solid grasp of the underlying mathematics, making it a valuable tool for such
proofs.

In summary, the model delivers a clear and correct disproof, highlighting its efficacy in tackling
advanced mathematical problems with precision and clarity.

E.2 COMPARISON BETWEEN SFT AND RL
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Figure 8: Response length (left) and reward (right) over the
RL training course of Qwen3-4B on DeepTheorem.

In this section, we further analyze
the training dynamics of LLMs on
DeepTheorem, using the more recent
Qwen3-4B backbone as an example.
When training on DeepTheorem with
RL-Zero, we find that the average
response length quickly drops by
more than two hundred tokens during
the first few training steps, and the
gradually increases over the training
course, as shown in Figure 8. Observ-
ing that the initial drop in response
length overlaps with the sharp rise
of reward from less than 0.4 to more
than 0.7, we hypothesize that this is a
result of the model grasping at the task definition and trying to output minimal (often incorrect) an-
swers to receive any reward signal. In contrast, in the later stage, more detailed reasoning is required
to further increase the reward.

To gain further insights into how models learn to master theorem proving, we analyzed responses
from one checkpoint near the start of the training (step 25), and one near the end of the training (step
525), along with the responses from the model trained with SFT. We find that the most common error
type from all model checkpoints is overgeneralizing from special cases, as shown in the examples
below, where the error is identified by the LLM judge for process evaluation.

Furthermore, the overgeneralizing issue is most prominent in the early stage of RL training and
is mitigated as the training proceeds, which may explain the phenomena that generation length is
shorter in the beginning and gradually increases. In the response from checkpoint 25, a negative
conclusion is drawn directly after deriving a1, a2, a3 in a special case, entirely ignoring the concept
of “for i sufficiently large” in the question. The response from checkpoint 525, on the other hand,
makes a more subtle over-generalizing statement: concluding that a = 0 is the only fixed point from
derivations starting from the premise that a is an integer, omitting the case where a is not an integer.

Comparison of model-generated proofs

Question:
A sequence of real numbers a0, a1, a2, . . . is defined by the formula

ai+1 = ⌊ai⌋ · ⟨ai⟩ for i ≥ 0;
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here a0 is an arbitrary real number, ⌊ai⌋ denotes the greatest integer not exceeding ai, and
⟨ai⟩ = ai − ⌊ai⌋. Prove or disprove that ai = ai+2 for i sufficiently large.

Answer: True

Response from RL checkpoint 25:
To determine whether the statement is true or false, we need to analyze the given sequence
defined by the formula:

ai+1 = ⌊ai⌋ · ⟨ai⟩
where ⌊ai⌋ is the greatest integer not exceeding ai, and ⟨ai⟩ = ai − ⌊ai⌋ is the fractional
part of ai.
Let’s denote ai = ni+ fi, where ni = ⌊ai⌋ is the integer part and fi = ⟨ai⟩ is the fractional
part. Then the sequence can be rewritten as:

ai+1 = ni · fi
We need to check if the sequence eventually becomes periodic with period 2, i.e., if ai =
ai+2 for sufficiently large i.
Consider the initial value a0 = n0 + f0. The next term in the sequence is:

a1 = n0 · f0
The integer part of a1 is ⌊n0 · f0⌋ and the fractional part is ⟨n0 · f0⟩ = n0 · f0 − ⌊n0 · f0⌋.
Therefore, the next term in the sequence is:

a2 = ⌊n0 · f0⌋ · (n0 · f0 − ⌊n0 · f0⌋)
To determine if ai = ai+2 for sufficiently large i, we need to check if the sequence can enter
a cycle. Let’s consider some specific cases:
1. If f0 = 0, then a1 = 0 and the sequence becomes 0, 0, 0, . . ., which is periodic with
period 1. 2. If f0 = 1, then a1 = n0 and the sequence becomes n0, 0, 0, . . ., which is
periodic with period 1. 3. If f0 = 1

2 and n0 = 2, then a1 = 1 and a2 = 0, and the sequence
becomes 2.5, 1, 0, 0, . . ., which is periodic with period 2.
From these examples, we see that the sequence can indeed become periodic with period 2 for
certain initial values. However, it is not necessarily true for all initial values. For example,
if a0 = 1.5, then a1 = 1 · 0.5 = 0.5, a2 = 0 · 0.5 = 0, and a3 = 0 · 0 = 0, which is periodic
with period 1.
Therefore, the statement that ai = ai+2 for i sufficiently large is not always true. It depends
on the initial value a0. Hence, the statement is disproved.
<answer> disproved </answer>

Process evaluation (Ling-1T):
- Score: 0.35
- Explanation: The proof is logically flawed because it incorrectly concludes the statement
is false based on limited examples, while the ground truth is ’True’. The reasoning does not
account for the eventual behavior of the sequence for all real starting values, missing key
cases and convergence analysis. The structure and writing are clear, but completeness and
correctness are severely lacking, and validity is compromised by hasty generalization from
examples to a universal disproof.

Response from RL checkpoint 525:
To determine whether ai = ai+2 for i sufficiently large in the sequence defined by ai+1 =
⌊ai⌋ · ⟨ai⟩, we need to analyze the given recurrence relation step by step.
Given:

ai+1 = ⌊ai⌋ · ⟨ai⟩
where ⌊ai⌋ is the greatest integer not exceeding ai, and ⟨ai⟩ = ai − ⌊ai⌋ is the fractional
part of ai.
Let’s denote ⌊ai⌋ by ni and ⟨ai⟩ by fi. Then the recurrence relation can be rewritten as:

ai+1 = ni · fi.
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We need to investigate the behavior of the sequence ai for large i. Let’s consider the possible
values of ai:
1. If ai is an integer, then ⟨ai⟩ = 0, and thus ai+1 = ni · 0 = 0. 2. If ai is a non-integer,
then 0 < fi < 1, and ai+1 = ni · fi.
Let’s analyze the behavior of the sequence in more detail. Suppose ai is a non-integer. Then
ai+1 = ni · fi, and we need to consider the next term ai+2:

ai+2 = ⌊ai+1⌋ · ⟨ai+1⟩ .

If ai+1 = ni · fi, then:
⌊ai+1⌋ = ⌊ni · fi⌋ ,

and
⟨ai+1⟩ = ai+1 − ⌊ai+1⌋ = ni · fi − ⌊ni · fi⌋ .

To determine if ai = ai+2 for large i, we need to see if the sequence eventually becomes
periodic or stabilizes. Let’s consider some specific cases:
- If a0 is an integer, then a1 = 0, a2 = 0, and so on. In this case, ai = 0 for all i ≥ 1, and
clearly ai = ai+2 for all i ≥ 1. - If a0 is a non-integer, we need to see if the sequence can
stabilize or become periodic. Let’s consider a0 = n0 + f0 where 0 < f0 < 1. Then:

a1 = n0 · f0.

The value of a1 depends on n0 and f0. If n0 · f0 is an integer, then a2 = 0, and the sequence
becomes 0, 0, 0, . . .. If n0 · f0 is a non-integer, we need to check the next term:

a2 = ⌊n0 · f0⌋ · ⟨n0 · f0⟩ .

To determine if ai = ai+2 for large i, we need to check if the sequence can enter a periodic
cycle. Let’s consider the possibility of a fixed point. A fixed point a would satisfy:

a = ⌊a⌋ · ⟨a⟩ .

If a is an integer, then ⟨a⟩ = 0, so a = 0. If a is a non-integer, then 0 < ⟨a⟩ < 1, and
a = n · f where n = ⌊a⌋ and f = ⟨a⟩. For a to be a fixed point, we need:

a = n · f.

Since a = n+ f − ⌊n+ f⌋ = f if n is an integer, the only solution is a = 0.
Given that the only fixed point is a = 0 and the sequence can either become 0, 0, 0, . . .
or enter a periodic cycle that includes 0, we need to check if there are any other possible
periodic cycles. However, any non-zero non-integer ai will eventually lead to a value that
is either an integer or a value that, when multiplied by its floor, results in a value that leads
back to a previous term in the sequence.
By analyzing the behavior, we see that for large i, the sequence either stabilizes at 0 or enters
a periodic cycle that includes 0. In either case, ai = ai+2 for sufficiently large i.
Since the sequence either becomes 0, 0, 0, . . . or enters a periodic cycle that includes 0, we
can conclude that ai = ai+2 for sufficiently large i.
<answer> proved </answer>

Process evaluation (Ling-1T):
- Score: 0.85
- Explanation: The proof correctly identifies that sequences eventually reach 0 or enter a
cycle involving 0, leading to period 2 behavior for large i. Logical steps are mostly valid,
though the argument for non-integer cases collapsing into cycles or zero could be more
rigorous. The conclusion is correct, and the writing is clear, but a few more case distinctions
or bounds would improve completeness.

Response from SFT checkpoint:
To prove this theorem, we can start by showing that for any real number a written in the
form

a = n+ δ, with n = ⌊a⌋ ∈ Z and δ = ⟨a⟩ ∈ [0, 1),

the recurrence
ai+1 = ⌊ai⌋ · ⟨ai⟩
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leads to a sequence that eventually becomes periodic with period 2.
1. **Case 1: a = n is an integer.**
If a = n (with n ∈ Z), then

⟨a⟩ = 0.

Hence, the recurrence gives

a1 = ⌊a⌋ · ⟨a⟩ = n · 0 = 0.

Since 0 is an integer, we have
⟨0⟩ = 0,

and therefore
a2 = ⌊0⌋ · ⟨0⟩ = 0 · 0 = 0.

Thus, for all i ≥ 1,
ai = 0,

and in particular, ai = ai+2 for all i.
2. **Case 2: a = n+ δ with 0 < δ < 1.**
In this case, we have

a1 = ⌊a⌋ · ⟨a⟩ = n · δ.
Notice that since 0 < δ < 1, the product n · δ satisfies

0 < n · δ < n.

Thus, a1 is a positive number less than n (and in particular, it is not an integer because n · δ
is not an integer when 0 < δ < 1). Therefore, we can write

a1 = n1 + δ1, with n1 = ⌊a1⌋ and δ1 = ⟨a1⟩.

Then, the recurrence gives
a2 = ⌊a1⌋ · ⟨a1⟩ = n1 · δ1.

Now, observe that

a2 = n1 · δ1 = ⌊a1⌋ · ⟨a1⟩ = ⌊a1⌋ · ⟨a1⟩ = a1.

Hence, we have
a2 = a1.

By the recurrence, it follows that for all i ≥ 1,

ai+2 = ai.

3. **Conclusion:**
In both cases, we have shown that for i sufficiently large (in fact, for all i ≥ 1), the sequence
satisfies

ai = ai+2.

This completes the proof.

proved

Process evaluation (Ling-1T):
- Score: 0.55
- Explanation: The proof contains a critical logical flaw in Case 2: it incorrectly asserts that
a2 = a1, which is generally false (e.g., a0 = 2.5 → a1 = 2∗0.5 = 1.0, a2 = 1∗0 = 0). This
invalidates the reasoning for non-integer starting values. However, the conclusion is correct
(the sequence eventually becomes periodic with period 2), and the structure and clarity are
good. Completeness is partial because it addresses integer and non-integer cases but fails to
analyze the full dynamics (e.g., negative numbers, behavior when ai ∈ [0, 1), or when n · δ
is integer). Validity is low due to the false step; correctness is full since the final claim is
true; clarity is high.

Apart from overgeneralizing, we also find that models trained with SFT are prone to hallucination,
i.e., stating or deriving a statement that clearly contradicts conditions given in the question, as in the
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example below. In this example, the model tries to prove the statement by starting from a special
case n = 2, but hallucinates an additional term 1

a+b on the right-hand side, and also omits the
n in the numerator. Such hallucination is much rarer in the RL models, corroborating previous
findings (Zhang et al., 2023).

Example of hallucination from the SFT model

Question:
Prove or disprove the inequality∑

i<j

aiaj
ai + aj

≤ n

2 (a1 + a2 + · · ·+ an)

∑
i<j

aiaj

for positive real numbers a1, a2, . . . , an.

Answer: True

Response from SFT checkpoint:
To prove this theorem, we can start by showing that for any two positive real numbers a and
b the following inequality holds:

ab

a+ b
≤ 1

2

ab

a+ b
· 1

a+ b
.

However, this is not a valid inequality because it simplifies to:

ab

a+ b
≤ ab

(a+ b)2
,

which is false since (a+ b)2 > a+ b for positive a and b.
Thus, the inequality

ab

a+ b
≤ 1

2

ab

a+ b
· 1

a+ b

is disproved.
Since the inequality does not hold for any two positive real numbers, it cannot hold for all
pairs (ai, aj) for 1 ≤ i < j ≤ n. Therefore, the original inequality∑

i<j

aiaj
ai + aj

≤ n

2 (a1 + a2 + · · ·+ an)

∑
i<j

aiaj

is also disproved.

disproved

Process evaluation (Ling-1T):
- Score: 0.1
- Explanation: The proof contains a fundamental logical error: the claimed starting inequal-
ity is incorrectly stated and analyzed, and the attempt to disprove a true statement fails. The
reasoning is invalid and incomplete, and the conclusion is incorrect. However, the writing is
clear and easy to follow.
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F DeepTheorem PROMPT TEMPLATE

F.1 CONTAMINATION JUSTIFICATION

Meta Prompt for Contamination Justification

I will now give you two theorems: the Original Theorem and the Candidate Theorem. Please
help me determine if the following two theorems are the same.
Original Theorem: ***theorem1***
Candidate Theorem: ***theorem2***
Disregard the names and minor changes in word order. If their theorem prompts are very
similar, without considering the proving process, we consider them to be the same theorem.
Note that you should not consider the solution process, only the theorem prompts.
You should only respond with True or False. Do not respond with anything else.

F.2 THEOREM-PROVING ANNOTATION

Meta Prompt for Theorem-Proving Annotation

You are an expert in classifying questions based on their type and intent. Given the following
discussion:
# Discussion
- problem: ***problem***
- solution: ***solution***
Determine whether the question is:
- A question-answering (QA) question seeking a specific value or factual response, or
- A theorem-proving question requiring logical reasoning, derivation, or proof of a mathe-
matical or theoretical statement.
Provide a clear classification (QA or theorem-proving) and justify your decision with a con-
cise explanation. Consider the following:
- QA questions typically ask for a specific fact, value, or definitive answer (e.g., "What is
the capital of France?" or "What is the value of x in 2x = 8?").
- Theorem-proving questions typically involve logical reasoning, mathematical derivation,
or proving a general statement (e.g., "Prove that the sum of two even numbers is even" or
"Derive the Pythagorean theorem").
Return “True“ if the question is a theorem-proving question, and “False“ if it is a QA ques-
tion.

F.3 RATIONALE SUMMARIZATION

Meta Prompt for Rationale Summarization

You are provided with a corpus of forum discussions about mathematical topics. Your task
is to analyze the discussion and:
1. Identify the key mathematical concepts, ideas, or rationales driving the discussion.
2. Act as a teacher to formulate a theorem based on the discussion, presented as a formal
theorem statement.
# Requirements
- All mathematical equations must be formatted in LaTeX.
- The theorem should be a clear, formal statement (e.g., "Let f : R → C be a smooth
function, ...").
- The output must be in JSON format, with the following structure:
{
"rationale": "A description of the main mathematical concepts or ideas in the discussion.",
"theorem": "A formal theorem statement based on the discussion."
}
# Discussion
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- problem: ***problem***
- solution: ***solution***

F.4 PROOF GENERATION

Meta Prompt for Proof Generation from o3-mini (high)

You are provided with a corpus of forum discussions about mathematical topics.
A theorem statement is summarized from the discussion. Your task is to provide a proof for
the theorem statement based on the discussion.
# Requirements
- All mathematical equations must be formatted in LaTeX.
- The proof should be a clear, formal statement (e.g., "To prove this theorem, we can start by
...").
- The output must be in JSON format, with the following structure:
{
"proof": "A proof for the theorem statement."
}
# Discussion
- problem: ***problem***
- solution: ***solution***
# Theorem Rationale
***theorem***

F.5 LOGICAL VALIDATION

Meta Prompt for Logical Validation of the Proof

You are an expert in mathematical theorem proving and logical analysis. Given the following
theorem and its proof or disproof, your task is to analyze each step of the proof or disproof
to determine if it is valid, providing a detailed justification for each step’s correctness or
identifying any errors.
# Theorem
***theorem***
# Proof or Disproof
***Proof***
# Instructions
1. **Analyze Each Step**:
- Verify if the step is mathematically correct, logically sound, and relevant to proving or
disproving the theorem.
- Check for adherence to mathematical definitions, theorems, or properties cited in the step.
- Ensure the step follows from previous steps or given assumptions without logical gaps.
- If the step involves a disproof, confirm that it correctly demonstrates a counterexample or
contradiction.
2. **Overall Assessment**:
- Conclude whether the entire proof or disproof is valid.
- If invalid, return False and summarize the critical errors and recommend how to fix the
proof/disproof.
- If valid, return True and confirm that it fully addresses the theorem.
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F.6 DIFFICULTY ANNOTATION

Meta Prompt for Difficulty Annotation

# CONTEXT #
I am a teacher, and I have some high-level olympiad math problems.
I want to evaluate the difficulty of these math problems. There are some references available
regarding the difficulty of the problems:

<difficulty reference>
## Examples for difficulty levels For reference, here are problems from each of the difficulty
levels 1-10:
1: How many integer values of x satisfy |x| < 3π? (2021 Spring AMC 10B, Problem 1)
1.5: A number is called flippy if its digits alternate between two distinct digits. For example,
2020 and 37373 are flippy, but 3883 and 123123 are not. How many five-digit flippy numbers
are divisible by 15? (2020 AMC 8, Problem 19)
2: A fair 6-sided die is repeatedly rolled until an odd number appears. What is the probability
that every even number appears at least once before the first occurrence of an odd number?
(2021 Spring AMC 10B, Problem 18)
2.5: A, B, C are three piles of rocks. The mean weight of the rocks in A is 40 pounds, the
mean weight of the rocks in B is 50 pounds, the mean weight of the rocks in the combined
piles A and B is 43 pounds, and the mean weight of the rocks in the combined piles A and
C is 44 pounds. What is the greatest possible integer value for the mean in pounds of the
rocks in the combined piles B and C? (2013 AMC 12A, Problem 16)
3: Triangle ABC with AB = 50 and AC = 10 has area 120. Let D be the midpoint of AB,
and let E be the midpoint of AC. The angle bisector of ∠BAC intersects DE and BC at F
and G, respectively. What is the area of quadrilateral FDBG? (2018 AMC 10A, Problem
24)
3.5: Find the number of integer values of k in the closed interval [−500, 500] for which the
equation log(kx) = 2 log(x+ 2) has exactly one real solution. (2017 AIME II, Problem 7)
4: Define a sequence recursively by x0 = 5 and

xn+1 =
x2
n + 5xn + 4

xn + 6

for all nonnegative integers n. Let m be the least positive integer such that

xm ≤ 4 +
1

220
.

In which of the following intervals does m lie?
(A) [9, 26] (B) [27, 80] (C) [81, 242] (D) [243, 728] (E) [729,∞) (2019
AMC 10B, Problem 24 and 2019 AMC 12B, Problem 22)
4.5: Find, with proof, all positive integers n for which 2n+12n+2011n is a perfect square.
(USAJMO 2011/1)
5: Find all triples (a, b, c) of real numbers such that the following system holds:

a+ b+ c =
1

a
+

1

b
+

1

c
,

a2 + b2 + c2 =
1

a2
+

1

b2
+

1

c2
.

(JBMO 2020/1)
5.5: Triangle ABC has ∠BAC = 60◦, ∠CBA ≤ 90◦, BC = 1, and AC ≥ AB. Let H ,
I , and O be the orthocenter, incenter, and circumcenter of △ABC, respectively. Assume
that the area of pentagon BCOIH is the maximum possible. What is ∠CBA? (2011 AMC
12A, Problem 25)
6: Let △ABC be an acute triangle with circumcircle ω, and let H be the intersection of the
altitudes of △ABC. Suppose the tangent to the circumcircle of △HBC at H intersects ω at
points X and Y with HA = 3, HX = 2, and HY = 6. The area of △ABC can be written
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in the form m
√
n, where m and n are positive integers, and n is not divisible by the square

of any prime. Find m+ n. (2020 AIME I, Problem 15)
6.5: Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle
ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent. (USAMO 2021/1, USAJMO
2021/2)
7: We say that a finite set S in the plane is balanced if, for any two different points A, B in
S, there is a point C in S such that AC = BC. We say that S is centre-free if for any three
points A, B, C in S, there is no point P in S such that PA = PB = PC. Show that for
all integers n ≥ 3, there exists a balanced set consisting of n points. Determine all integers
n ≥ 3 for which there exists a balanced centre-free set consisting of n points. (IMO 2015/1)
7.5: Let Z be the set of integers. Find all functions f : Z → Z such that

xf(2f(y)− x) + y2f(2x− f(y)) =
f(x)2

x
+ f(yf(y))

for all x, y ∈ Z with x ̸= 0. (USAMO 2014/2)
8: For each positive integer n, the Bank of Cape Town issues coins of denomination 1

n .
Given a finite collection of such coins (of not necessarily different denominations) with total
value at most most 99 + 1

2 , prove that it is possible to split this collection into 100 or fewer
groups, such that each group has total value at most 1. (IMO 2014/5)
8.5: Let I be the incentre of acute triangle ABC with AB ̸= AC. The incircle ω of ABC
is tangent to sides BC,CA, and AB at D,E, and F , respectively. The line through D
perpendicular to EF meets ω at R. Line AR meets ω again at P . The circumcircles of
triangle PCE and PBF meet again at Q. Prove that lines DI and PQ meet on the line
through A perpendicular to AI . (IMO 2019/6)
9: Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that
there is at most one way (up to rotation and reflection) to place the elements of S around the
circle such that the product of any two neighbors is of the form x2+x+k for some positive
integer x. (IMO 2022/3)
9.5: An anti-Pascal triangle is an equilateral triangular array of numbers such that, except
for the numbers in the bottom row, each number is the absolute value of the difference of
the two numbers immediately below it. For example, the following is an anti-Pascal triangle
with four rows which contains every integer from 1 to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1
to 1 + 2 + 3 + · · ·+ 2018? (IMO 2018/3)
10: Prove that there exists a positive constant c such that the following statement is true:
Consider an integer n > 1, and a set S of n points in the plane such that the distance
between any two different points in S is at least 1. It follows that there is a line ℓ separating
S such that the distance from any point of S to ℓ is at least cn−1/3.

## Some known difficulty ratings of the competitions.
### HMMT (November)
Individual Round, Problem 6-8: 4
Individual Round, Problem 10: 4.5
Team Round: 4-5
Guts: 3.5-5.25
### CEMC
**Part A: 1-1.5**
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How many different 3-digit whole numbers can be formed using the digits 4, 7, and 9,
assuming that no digit can be repeated in a number? (2015 Gauss 7 Problem 10)
**Part B: 1-2**
Two lines with slopes 1

4 and 5
4 intersect at (1, 1). What is the area of the triangle formed by

these two lines and the vertical line x = 5? (2017 Cayley Problem 19) Part C (Gauss/Pascal):
2-2.5
Suppose that 2009

2014+
2019
n = a

b , where a, b, and n are positive integers with a
b in lowest terms.

What is the sum of the digits of the smallest positive integer n for which a is a multiple of
1004? (2014 Pascal Problem 25)
**Part C (Cayley/Fermat): 2.5-3**
Wayne has 3 green buckets, 3 red buckets, 3 blue buckets, and 3 yellow buckets. He ran-
domly distributes 4 hockey pucks among the green buckets, with each puck equally likely
to be put in each bucket. Similarly, he distributes 3 pucks among the red buckets, 2 pucks
among the blue buckets, and 1 puck among the yellow buckets. Once he is finished, what is
the probability that a green bucket contains more pucks than each of the other 11 buckets?
(2018 Fermat Problem 24)
### Indonesia MO
**Problem 1/5: 3.5** In a drawer, there are at most 2009 balls, some of them are white,
the rest are blue, which are randomly distributed. If two balls were taken at the same time,
then the probability that the balls are both blue or both white is 1

2 . Determine the maximum
amount of white balls in the drawer, such that the probability statement is true?
**Problem 2/6: 4.5** Find the lowest possible values from the function

f(x) = x2008−2x2007+3x2006−4x2005+5x2004−· · ·−2006x3+2007x2−2008x+2009

for any real numbers x.
**Problem 3/7: 5** A pair of integers (m,n) is called good if

m | n2 + n and n | m2 +m

Given 2 positive integers a, b > 1 which are relatively prime, prove that there exists a good
pair (m,n) with a | m and b | n, but a ∤ n and b ∤ m.
**Problem 4/8: 6** Given an acute triangle ABC. The incircle of triangle ABC touches
BC,CA,AB respectively at D,E, F . The angle bisector of ∠A cuts DE and DF respec-
tively at K and L. Suppose AA1 is one of the altitudes of triangle ABC, and M be the
midpoint of BC. (a) Prove that BK and CL are perpendicular with the angle bisector of
∠BAC. (b) Show that A1KML is a cyclic quadrilateral.
### JBMO
**Problem 1: 4** Find all real numbers a, b, c, d such that

a+ b+ c+ d = 20, ab+ ac+ ad+ bc+ bd+ cd = 150.

**Problem 2: 4.5-5** Let ABCD be a convex quadrilateral with ∠DAC = ∠BDC = 36◦,
∠CBD = 18◦ and ∠BAC = 72◦. The diagonals intersect at point P . Determine the
measure of ∠APD.
**Problem 3: 5** Find all prime numbers p, q, r, such that p

q − 4
r+1 = 1.

**Problem 4: 6** A 4×4 table is divided into 16 white unit square cells. Two cells are called
neighbors if they share a common side. A move consists in choosing a cell and changing the
colors of neighbors from white to black or from black to white. After exactly n moves all
the 16 cells were black. Find all possible values of n.
### Problem 1/4: 5 There are a+b bowls arranged in a row, numbered 1 through a+b, where
a and b are given positive integers. Initially, each of the first a bowls contains an apple, and
each of the last b bowls contains a pear. A legal move consists of moving an apple from
bowl i to bowl i+1 and a pear from bowl j to bowl j− 1, provided that the difference i− j
is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up
with the first b bowls each containing a pear and the last a bowls each containing an apple.
Show that this is possible if and only if the product ab is even.
**Problem 2/5: 6-6.5** Let a, b, c be positive real numbers such that a + b + c = 4 3

√
abc.

Prove that
2(ab+ bc+ ca) + 4min(a2, b2, c2) ≥ a2 + b2 + c2.
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**Problem 3/6: 7** Two rational numbers m
n and n

m are written on a blackboard, where m
and n are relatively prime positive integers. At any point, Evan may pick two of the numbers
x and y written on the board and write either their arithmetic mean x+y

2 or their harmonic
mean 2xy

x+y on the board as well. Find all pairs (m,n) such that Evan can write 1 on the
board in finitely many steps.
### HMMT (February) Individual Round, Problem 1-5: 5 Individual Round, Problem 6-10:
5.5-6 Team Round: 7.5 HMIC: 8
### APMO Problem 1: 6 Problem 2: 7 Problem 3: 7 Problem 4: 7.5 Problem 5: 8.5
### Balkan MO Problem 1: 5 Solve the equation 3x−5y = z2 in positive integers. Problem
2: 6.5 Let MN be a line parallel to the side BC of a triangle ABC, with M on the side AB
and N on the side AC. The lines BN and CM meet at point P . The circumcircles of trian-
gles BMP and CNP meet at two distinct points P and Q. Prove that ∠BAQ = ∠CAP .
Problem 3: 7.5 A 9× 12 rectangle is partitioned into unit squares. The centers of all the unit
squares, except for the four corner squares and eight squares sharing a common side with one
of them, are coloured red. Is it possible to label these red centres C1, C2..., C96 in such way
that the following to conditions are both fulfilled (i) the distances C1C2, ...C95C96, C96C1

are all equal to
√
13 (ii) the closed broken line C1C2...C96C1 has a centre of symmetry?

Problem 4: 8 Denote by S the set of all positive integers. Find all functions f : S → S such
that

f

(
f2(m) + 2f2(n)

)
= m2 + 2n2 for all m,n ∈ S.

### USAMO Problem 1/4: 6-7 Problem 2/5: 7-8 Three nonnegative real numbers r1, r2, r3
are written on a blackboard. These numbers have the property that there exist integers a1,
a2, a3, not all zero, satisfying a1r1 + a2r2 + a3r3 = 0. We are permitted to perform the
following operation: find two numbers x, y on the blackboard with x ≤ y, then erase y and
write y − x in its place. Prove that after a finite number of such operations, we can end up
with at least one 0 on the blackboard. Problem 3/6: 8-9 Prove that any monic polynomial
(a polynomial with leading coefficient 1) of degree n with real coefficients is the average of
two monic polynomials of degree n with n real roots.
### USA TST Problem 1/4/7: 6.5-7 Problem 2/5/8: 7.5-8 Problem 3/6/9: 8.5-9
### Putnam Problem A/B,1-2: 7 Find the least possible area of a concave set in the 7-D
plane that intersects both branches of the hyperparabola xyz = 1 and both branches of the
hyperbola xwy = −1. (A set S in the plane is called convex if for any two points in S the line
segment connecting them is contained in S.) Problem A/B,3-4: 8 Let H be an n× n matrix
all of whose entries are ±1 and whose rows are mutually orthogonal. Suppose H has an a×b
submatrix whose entries are all 1. Show that ab ≤ n. Problem A/B,5-6: 9 For any a > 0,
define the set S(a) = {[an]|n = 1, 2, 3, ...}. Show that there are no three positive reals a, b, c
such that S(a)∩S(b) = S(b)∩S(c) = S(c)∩S(a) = ∅, S(a)∪S(b)∪S(c) = {1, 2, 3, ...}.
### China TST (hardest problems) Problem 1/4: 8-8.5 Given an integer m, prove that there
exist odd integers a, b and a positive integer k such that

2m = a19 + b99 + k ∗ 21000.
Problem 2/5: 9 Given a positive integer n = 1 and real numbers a1 < a2 < . . . < an, such

that
1

a1
+

1

a2
+ . . .+

1

an
≤ 1, prove that for any positive real number x,(

1

a21 + x
+

1

a22 + x
+ . . .+

1

a2n + x

)2

≥ 1

2a1(a1 − 1) + 2x
.

Problem 3/6: 9.5-10 Let n > 1 be an integer and let a0, a1, . . . , an be non-negative real
numbers. Define Sk =

∑k
i=0

(
k
i

)
ai for k = 0, 1, . . . , n. Prove that

1

n

n−1∑
k=0

S2
k − 1

n2

(
n∑

k=0

Sk

)2

≤ 4

45
(Sn − S0)

2.

### IMO **Problem 1/4: 5.5-7** Let Γ be the circumcircle of acute triangle ABC. Points
D and E are on segments AB and AC respectively such that AD = AE. The perpen-
dicular bisectors of BD and CE intersect minor arcs AB and AC of Γ at points F and G
respectively. Prove that lines DE and FG are either parallel or they are the same line.
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**Problem 2/5: 7-8** Let P (x) be a polynomial of degree n > 1 with integer coefficients,
and let k be a positive integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)),
where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.
**Problem 3/6: 9-10** Let ABC be an equilateral triangle. Let A1, B1, C1 be interior
points of ABC such that BA1 = A1C, CB1 = B1A, AC1 = C1B, and

∠BA1C + ∠CB1A+ ∠AC1B = 480◦

Let BC1 and CB1 meet at A2, let CA1 and AC1 meet at B2, and let AB1 and BA1 meet
at C2. Prove that if triangle A1B1C1 is scalene, then the three circumcircles of triangles
AA1A2, BB1B2 and CC1C2 all pass through two common points.
### IMO Shortlist
Problem 1-2: 5.5-7
Problem 3-4: 7-8
Problem 5+: 9-10
</difficulty reference>

# OBJECTIVE #
1. Summarize the math problem in a brief sentence, describing the concepts involved in the
math problem.
2. Based on the source of the given problem, as well as the difficulty of the problems
referenced in these materials and the solution to the current problem, please provide an
overall difficulty score for the current problem. The score should be a number between 1
and 10, with increments of 0.5, and should align perfectly with the materials.
# STYLE #
Data report.
# TONE #
Professional, scientific.
# AUDIENCE #
Students. Enable them to better understand the difficulty of the math problems.
# RESPONSE: MARKDOWN REPORT #
## Summarization
[Summarize the math problem in a brief paragraph.]
## Difficulty
[Rate the difficulty of the math problem and give the reason.]
# ATTENTION #
- Add "=== report over ===" at the end of the report.

<example math problem>
[Question]:
If 1

9 + 1
18 = 1

x , what is the number that replaces the x to make the equation true?
[Solution]:
We simplify the left side and express it as a fraction with numerator 1: 1

9 +
1
18 = 2

18 +
1
18 =

3
18 = 1

6 . Therefore, the number that replaces the □ is 6.
[Source]: 2010_Pascal
</example math problem>
## Summarization
The problem requires finding a value that makes the equation 1

9 + 1
18 = 1

□ . This involves
adding two fractions and determining the equivalent fraction.
## Difficulty
Rating: 1
Reason: This problem is straightforward and primarily involves basic fraction addition, mak-
ing it suitable for early middle school students.
=== report over ===

<example math problem>
[Question]:
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Let P be a convex polygon with n sides, n ≥ 3. Any set of n− 3 diagonals of P that do not
intersect in the interior of the polygon determine a triangulation of P into n− 2 triangles. If
P is regular and there is a triangulation of P consisting of only isosceles triangles, find all
the possible values of n.
[Solution]:
We label the vertices of P as P0, P1, P2, . . . , Pn. Consider a diagonal d = Pa Pa+k, k ≤
n/2 in the triangulation. We show that k must have the form 2m for some nonnegative
integer m. This diagonal partitions P into two regions Q, R, and is the side of an isosceles
triangle in both regions. Without loss of generality suppose the area of Q is less than the area
of R (so the center of P does not lie in the interior of Q); it follows that the lengths of the
edges and diagonals in Q are all smaller than d. Thus d must the be the base of the isosceles
triangle in Q, from which it follows that the isosceles triangle is △PaPa+k/2 Pa+k, and
so 2|k. Repeating this process on the legs of isosceles triangle (PaPa+k/2, Pa+kPa+k/2),
it follows that k = 2m for some positive integer m (if we allow degeneracy, then we can
also let m = 0). Now take the isosceles triangle PxPyPz, 0 ≤ x < y < z < n in the
triangulation that contains the center of P in its interior; if a diagonal passes through the
center, select either of the isosceles triangles with that diagonal as an edge. Without loss of
generality, suppose PxPy = PyPz . From our previous result, it follows that there are 2a

edges of P on the minor arcs of PxPy, PyPz and 2b edges of P on the minor arc of PzPx,
for positive integers a, b. Therefore, we can write

n = 2 · 2a + 2b = 2a+1 + 2b,

so n must be the sum of two powers of 2. We now claim that this condition is sufficient.
Suppose without loss of generality that a+ 1 ≥ b; then we rewrite this as

n = 2b(2a−b+1 + 1).

Lemma 1: All regular polygons with n = 2k + 1 or n = 4 have triangulations that meet
the conditions. By induction, it follows that we can cover all the desired n. For n =
3, 4, this is trivial. For k > 1, we construct the diagonals of equal length P0P2k−1 and
P2k−1+1P0. This partitions P into 3 regions: an isosceles △P0P2k−1P2k−1+1, and two
other regions. For these two regions, we can recursively construct the isosceles triangles
defined above in the second paragraph. It follows that we have constructed 2(2k−1 − 1) +
(1) = 2k − 1 = n − 2 isosceles triangles with non-intersecting diagonals, as desired.
Lemma 2: If a regular polygon with n sides has a working triangulation, then the regular
polygon with 2n sides also has a triangulation that meets the conditions. We construct the
diagonals P0P2, P2P4, . . . P2n−2P0. This partitions P into n isosceles triangles of the form
△P2kP2k+1P2k+2, as well as a central regular polygon with n sides. However, we know that
there exists a triangulation for the n-sided polygon that yields n−2 isosceles triangles. Thus,
we have created (n)+(n−2) = 2n−2 isosceles triangles with non-intersecting diagonals, as
desired. In summary, the answer is all n that can be written in the form 2a+1 +2b, a, b ≥ 0.
Alternatively, this condition can be expressed as either n = 2k, k ≥ 2 (this is the case when
a+ 1 = b) or n is the sum of two distinct powers of 2, where 1 = 20 is considered a power
of 2.
[Source]:
USAMO 2008
</example math problem>
## Summarization
The problem asks for the possible values of n for a regular n-sided polygon that can be com-
pletely triangulated into isosceles triangles using non-intersecting diagonals. The solution
involves analyzing the properties of the diagonals forming isosceles triangles and deducing
that n can be expressed in terms of powers of 2.
## Difficulty
Rating: 7
Reason: The problem involves understanding properties of isosceles triangles in the context
of polygon triangulation and requires critical reasoning to establish relationships between
the number of sides and powers of 2, making it more complex than typical undergraduate-
level problems.
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=== report over ===

<math problem>
[QUESTION]:
***Question***
[SOLUTION]:
***Solution***
[SOURCE]:
***SOURCE***
</math problem>

Your answer should be in JSON format for example:
“‘json
{
"Rating": YOUR RATING,
"Reason": YOUR JUSTIFICATION,
}
“‘

F.7 TOPIC DOMAIN

Meta Prompt for Topic Domain Annotation

I am a teacher, and I have some high-level Olympiad math problems.
I want to categorize the domain of these math problems.

# OBJECTIVE #
1. Summarize the math problem in a brief sentence, describing the concepts involved in the
math problem.
2. Categorize the math problem into specific mathematical domains. Please provide a
classification chain, for example, Applied Mathematics -> Probability -> Combinations.
The following is a basic classification framework in the field of mathematics.
<math domains>
...
</math domains>
# STYLE #
Data report.
# TONE #
Professional, scientific.
# AUDIENCE #
Students. Enable them to better understand the domain of the problems.
# RESPONSE: MARKDOWN REPORT #
## Summarization
[Summarize the math problem in a brief paragraph.]
## Math domains
[Categorize the math problem into specific mathematical domains, including major domains
and subdomains.]
# ATTENTION #
- The math problem can be categorized into multiple domains, but no more than three. Sep-
arate the classification chains with semicolons(;).
- Your classification MUST fall under one of the aforementioned subfields; if it really does
not fit, please add "Other" to the corresponding branch. For example: Algebra -> Intermedi-
ate Algebra -> Other. Only the LAST NODE is allowed to be "Other"; the preceding nodes
must strictly conform to the existing framework.
- The math domain must conform to a format of classification chain, like "Applied Mathe-
matics -> Probability -> Combinations".
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- Add "=== report over ===" at the end of the report.

<example math problem>.
[Question]
Determine the greatest real number C, such that for every positive integer n ≥ 2, there exists
x1, x2, ..., xn ∈ [−1, 1], so that ∏

1≤i<j≤n

(xi − xj) ≥ C
n(n−1)

2

</example math problem>
## Summarization
The problem seeks to find the greatest real number C such that, for every integer n ≥ 2, there
exist real numbers x1, x2, . . . , xn ∈ [−1, 1] satisfying the inequality

∏
1≤i<j≤n(xi−xj) ≥

C
n(n−1)

2 . This involves maximizing C to ensure the product of all pairwise differences
among n points in the interval [−1, 1] is at least C raised to the power of the number of such
pairs, n(n−1)

2 .
## Math domains
Algebra -> Intermediate Algebra -> Inequalities; Discrete Mathematics -> Combinatorics
=== report over ===

<example math problem>
[Question]
Given integer n ≥ 2. Find the minimum value of λ, satisfy that for any real numbers a1, a2,
· · · , an and b,

λ

n∑
i=1

√
|ai − b|+

√√√√n

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ ⩾
n∑

i=1

√
|ai|.

</example math problem>
## Summarization
Let n ≥ 2 be an integer. The problem seeks the minimum value of λ such that for any
real numbers a1, a2, . . . , an and b, the inequality λ

∑n
i=1

√
|ai − b| +

√
n |
∑n

i=1 ai| ⩾∑n
i=1

√
|ai| holds. The goal is to find the smallest λ that ensures this inequality is satisfied

for all possible choices of ai and b.
## Math domains
Algebra -> Intermediate Algebra -> Inequalities;
Calculus -> Differential Calculus -> Applications of Derivatives.
=== report over ===

<math problem>
[Question]
***Question***
[Solution]
***Solution***
[Source]
***Source***
</math problem>

Your answer should be in JSON format for example:
""" json
{
"Summary": "YOUR_SUMMARY",
"Domains": [domain1, ...]
}
"""
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F.8 THEOREM VARIANT CONSTRUCTION

Meta Prompt for Constructing Theorem Variants

I’m going to give you a math proof question and its solution. Your task is to follow the steps
below to write a new question based on the given one. Here is the original question and
solution:

“‘question
<question>
“‘,
“‘solution
<solution>
“‘

Please follow these steps:
1. The original question asks to "prove or disprove" a statement, where the statement can be
"proved". Please write a new question by negating the original statement, so that it can now
be "disproved". For example, if the original statement is x = y, you may change it to x < y
or x ̸= y; if the statement is "there exists xxx", you may change it to "there does not exist
xxx". When negating the original question, you should make minimal changes, i.e. leave as
much background information unchanged as possible.

2. After changing the question, the solution should be changed accordingly. You do not
have to write a new solution, and the original solution can probably be reused. For example,
if the original question asks to prove x = y and the new question asks to prove x < y, you
may simply add a step to the original proof like "since we proved x = y, the statement
x < y is disproved". However, check the wording of the solution so that it tries to "prove"
the statement at first, and then naturally transit to finding that it cannot be proved, but can
be disproved instead.

3. The original solution ends with "\boxed{proved}". Your new solution should end with
"\boxed{disproved}".
Output the new question and solution in two blocks:
“‘question
new question
“‘
“‘solution
corresponding solution
“‘

F.9 SYSTEM PROMPT FOR RL TRAINING

System Prompt for RL Training

A conversation between User and Assistant. The User gives a statement, and the Assistant
either proves or disproves it. The Assistant first thinks about the reasoning process in the
mind and then provides the User with the answer. The reasoning process is enclosed within
<think> </think> and the answer is enclosed within <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer> answer here </answer>. If you prove
the statement, answer with "proved". If you disprove the statement, answer with "disproved".
You must put your answer inside <answer> </answer> tags, i.e., <answer> \boxed{proved}
or \boxed{disproved} </answer>. And your final answer will be extracted automatically by
the \boxed{} tag.
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F.10 PROCESS EVALUATION FRAMEWORK

Meta Prompt for Process Evaluation

You are an expert in scoring solutions for mathematical proof questions. The follow-
ing question asks to prove or disprove a statement, where the statement may be either
true or false. The test subject is asked to end their proof with \boxed{proved} if they
prove the statement to be true, and \boxed{disproved} if they prove the statement to be false.

The question:
“‘<question>“‘
The ground truth of the statement:
“‘<answer>“‘
The test subject’s solution:
“‘ <solution>“‘

Your task is to evaluate the proof’s quality and assign a score from 0 to 1 based on four
criteria: logical validity (40%), completeness (30%), correctness (20%), and clarity (10%).
Instructions:
1. Analyze the proof step by step.
2. For each criterion:
- Logical Validity: Check if each step follows logically from the previous one. Flag any
logical errors.
- Completeness: Verify if all necessary cases and steps are included to prove the theorem.
- Correctness: Confirm if the final conclusion is correct.
- Clarity: Assess if the proof is clear, unambiguous, and well-explained.
3. Assign a sub-score (0 to 1) for each criterion and compute the total score using the
weights: (0.4 × validity) + (0.3 × completeness) + (0.2 × correctness) + (0.1 × clarity).
4. Provide a brief explanation (2-3 sentences) summarizing any errors or issues and justify-
ing the score.
Final output format:
“‘
{
"score": float,
"validity": float,
"completeness": float,
"correctness": float,
"clarity": float,
"explanation": str
}
“‘
where "score" is the total score, and "validity", "completeness", "correctness", "clarity" are
the subscores.
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