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Abstract
We revisit the problem of distribution learning
within the framework of learning-augmented al-
gorithms. In this setting, we explore the scenario
where a probability distribution is provided as po-
tentially inaccurate advice on the true, unknown
distribution. Our objective is to develop learning
algorithms whose sample complexity decreases
as the quality of the advice improves, thereby
surpassing standard learning lower bounds when
the advice is sufficiently accurate. Specifically,
we demonstrate that this outcome is achievable
for the problem of learning a multivariate Gaus-
sian distribution N(µ,Σ) in the PAC learning
setting. Classically, in the advice-free setting,
Θ̃(d2/ε2) samples are sufficient and worst case
necessary to learn d-dimensional Gaussians up to
TV distance ε with constant probability. When we
are additionally given a parameter Σ̃ as advice,
we show that Õ(d2−β/ε2) samples suffice when-
ever ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥1 ≤ εd1−β (where
∥ · ∥1 denotes the entrywise ℓ1 norm) for any
β > 0, yielding a polynomial improvement over
the advice-free setting.

1. Introduction
The problem of approximating an underlying distribution
from its observed samples is a fundamental scientific prob-
lem. The distribution learning problem has been studied
for more than a century in statistics, and it is the underlying
engine for much of applied machine learning. The emphasis
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in modern applications is on high-dimensional distributions,
with the goal being to understand when one can escape
the curse of dimensionality. The survey by (Diakonikolas,
2016) gives an excellent overview of classical and modern
techniques for distribution learning, especially when there
is some underlying structure to be exploited.

In this work, we investigate how to go beyond worst case
sample complexities for learning distributions by consider-
ing situations where one is also given the aid of possibly
imperfect advice regarding the input distribution. We posi-
tion our study in the context of algorithms with predictions,
where the usual problem input is supplemented by “predic-
tions” or “advice” (potentially drawn from modern machine
learning models). The algorithm’s goal is to incorporate the
advice in a way that improves performance if the advice is of
high quality, but if the advice is inaccurate, there should not
be degradation below the performance in the no-advice set-
ting. Most previous works in this setting are in the context of
online algorithms, e.g. for the ski-rental problem (Gollapudi
& Panigrahi, 2019; Wang et al., 2020; Angelopoulos et al.,
2020), non-clairvoyant scheduling (Purohit et al., 2018),
scheduling (Lattanzi et al., 2020; Bamas et al., 2020a; An-
toniadis et al., 2022), augmenting classical data structures
with predictions (e.g. indexing (Kraska et al., 2018) and
Bloom filters (Mitzenmacher, 2018)), online selection and
matching problems (Antoniadis et al., 2020; Dütting et al.,
2021; Choo et al., 2024), online TSP (Bernardini et al.,
2022; Gouleakis et al., 2023), and a more general frame-
work of online primal-dual algorithms (Bamas et al., 2020b).
However, there have been some recent applications to other
areas, e.g. graph algorithms (Chen et al., 2022; Dinitz et al.,
2021), causal learning (Choo et al., 2023), and mechanism
design (Gkatzelis et al., 2022; Agrawal et al., 2022).

We apply the algorithms with predictions perspective to the
classical problem of learning high-dimensional Gaussian
distributions. For a d-dimensional Gaussian N(µ,Σ), it is
known (e.g. see Appendix C of (Ashtiani et al., 2020)) that
(1) When Σ = Id, Θ̃(d/ε2) i.i.d. samples suffice to learn a
µ̂ ∈ Rd such that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε.
(2) In general, Θ̃(d2/ε2) i.i.d. samples suffice to learn µ̂

and Σ̂ such that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε.
Here, dTV denotes the total variation distance, and the al-
gorithm for both cases is the most natural one: compute the
empirical mean and empirical covariance. Meanwhile, note
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that if one is given as advice the correct mean µ̃ = µ, then
using distribution testing, one can certify that ∥µ̃−µ∥2 ≤ ε

using only Θ̃(
√
d/ε2) samples, quadratically better than

without advice; see (Diakonikolas et al., 2023) and Ap-
pendix C of (Diakonikolas et al., 2017). This observation
motivates the object of our study.

GAUSSIAN LEARNING WITH ADVICE: Given sam-
ples from a Gaussian N(µ,Σ), as well as advice µ̃ and
Σ̃, how many samples are required to recover µ̂ and
Σ̂ such that dTV(N(µ,Σ), N(µ̂, Σ̂) ≤ ε with proba-
bility at least 1− δ? The sample complexity should be
a function of the dimension, ε, δ, as well as a measure
of how close µ̃ and Σ̃ are to µ and Σ respectively.

Notation. We use lowercase letters for scalars, set elements,
random variable instantiations, uppercase letters for ran-
dom variables, bolded lowercase letters for vectors and sets,
bolded uppercase letters for set of random variables and
matrices, calligraphic letters for probability distributions
and sets of sets, and small caps for algorithm names. Intu-
itively, we use non-bolded versions for singletons, bolded
versions for collections of items, and calligraphic for more
complicated objects. The context should be clear enough to
distinguish between various representations.

1.1. Our main results

We give the first known results in distribution learning1 with
imperfect advice. Our techniques are piecewise elementary
and easy to follow. Furthermore, we provide polynomial
time algorithms for producing the estimates µ̂ and Σ̂ based
on LASSO and SDP formulations.

Given a mean µ̃ ∈ Rd and covariance matrix Σ̃ ∈ Rd×d

as advice, we present two algorithms TESTANDOPTIMIZE-
MEAN and TESTANDOPTIMIZECOVARIANCE that prov-
ably improve on the sample complexities of Θ̃(d/ε2) and
Θ̃(d2/ε2) for identity and general covariances respectively
when given high quality advice.

Theorem 1.1. For any given ε, δ ∈ (0, 1), η ∈ [0, 1
4 ], and

µ̃ ∈ Rd, the TESTANDOPTIMIZEMEAN algorithm uses
n ∈ Õ

(
d
ε2 · (d−η +min{1, f(µ, µ̃, d, η, ε)})

)
where

f(µ, µ̃, d, η, ε) =
∥µ− µ̃∥21
d1−4ηε2

i.i.d. samples from N(µ, Id) for some unknown mean µ and
identity covariance Id, and can produce µ̂ in poly(n, d)
time such that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε with success
probability at least 1− δ.

1There is a recent concurrent work on discrete distribution
testing with imperfect advice (Aliakbarpour et al., 2024).

Theorem 1.2. For any given ε, δ ∈ (0, 1), η ∈ [0, 1] and
Σ̃ ∈ Rd×d, TESTANDOPTIMIZECOVARIANCE uses n ∈
Õ
(

d2

ε2 ·
(
d−η +min

{
1, f(Σ, Σ̃, d, η, ε)

}))
where

f(Σ, Σ̃, d, η, ε) =
∥vec(Σ̃−1/2ΣΣ̃−1/2 − Id)∥21

d2−ηε2

i.i.d. samples from N(µ,Σ) for some unknown mean µ
and unknown covariance Σ, and can produce µ̂ and
Σ̂ in poly(n, d, log(1/ε)) time such that dTV(N(µ,Σ),
N(µ̂, Σ̂)) ≤ ε with success probability at least 1− δ.

In particular, TESTANDOPTIMIZEMEAN uses only
Õ(d

1−η

ε2 ) samples when ∥µ − µ̃∥1 < εd(1−5η)/2 = ε
√
d ·

d−5η/2, for any η ∈ [0, 1
4 ]. Similarly, TESTANDOP-

TIMIZECOVARIANCE uses only Õ(d
2−η

ε2 ) samples when
∥vec(Σ̃−1/2ΣΣ̃−1/2 − Id)∥1 < εd1−η = εd · d−η , for any
η ∈ [0, 1]. Both algorithms have polynomial runtime.

The choice of representing the quality of the advice in terms
of the ℓ1-norm is well-motivated. It is known, e.g. see
Theorem 2.5 of (Foucart & Rauhut, 2013), that if a vec-
tor x satisfies ∥x∥1 ≤ τ , then for any positive integer s,
σs(x) ≤ τ/(2

√
s), where σs(x) is the ℓ2-error of the best s-

sparse approximation to x. Thus, if ∥µ̃−µ∥1 ≤ 2εd(1−η)/2,
then σd1−η (µ̃− µ) ≤ ε. The latter may be very reasonable,
as one may have good predictions for most of the coordi-
nates of the mean with the error in the advice concentrated
on a sublinear (d1−η) number of coordinates. Algorithmi-
cally, we employ sublinear property testing algorithms to
evaluate the quality of the given advice before deciding
how to produce a final estimate, similar in spirit to the TE-
STANDMATCH approach in (Choo et al., 2024). The idea
of incorporating property testing as a way to verify whether
certain distributional assumptions are satisfied that enable ef-
ficient subsequent learning has also been explored in recent
works on testable learning (Rubinfeld & Vasilyan, 2023;
Klivans et al., 2024; Vasilyan, 2024).

We supplement the above with information-theoretic lower
bounds. Here, we say that an algorithm (ε, 1 − δ)-PAC
learns a distribution P if it can produce another distribution
P̂ such that dTV(P, P̂) ≤ ε with success probability at least
1− δ. Our lower bounds tell us that Ω̃(d/ε2) and Ω̃(d2/ε2)
samples are unavoidable for PAC-learning N(µ, Id) and
N(µ,Σ) respectively when given low quality advice.

Theorem 1.3. Suppose we are given µ̃ ∈ Rd as advice
with only the guarantee that ∥µ − µ̃∥1 ≤ ∆. Then,
any algorithm that (ε, 2

3 )-PAC learns N(µ, Id) requires

Ω
(

min{d,∆2/ε2}
ε2 log(1/ε)

)
samples in the worst case.

Theorem 1.4. Suppose we are given a symmetric and
positive-definite Σ̃ ∈ Rd×d as advice with only the
guarantee that ∥vec

(
Σ̃− 1

2ΣΣ̃− 1
2 − Id

)
∥1 ≤ ∆. Then,
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any algorithm that (ε, 2
3 )-PAC learns N(0,Σ) requires

Ω
(

min{d2,∆2/ε2}
ε2 log(1/ε)

)
samples in the worst case.

Both of our lower bounds are tight in the following
sense. Our algorithm TESTANDOPTIMIZEMEAN gives
a polynomially-smaller sample complexity compared to
Õ(d/ε2) when the advice quality (measured in terms of the
ℓ1-norm) is polynomially smaller compared to ε

√
d. Theo-

rem 1.3 shows that this is the best we can do; there is a hard
instance where the advice quality is ≤ ε

√
d and we need

Ω̃(d/ε2) samples. A similar situation happens between TE-
STANDOPTIMIZECOVARIANCE and Theorem 1.4, when
the guarantee on the advice quality is ≤ εd.

Note that the lower bounds in Theorems 1.3 and 1.4 apply
even when the parameter ∆ is known to the algorithm, while
our algorithms are stronger since they do not need to know
∆ beforehand. In case ∆ is known, the sample complexity
of the distribution learning component of our algorithms
match the above lower bounds up to log factors.

1.2. Technical overview

To obtain our upper bounds, we first show that the existing
test statistics for non-tolerant testing can actually be used for
tolerant testing with the same asymptotic sample complexity
bounds and then use these new tolerant testers to test the
advice quality. The tolerance is with respect to the ℓ2-norm
for mean testing and with respect to the Frobenius norm for
covariance testing. These results are folklore, but since they
may be of independent interest, we present their proofs in
Appendix B.1 for completeness.

Lemma 1.5 (Tolerant mean tester). Given ε2 > ε1 > 0,

δ ∈ (0, 1), and d ≥
(

16ε22
ε22−ε21

)2
, there is a tolerant tester that

uses O
( √

d
ε22−ε21

log
(
1
δ

))
i.i.d. samples from N(µ, Id) and

satisfies both conditions below:
1. If ∥µ∥2 ≤ ε1, then the tester outputs Accept,
2. If ∥µ∥2 ≥ ε2, then the tester outputs Reject,
each with success probability at least 1− δ.

Lemma 1.6 (Tolerant covariance tester). Given ε2 > ε1 >
0, δ ∈ (0, 1), and d ≥ ε22, there is a tolerant tester that uses

O
(
d ·max

{
1
ε21
,
(

ε22
ε22−ε21

)2
,
(

ε2
ε22−ε21

)2}
log
(
1
δ

))
i.i.d.

samples from N(0,Σ) and satisfies both conditions below:
1. If ∥Σ− Id∥F ≤ ε1, then the tester outputs Accept,
2. If ∥Σ− Id∥F ≥ ε2, then the tester outputs Reject,
each with success probability at least 1− δ.

We will first explain how to obtain our result for TES-
TANDOPTIMIZEMEAN before explaining how a similar
approach works for TESTANDOPTIMIZECOVARIANCE.

1.2.1. APPROACH FOR TESTANDOPTIMIZEMEAN

Without loss of generality, we may assume henceforth that
µ̃ = 0 since one can always pre-process samples by sub-
tracting µ̃ and then add µ̃ back to the estimated µ̂. Our
overall approach is quite natural: (i) use the tolerant testing
algorithm in Lemma 1.5 to get an upper bound on the “ad-
vice quality”, and (ii) enforce the constraint on the “advice
quality” when learning µ̂.

The most immediate notion of advice quality one may
posit is ∥µ − 0∥2 = ∥µ∥2. Let us see what issues
arise. Using an exponential search process, we can in-
voke Lemma 1.5 directly to find some r > 0, such that
r/2 ≤ ∥µ− µ̃∥2 = ∥µ∥2 ≤ r. To argue about the sample
complexity for learning µ̂, and ignoring computational ef-
ficiency, one can invoke the Scheffé tournament approach
for density estimation. Let N be an ε-cover in ℓ2 of the the
ℓ2-ball of radius r around 0. Clearly, µ is ε-close in ℓ2 to
one of the points in N . It is known (e.g. see Chapter 4 of
(Devroye & Lugosi, 2001)) that the sample complexity of
the Scheffé tournament algorithm scales as log |N |. How-
ever, we have that log |N | = Ω(d); e.g. see Proposition
4.2.13 of (Vershynin, 2018). Indeed, one can get a formal
lower bound showing that the sample complexity cannot
be made sublinear in d for non-trivial values of r. To get
around this barrier, we will instead take the notion of advice
quality to be ∥µ∥1 instead of ∥µ∥2. It is known that d

cr2

ε2 ℓ2
balls of radius ε suffice to cover an ℓ1-ball of radius r, for
some absolute constant c > 0; e.g. see Chapter 4, Example
2.8 of (Vershynin, 2012). Using this modified approach,
the Scheffé tournament only requires O( r

2

ε4 log d) samples
which could be o(d/ε2) for a wide range of values of r.

There are still two issues to address: (i) how to obtain an ℓ1
estimate r of µ, i.e., r/2 ≤ ∥µ∥1 ≤ r, and (ii) how to get a
computationally efficient learning algorithm.

To address (i), we can apply the standard inequality ∥µ∥2 ≤
∥µ∥1 ≤

√
d∥µ∥2 bound to transform our ℓ2 estimate from

Lemma 1.5 into an ℓ1 one. However, since the number of
samples has a quadratic relation with r, we need a better
approximation than

√
d to achieve sample complexity that

is sublinear in d. To achieve this, we partition the µ vector
into blocks of size at most k ≤ d and approximate the ℓ1
norm of each smaller dimension vector separately and then
add them up to obtain an ℓ1 estimate of the overall µ. Doing
so improves the resulting multiplicative error to ≈

√
d/k

instead of
√
d. In effect, we devise a tolerant tester for a

mixed ℓ1,2 norm instead of the ℓ1 or ℓ2 norms directly.

To address (ii), observe that the Scheffé tournament ap-
proach requires time at least linear in the size of the ε-cover.
In order to do better, we observe that we can formulate
our task as an optimization problem with an ℓ1-constraint.
Specifically, given samples y1, . . . ,yn, we solve the follow-
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ing program: µ̂ = argmin∥β∥1≤r
1
n

∑n
i=1 ∥yi − β∥22. The

error ∥µ − µ̂∥2 can be analyzed by similar techniques as
those used for analyzing ℓ1-regularization in the context of
LASSO or compressive sensing; e.g. see (Tibshirani, 1996;
1997; Hastie et al., 2015).

1.2.2. APPROACH FOR TESTANDOPTIMIZECOVARIANCE

As before, we may assume without loss of generality that
Σ̃ = Id by pre-processing the samples appropriately. Fur-
thermore, we can invest Ω(d/ε2) samples up-front to ensure
that the empirical mean µ̂ will be an ε-good estimate of
µ. Then, it will suffice to obtain an estimate Σ̂ of Σ such
that ∥Σ−1Σ̂ − Id∥F ≤ O(ε) suffices. Furthermore, we
may assume that we get i.i.d. samples from N(0,Σ) and
also that Σ is full rank. These are without loss of gener-
ality for the following two reasons. Firstly, instead of a
single sample from N(µ,Σ), we will draw two samples
x1,x2 ∼ N(µ,Σ) and consider x′ = x1−x2√

2
,which is dis-

tributed according to N(0,Σ).Secondly, it is known that
the empirical covariance constructed from d i.i.d. samples
of N(0,Σ) will have the same rank as Σ itself, with proba-
bility at least 1−δ; see see Lemma A.13. So, we can simply
project and solve the problem on the full rank subspace of
the empirical covariance matrix.

At a high level, the approach for TESTANDOPTIMIZECO-
VARIANCE is the same as TESTANDOPTIMIZEMEAN after
three adjustments to adapt from vectors to matrices.

The first adjustment is that we perform a suitable precondi-
tioning process using an additional O(d) samples so that we
can subsequently argue that ∥Σ−1∥2 ≤ 1. This will then al-
low us to argue that ∥Σ−1Σ̂−Id∥F ≤ ∥Σ−1∥2∥Σ̂−Σ∥F ∈
O(ε). Our preconditioning technique is inspired by (Ka-
math et al., 2019); while they use O(d) samples to construct
a preconditioner to control the maximum eigenvalue, we
use a similar approach to control the minimum eigenvalue.

In more detail, our technique is as follows: we will compute
a preconditioning matrix A using d i.i.d. samples such that
AΣA has eigenvalues at least 1, i.e. λmin(AΣA) ≥ 1.
That is, ∥(AΣA)−1∥2 = 1

λmin(AΣA) ≤ 1. Then, we solve
the problem treating AΣA as our new Σ. This adjust-
ment succeeds with probability at least 1− δ for any given
δ ∈ (0, 1) and is possible because, with probability 1, the
empirical covariance Σ̂ formed by using d i.i.d. samples
would have the same eigenspace as Σ, and so we would
have a bound on the ratios between the minimum eigenval-
ues between Σ̂ and Σ; see Lemma A.13.

Lemma 1.7. For any δ ∈ (0, 1), there is an explicit
preconditioning process that uses d i.i.d. samples from
N(0,Σ) and succeeds with probability at least 1 − δ in
constructing a matrix A ∈ Rd×d such that λmin(AΣA) ≥
1. Furthermore, for any full rank PSD matrix Σ̃ ∈

Rd×d, we have ∥(AΣ̃A)−1/2AΣA(AΣ̃A)−1/2 − Id∥ =

∥Σ̃−1/2ΣΣ̃−1/2 − Id∥.

The matrix A in Lemma 1.7 is essentially constructed by
combining the eigenspace corresponding to “large eigen-
values” with a suitably upscaled eigenspace corresponding
to “small eigenvalues” in the empirical covariance matrix
obtained by d i.i.d. samples.

The second adjustment pertains to the partitioning idea used
for multiplicatively approximating ∥vec(Σ − Id)∥1. Ob-
serve that the covariance matrix of a marginal of a mul-
tivariate Gaussian is precisely the principal submatrix of
the original covariance Σ on the corresponding projected
coordinates. For example, if one focuses on coordinates
{i, j} ⊆ [d] of each sample, then the corresponding co-

variance matrix is
[
Σi,i Σi,j

Σj,i Σj,j

]
, for i < j. To this end,

we generalize the partitioning scheme described for TES-
TANDOPTIMIZEMEAN to higher ordered objects.
Definition 1.8 (Partitioning scheme). Fix q ≥ 1, d ≥ 1,
and a q-ordered d-dimensional tensor T ∈ Rd⊗q

. Let
B ⊆ [d] be a subset of indices and define TB as the princi-
pal subtensor of T indexed by B. A collection of subsets
B1, . . . ,Bw ⊆ [d] is called an (q, d, k, a, b)-partitioning of
the tensor T if the following three properties hold:
1. |B1| ≤ k, . . . , |Bw| ≤ k
2. For every cell of T appears in at least a of the w principal
subtensors TB1 , . . . , TBw .
3. For every cell of T appears in at most b of the w principal
subtensors TB1

, . . . , TBw
.

For example, when q = 2, T ∈ Rd×d is just a d × d ma-
trix. Observe one can always obtain a partitioning with
k ≤ dq by letting the index sets B1, . . . ,Bw encode every
possible index, but this results in a large w =

(
d
q

)
which

can be undesirable for downstream analysis. The partition-
ing used in TESTANDOPTIMIZEMEAN is a special case
of Definition 1.8 with q = a = b = 1, k = ⌈d/w⌉. For
TESTANDOPTIMIZECOVARIANCE, we are interested in the
case where q = 2 and a = 1. Ideally, we want to mini-
mize k and b as well. Figure 1 illustrates an example of a
(q = 2, d = 5, k = 3, a = 1, b = 3)-partitioning.

While an existence result suffices, we show that a probabilis-
tic construction will in fact succeed with high probability.
Lemma 1.9. Fix dimension d ≥ 2 and group size k ≤ d.
Consider the q = 2 setting where T ∈ Rd×d is a matrix.
Define w = 10d(d−1) log d

k(k−1) . Pick sets B1, . . . ,Bw each of
size k uniformly at random (with replacement) from all
the possible

(
d
k

)
sets. With high probability in d, this is a

(q = 2, d, k, a = 1, b = 30(d−1) log d
(k−1) )-partitioning scheme.

The key idea behind utilizing partitioning schemes is that the
marginal over a subset of indices B ⊆ [d] of a d-dimensional
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Figure 1: Consider partitioning a d× d matrix (i.e., d = 5
and q = 2) with w = 4 blocks {(1, 2, 3), (1, 4, 5), (2, 4, 5),
(3, 4, 5)}, each of size k = 3. We see that every cell in the
original 5× 5 matrix appears in at least a = 1 and at most
b = 3 times across all the induced submatrices.

Gaussian with covariance matrix Σ has covariance ma-
trix that is the principal submatrix ΣB of Σ. So, if we
can obtain a multiplicative α-approximation of a collection
of principal submatrices ΣB1

, . . .ΣBw
such that all cells

of Σ are present, then we can obtain a multiplicative α-
approximation of Σ just like in Section 2. Meanwhile, the
b parameter allows us to upper bound the overestimation
factor due to repeated occurrences of any cell of Σ.

Finally, the third and last adjustment is to the optimization
program for learning Σ̂. Given samples y1, . . . ,yn from
N(µ,Σ), we define:

Σ̂ = argmin
A ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r

∥A−1∥2≤1

n∑
i=1

∥A− yiy
⊤
i ∥2F

Observe that Σ is a feasible solution to the above program.
The optimization problem can be solved efficiently since
it can be written as an SDP with convex constraints; see
Appendix D.3. We finally bound ∥Σ− Σ̂∥F using an anal-
ysis that mirrors that for TESTANDOPTIMIZEMEAN but
is in terms of matrix algebra. We provide the pseudocode
and analysis of the TESTANDOPTIMIZECOVARIANCE al-
gorithm in Appendix D.

1.2.3. LOWER BOUND

To prove Theorem 1.3 and Theorem 1.4, we make use of
a lemma in (Ashtiani et al., 2020) that informally says the
following: If we can construct a cover f1, . . . , fM of distri-
butions such that the pairwise KL divergence is at most κ
and the pairwise TV distance is > 2ε, then, given sample
access to an unknown fi, the sample complexity of learning
a distribution which is ε-close to fi in total variation with
probability ≥ 2

3 over the samples (which is referred to as

(ε, 2
3 )-PAC learning in total variation) is ≥ Ω̃

(
logM

κ

)
. This

lemma gives an information-theoretic lower bound and is a
consequence of the generalized Fano’s inequality.

To apply this lemma in the context of learning with ad-
vice, we need to fix an advice a (mean or covariance, in
the case of our problem) and find a large cover of distribu-

tions f1, . . . , fM that satisfy the conditions of the lemma
(pairwise KL ≤ κ and pairwise TV > 2ε), while also sat-
isfying a guarantee on the advice quality with respect to
all f1, . . . , fM (say, the quality of a is Q). Then, applying
the lemma will show a sample complexity lower bound for
learning a distribution given advice with quality Q, since an
adversary can choose an fi in the cover set and give a (fixed)
as the advice in each case while still satisfying the advice
quality requirement. Note that the advice a is immaterial
here as the underlying ground truth is one of f1, . . . , fM .
The lemma asserts that we still need Ω̃

(
logM

κ

)
samples

to learn a distribution close to the given fi (where the pair-
wise TV separation of > 2ε is crucial in ensuring that the
learning algorithm would need to identify the correct fi to
succeed, since no distribution f will be ε-close in TV to fi
and fj for i ̸= j due to the triangle inequality).

In the context of learning a Gaussian with unknown mean,
the advice quality that we consider is ∥µ̃−µ∥1, where µ̃ is
the advice and µ is the ground truth. To show Theorem 1.3,
we construct a cover of M distributions N(µi, Id) such
that ∥µ̃ − µi∥1 is precisely the same for all µi’s. Then,
we ensure that the pairwise TV and KL requirements are
satisfied by controlling the ℓ2 distance ∥µi −µj∥2 for each
pair i ̸= j. This enables us to use a construction where we
set the first k coordinates of each µi based on the codewords
of an error correcting code with distance ≥ Ω(k), and we
can show the existence of such a code with 2Ω(k) codewords
using the Gilbert-Varshamov bound.

In the context of learning Gaussians with unknown covari-
ance, we consider the advice quality ∥Σ̃− 1

2ΣΣ̃− 1
2 − Id∥1

where Σ is the ground truth and Σ̃ is the advice. To prove
a lower bound on the sample complexity of learning given
good advice, we follow a similar strategy where again,
we want to construct a cover of M distributions N(0,Σi)
which all satisfy a bound on the advice quality and also sat-
isfy the pairwise TV and KL requirements. (Ashtiani et al.,
2020) also pursue the same goal but without the advice qual-
ity constraint. We adapt their construction by defining a
family of block-diagonal orthogonal matrices such that the
size of the submatrices can be used to control the entrywise
ℓ1-norm distance to the identity. Quantifying the KL diver-
gences and TV distances between the constructed gaussians
then gives the desired lower bound.

Remainder of the paper. Due to space constraints, our
main paper focuses on presenting results for the identity co-
variance setting and defer details for the general covariance
setting to the appendix; see also Appendix A for a review
on Gaussian distributions. TESTANDOPTIMIZEMEAN is
presented in Section 2 and the hardness result Lemma 3.2 is
given in Section 3. Some experimental results illustrating
the savings in sample complexity are shown in Section 4
before we conclude with some open directions in Section 5.
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2. Identity covariance setting
We begin by defining a parameterized sample count
m(d, ε, δ). Then, we will describe APPROXL1 and show
how to use it according to the strategy in Section 1.2.1.

Definition 2.1. For any d ≥ 1, ε > 0, and δ ∈ (0, 1), we
define m(d, ε, δ) = nd,ε · rδ = ⌈ 16

√
d

ε2 ⌉ · (1 + ⌈log
(
12
δ

)
⌉).

Given samples from a d-dimensional isotropic Gaussian
N(µ, Id) with unknown mean µ and identity covariance,
the APPROXL1 algorithm partitions the d coordinates into
w = ⌈d/k⌉ buckets each of length at most k ∈ [d] and
separately perform an exponential search to find the 2-
approximation of the ℓ2 norm of each bucket by repeatedly
invoking the tolerant tester from Lemma 1.5. In the termi-
nology of Definition 1.8, this is a partitioning scheme with
q = 1, a = 1, and b = 1. Crucially, projecting the samples
in Rd of N(µ, Id) into the subcoordinates of B ⊆ [d] yields
samples in R|B| from N(µB, I|B|) so we can obtain valid
estimates using each of these marginals. After obtaining the
ℓ2 estimate of each bucket, we use Fact A.1 to obtain bounds
on the ℓ1 and then combine them by summing up these esti-
mates: if we have an ε-multiplicative approximation of each
bucket’s ℓ1, then their sum will be an O(ε)-multiplicative
approximation of the entire µ vector whenever the partition
overlap parameters a and b of Definition 1.8 are constants.

In Appendix C.1, we give the pseudocode of the APPROXL1
algorithm and prove that it has the following guarantees.

Lemma 2.2. Let k, α, and ζ be the input parameters to
the APPROXL1 algorithm (Algorithm 4). Given m(k, α, δ′)
i.i.d. samples from N(µ, Id), APPROXL1 succeeds with
probability at least 1− δ and has the following properties:
1. If APPROXL1 outputs Fail, then ∥µ∥2 > ζ/2.
2. If APPROXL1 outputs λ ∈ R, then ∥µ∥1 ≤ λ ≤ 2

√
k ·

(⌈d/k⌉ · α+ 2∥µ∥1).

Now, suppose APPROXL1 tells us that ∥µ∥1 ≤ r. We can
then perform a constrained LASSO to search for a candidate
µ̂ ∈ Rd using O( r

2

ε4 log
d
δ ) samples from N(µ, Id).

Lemma 2.3. Fix d ≥ 1, r ≥ 0, and ε, δ > 0. Given
O( r

2

ε4 log
d
δ ) samples from N(µ, Id) for some unknown µ ∈

Rd with ∥µ∥1 ≤ r, one can produce an estimate µ̂ ∈ Rd

in poly(n, d) time such that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε
with success probability at least 1− δ.

Proof. Suppose we get n samples y1, . . . ,yn ∼ N(µ, Id).
For i ∈ [n], we can re-express each yi as yi = µ+ gi for
some gi ∼ N(0, Id). Let us define µ̂ ∈ Rd as follows:

µ̂ = argmin
∥β∥1≤r

1

n

n∑
i=1

∥yi − β∥22 (1)

By optimality of µ̂ in Equation (1), we have

1

n

n∑
i=1

∥yi − µ̂∥22 ≤ 1

n

n∑
i=1

∥yi − µ∥22 (2)

By expanding and rearranging Equation (2), one can show
(see Appendix C.2)

∥µ̂− µ∥22 ≤ 2

n
⟨

n∑
i=1

gi, µ̂− µ⟩ (3)

Meanwhile, it is known (see Lemma A.15) that

Pr(∥
∑n

i=1 gi∥∞ ≥
√

2n log
(
2d
δ

)
) ≤ δ. Therefore, using

Hölder’s inequality and triangle inequality with the above,
we see that, with probability at least 1− δ,

∥µ̂−µ∥22 ≤ 2

n
⟨

n∑
i=1

gi, µ̂−µ⟩ ≤ 2

n
·

∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

·∥µ̂−µ∥1

≤ 2

n
·

∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

· (∥µ̂∥1 + ∥µ∥1) ≤ 4r ·

√
2 log

(
2d
δ

)
n

When n =
2r2 log 2d

δ

ε4 ∈ O
(

r2

ε4 log
d
δ

)
, we have ∥µ̂ −

µ∥22 ≤ 4r ·
√

2 log( 2d
δ )

n = 4ε2. So, by Pinsker’s inequal-
ity (see Theorem A.10) and KL divergence of Gaussians
(see Lemma A.8), we see that dTV(N(µ, Id), N(µ̂, Id)) ≤√

1
2dKL(N(µ, Id), N(µ̂, Id)) ≤

√
1
4∥µ− µ̂∥22 ≤ ε. Fi-

nally, it is known that LASSO runs in poly(n, d) time.

Using Lemma 2.3, we now ready to prove Theorem 1.1.

Algorithm 1 The TESTANDOPTIMIZEMEAN algorithm.

1: Input: Error rate ε > 0, failure rate δ ∈ (0, 1), parame-
ter η ∈ [0, 1

4 ], and sample access to N(µ, Id)
2: Output: µ̂ ∈ Rd

3: Define k = ⌈d4η⌉, α = ε · d−(1−3η)/2, ζ = 4ε ·
√
d,

and δ′ = δ
⌈d/k⌉·⌈log2 ζ/α⌉ ▷ Note: ζ > 2α

4: Draw m(k, α, δ′) i.i.d. samples from N(µ, Id) and
store it into a set S ▷ See Definition 2.1

5: Let Outcome be the output of the APPROXL1 algo-
rithm given k, α, ζ, and S as inputs

6: if Outcome is λ ∈ R and λ < ε
√
d then

7: Draw n ∈ Õ(λ2/ε4) i.i.d. samples y1, . . . ,yn ∈ Rd

8: return µ̂ = argmin∥β∥1≤λ
1
n

∑n
i=1 ∥yi − β∥22

9: else
10: Draw n ∈ Õ(d/ε2) i.i.d. samples y1, . . . ,yn ∈ Rd

11: return µ̂ = 1
n

∑n
i=1 yi ▷ Empirical mean

12: end if
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Proof of Theorem 1.1. Without loss of generality, we may
assume that µ̃ = 0. This is because we can pre-process
all samples by subtracting µ̃ to yield i.i.d. samples from
N(µ′, Id) where µ′ = µ− µ̃. Suppose we solved this prob-
lem to produce µ̂′ where dTV(N(µ′, Id), N(µ̂′, Id)) ≤
10ε, we can then output µ̂ = µ̂′ + µ̃ and see from data
processing inequality that dTV(N(µ, Id), N(µ̂, Id)) =
dTV(N(µ′, Id), N(µ̂′, Id)) ≤ 10ε; see the coupling char-
acterization of TV in (Devroye et al., 2018).

Correctness of µ̂ output. TESTANDOPTIMIZEMEAN (Al-
gorithm 1) has two possible outputs for µ̂:
Case 1: µ̂ = argmin∥β∥1≤λ

1
n

∑n
i=1 ∥yi−β∥22, which can

only happen when Outcome is λ ∈ R and λ < ε
√
d

Case 2: µ̂ = 1
n

∑n
i=1 yi

Conditioned on APPROXL1 succeeding, with probability at
least 1−δ, we will show that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε
and failure probability at most δ in each of these cases,
which implies the theorem statement.

Case 1: Using r = λ as the upper bound, Lemma 2.3 tells us
that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε with failure probability
at most δ when Õ(λ2/ε4) i.i.d. samples are used.

Case 2: With Õ(d/ε2) samples, it is known that the empir-
ical mean µ̂ achieves dTV(N(µ, Id), N(µ̂, Id)) ≤ ε with
failure probability at most δ; see Lemma A.12.

Sample complexity used. By Definition 2.1, APPROXL1
uses |S| = m(k, α, δ′) ∈ Õ(

√
k/α2) samples to produce

Outcome. Then, APPROXL1 further uses Õ(λ2/ε4) sam-
ples or Õ(d/ε2) samples depending on whether λ < ε

√
d.

So, TESTANDOPTIMIZEMEAN has a total sample complex-
ity of Õ

(√
k

α2 +min
{

λ2

ε4 ,
d
ε2

})
. Meanwhile, Lemma 2.2

states that ∥µ∥1 ≤ λ ≤ 2
√
k · (⌈d/k⌉ · α+ 2∥µ∥1) when-

ever Outcome is λ ∈ R. Since (a + b)2 ≤ 2a2 + 2b2

for any two real numbers a, b ∈ R, we see that λ2

ε4 ∈
O
(

k
ε4 ·

(
d2α2

k2 + ∥µ∥21
))

⊆ O
(

d
ε2 ·

(
dα2

ε2k +
k·∥µ∥2

1

dε2

))
.

Putting together the above observations, we see that the
total sample complexity is

Õ

(√
k

α2
+

d

ε2
·min

{
1,

dα2

ε2k
+

k · ∥µ∥21
dε2

})
Recalling that µ in the analysis above actually refers to the
pre-processed µ− µ̃, and that TESTANDOPTIMIZEMEAN
sets k = ⌈d4η⌉ and α = εd−(1−3η)/2, with 0 ≤ η ≤ 1

4 , the
above expression simplifies to

Õ
(

d

ε2
·
(
d−η +min{1, f(µ, µ̃, d, η, ε)}

))
where f(µ, µ̃, d, η, ε) =

∥µ−µ̃∥2
1

d1−4ηε2 .

Remark on setting upper bound ζ. As ζ only affects the

sample complexity logarithmically, one may be tempted to
use a larger value than ζ = 4ε

√
d. However, observe that

running APPROXL1 with a larger upper bound than ζ =
4ε
√
d would not be helpful since ∥µ∥2 > ζ/4 whenever

APPROXL1 currently returns Fail and we have ∥µ∥1 ≤ λ
whenever APPROXL1 returns λ ∈ R. So, ε

√
d = ζ/4 <

∥µ∥2 ≤ ∥µ∥1 ≤ λ and TESTANDOPTIMIZEMEAN would
have resorted to using the empirical mean anyway.

Remark about early termination without the optimiza-
tion step. If there is no Fail amongst {o1, . . . , ow} and
4
∑w

j=1 o
2
j ≤ ε2 after Line 10 of APPROXL1, then we could

have just output µ̂ = 0d without running the optimization
step. This ie because since 4

∑w
j=1 o

2
j ≤ ε2 would imply

∥µ∥2 ≤ ε via ∥µ∥22 =
∑w

j=1 ∥µBj∥22 ≤
∑w

j=1(2oj)
2 =

4
∑w

j=1 o
2
j ≤ ε2 and thus dTV(N(µ, Id), N(µ̂, Id)) ≤√

1
2 · dKL(N(µ, Id), N(µ̂, Id)) =

√
1
4 · ∥µ− 0∥22 ≤√

ε2

4 ≤ ε via Pinsker’s inequality (Theorem A.10).

3. Hardness for the identity covariance setting
Theorem 1.3 is implied by Lemma 3.2, which depends on
the following corollary of Fano’s inequality.

Lemma 3.1 (Lemma 6.1 of (Ashtiani et al., 2020)). Let
κ : R → R be a function and let F be a class of dis-
tributions such that, for all ε > 0, there exist distribu-
tions f1, . . . , fM ∈ F such that dKL(fi, fj) ≤ κ(ε) and
dTV(fi, fj) > 2ε for all i ̸= j ∈ [M ]. Then any method
that learns F to within total variation distance ε with prob-
ability ≥ 2/3 has sample complexity Ω

(
logM

κ(ε) log(1/ε)

)
.

Lemma 3.2. Suppose we are given sample access to
N(µ, Id) for some unknown µ ∈ Rd, and an advice
µ̃ ∈ Rd. Then, any algorithm that (ε, 2

3 )-PAC learns

N(µ, Id) requires Ω̃
(
min

{
∥µ−µ̃∥2

1

ε4 , d
ε2

})
samples.

Proof. Without loss of generality, we can consider µ̃ =
0 since we can sample from N(µ − µ̃, Id) by sampling
N(µ, Id) and subtracting µ̃ from each sample. Let µ̂ denote
the output of the learning algorithm.

Recall that dKL(N(µ, Id), N(µ′, Id)) = 1
2∥µ −

µ′∥22. For ∥µ − µ′∥2 ≤ 1, it is known that
dTV(N(µ, Id), N(µ′, Id)) ∈

[
∥µ−µ′∥2

200 , ∥µ−µ′∥2

2

]
; see

(Devroye et al., 2018). Now, for any ε′ > 0, we

show the existence of M = 2
Ω
(
min

{
d,λ

2

ε2

})
distribu-

tions {fi}Mi=1, fi ≜ N(µi, Id), with ∥µi − µ̃∥1 =
λ and ∥µi − µj∥2 ∈ [ε′, 2ε′] ∀ i ̸= j ∈ [M ].. As long
as ε′ ≤ 1

2 , the above implies that dTV(fi, fj) ≥ ε′

200 , and
min{dKL(fi∥fj),dKL(fj∥fi)} ≤ 2(ε′)2.

Taking ε = ε′

400 , such a cover f1, . . . , fM will satisfy
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Figure 2: Here, d = 500, s = {100, 200, 300}, and q = ∥µ− µ̃∥1 = 50. Error bars show standard deviation over 10 runs.

Figure 3: Here, d = 500, s = 100, and q = ∥µ− µ̃∥1 ∈ {0.1, 20, 30}. Error bars show standard deviation over 10 runs.

the conditions of Lemma 3.1 with κ(ε) = 2 · 4002 ·
ε2. This gives a sample complexity lower bound of
Ω
(
min

{
d,

∥µi−µ̃∥2
1

ε2

}
· 1
ε2 log(1/ε)

)
for (ε, 2

3 )-PAC learn-
ing in TV distance given advice.

Construct µ1, . . . ,µM as follows: Choose k =

min
{
d,
⌈
λ2

ε2

⌉}
. By the Gilbert-Varshamov bound, for any

k > 4, there exists a code C ⊆ {0, 1}k with pairwise Ham-
ming distance ∈ [k/4, k] such that |C| ≥ 2k−1∑k/4−1

i=0 (ki)
≥

2Ω(k) (via Stirling’s approximation).

With M = 2Ω(k), choose such a code C and get
{v1, . . . ,vM} ⊆ {±1}k by applying (x1, . . . , xk) 7→
((−1)x1 , . . . , (−1)xk) to each x ∈ C. The first k coor-
dinates of each µi ∈ Rd are set to λ

k · vi and the remain-
ing d − k coordinates are set to 0. Then, by construction,
∥µi − µ̃∥1 = ∥µi∥1 = k

(
λ
k

)
= λ for each µi, and

∥µi − µj∥2 =
(
2λ
k

)√
∥vi − vj∥0. Thus, we will have

∥µi − µj∥2 ∈
[

λ√
k
, 2λ√

k

]
for each i ̸= j ∈ [M ].

4. Experiments
Here, we explore the sample complexity gains in the identity
covariance setting when one is given high quality advice,
specifically the benefits of performing the optimization in

line 8 of Algorithm 1 versus returning the empirical mean
as in line 11. As such, we do not invoke APPROXL1 but
instead explore how to ∥µ− µ̂ALG∥2 behaves as a function
of ∥µ− µ̂∥1 and number of samples, where ALG is either
our TESTANDOPTIMIZE approach or simply computing the
empirical mean. For reproducibility, our code and scripts
are provided in the supplementary materials.

We perform two experiments on multivariate Gaussians of
dimension d = 500 while varying two parameters: sparsity
s ∈ [d] and advice quality q ∈ R≥0. In both experiments,
the difference vector µ − µ̃ ∈ Rd is generated with ran-
dom ±q/s values in the first s coordinates and zeros in the
remaining d − s coordinates. In the first experiment (see
Figure 2), we fix q = 50 and vary s ∈ {100, 200, 300}. In
the second experiment (see Figure 3), we fix s = 100 and
vary q ∈ {0.1, 20, 30}. In both experiments, we see that
TESTANDOPTIMIZE beats the empirical mean estimate in
terms of incurred ℓ2 error (which translate directly to dTV),
with the diminishing benefits as q or s increases.

For computational efficiency, we solve the
LASSO optimization in its Lagrangian form
µ̂ = argminβ∈Rd

1
n

∑n
i=1 ∥yi − β∥22 + λ∥β∥1, us-

ing the LassoLarsCV method in scikit-learn,
instead of the equivalent penalized form. The value of the
hyperparameter λ is chosen using 5-fold cross-validation.

8
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5. Conclusion
We propose a learning-augmented algorithm for learning
multivariate Gaussians that incorporates property testing as
a subroutine, where the advice quality is stated in terms of
ℓ1 error, and provide matching information-theoretic lower
bounds. While running our experiments, we observe an
interesting phenomenon: the rate of improvement does not
worsen as ℓ1 increases if we fixed the ℓ0 sparsity; see Ap-
pendix E. As such, it would be interesting to show theoreti-
cal guarantees with advice error in the ℓ0-norm.
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A. Preliminaries
For any integer d ≥ 1, we write [d] to mean the set of integers {1, . . . , d}. We will write v ∼ N(µ,Σ) to mean drawing a
multivariate Gaussian sample and M = {v1, . . . ,v|M|} to mean a collection of |M| independently drawn such vectors.

In the rest of this section, we will state some basic facts and lemmas that would be useful for our work. Most of them are
folklore results and we supplement proofs for them when we could not nail down a direct reference.

A.1. Matrix facts

Fact A.1 (e.g. see Exercise 5.4.P3 of (Horn & Johnson, 2012)). Let x ∈ Rd be an arbitrary d-dimensional real vector. Then,

the ℓ1 and ℓ2 norms of x are defined as ∥x∥1 =
∑d

i=1 |xi| and ∥x∥2 =
√∑d

i=1 x
2
i respectively. They satisfy the inequality:

∥x∥2 ≤ ∥x∥1 ≤
√
d · ∥x∥2.

For a real matrix M ∈ Rd×d, we define its vectorized form vec(M) ∈ Rd2

by vec(M) = (M1,1, . . . ,Md,d) and
we see that ∥M∥2F = ∥vec(M)∥22. We recover a matrix given its vectorized form via M = mat(vec(M)). For any
matrix A, we use σmin(A) to denote its smallest eigenvalue. Note that for any full rank matrix A ∈ Rd×d, we have

1
∥A∥2

≤ ∥A−1∥2, ∥A∥2 ≤ ∥A∥F ≤
√
d · ∥A∥2 (e.g. see Exercise 5.6.P23 of (Horn & Johnson, 2012)), and ∥A∥F =

∥vec(A)∥2 ≤ ∥vec(A)∥1 ≤
√
d · ∥vec(A)∥2. For any two matrices A and B of the same dimension, we also know that

∥AB∥F ≤ min{∥A∥2∥B∥F , ∥A∥F ∥B∥2}.

Lemma A.2 (Chapter 5.6 of (Horn & Johnson, 2012)). Let A and B be two square real matrices where A is an invertible
matrix. Then, ∥AB∥ = ∥BA∥.

Proof. Exercise 5.6.P58(b) of (Horn & Johnson, 2012) tells us that ∥AB∥ = ∥BA∥ when A normal and B is Hermitian.
Since normal matrices are invertible and every real matrix is Hermitian, the claim follows.

Lemma A.3. Let A and B be two square d × d matrices where A is an invertible matrix with a square root. Then,
∥A−1/2BA−1/2 − I∥ = ∥A−1B− Id∥

Proof. ∥A−1/2BA−1/2 − Id∥ = ∥(A−1/2B−A1/2)A−1/2∥ = ∥A−1/2(A−1/2B−A1/2)∥ = ∥A−1B− Id∥.

Definition A.4 (Projected vector). Let x = (x1, . . . ,xd) ∈ Rd be a d-dimensional vector and B = {i1, . . . , iw} ⊆ [d] be a
subset of 1 ≤ w ≤ d indices, where i1 < . . . < iw. Then, we define xB = (xi1 , . . . ,xiw) ∈ Rw as the projection of the
vector x to the coordinates indicated by B.

Lemma A.5 (Trace inequality). For any three matrices A,B,C ∈ Rd×d, we have Tr(ABC) ≤ ∥vec(BA)∥1 · ∥C∥2.

Proof. Let λ1(M), . . . , λd(M) denote the eigenvalues of a matrix M ∈ Rd×d.

Tr(ABC) ≤
∑
i

λi(AB) · λi(C) (by von Neumann trace inequality)

=
∑
i

λi(BA) · λi(C) (e.g. see Theorem 1.3.22 of (Horn & Johnson, 2012))

≤
∑
i

|λi(BA) · λi(C)|

≤

∥∥∥∥∥∥∥
λ1(BA)

...
λd(BA)


∥∥∥∥∥∥∥
1

·

∥∥∥∥∥∥∥
λ1(C)

...
λd(C)


∥∥∥∥∥∥∥
∞

(Hölder’s inequality)

=
∑
i

|λi(BA)| ·max
i

λi(C) (Definitions of vector ℓ1 and ℓ∞ norms)

≤
∑
i

|λi(BA)| · ∥C∥2 (Definition of matrix spectral norm)

12
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It remains to argue that
∑

i |λi(BA)| ≤ ∥vec(BA)∥1. To this end, consider the singular value decomposition (SVD) of
BA = UΣV⊤ with unitary matrices U,V and diagonal matrix Σ = diag(σ1, . . . , σd). Let us denote the eigenvalues of
BA by σ1, . . . , σd and the columns of BA by z1, . . . , zd ∈ Rd. Then,∑

i

|λi(BA)| ≤
∑
i

σi (e.g. see Equation (7.3.17) in (Horn & Johnson, 2012))

= Tr(Σ) (By definition of Σ)

= Tr(V⊤VU⊤UΣ) (Since U and V are unitary matrices)

= Tr(VU⊤UΣV⊤) (By cyclic property of trace)

= Tr(VU⊤BA) (By SVD of BA)

=

d∑
i=1

(VU⊤zi)i (By definition of trace)

≤
d∑

i=1

∥VU⊤zi∥2 (Since (VU⊤zi)
2
i is just one term in summation of ∥VU⊤zi∥22)

=

d∑
i=1

∥zi∥2 (Since U and V are unitary matrices)

≤
d∑

i=1

∥zi∥1 (Since ℓ2 ≤ ℓ1)

=

d∑
i=1

d∑
j=1

|(BA)i,j | (By definition of vector ℓ1 norm)

= ∥vec(BA)∥1 (By definition of ∥vec(BA)∥1)

Putting together, we get Tr(ABC) ≤
∑

i |λi(BA)| · ∥C∥2 ≤ ∥vec(BA)∥1 · ∥C∥2 as desired.

Lemma A.6. For any two matrices A,B ∈ Rd×d, we have ∥vec(A+B)∥1 ≤ ∥vec(A)∥1+∥vec(B)∥1 and ∥vec(AB)∥1 ≤
∥vec(A)∥1 · ∥vec(B)∥1.

Proof. To see ∥vec(A+B)∥1 ≤ ∥vec(A)∥1 + ∥vec(B)∥1, observe that

∥vec(A+B)∥1 =

d∑
i=1

d∑
j=1

|Aij +Bij | ≤
d∑

i=1

d∑
j=1

|Aij |+
d∑

i=1

d∑
j=1

|Bij | = ∥vec(A)∥1 + ∥vec(B)∥1

To see ∥vec(AB)∥1 ≤ ∥vec(A)∥1 · ∥vec(B)∥1, observe that

∥vec(AB)∥1 =

d∑
i=1

d∑
j=1

d∑
k=1

|AijBjk| ≤

 d∑
i=1

d∑
j=1

|Aij |

 ·

 d∑
j=1

d∑
k=1

|Bjk|

 = ∥vec(A)∥1 · ∥vec(B)∥1

A.2. Distance measures between distributions

Definition A.7 (Kullback–Leibler (KL) divergence).
For two continuous distributions P and Q over X,

dKL(P,Q) =

∫
x∈X

P(x) log

(
P(x)

Q(x)

)
dx

Note that KL divergence is not symmetric in general.

13
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Lemma A.8 (Known fact about KL divergence). Given two d-dimensional multivariate Gaussian distributions P ∼
N(µP ,ΣP) and Q ∼ N(µQ,ΣQ) where ΣP and ΣQ are invertible, we have

dKL(P,Q) =
1

2
·
(
Tr(Σ−1

Q ΣP)− d+ (µQ − µP)
⊤Σ−1

Q (µQ − µP) + ln

(
detΣQ

detΣP

))
≤ 1

2
·
(
(µQ − µP)

⊤Σ−1
Q (µQ − µP) + ∥X∥2F

)
where X = Σ

−1/2
Q ΣPΣ

−1/2
Q − Id with eigenvalues λ1, . . . , λd. In particular, dKL(P,Q) = 1

2∥µQ − µP∥22 when
ΣP = ΣQ = Id and dKL(P,Q) ≤ 1

2∥X∥2F when µP = µQ.

Proof. Let P ∼ N(µP ,ΣP) and Q ∼ N(µQ,ΣQ) be two d-dimensional multivariate Gaussian distributions where ΣP
and ΣQ are full rank invertible covariance matrices.

By definition, the KL divergence between P and Q is

dKL(P,Q) =
1

2
·
(
Tr(Σ−1

Q ΣP)− d+ (µQ − µP)
⊤Σ−1

Q (µQ − µP) + ln

(
detΣQ

detΣP

))
(4)

Let us define the matrix X = Σ
−1/2
Q ΣPΣ

−1/2
Q − Id with eigenvalues λ1, . . . , λd. Note that X is invertible because ΣP

and ΣQ are invertible, so λ1, . . . , λd > 0. Then, Equation (4) can be upper bounded as

dKL(P,Q) =
1

2
·
(
Tr(Σ−1

Q ΣP)− d+ (µQ − µP)
⊤Σ−1

Q (µQ − µP) + ln

(
detΣQ

detΣP

))
≤ 1

2

(
(µQ − µP)

⊤Σ−1
Q (µQ − µP) + ∥X∥2F

)
(5)

This is because Tr(Σ−1
Q ΣP) = Tr(Σ

−1/2
Q ΣPΣ

−1/2
Q ) = Tr(X+ Id) = Tr(X) + d and

− ln

(
detΣQ

detΣP

)
= ln det

(
Σ−1

Q ΣP
)
= ln det(X+ Id) = ln

d∏
i=1

(1 + λi)

=

d∑
i=1

ln(1 + λi) ≥
d∑

i=1

(λi − λ2
i ) = Tr(X)−

d∑
i=1

λ2
i = Tr(X)− ∥X∥2F

where the inequality holds due to λ1, . . . , λd > 0.

When ΣP = ΣQ = Id, Equation (4) reduces to dKL(P,Q) = 1
2∥µQ − µP∥22. Meanwhile, when µP = µQ, Equation (5)

reduces to dKL(P,Q) ≤ 1
2

(
∥X∥2F

)
.

Definition A.9 (Total variation (TV) distance). For two continuous distributions P and Q over domain X, with density
functions f and g respectively, dTV(P,Q) = 1

2

∫
x∈X

|f(x)− g(x)| dx.

Theorem A.10 (Pinsker’s inequality). If P and Q are two probability distributions on the same measurable space, then
dTV(P,Q) ≤

√
dKL(P,Q)/2.

A.3. Properties of Gaussians

The following are standard results about empirical statistics of Gaussian samples.

Lemma A.11 (Lemma C.4 in (Ashtiani et al., 2020); Corollary 5.50 in (Vershynin, 2010)). Let g1, . . . ,gn ∼ N(0, Id) and
let 0 < ε < 1 < t. If n ≥ c0 · t2d

ε2 , for some absolute constant c0, then

Pr

(∥∥∥∥∥ 1n
n∑

i=1

gig
⊤
i − Id

∥∥∥∥∥
2

> ε

)
≤ 2 exp(−t2d)
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Lemma A.12 (Folklore; e.g. see Appendix C of (Ashtiani et al., 2020)). Fix ε, δ ∈ (0, 1). Given 2n i.i.d. samples
x1, . . . ,x2n ∼ N(µ,Σ) for some unknown mean µ and unknown covariance Σ, define empirical mean and covariance as

µ̂ =
1

2n

2n∑
i=1

xi and Σ̂ =
1

2n

n∑
i=1

(x2i − x2i−1)(x2i − x2i−1)
⊤

Then,

• When n ∈ O
(

d2+d log(1/δ)
ε2

)
, we have Pr

(
dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε

)
≥ 1− δ

• When n ∈ O
(

d+
√

d log(1/δ)

ε2

)
, we have Pr

(
(µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε2

)
≥ 1− δ

Lemma A.13 (Properties of empirical covariance). Let Σ̂ ∈ Rd×d be the empirical covariance constructed from n i.i.d.
samples from N(0,Σ) for some unknown covariance Σ. Then,

• When n = d, with probability 1, we have that Σ̂ and Σ share the same eigenspace.

• Let λ1 ≤ . . . ≤ λd and λ̂1 ≤ . . . ≤ λ̂d be the eigenvalues of Σ and Σ̂ respectively. With probability at least 1− δ, we

have λ̂1

λ1
≤ 1 +O

(√
d+log 1/δ

n

)
.

Proof. For item 1, let 1 ≤ r ≤ d be the rank of Σ. We consider the case of the d-dimensional Gaussian with zero mean

and covariance Γr =

[
Ir 0
0 0

]
, where Ir denotes the r-dimensional identity matrix and the zero-padding is added when

r < d. Note that there is an invertible transformation between samples from N(0,Γr) and N(0,Σ) with samples from
N(0,Γr) having the r+1, . . . , d coordinates be fixed to 0. Now, let us denote the i-th standard basis vector by ei and apply
an induction argument on r from 1 to d. The base case (r = 1) is obviously true since a single sample x1 will span {e1}
unless x1 = 0, which will happen with probability 0. When r > 1, by strong induction, r samples x1, . . . ,xr will not span
{e1, . . . , er} only if the r-th sample xr lies in the subspace spanned by x1, . . . ,xr−1. This is a measure 0 event under the
N(0,Γr) measure.

For item 2, see Fact 3.4 of (Kamath et al., 2019).

Lemma A.14. Fix n ≥ 1 and d ≥ 1. Suppose µ ∈ Rd is a hidden mean vector and we draw n samples x1, . . . ,xn ∼
N(µ, Id). Define zn = 1√

n

∑n
i=1 xi and yn = ∥zn∥22. Then,

1. yn follows the non-central chi-squared distribution χ′2
d (λ) for λ = n∥µ∥22. This also implies that E[yn] = d+ λ and

Var(yn) = 2d+ 4λ.

2. For any t > 0,

Pr(yn > d+ λ+ t) ≤ exp

(
−d

2

(
t

d+ 2λ
− log

(
1 +

t

d+ 2λ

)))
≤ exp

(
− dt2

4(d+ 2λ)(d+ 2λ+ t)

)

3. For any t ∈ (0, d+ λ),

Pr(yn < d+ λ− t) ≤ exp

(
d

2

(
t

d+ 2λ
+ log

(
1− t

d+ 2λ

)))
≤ exp

(
− dt2

4(d+ 2λ)2

)
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Proof. The first item follows from the definition of the non-central chi-squared distribution, noting that the random vector zn
is distributed as N(

√
n ·µ, Id). The second and third items follow from Theorems 3 and 4 of (Ghosh, 2021) respectively.

Lemma A.15. Suppose g1, . . . ,gn ∼ N(0, Id). Then,

Pr

(∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

≥

√
2n log

(
2d

δ

))
≤ δ

Proof. Since g1, . . . ,gn ∼ N(0, Id), we see that y = g1 + . . . + gn ∼ N(0, nId). Furthermore, each coordinate
i ∈ [d] of yi = (y1, . . . , yd) is distributed according to N(0, n). By standard Gaussian tail bounds, we know that
Pr(|yi| ≥ t) ≤ 2 exp

(
− t2

2n

)
for any i ∈ [d] and t > 0. So,

Pr

(∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

≥

√
2n log

(
2d

δ

))
= Pr

(
∥y∥∞ ≥

√
2n log

(
2d

δ

))

= Pr

(
max
i∈[d]

∥yi∥ ≥

√
2n log

(
2d

δ

))

≤
d∑

i=1

Pr

(
∥yi∥ ≥

√
2n log

(
2d

δ

))
(Union bound over all d coordinates)

≤ 2d exp

(
−
2n log

(
2d
δ

)
2n

)
(Setting t = 2n log

(
2d
δ

)
)

= δ

B. Additional results
B.1. Tolerant testing

In this section, we present an algorithm for testing whether an unknown distribution is close to a standard normal distribution.
More specifically, we first describe a tolerant tester for the property that the mean of an isotropic Gaussian distribution
equals zero. Subsequently, we present a tolerant tester for the property that the covariance matrix equals the identity matrix.

B.1.1. TOLERANT TESTING FOR MEAN

The definition of a tolerant tester for the mean of an isotropic Gaussian distribution is given below.
Definition B.1 (Tolerant testing of isotropic Gaussian mean). Fix m ≥ 1, d ≥ 1, ε2 > ε1 > 0, and δ > 0. Suppose
µ ∈ Rd is a hidden mean vector and we draw m samples x1, . . . ,xm ∼ N(µ, Id). An algorithm ALG is said to be a
(ε1, ε2, δ)-tolerant isotropic Gaussian mean tester if it satisfies the following two conditions:

1. If ∥µ∥2 ≤ ε1, then ALG should Accept with probability at least 1− δ

2. If ∥µ∥2 ≥ ε2, then ALG should Reject with probability at least 1− δ.

ALG is allowed to decide arbitrarily when ε1 < ∥µ∥2 < ε2.

It is known that the test statistic yn =
∥∥∥ 1√

n

∑n
i=1 xi

∥∥∥2
2

can be used for non-tolerant isotropic Gaussian mean testing with an
appropriate threshold; see Appendix C of (Diakonikolas et al., 2017). With the following lemma we show that yn can also
be used for tolerant isotropic Gaussian mean testing.
Lemma B.2. Fix m ≥ 1, d ≥ 1, ε2 > ε1 > 0, and δ > 0. Suppose µ ∈ Rd is a hidden mean vector and we draw m i.i.d.

samples x1, . . . ,xm ∼ N(µ, Id). When d ≥
(

16ε22
ε22−ε21

)2
and m ∈ O

( √
d

ε22−ε21
log
(
1
δ

))
, TOLERANTIGMT (Algorithm 2) is

a (ε1, ε2, δ)-tolerant isotropic Gaussian mean tester.
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Algorithm 2 The TOLERANTIGMT algorithm.

1: Input: ε2 > ε1 > 0, δ ∈ (0, 1), m i.i.d. samples of N(µ, Id), where µ ∈ Rd

2: Output: Fail (too little samples), Accept (∥µ∥2 ≤ ε1), or Reject (∥µ∥2 ≥ ε2).
3: Define sample batch size n = ⌈ 16

√
d

ε22−ε21
⌉

4: Define number of rounds r =
⌈
log( 12δ )

⌉
if
⌈
log( 12δ )

⌉
is odd, otherwise define r = 1 +

⌈
log( 12δ )

⌉
5: Define testing threshold τ = d+

n(ε21+ε22)
2

6: if m < nr then
7: return Fail
8: else
9: for i ∈ {1, . . . , r} do

10: Use an unused batch of n i.i.d. samples x(i)
1 , . . . ,x

(i)
n ∼ N(µ, Id)

11: Compute test statistic y
(i)
n =

∥∥∥ 1√
n

∑n
i=1 x

(i)
i

∥∥∥2
2

for the ith test

12: Define ith outcome R(i) as Accept if y(i)n ≤ τ , and Reject otherwise
13: end for
14: return majority(R(1), . . . ,R(r))
15: end if

Proof. The total number of samples m required is nr ∈ O
( √

d
ε22−ε21

log
(
1
δ

))
since TOLERANTIGMT uses n = 16

√
d

ε22−ε21
i.i.d.

samples in each of the r ∈ O(log( 1δ )) rounds.

For correctness, we will prove that each round i ∈ {1, . . . , r} succeeds with probability at least 2/3. Then, by Chernoff
bound, the majority outcome out of r ≥ log( 12δ ) independent tests will be correct with probability at least 1− δ.

Now, fix an arbitrary round i ∈ {1, . . . , r}. TOLERANTIGMT uses n = 16
√
d

ε22−ε21
≥ 1 i.i.d. samples to form a statistic y(i)n and

tests against the threshold τ = d+
n(ε21+ε22)

2 . From Lemma A.14 (first item), we know that y(i)n ∼ χ′2
d (λ) is a non-central

chi-square random variable with λ = n∥µ∥22. Let us define t =
n(ε22−ε21)

2 > 0. Observe that we can rewrite the testing

threshold τ in two different ways: τ = d+
n(ε21+ε22)

2 = d+ nε21 + t = d+ nε22 − t.

Case 1: ∥µ∥2 ≤ ε1

In this case, we have λ = n∥µ∥22 ≤ nε21 and τ = d+ nε21 + t. So,

Pr(y(i)n > τ) = Pr(y(i)n > d+ nε21 + t) (since τ = d+ nε21 + t)

≤ Pr(y(i)n > d+ λ+ t) (since λ ≤ nε21)

≤ exp

(
− dt2

4(d+ 2λ)(d+ 2λ+ t)

)
(apply Lemma A.14 (second item) with t > 0)

≤ exp

(
− dt2

4(d+ 2nε21)(d+ 2nε21 + t)

)
(since λ ≤ nε21)

≤ exp

(
− dn2(ε22 − ε21)

2

16(d+ 2nε21)(d+ 2nε22)

)
(since t =

n(ε22−ε21)
2 ≤ 2n(ε22 − ε21))

= exp

(
− 162d2

16(d+ 2nε21)(d+ 2nε22)

)
(since n = 16

√
d

ε22−ε21
)

= exp

− 16(
1 +

2nε21
d

)(
1 +

2nε22
d

)
 (dividing both numerator and denominator by 16d2)

= exp

− 16(
1 +

32ε21√
d(ε22−ε21)

)(
1 +

32ε22√
d(ε22−ε21)

)
 (since n = 16

√
d

ε22−ε21
)
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= exp

(
− 16

(1 + 2)(1 + 2)

)
(since d ≥

(
16ε22
ε22−ε21

)2
≥
(

16ε21
ε22−ε21

)2
)

= exp

(
−16

9

)
<

1

3

Thus, when ∥µ∥2 ≤ ε1, we have Pr(y
(i)
n ≤ τ) ≥ 2/3 and the ith test outcome will be correctly an Accept with probability

at least 2/3.

Case 2: ∥µ∥2 ≥ ε2

In this case, we have λ = n∥µ∥22 ≥ nε22 > nε21 and τ = d+ nε22 − t. We first observe the following inequalities:

• Since n ≥ 1, d ≥ 1, λ ≥ nε22, and ε2 > ε1 > 0, we see that(
2− nε21

λ
− nε22

λ

)2

≥
(
1− ε21

ε22

)2

and
(
d

λ
+ 2

)2

≤
(

d

nε22
+ 2

)2

(6)

• Since n = 16
√
d

ε22−ε21
≥ 1 and d ≥

(
16ε22
ε22−ε21

)2
≥ 1, we see that

(
1 +

2nε22
d

)2

≤ 32 (7)

So,

Pr(y(i)n < τ) = Pr(y(i)n < d+ nε22 − t) (since τ = d+ nε22 − t)

= Pr(y(i)n < d+ λ− (λ+ t− nε22)) (Rewriting)

≤ exp

(
−d(λ+ t− nε22)

2

4(d+ 2λ)2

)
(apply Lemma A.14 (third item) with 0 < λ+ t− nε22 < d+ λ)

= exp

(
−
d
(
λ− n

2 ε
2
1 − n

2 ε
2
2

)2
4(d+ 2λ)2

)
(since t =

n(ε22−ε21)
2 )

= exp

−
d
(
2− nε21

λ − nε22
λ

)2
16
(
d
λ + 2

)2
 (Pulling out the factor of λ

2 from numerator)

≤ exp

−
d
(
1− ε21

ε22

)2
16
(

d
nε22

+ 2
)2
 (by Equation (6))

≤ exp

−
n2
(
ε22 − ε21

)2
16d

(
1 +

nε22
d

)2
 (Pulling out factors of n, d, and ε22)

= exp

− 16(
1 +

nε22
d

)2
 (since n = 16

√
d

ε22−ε21
)

= exp

(
−16

32

)
= exp

(
−16

9

)
<

1

3
(by Equation (7))

Thus, when ∥µ∥2 ≥ ε2, we have Pr(y
(i)
n ≥ τ) ≥ 2/3 and the ith test outcome will be correctly a Reject with probability at

least 2/3.

18
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We are now ready to state the main theorem below.

Lemma B.3 (Tolerant mean tester). Given ε2 > ε1 > 0, δ ∈ (0, 1), and d ≥
(

16ε22
ε22−ε21

)2
, there is a tolerant tester that uses

O
( √

d
ε22−ε21

log
(
1
δ

))
i.i.d. samples from N(µ, Id) and satisfies both conditions below:

1. If ∥µ∥2 ≤ ε1, then the tester outputs Accept,
2. If ∥µ∥2 ≥ ε2, then the tester outputs Reject,
each with success probability at least 1− δ.

Proof. Use the guarantee of Lemma B.2 on TOLERANTIGMT (Algorithm 2) with parameters ε1 = ε and ε2 = 2ε.

B.1.2. TOLERANT TESTING FOR COVARIANCE MATRIX

We now give the definition of a tolerant tester for the unknown covariance matrix being equal to identity.

Definition B.4 (Tolerant testing of zero-mean Gaussian covariance matrix). Fix m ≥ 1, d ≥ 1, ε2 > ε1 > 0, and δ > 0.
Suppose Σ ∈ Rd×d is a hidden full rank covariance matrix and we draw m samples x1, . . . ,xm ∼ N(0,Σ). An algorithm
ALG is said to be a (ε1, ε2, δ)-tolerant zero-mean Gaussian covariance tester if it satisfies the following two conditions:

1. If ∥Σ− Id∥F ≤ ε1, then ALG should Accept with probability at least 1− δ

2. If ∥Σ− Id∥F ≥ ε2, then ALG should Reject with probability at least 1− δ.

ALG is allowed to decide arbitrarily when ε1 < ∥Σ− Id∥2 < ε2.

Definition B.5 (Test statistic Tn). Let x1, . . . , xn be n i.i.d. samples from ∼ N(0,Σ) for an unknown Σ ∈ Rd×d. For
i ̸= j, we define h(xi, xj) = (x⊤

i xj)
2 − (x⊤

i xi + x⊤
j xj) + d. Then, we define Tn as

Tn =
2

n(n− 1)

∑
1≤i<j≤n

h(xi, xj)

It is known that the test statistic Tn (Definition B.5) can be used for non-tolerant zero-mean Gaussian covariance testing
with an appropriate threshold; see (Cai & Ma, 2013). With the following lemma, we show that Tn can also be used for
tolerant zero-mean Gaussian covariance testing.

Algorithm 3 TOLERANTZMGCT.

1: Input: ε2 > ε1 > 0, δ ∈ (0, 1), m i.i.d. samples of N(0,Σ), where Σ ∈ Rd×d

2: Output: Fail (too little samples), Accept (∥Σ− Id∥2F ≤ ε21), or Reject (∥Σ− Id∥2F ≥ ε22)

3: Define sample batch size n =

⌈
3200 · d ·max

{
1
ε21
,
(

ε21
ε22−ε21

)2
, 2
(

ε2
ε22−ε21

)2}⌉
4: Define number of rounds r =

⌈
log( 12δ )

⌉
if
⌈
log( 12δ )

⌉
is odd, otherwise define r = 1 +

⌈
log( 12δ )

⌉
5: Define testing threshold τ =

ε22+ε21
2

6: if m < nr then
7: return Fail
8: else
9: for i ∈ {1, . . . , r} do

10: Use an unused batch of n i.i.d. samples x(i)
1 , . . . ,x

(i)
n ∼ N(0,Σ)

11: Compute test statistic T
(i)
n according to Definition B.5 for the ith test

12: Define ith outcome R(i) as Accept if T (i)
n ≤ τ , and Reject otherwise

13: end for
14: return majority(R(1), . . . , R(r))
15: end if
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Lemma B.6. Fix m ≥ 1, d ≥ 1, ε2 > ε1 > 0, and δ > 0. Suppose Σ ∈ Rd×d is a hidden full rank covariance matrix and
we draw m i.i.d. samples x1, . . . ,xm ∼ N(0,Σ). When d ≥ ε22 and

m ≥ O

(
d ·max

{
1

ε21
,

(
ε21

ε22 − ε21

)2

,

(
ε2

ε22 − ε21

)2
}

· log
(
1

δ

))
,

TOLERANTZMGCT (Algorithm 3) is a (ε1, ε2, δ)-tolerant zero-mean Gaussian covariance tester.

To prove Lemma B.6, we first state the expectation and variance of Tn known from (Cai & Ma, 2013), and give an upper
bound on the variance that will be useful for subsequent analysis.

Lemma B.7 ((Cai & Ma, 2013)). For the test statistic Tn defined in Definition B.5, we have E(Tn) = ∥Σ − Id∥2F and
σ2(Tn) =

4
n(n−1)

[
Tr2(Σ2) + Tr(Σ4)

]
+ 8

nTr(Σ
2(Σ− Id)

2).

Lemma B.8. Fix d, n ≥ 1, Σ ∈ Rd×d, and b ≥ 0. If ∥Σ− Id∥2F = b2d
n , then ∥Σ∥2F ≤ d ·

(
1 + b√

n

)2
.

Proof. Since the matrices can be treated as vectors in Rd2

and then the Frobenius norm corresponds to the ℓ2 norm, we see
that

∥Σ∥F ≤ ∥Σ− Id∥F + ∥Id∥F (Triangle inequality)

= b ·
√

d

n
+
√
d (Since ∥Σ− Id∥2F = b2d

n and ∥Id∥2F = d)

=
√
d

(
1 +

b√
n

)

Therefore, ∥Σ∥2F ≤ d ·
(
1 + b√

n

)2
as desired.

Lemma B.9. Fix d ≥ 1, n ≥ 2, Σ ∈ Rd×d, and b ≥ 0. If ∥Σ − Id∥2F = b2d
n , then for the test statistic Tn defined in

Definition B.5, we have

σ2(Tn) ≤
64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)

Proof. We begin by observing two simple upper bounds for Tr(Σ4) and Tr(Σ2(Σ− Id)
2).

Tr(Σ4) = ∥Σ2∥2F ≤ ∥Σ∥2F · ∥Σ∥2F = ∥Σ∥4F = Tr2(Σ2) (8)

Since Σ(Σ− Id) = Σ2 −Σ = (Σ− Id)Σ, i.e. Σ and Σ− Id commute, we have

Tr(Σ2(Σ− Id)
2) = Tr((Σ(Σ− Id))

2) = ∥Σ(Σ− Id)∥2F ≤ ∥Σ∥2F · ∥Σ− Id∥2F = Tr(Σ2) · Tr((Σ− Id)
2) (9)

Σ2(Tn)

=
4

n(n− 1)

[
Tr2(Σ2) + Tr(Σ4)

]
+

8

n
Tr(Σ2(Σ− Id)

2) (By Lemma B.7)

≤ 8

n(n− 1)

[
Tr2(Σ2) + (n− 1) · Tr(Σ2(Σ− Id)

2)
]

(By Equation (8))

≤ 8

n(n− 1)

[
Tr2(Σ2) + (n− 1) · Tr(Σ2) · Tr((Σ− Id)

2)
]

(By Equation (9))

=
8

n(n− 1)
· Tr(Σ2) ·

[
Tr(Σ2) + (n− 1) · Tr((Σ− Id)

2)
]
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≤ 8

n(n− 1)
· Tr(Σ2) ·

[
Tr(Σ2) + n · Tr((Σ− Id)

2)
]

(Since Tr((Σ− Id)
2) ≥ 0)

≤ 8

n(n− 1)
· d ·

(
1 +

b√
n

)2

·

(
d ·
(
1 +

b√
n

)2

+ n · Tr((Σ− Id)
2)

)
(Since Tr(Σ2) = ∥Σ∥2F and by Lemma B.8)

=
8

n(n− 1)
· d ·

(
1 +

b√
n

)2

·

(
d ·
(
1 +

b√
n

)2

+ b2 · d

)
(Since Tr((Σ− Id)

2) = ∥Σ− Id∥2F = b2d
n )

=
8d2

n(n− 1)
·
(
1 +

b√
n

)2

·

((
1 +

b√
n

)2

+ b2

)

≤ 16d2

n2
·
(
1 +

b√
n

)2

·

((
1 +

b√
n

)2

+ b2

)
(Since n ≥ 2)

≤ 64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)
(Since (a+ b)2 ≤ 2a2 + 2b2)

Proof of Lemma B.6. Let us define ∆ε1,ε2 = max

{
1
ε21
,
(

ε21
ε22−ε21

)2
, 2
(

ε2
ε22−ε21

)2}
> 0 and suppose ∥Σ− Id∥2F = b2d

n for

some b ≥ 0.

The total number of samples m required is nr ∈ O
(
d ·∆ε1,ε2 · log

(
1
δ

))
since TOLERANTZMGCT uses n = 3200·d·∆ε1,ε2

i.i.d. samples in each of the r ∈ O(log( 1δ )) rounds.

For correctness, we will prove that each round i ∈ {1, . . . , r} succeeds with probability at least 2/3. Then, by Chernoff
bound, the majority outcome out of r ≥ log( 12δ ) independent tests will be correct with probability at least 1− δ.

Now, fix an arbitrary round i ∈ {1, . . . , r}. TOLERANTZMGCT uses n = 3200 · d ·∆ε1,ε2 i.i.d. samples to form a statistic

T
(i)
n (Definition B.5) and tests against the threshold τ =

ε22+ε21
4 .

Case 1: ∥Σ− Id∥2F ≤ ε21

We see that

b2 =
n

d
· ∥Σ− Id∥2F (Since ∥Σ− Id∥2F = b2d

n )

= 3200 ·∆ε1,ε2 · ∥Σ− Id∥2F (Since n = 3200 · d ·∆ε1,ε2 )

≤ 3200 ·∆ε1,ε2 · ε21 (Since ∥Σ− Id∥2F ≤ ε21)

and

1 +
b2

n
= 1 +

∥Σ− Id∥2F
d

(Since ∥Σ− Id∥2F = b2d
n )

≤ 1 +
ε21
d

(Since ∥Σ− Id∥2F ≤ ε21)

≤ 2 (Since d ≥ ε22 > ε21)

So,

σ2(Tn) ≤
64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)
(By Lemma B.9)

≤ 64d2

n2
· 2 ·

(
2 + 3200 ·∆ε1,ε2 · ε21

)
(From above)

=
64 · 2
32002

· 1

∆2
ε1,ε2

·
(
2 + 3200 ·∆ε1,ε2 · ε21

)
(Since n = 3200 · d ·∆ε1,ε2 )
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≤ 64 · 2
32002

· 1

∆2
ε1,ε2

· 3202 ·∆ε1,ε2 · ε21 (Since ∆ε1,ε2ε
2
1 ≥ 1)

≤ 64 · 2 · 3202
32002

· (ε22 − ε21)
2 (Since

(
ε21

ε22−ε21

)2
≤ ∆ε1,ε2 )

Chebyshev’s inequality then tells us that

Pr (Tn > τ) = Pr

(
Tn > ε21 +

ε22 − ε21
2

)
(Since τ =

ε22+ε21
2 = ε21 +

ε22−ε21
2 )

≤ Pr

(
Tn > ∥Σ− Id∥2F +

ε22 − ε21
2

)
(Since ∥Σ− Id∥2F ≤ ε21)

= Pr

(
Tn > E[Tn] +

ε22 − ε21
2

)
(By Lemma B.7)

≤ Pr

(
|Tn − E[Tn]| >

ε22 − ε21
2

)
(Adding absolute sign)

≤ σ2(Tn) ·
(

2

ε22 − ε21

)2

(Chebyshev’s inequality)

≤ 64 · 2 · 3202
32002

· (ε22 − ε21)
2 · 4

(ε22 − ε21)
2

(From above)

<
1

3

Thus, when ∥Σ − Id∥2F ≤ ε21, we have Pr (Tn < τ) ≥ 2/3 and the ith test outcome will be correctly an Accept with
probability at least 2/3.

Case 2: ∥Σ− Id∥2F ≥ ε22

We can lower bound b2 as follows:

b2 =
n

d
· ∥Σ− Id∥2F (Since ∥Σ− Id∥2F = b2d

n )

= 3200 ·∆ε1,ε2 · ∥Σ− Id∥2F (Since n = 3200 · d ·∆ε1,ε2 )

≥ 3200 ·∆ε1,ε2 · ε22 (Since ∥Σ− Id∥2F ≥ ε22)

Meanwhile, we can lower bound n as follows:

n = 3200 · d ·∆ε1,ε2 (Since n = 3200 · d ·∆ε1,ε2 )

≥ 3200 · ε22 ·∆ε1,ε2 (Since d ≥ ε22)

≥ 3200 · ε22 ·∆ε1,ε2

∆ε1,ε2 ·
(

ε22−ε21
ε2

)2
− 1

(Since ∆ε1,ε2 ≥ 2
(

ε2
ε22−ε21

)2
)

Using these lower bounds on b2 and n (which we color for convenience), we can conclude that 1 + b2

n ≤ b2

3200 ·
(

ε22−ε21
ε22

)2
via the following two equivalences:

1 +
b2

n
≤ b2

3200
·
(
ε22 − ε21

ε22

)2

⇐⇒ b2 ≥ n

n
3200 ·

(
ε22−ε21
ε22

)2
− 1

and

3200 ·∆ε1,ε2 · ε22 ≥ n

n
3200 ·

(
ε22−ε21
ε22

)2
− 1

⇐⇒ n ≥ 3200 ·∆ε1,ε2 · ε22
∆ε1,ε2 · ε22 ·

(
ε22−ε21
ε22

)2
− 1

=
3200 · ε22 ·∆ε1,ε2

∆ε1,ε2 ·
(

ε22−ε21
ε2

)2
− 1
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So,

σ2(Tn) ≤
64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)
(By Lemma B.9)

≤ 64 · 2 · d
2

n2
·

(
b2

3200
·
(
ε22 − ε21

ε22

)2
)

·

(
b2

3200
·
(
ε22 − ε21

ε22

)2

+ b2

)
(Since 1 + b2

n ≤ b2

3200 ·
(

ε22−ε21
ε22

)2
)

=
64 · 2 · 2
3200

·
(
ε22 − ε21

ε22

)2

· d
2

n2
· b4 (Since 1

3200

(
ε22−ε21
ε22

)2
≤ 1)

=
64 · 2 · 2
3200

·
(
ε22 − ε21

ε22

)2

· ∥Σ− Id∥4F (Since ∥Σ− Id∥2F = b2d
n )

Chebyshev’s inequality then tells us that

Pr (Tn < τ) = Pr

(
Tn < ε22 ·

(
1− ε22 − ε21

2ε22

))
(Since τ =

ε22+ε21
2 = ε22 −

ε22−ε21
2 = ε22 ·

(
1− ε22−ε21

2ε22

)
)

≤ Pr

(
Tn < ∥Σ− Id∥2F ·

(
1− ε22 − ε21

2ε22

))
(Since ∥Σ− Id∥2F ≥ ε22)

= Pr

(
∥Σ− Id∥2F − Tn > ∥Σ− Id∥2F · ε

2
2 − ε21
2ε22

)
(Rearranging)

= Pr

(
E[Tn]− Tn > ∥Σ− Id∥2F · ε

2
2 − ε21
2ε22

)
(By Lemma B.7)

≤ Pr

(
|E[Tn]− Tn| > ∥Σ− Id∥2F · ε

2
2 − ε21
2ε22

)
(Adding absolute sign)

≤ σ2(Tn) ·
(

1

∥Σ− Id∥2F
· 2ε22
ε22 − ε21

)2

(Chebyshev’s inequality)

≤ 64 · 2 · 2
3200

·
(
ε22 − ε21

ε22

)2

· ∥Σ− Id∥4F ·
(

1

∥Σ− Id∥2F
· 2ε22
ε22 − ε21

)2

(From above)

=
64 · 2 · 2 · 4

3200

<
1

3

Thus, when ∥Σ − Id∥2F ≥ ε22, we have Pr (Tn > τ) ≥ 2/3 and the ith test outcome will be correctly an Reject with
probability at least 2/3.

Lemma B.10 (Tolerant covariance tester). Given ε2 > ε1 > 0, δ ∈ (0, 1), and d ≥ ε22, there is a tolerant tester that uses

O
(
d ·max

{
1
ε21
,
(

ε22
ε22−ε21

)2
,
(

ε2
ε22−ε21

)2}
log
(
1
δ

))
i.i.d. samples from N(0,Σ) and satisfies both conditions below:

1. If ∥Σ− Id∥F ≤ ε1, then the tester outputs Accept,
2. If ∥Σ− Id∥F ≥ ε2, then the tester outputs Reject,
each with success probability at least 1− δ.

Proof. Use the guarantee of Lemma B.6 on TOLERANTZMGCT (Algorithm 3) with parameters ε21 = ε2 and ε22 = 2ε2.

C. Identity covariance setting
C.1. Guarantees of APPROXL1

Here, we show that the guarantees of the APPROXL1 algorithm (Algorithm 4).

Lemma C.1. Let k, α, and ζ be the input parameters to the APPROXL1 algorithm (Algorithm 4). Given m(k, α, δ′) i.i.d.
samples from N(µ, Id), APPROXL1 succeeds with probability at least 1− δ and has the following properties:
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Algorithm 4 The APPROXL1 algorithm.

1: Input: Block size k ∈ [d], lower bound α > 0, upper bound ζ > 2α, failure rate δ ∈ (0, 1), and i.i.d. samples S from
N(µ, Id)

2: Output: Fail or λ ∈ R
3: Define w = ⌈d/k⌉ and δ′ = δ

w·⌈log2 ζ/α⌉
4: Partition the index set [d] into w blocks:

B1 = {1, . . . , k},B2 = {k + 1, . . . , 2k}, . . . ,Bw = {k(w − 1) + 1, . . . , d}

5: for j ∈ {1, . . . , w} do
6: Define Sj = {xBj ∈ R|Bj | : x ∈ S} as the samples projected to Bj ▷ See Definition A.4
7: Initialize oj = Fail
8: for i = 1, 2, . . . , ⌈log2 ζ/α⌉ do
9: Define li = 2i−1 · α

10: Let Outcome be the output of the tolerant tester of Lemma 1.5 using sample set Sj with parameters
ε1 = li, ε2 = 2li, and δ = δ′

11: if Outcome is Accept then
12: Set oj = li and break ▷ Escape inner loop for block j
13: end if
14: end for
15: end for
16: if there exists a Fail amongst {o1, . . . , ow} then
17: return Fail
18: else
19: return λ = 2

∑w
j=1

√
|Bj | · oj ▷ λ is an estimate for ∥µ∥1

20: end if

1. If APPROXL1 outputs Fail, then ∥µ∥2 > ζ/2.
2. If APPROXL1 outputs λ ∈ R, then ∥µ∥1 ≤ λ ≤ 2

√
k · (⌈d/k⌉ · α+ 2∥µ∥1).

Proof. We begin by stating some properties of o1, . . . , ow. Fix an arbitrary index j ∈ {1, . . . , w} and suppose oj is not a
Fail, i.e. the tolerant tester of Lemma 1.5 outputs Accept for some i∗ ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. Note that APPROXL1 sets
oj = ℓi∗ and the tester outputs Reject for all smaller indices i ∈ {1, . . . , i∗ − 1}. Since the tester outputs Accept for i∗,
we have that ∥µBj∥2 ≤ 2ℓi∗ = 2oj . Meanwhile, if i∗ > 1, then ∥µBj∥2 > ℓi∗−1 = ℓi∗/2 = oj/2 since the tester outputs
Reject for i∗ − 1. Thus, we see that

• When oj is not Fail, we have ∥µBj∥2 ≤ 2oj .

• When ∥µBj
∥2 ≤ 2α, we have i∗ = 1 and oj = ℓ1 = α.

• When ∥µBj
∥2 > 2α = 2ℓ1, we have i∗ > 1 and so oj < 2∥µBj

∥2.

Success probability. Fix an arbitrary index i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉} with ℓi = 2i−1α, where ℓi ≤ ℓ1 = α for any i.
We invoke the tolerant tester with ε2 = 2ℓi = 2ε1, so the ith invocation uses at most nk,ε · rδ i.i.d. samples to succeed with
probability at least 1− δ; see Definition 2.1 and Algorithm 2. So, with m(k, α, δ′) samples, any call to the tolerant tester
succeeds with probability at least 1− δ′, where δ′ = δ

w·⌈log2 ζ/α⌉ . By construction, there will be at most w · ⌈log2 ζ/α⌉ calls
to the tolerant tester. Therefore, by union bound, all calls to the tolerant tester jointly succeed with probability at least 1− δ.

Property 1. When APPROXL1 outputs Fail, there exists a Fail amongst {o1, . . . , ow}. For any fixed index j ∈ {1, . . . , w},
this can only happen when all calls to the tolerant tester outputs Reject. This means that ∥xBj∥2 > ε1 = ℓi = 2i−1 · α for
all i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. In particular, this means that ∥xBj∥2 > ζ/2.
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Property 2. When APPROXL1 outputs λ = 2
∑w

j=1

√
|Bj | · oj ∈ R, we can lower bound λ as follows:

λ = 2

w∑
j=1

√
|Bj | · oj

≥ 2

w∑
j=1

√
|Bj | ·

∥µBj
∥2

2
(since ∥µBj∥2 ≤ 2oj)

≥
w∑

j=1

∥µBj
∥1 (since ∥µBj

∥1 ≤
√

|Bj | · ∥µBj
∥2)

= ∥µ∥1 (since
∑w

j=1 ∥µBj
∥1 = ∥µBj

∥1)

That is, λ ≥ ∥µ∥1. Meanwhile, we can also upper bound λ as follows:

λ = 2

w∑
j=1

√
|Bj | · oj

≤ 2
√
k

w∑
j=1

oj (since |Bj | ≤ k)

= 2
√
k ·


w∑

j=1
∥µBj

∥2≤2α

oj +

w∑
j=1

∥µBj
∥2>2α

oj

 (partitioning the blocks based on ∥µBj∥2 versus 2α)

= 2
√
k ·


w∑

j=1
∥µBj

∥2≤2α

α+

w∑
j=1

∥µBj
∥2>2α

oj

 (since ∥µBj∥2 ≤ 2α implies oj = α)

≤ 2
√
k ·


w∑

j=1
∥µBj

∥2≤2α

α+

w∑
j=1

∥µBj
∥2>2α

2∥µBj
∥2

 (since ∥µBj
∥2 > 2α implies oj ≤ 2∥µBj

∥2)

≤ 2
√
k ·


w∑

j=1
∥µBj

∥2≤2α

α+ 2

w∑
j=1

∥µBj
∥2>2α

∥µBj
∥1

 (since ∥µBj
∥2 ≤ ∥µBj

∥1)

≤ 2
√
k ·

⌈d/k⌉ · α+ 2

w∑
j=1

∥µBj
∥2>2α

∥µBj
∥1

 (since |{j ∈ [w] : µBj
∥2 ≤ 2α}| ≤ w)

≤ 2
√
k · (⌈d/k⌉ · α+ 2∥µ∥1) (since

∑w
j=1

∥µBj
∥2>2α

∥µBj∥1 ≤
∑w

j=1 ∥µBj∥1 = ∥µBj∥1)

That is, λ ≤ 2
√
k · (⌈d/k⌉ · α+ 2∥µ∥1). The property follows by putting together both bounds.

C.2. Deferred derivation

Here, we show how to derive Equation (3) from Equation (2).

For any two vectors a,b ∈ Rd, observe that ∥a−b∥22 = ⟨a−b,a−b⟩ = (a−b)⊤(a−b) = a⊤a− 2a⊤b+b⊤b, since
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a⊤b = b⊤a is just a number. So,

1

n

n∑
i=1

∥yi − µ̂∥22 =
1

n

n∑
i=1

(
y⊤
i yi − 2y⊤

i µ̂+ µ̂⊤µ̂
)

1

n

n∑
i=1

∥yi −Xµ∥22 =
1

n

n∑
i=1

(
y⊤
i yi − 2y⊤

i µ+ µ⊤µ
)

Therefore,

∥µ̂− µ∥22 =
1

n

n∑
i=1

∥µ̂− µ∥22

=
1

n

n∑
i=1

(
µ̂⊤µ̂− 2µ⊤µ̂+ µ⊤µ

)
≤ 1

n

n∑
i=1

(
2y⊤

i µ̂− 2y⊤
i µ+ µ⊤µ− 2µ⊤µ̂+ µ⊤µ

)
(Since Equation (3) tells us that 1

n

∑n
i=1 ∥yi − µ̂∥22 ≤ 1

n

∑n
i=1 ∥yi − µ∥22)

=
2

n

n∑
i=1

(
(µ+ gi)

⊤
(µ̂− µ)− µ⊤µ̂+ µ⊤µ

)
(Since yi = µ+ gi)

=
2

n

n∑
i=1

(
g⊤
i (µ̂− µ)

)
=

2

n

n∑
i=1

⟨gi, µ̂− µ⟩

=
2

n
⟨

n∑
i=1

gi, µ̂− µ⟩ (Linearity of inner product)

establishing Equation (3) as desired.

D. General covariance setting
In this section, we give our results for learning multivariate Gaussians with imperfect advice for the general covariance
setting. We will later define analogs of m(d, α, δ) and APPROXL1 from Section 2 to the unknown covariance setting:
m′(d, α, δ) and VECTORIZEDAPPROXL1 respectively. Then, after stating the guarantees of VECTORIZEDAPPROXL1, we
show how to use them according to the strategy outlined in Section 1.2.2.

For the rest of this section, we assume that we get i.i.d. samples from N(0,Σ) and also that Σ is full rank. These are
without loss of generality for the following reasons:

• Instead of a single sample from N(µ,Σ), we will draw two samples x1,x2 ∼ N(µ,Σ) and consider x′ = x1+x2√
2

.
One can check that x′ is distributed according to N(0,Σ) and we only use a multiplicative factor of 2 additional
samples, which is subsumed in the big-O.

• By Lemma A.13, the empirical covariance constructed from d i.i.d. samples of N(0,Σ) will have the same rank as Σ
itself, with probability at least 1− δ. So, we can simply project and solve the problem on the full rank subspace of the
empirical covariance matrix.

Outline of this appendix section. In Appendix D.1, we first elaborate on the adjustments mentioned in Section 1.2.2 to
adapt the approach from the identity covariance setting to the unknown covariance setting, then show how to adapt the same
approach as Section 2 to handle the general covariance setting in Appendix D.2. Appendix D.3 shows that optimization
problem in Appendix D.2 can be reformulated as a semidefinite program (SDP) that is polynomial time solvable. Finally,
Appendix D.4 presents the proof for Theorem 1.4.
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D.1. The adjustments

To begin, we elaborate on the adjustments mentioned in Section 1.2.2 to adapt the approach from the identity covariance
setting to the unknown covariance setting.

The first adjustment relates to performing a suitable preconditioning process using an additional d samples so that we can
subsequently argue that λmin(Σ) ≥ 1. The idea is as follows: we will compute a preconditioning matrix A using d i.i.d.
samples such that AΣA has eigenvalues at least 1, i.e. λmin(AΣA) ≥ 1. That is, ∥(AΣA)−1∥2 = 1

λmin(AΣA) ≤ 1. Then,
we solve the problem treating AΣA as our new Σ. This adjustment succeeds with probability at least 1− δ for any given
δ ∈ (0, 1) and is possible because, with probability 1, the empirical covariance Σ̂ formed by using d i.i.d. samples would
have the same eigenspace as Σ, and so we would have a bound on the ratios between the minimum eigenvalues between Σ̂
and Σ; see Lemma A.13.

Lemma D.1. For any δ ∈ (0, 1), there is an explicit preconditioning process that uses d i.i.d. samples from N(0,Σ) and
succeeds with probability at least 1− δ in constructing a matrix A ∈ Rd×d such that λmin(AΣA) ≥ 1. Furthermore, for
any full rank PSD matrix Σ̃ ∈ Rd×d, we have ∥(AΣ̃A)−1/2AΣA(AΣ̃A)−1/2 − Id∥ = ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥.

Proof. Suppose Σ̂ ∈ Rd×d be the empirical covariance constructed from n = d i.i.d. samples from N(0,Σ). Let
λ1 ≤ . . . ≤ λd and λ̂1 ≤ . . . ≤ λ̂d be the eigenvalues of Σ and Σ̂ respectively. By Lemma A.13, we know that:

• With probability 1, we have that Σ̂ and Σ share the same eigenspace.

• With probability at least 1− δ, we have λ̂1

λ1
≤ 1 + c0 ·

√
d+log 1/δ

d for some absolute constant c0.

Let v̂1, . . . , v̂d be the eigenvectors corresponding to the eigenvalues λ̂1, . . . , λ̂d. Define the following terms:

• Vsmall = {i ∈ [d] : λ̂i < 1} and Vbig = [d] \Vsmall

• Πsmall =
∑

i∈Vsmall
v̂iv̂

⊤
i and Πbig =

∑
i∈Vbig

v̂iv̂
⊤
i

• A =
√
kΠsmall +Πbig, where k =

(
1 + c0 ·

√
d+log 1/δ

n

)
· 1

λ̂1

We first argue that the smallest eigenvalue of AΣA is at least 1, i.e. λmin(AΣA) ≥ 1. To show this, it suffices to show that
u⊤AΣAu ≥ 1 for any unit vector u ∈ Rd. By definition,

u⊤AΣAu = ku⊤ΠsmallΣΠsmallu+ u⊤ΠbigΣΠbigu

since the cross terms are zero because u⊤ΠsmallΣΠbigu = u⊤ΠbigΣΠsmallu = 0.

Now, observe that u⊤ΠsmallΣΠsmallu ≥ λ1 · ∥Πsmallu∥22 and u⊤ΠbigΣΠbigu ≥ ∥Πbigu∥22. Meanwhile, by Pythagoras
theorem, we know that ∥Πsmallu∥22 + ∥Πbigu∥22 = 1. Therefore,

u⊤AΣAu =ku⊤ΠsmallΣΠsmallu+ u⊤ΠbigΣΠbigu

≥kλ1 · ∥Πsmallu∥22 + ∥Πbigu∥22
≥
(
∥Πsmallu∥22 + ∥Πbigu∥22

)
=1

where the last inequality is because k =

(
1 + c0 ·

√
d+log 1/δ

n

)
· 1

λ̂1
≥ 1

λ1
.

To complete the proof, note that for any full rank PSD matrix Σ̃ ∈ Rd×d, we have

∥(AΣ̃A)−1/2AΣA(AΣ̃A)−1/2 − Id∥ = ∥(AΣ̃A)−1AΣA− Id∥

= ∥A−1Σ̃−1ΣA− Id∥
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= ∥Σ̃−1ΣAA−1 − Id∥

= ∥Σ̃−1Σ− Id∥

= ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥

The matrix A in Lemma 1.7 is essentially constructed by combining the eigenspace corresponding to “large eigenvalues”
with a suitably upscaled eigenspace corresponding to “small eigenvalues” in the empirical covariance matrix obtained by d
i.i.d. samples and relying on Lemma A.13 for correctness arguments.

The second adjustment relates to showing that the partitioning idea also works for obtaining sample efficient ℓ1 estimates of
vec(Σ− Id). While an existence result suffices, we show that a simple probabilistic construction will in fact succeed with
high probability.

Lemma D.2. Fix dimension d ≥ 2 and group size k ≤ d. Consider the q = 2 setting where T ∈ Rd×d is a matrix. Define
w = 10d(d−1) log d

k(k−1) . Pick sets B1, . . . ,Bw each of size k uniformly at random (with replacement) from all the possible
(
d
k

)
sets. With high probability in d, this is a (q = 2, d, k, a = 1, b = 30(d−1) log d

(k−1) )-partitioning scheme.

Proof. By definition, we have |B1|, . . . , |Bw| = k. Let us define E1,i,j as the event that the cell (i, j) of T never appears
in any of the submatrices TB1

, . . . ,TBw
, and E2,i,j as the event that the cell (i, j) of T appears in strictly more than b

submatrices. In the rest of this proof, our goal is to show that Pr[E1] and Pr[E2] are small, where E1 = ∪(i,j)∈[d]×[d]E1,i,j
and E2 = ∪(i,j)∈[d]×[d]E2,i,j .

Fix any two distinct i, j ∈ [d]. For ℓ ∈ [w], let us define Xi,j
ℓ as the indicator event that the cell (i, j) in T appears in the ℓth

principal submatrix TBℓ
when i, j ∈ Bℓ. By construction,

Pr[Xi,j
ℓ = 1] =


(d−2
k−2)
(dk)

= k(k−1)
d(d−1) if i ̸= j

(d−1
k−1)
(dk)

= k
d if i = j

To analyze E1, we first consider i, j ∈ [d] where i ̸= j. We see that

Pr[E1,i,j ] =
w∏

ℓ=1

Pr[Xi,j
ℓ = 0] =

(
1− k(k − 1)

d(d− 1)

)w

≤ exp

(
−wk(k − 1)

d(d− 1)

)
= exp (−10 log d) =

1

d10

Meanwhile, when i = j,

Pr[E1,i,i] =
w∏

ℓ=1

Pr[Xi,i
ℓ = 0] =

(
1− k

d

)w

≤ exp

(
−wk

d

)
≤ exp (−10 log d) =

1

d10

Taking union bound over (i, j) ∈ [d]× [d], we get

Pr[E1] ≤
∑

(i,j)∈[d]×[d]

Pr[E1,i,j ] ≤
d2

d10
=

1

d8

To analyze E2, let us first define Zi,j =
∑w

ℓ=1 X
i,j
ℓ for any i, j ∈ [d]. Since the Xi,j

ℓ variables are indicators, linearity of
expectations tells us that

E[Zi,j ] =

w∑
ℓ=1

E[Xi,j
ℓ ] =

{∑w
ℓ=1

k(k−1)
d(d−1) = wk(k−1)

d(d−1) if i ̸= j∑w
ℓ=1

k
d = wk

d if i = j

For i ̸= j, applying Chernoff bound yields
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Pr[Zi,j > (1 + 2) · E[Zi,j ]] ≤ exp

(
−E[Zi,j ] · 22

2 + 2

)
≤ exp

(
−E[Zi,j ]

)
= exp

(
−wk(k − 1)

d(d− 1)

)
= exp (−10 log d) =

1

d10

Meanwhile, when i = j,

Pr[Zi,i > (1 + 2) · E[Zi,i]] ≤ exp

(
−E[Zi,i] · 22

2 + 2

)
≤ exp

(
−E[Zi,i]

)
= exp

(
−wk

d

)
≤ exp (−10 log d) =

1

d10

By defining

b = 3 · max
i,j∈[d]

E[Zi,j ] =
3wk

d
=

30(d− 1) log d

(k − 1)
,

we see that Pr[E2,i,j ] = Pr[Zi,j > b] ≤ Pr[Zi,j > (1 + 2) · E[Zi,j ]] ≤ 1
d10 and Pr[E2,i,i] = Pr[Zi,j > b] ≤ Pr[Zi,i >

(1 + 2) · E[Zi,i]] ≤ 1
d10 . Therefore, taking union bound over (i, j) ∈ [d]× [d], we get

Pr[E2] ≤
∑

(i,j)∈[d]×[d]

Pr[E2,i,j ] ≤
d2

d10
=

1

d8

In conclusion, this construction satisfy all 3 conditions of Definition 1.8 with high probability in d.

We can obtain a (q = 2, d, k, a = 1, b = O(d log d
k ))-partitioning scheme by repeating the construction of Lemma 1.9 until it

satisfies required conditions. Since it succeeds with high probability in d, we should not need many tries. The key idea
behind utilizing partitioning schemes is that the marginal over a subset of indices B ⊆ [d] of a d-dimensional Gaussian with
covariance matrix Σ has covariance matrix that is the principal submatrix ΣB of Σ. So, if we can obtain a multiplicative
α-approximation of a collection of principal submatrices ΣB1

, . . .ΣBw
such that all cells of Σ are present, then we can

obtain a multiplicative α-approximation of Σ just like in Section 2. Meanwhile, the b parameter allows us to upper bound
the overestimation factor due to repeated occurrences of any cell of Σ.

D.2. Following the approach from the identity covariance setting

We begin by defining a parameterized sample count m′(d, ε, δ), similar to Definition 2.1.

Definition D.3. Fix any d ≥ 1, ε > 0, and δ ∈ (0, 1). We define m′(d, ε, δ) = n′
d,ε · rδ , where

n′
d,ε =

⌈
3200d ·max

{
1

ε2
,
1

ε
, 1

}⌉
and rδ = 1 +

⌈
log

(
12

δ

)⌉

The VECTORIZEDAPPROXL1 algorithm corresponds to APPROXL1 in Section 2: it performs an exponential search to find
the 2-approximation of the ∥Σ− Id∥2F by repeatedly invoking the tolerant tester from Lemma 1.6 and then utilize a suitable
partitioning scheme to bound ∥vec(Σ− Id)∥1; see Lemma 1.9 and the discussions below it.

We now show that the VECTORIZEDAPPROXL1 algorithm has the following guarantees.

Lemma D.4. Let ε, δ, k, α, and ζ be the input parameters to the VECTORIZEDAPPROXL1 algorithm (Algorithm 5). Given
m(k, α, δ′) i.i.d. samples from N(µ, Id), the VECTORIZEDAPPROXL1 algorithm succeeds with probability at least 1− δ
and has the following properties:

• If VECTORIZEDAPPROXL1 outputs Fail, then ∥Σ− Id∥2F > ζ/2.

• If VECTORIZEDAPPROXL1 outputs λ ∈ R, then

∥vec(Σ− Id)∥1 ≤ λ ≤ 2
√
k ·
(
10d(d− 1) log d

k(k − 1)
· α+ 2∥vec(Σ− Id)∥1

)
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Algorithm 5 The VECTORIZEDAPPROXL1 algorithm.

1: Input: Error rate ε > 0, failure rate δ ∈ (0, 1), block size k ∈ [d], lower bound α > 0, upper bound ζ > 2α, and i.i.d.
samples S from N(0,Σ)

2: Output: Fail or λ ∈ R
3: Define w = 10d(d−1) log d

k(k−1) , δ′ = δ
w·⌈log2 ζ/α⌉ , and let B1, . . . ,Bw ⊆ [d]2 be a (q = 2, d, k, a = 1, b = O(d log d

k ))-
partitioning scheme as per Lemma 1.9

4: for j ∈ {1, . . . , w} do
5: Define SBj

= {xBj
∈ R|Bj | : x ∈ S} as the projected samples ▷ See Definition A.4

6: Initialize oj = Fail
7: for i = 1, 2, . . . , ⌈log2 ζ/α⌉ do
8: Define li = 2i−1 · α
9: Let Outcome be the output of the tolerant tester of Lemma 1.6 using sample set SBj with ε1 = li, ε2 = 2li, and

δ = δ′

10: if Outcome is Accept then
11: Set oj = li and break ▷ Escape inner loop for block j
12: end if
13: end for
14: end for
15: if there exists a Fail amongst {o1, . . . , ow} then
16: return Fail
17: else
18: return λ = 2

∑w
j=1

√
|Bj | · oj ▷ λ is an estimate for ∥vec(Σ−Bd)∥1

19: end if

Proof. We begin by stating some properties of o1, . . . , ow. Fix an arbitrary index j ∈ {1, . . . , w} and suppose oj is not a
Fail, i.e. the tolerant tester of Lemma 1.6 outputs Accept for some i∗ ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. Note that VECTORIZEDAP-
PROXL1 sets oj = ℓi∗ and the tester outputs Reject for all smaller indices i ∈ {1, . . . , i∗ − 1}. Since the tester outputs
Accept for i∗, we have that ∥ΣBj

−Id∥F ≤ 2ℓi∗ = 2oj . Meanwhile, if i∗ > 1, then ∥ΣBj
−Id∥F > ℓi∗−1 = ℓi∗/2 = oj/2

since the tester outputs Reject for i∗ − 1. Thus, we see that

• When oj is not Fail, we have ∥ΣBj
− Id∥F ≤ 2oj .

• When ∥ΣBj
− Id∥F ≤ 2α, we have i∗ = 1 and oj = ℓ1 = α.

• When ∥ΣBj
− Id∥F > 2α = 2ℓ1, we have i∗ > 1 and so oj < 2∥ΣBj

− Id∥F .

Success probability. Fix an arbitrary index i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉} with ℓi = 2i−1α, where ℓi ≤ ℓ1 = α for any i.
We invoke the tolerant tester with ε2 = 2ℓi = 2ε1, so the ith invocation uses at most n′

k,ε · rδ i.i.d. samples to succeed with
probability at least 1− δ; see Definition D.3 and Algorithm 3. So, with m(k, α, δ′) samples, any call to the tolerant tester
succeeds with probability at least 1− δ′, where δ′ = δ

w·⌈log2 ζ/α⌉ . By construction, there will be at most w · ⌈log2 ζ/α⌉ calls
to the tolerant tester. Therefore, by union bound, all calls to the tolerant tester jointly succeed with probability at least 1− δ.

Property 1. When VECTORIZEDAPPROXL1 outputs Fail, there exists a Fail amongst {o1, . . . , ow}. For any fixed index
j ∈ {1, . . . , w}, this can only happen when all calls to the tolerant tester outputs Reject. This means that ∥ΣBj

− Id∥F >
ε1 = ℓi = 2i−1 · α for all i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. In particular, this means that ∥ΣBj

− Id∥F > ζ/2.

Property 2. When VECTORIZEDAPPROXL1 outputs λ = 2
∑w

j=1

√
|Bj | · oj ∈ R, we can lower bound λ as follows:

λ = 2

w∑
j=1

√
|Bj | · oj

≥ 2

w∑
j=1

√
|Bj | ·

∥ΣBj − Id∥F
2

(since ∥ΣBj
− Id∥F ≤ 2oj)
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=

w∑
j=1

√
|Bj | · ∥vec(ΣBj

− Id)∥22 (since ∥ΣBj
− Id∥2F = ∥vec(ΣBj

− Id)∥22)

≥
w∑

j=1

∥vec(ΣBj
− Id)∥1 (since ∥vec(ΣBj

− Id)∥21 ≤ |Bj | · ∥vec(ΣBj
− Id)∥22)

≥ ∥vec(Σ− Id)∥1 (Since each cell in Σ appears at least a = 1 times across all submatrices ΣB1 , . . . ,ΣBw )

That is, λ ≥ ∥vec(Σ− Id)∥1. Meanwhile, we can also upper bound λ as follows:

λ = 2

w∑
j=1

√
|Bj | · oj

≤ 2
√
k ·

w∑
j=1

oj (since |Bj | ≤ k)

= 2
√
k ·


w∑

j=1
∥ΣBj

−Id∥F≤2α

oj +

w∑
j=1

∥ΣBj
−Id∥F>2α

oj

 (partitioning based on ∥ΣBj
− Id∥F versus 2α)

= 2
√
k ·


w∑

j=1
∥ΣBj

−Id∥F≤2α

α+

w∑
j=1

∥ΣBj
−Id∥F>2α

oj

 (since ∥ΣBj
− Id∥F ≤ 2α implies oj = α)

≤ 2
√
k ·


w∑

j=1
∥ΣBj

−Id∥F≤2α

α+ 2

w∑
j=1

∥ΣBj
−Id∥2

F≤2α

∥ΣBj
− Id∥F


(since ∥ΣBj − Id∥F > 2α implies oj ≤ 2∥ΣBj − Id∥F )

= 2
√
k ·


w∑

j=1
∥ΣBj

−Id∥F≤2α

α+ 2

w∑
j=1

∥ΣBj
−Id∥F≤2α

∥vec(ΣBj − Id)∥2

 (since ∥ΣBj − Id∥2F = ∥vec(ΣBj − Id)∥22)

≤ 2
√
k ·


w∑

j=1
∥ΣBj

−Id∥F≤2α

α+ 2

w∑
j=1

∥ΣBj
−Id∥F≤2α

∥vec(ΣBj
− Id)∥1


(since ∥vec(ΣBj

− Id)∥2 ≤ ∥vec(ΣBj
− Id)∥1)

≤ 2
√
k ·

wα+ 2

w∑
j=1

∥ΣBj
−Id∥2

F≤2α

∥vec(ΣBj − Id)∥1

 (since |{j ∈ [w] : ∥ΣBj − Id∥F ≤ 2α}| ≤ w)

≤ 2
√
k · (wα+ 2∥vec(Σ− Id)∥1)

(since
w∑

j=1
∥ΣBj

−Id∥F≤2α

∥vec(ΣBj − Id)∥1 ≤
∑w

j=1 ∥vec(ΣBj − Id)∥1 = ∥vec(Σ− Id)∥1)

That is, λ ≤ 2
√
k · (wα+ 2∥vec(Σ− Id)∥1), where w = 10d(d−1) log d

k(k−1) . The property follows by putting together both
bounds.

Now, suppose VECTORIZEDAPPROXL1 tells us that ∥vec(Σ− Id)∥1 ≤ r. We can then construct a SDP to search for a
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candidate Σ̂ ∈ Rd×d using O
(

r2

ε4 log
1
δ

)
samples from N(0,Σ).

Lemma D.5. Fix d ≥ 1, r ≥ 0, and ε, δ > 0. Given O
(

r2

ε4 log
1
δ +

d+
√

d log(1/δ)

ε2

)
samples from N(0,Σ) for some

unknown Σ ∈ Rd×d with ∥vec(Σ− Id)∥1 ≤ r, one can produce estimates µ̂ ∈ Rd and Σ̂ ∈ Rd×d in poly(n, d, log(1/ε))

time such that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε with success probability at least 1− δ.

Proof. Suppose we get n samples y1, . . . ,yn ∼ N(0,Σ). For i ∈ [n], we can re-express each yi as yi = Σ1/2gi, for some
gi ∼ N(0, Id). Let us define T = 1

n

∑n
i=1 gig

⊤
i and S = 1

n

∑n
i=1 yiy

⊤
i = Σ1/2

(
1
n

∑n
i=1 gig

⊤
i

)
Σ1/2 = Σ1/2TΣ1/2.

Let us define Σ̂ ∈ Rd×d as follows:

Σ̂ = argmin
A ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r

λmin(A)≥1

n∑
i=1

∥A− yiy
⊤
i ∥2F (10)

Observe that Σ is a feasible solution to Equation (10). We show in Appendix D.3 that Equation (10) is a semidefinite
program (SDP) that is polynomial time solvable.

Since Σ and Σ̂ are symmetric p.s.d. matrices, observe that

n∑
i=1

∥Σ̂− yiy
⊤
i ∥2F =

n∑
i=1

∥Σ̂−Σ1/2gig
⊤
i Σ

1/2∥2F (Since yi = Σ1/2gi)

=

n∑
i=1

Tr

((
Σ̂−Σ1/2gig

⊤
i Σ

1/2
)⊤ (

Σ̂−Σ1/2gig
⊤
i Σ

1/2
))

(Since ∥A∥2F = Tr(A⊤A) for any matrix A)

=

n∑
i=1

Tr
(
Σ̂2 − 2gig

⊤
i Σ

1/2Σ̂Σ1/2 + gig
⊤
i Σgig

⊤
i Σ
)

(Expanding and applying cyclic property of trace)

Similarly, by replacing Σ̂ with Σ, we see that

n∑
i=1

∥Σ− yiy
⊤
i ∥2F =

n∑
i=1

Tr
(
Σ2 − 2gig

⊤
i Σ

2 + gig
⊤
i Σgig

⊤
i Σ
)

By standard SDP results (e.g. see (Vandenberghe & Boyd, 1996; Freund, 2004; Gärtner & Matousek, 2012)), Equation (10)
can be solved optimally up to up to additive ε in the objective function. We show explicitly in Appendix D.3 that our
problem can be transformed into a SDP and be solved in poly(n, d, log(1/ε)) time. Since we solve up to additive ε in the
objective function, we have

n∑
i=1

∥Σ̂− yiy
⊤
i ∥2F ≤ ε+

n∑
i=1

∥Σ− yiy
⊤
i ∥2F (11)

which implies that

n∑
i=1

Tr
(
Σ̂2 − 2gig

⊤
i Σ

1/2Σ̂Σ1/2 + gig
⊤
i Σgig

⊤
i Σ
)
≤ ε+

n∑
i=1

Tr
(
Σ2 − 2gig

⊤
i Σ

2 + gig
⊤
i Σgig

⊤
i Σ
)

Cancelling the common gig
⊤
i Σgig

⊤
i Σ term and rearranging, we get

Tr
(
Σ̂2 −Σ2

)
≤ ε

n
+

2

n

n∑
i=1

Tr
(
gig

⊤
i

(
Σ1/2Σ̂Σ1/2 −Σ2

))
(12)
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Therefore,

∥Σ̂−Σ∥2F = Tr

((
Σ̂−Σ

)⊤ (
Σ̂−Σ

))
= Tr

(
Σ̂2 − 2Σ̂Σ+Σ2

)
≤ ε

n
+

2

n

n∑
i=1

Tr
(
gig

⊤
i

(
Σ1/2Σ̂Σ1/2 −Σ2

)
− Σ̂Σ+Σ2

)
(Add 2Σ2 − 2Σ̂Σ to both sides of Equation (12))

=
ε

n
+

2

n

n∑
i=1

Tr
((

gig
⊤
i − Id

)
·
(
Σ1/2Σ̂Σ1/2 −Σ2

))
(Since Tr(Σ̂Σ) = Tr(Σ1/2Σ̂Σ1/2))

=
ε

n
+ 2 · Tr

((
Σ1/2Σ̂−Σ1/2Σ

)
·Σ1/2 ·

((
1

n

n∑
i=1

gig
⊤
i

)
− Id

))
(Rearranging with cyclic property of trace)

≤ ε

n
+ 2 ·

∥∥∥vec(ΣΣ̂−Σ2
)∥∥∥

1
·

∥∥∥∥∥
(
1

n

n∑
i=1

gig
⊤
i

)
− Id

∥∥∥∥∥
2

(By Lemma A.5 with A = Σ1/2Σ̂−Σ1/2Σ, B = Σ1/2, and C =
(
1
n

∑n
i=1 gig

⊤
i

)
− Id)

Recall that T = 1
n

∑n
i=1 gig

⊤
i and Lemma A.11 tells us that Pr (∥T− Id∥2 > ε) ≤ 2 exp(−t2d) when the number of sam-

ples n = c0
ε2 log

2
δ , for some absolute constant c0. So, to complete the proof, it suffices to upper bound

∥∥∥vec(ΣΣ̂−Σ2
)∥∥∥

1
.

Consider the following:

∥∥∥vec(ΣΣ̂−Σ2
)∥∥∥

1
=
∥∥∥vec((Id −Σ)(Σ− Σ̂)−Σ+ Σ̂

)∥∥∥
1

≤ ∥vec(Id −Σ)∥1 ·
∥∥∥vec(Σ− Σ̂)

∥∥∥
1
+
∥∥∥vec(Σ̂−Σ)

∥∥∥
1

(By Lemma A.6)

= (∥vec(Id −Σ)∥1 + 1) ·
∥∥∥vec(Σ̂− Id + Id −Σ)

∥∥∥
1

(Rearranging and adding 0)

≤ (∥vec (Id −Σ)∥1 + 1) ·
(
∥vec(Σ̂− Id)∥1 + ∥vec(Id −Σ)∥1

)
(By Lemma A.6)

≤ (r + 1) · 2r (Since ∥vec(Id −Σ)∥1 ≤ r and
∥∥∥vec(Σ̂− Id)

∥∥∥
1
≤ r)

When 2
ε ≤ n and n ∈ O

(
r2

ε4 log
1
δ

)
, the following holds with probability at least 1− δ:

∥Σ̂−Σ∥2F ≤ ε

n
+ 2 ·

∥∥∥vec(ΣΣ̂−Σ2
)∥∥∥

1
· ∥T− Id∥2 ≤ ε

n
+ 4r(r + 1) · ∥T− Id∥2 ≤ ε

n
+

ε2

2
≤ ε2

Now, Lemma A.12 tells us that the empirical mean µ̂ formed using O
(

d+
√

d log(1/δ)

ε2

)
samples satisfies (µ̂−µ)⊤Σ−1(µ̂−

µ) ≤ ε2, with failure probability at most δ. So,

dKL(N(µ̂, Σ̂), N(µ,Σ))

=
1

2
·
(
Tr(Σ−1Σ̂)− d+ (µ− µ̂)⊤Σ−1(µ− µ̂) + ln

(
detΣ

det Σ̂

))
≤ 1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ−1/2Σ̂Σ−1/2 − Id∥2F

)
(By Lemma A.8)

=
1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ̂Σ−1 − Id∥2F

)
(By Lemma A.2)
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≤ 1

2
·
(
ε2 + ∥Σ̂Σ−1 − Id∥2F

)
(Since (µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε, with probability at least 1− δ)

≤ 1

2
·
(
ε2 + ∥Σ−1∥22 · ∥Σ̂−Σ∥2F

)
(Submultiplicativity of Frobenius norm)

≤ 1

2
·
(
ε2 + ∥Σ̂−Σ∥2F

)
(Since ∥Σ−1∥2 = 1

λmin(Σ) ≤ 1)

≤ 1

2
·
(
ε2 + ε2

)
(From above, with probability at least 1− δ)

= ε2

By union bound, the above events jointly hold with probability at least 1 − 2δ. Thus, by symmetry of TV distance and
Theorem A.10, we see that

dTV(N(µ, Id), N(µ̂, Id)) = dTV(N(µ̂, Id), N(µ, Id)) ≤
√

1

2
dKL(N(µ̂, Id), N(µ, Id)) ≤

√
ε2 = ε

The claim holds by repeating the same argument after scaling δ by an appropriate constant.

Algorithm 6 The TESTANDOPTIMIZECOVARIANCE algorithm.

1: Input: Error rate ε > 0, failure rate δ ∈ (0, 1), parameter η ∈ [0, 1], and sample access to N(0,Σ)

2: Output: Σ̂ ∈ Rd×d

3: Define k = ⌈dη⌉, α = εdη−1, ζ = 4εd, and δ′ = δ
w·⌈log2 ζ/α⌉ ▷ Note: ζ > 2α

4: Draw m′(k, α, δ′) i.i.d. samples from N(0,Σ) and store it into a set S ▷ See Definition D.3
5: Let Outcome be the output of the VECTORIZEDAPPROXL1 algorithm given ε, δ, k, α, ζ, and S as inputs
6: if Outcome is λ ∈ R and λ < εd then
7: Draw n ∈ Õ(λ2/ε4) i.i.d. samples y1, . . . ,yn ∈ Rd from N(0, Id)

8: return Σ̂ = argminA ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤λ

λmin(A)≥1

∑n
i=1 ∥A− yiy

⊤
i ∥2F ▷ See Equation (10)

9: else
10: Draw 2n ∈ Õ(d2/ε2) i.i.d. samples y1, . . . ,y2n ∈ Rd from N(0, Id)

11: return Σ̂ = 1
2n

∑2n
i=1(y2i − y2i−1)(y2i − y2i−1)

⊤ ▷ Empirical covariance
12: end if

Theorem 1.2. For any given ε, δ ∈ (0, 1), η ∈ [0, 1] and Σ̃ ∈ Rd×d, TESTANDOPTIMIZECOVARIANCE uses n ∈
Õ
(

d2

ε2 ·
(
d−η +min

{
1, f(Σ, Σ̃, d, η, ε)

}))
where

f(Σ, Σ̃, d, η, ε) =
∥vec(Σ̃−1/2ΣΣ̃−1/2 − Id)∥21

d2−ηε2

i.i.d. samples from N(µ,Σ) for some unknown mean µ and unknown covariance Σ, and can produce µ̂ and Σ̂ in
poly(n, d, log(1/ε)) time such that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε with success probability at least 1− δ.

Proof. Without loss of generality, we may assume that Σ̃ = Id. This is because we can pre-process all samples by
pre-multiplying Σ̃−1/2 each of them to yield i.i.d. samples from N(µ, Σ̃−1/2ΣΣ̃−1/2) and then post-process the estimated
Σ̂ by outputting Σ̃1/2Σ̂Σ̃1/2 instead.

Correctness of Σ̂ output. Consider the TESTANDOPTIMIZECOVARIANCE algorithm given in Algorithm 6. Using

the empirical mean µ̂ = 1
n

∑n
i=1 yi formed by O

(
d+

√
d log(1/δ)

ε2

)
⊆ Õ(d/ε2) samples, Lemma A.12 tells us that

(µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε with probability at least 1− δ. There are two possible outputs for Σ̂:

1. Σ̂ = argminA ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r
λmin(A)≥1≤1

∑n
i=1 ∥A− yiy

⊤
i ∥2F , which can only happen when Outcome is λ ∈ R
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2. Σ̂ = 1
2n

∑2n
i=1(y2i − y2i−1)(y2i − y2i−1)

⊤

Conditioned on VECTORIZEDAPPROXL1 succeeding, with probability at least 1 − δ, we will now show that
dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε and failure probability at most 2δ in each of these cases, which implies the theorem
statement as we can repeat the argument by scaling ε and δ by appropriate constants.

Case 1: Using r = λ as the upper bound, Lemma D.5 tells us that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε with failure probability at
most δ when Õ(λ

2

ε4 + d
ε2 ) i.i.d. samples are used.

Case 2: With Õ(d2/ε2) samples, Lemma A.12 tells us that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε with failure probability at most
δ.

Sample complexity used. By Definition D.3, VECTORIZEDAPPROXL1 uses |S| = m′(k, α, δ′) ∈ Õ(k/α2) samples to
produce Outcome. Then, VECTORIZEDAPPROXL1 further uses Õ(λ2/ε4) samples or Õ(d2/ε2) samples depending on
whether λ < εd. So, TESTANDOPTIMIZECOVARIANCE has a total sample complexity of

Õ
(

k

α2
+min

{
λ2

ε4
+

d

ε2
,
d2

ε2

})
⊆ Õ

(
k

α2
+

d

ε2
+min

{
λ2

ε4
,
d2

ε2

})
(13)

Meanwhile, Lemma D.4 states that

∥vec(Σ− Id)∥1 ≤ λ ≤ 2
√
k ·
(
10d(d− 1) log d

k(k − 1)
· α+ 2∥vec(Σ− Id)∥1

)
whenever Outcome is λ ∈ R. Since (a+ b)2 ≤ 2a2 + 2b2 for any two real numbers a, b ∈ R, we see that

λ2

ε4
∈ Õ

(
k

ε4
·
(
d4α2

k4
+ ∥vec(Σ− Id)∥21

))
⊆ Õ

(
d2

ε2
·
(
d2α2

ε2k3
+

k · ∥vec(Σ− Id)∥21
d2ε2

))
(14)

Putting together Equation (13) and Equation (14), we see that the total sample complexity is

Õ
(

k

α2
+

d

ε2
+

d2

ε2
·min

{
1,

d2α2

ε2k3
+

k · ∥vec(Σ− Id)∥21
d2ε2

})
Recalling that TESTANDOPTIMIZECOVARIANCE sets k = ⌈dη⌉, α = εdη−1, with 0 ≤ η ≤ 1. So, the above expression
simplifies to

Õ
(
d2−η

ε2
+

d

ε2
+

d2

ε2
·min

{
1, d−η +

∥vec(Σ− Id)∥21
d2−ηε2

·
})

⊆ Õ
(
d2

ε2
·
(
d−η +min

{
1,

∥vec(Σ− Id)∥21
d2−ηε2

·
}))

To conclude, recall that Σ in the analysis above actually refers to the pre-processed Σ̃−1/2ΣΣ̃−1/2.

Remark on setting upper bound ζ. As ζ only affects the sample complexity logarithmically, one may be tempted to
use a larger value than ζ = 4εd. However, observe that running VECTORIZEDAPPROXL1 with a larger upper bound
than ζ = 4ε

√
d would not be helpful since ∥Σ− Id∥2F > ζ/2 whenever VECTORIZEDAPPROXL1 currently returns Fail

and we have ∥vec(Σ − Id)∥1 ≤ λ whenever VECTORIZEDAPPROXL1 returns λ ∈ R. So, εd = ζ/4 < ∥Σ − Id∥2F =
∥vec(Σ− Id)∥2 ≤ ∥vec(Σ− Id)∥1 ≤ λ and TESTANDOPTIMIZEMEAN would have resorted to using the empirical mean
anyway.

Remark about early termination without the optimization step. If there is no Fail amongst {o1, . . . , ow} and
4b
∑w

j=1 o
2
j ≤ ε2 after Line 9 of VECTORIZEDAPPROXL1, then we could have just output Σ̂ = Id without running

the optimization step. This ie because since 4b
∑w

j=1 o
2
j ≤ ε2 would imply ∥Σ− Id∥2F ≤ ε2 via

∥Σ− Id∥2F ≤ b ·
w∑

j=1

∥ΣBj
− Id∥2F ≤ b ·

w∑
j=1

(2oj)
2 ≤ ε2
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Meanwhile, Lemma A.12 tells us that (µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε2. Therefore, we see that

dKL(N(µ̂, Σ̂), N(µ,Σ))

=
1

2
·
(
Tr(Σ−1Σ̂)− d+ (µ− µ̂)⊤Σ−1(µ− µ̂) + ln

(
detΣ

det Σ̂

))
≤ 1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ−1/2Σ̂Σ−1/2 − Id∥2F

)
(By Lemma A.8)

=
1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ− Id∥2F

)
(Since Σ̂ = Id)

≤ 1

2
·
(
ε2 + ∥Σ− Id∥2F

)
(Since (µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε, with probability at least 1− δ)

≤ 1

2
·
(
ε2 + α2

)
(Since ∥Σ− Id∥2F ≤ α2, with probability at least 1− δ)

≤ 1

2
·
(
ε2 + ε2

)
(since α = εk

d ≤ ε as k ≤ d)

= ε2

Thus, by symmetry of TV distance and Theorem A.10, we see that

dTV(N(µ,Σ), N(µ̂, Σ̂)) = dTV(N(µ̂, Σ̂), N(µ,Σ)) ≤
√

1

2
dKL(N(µ̂, Σ̂), N(µ,Σ)) ≤

√
ε2 = ε

D.3. Polynomial running time of Equation (10)

In this section, we show that Equation (10) in Lemma D.5 can be reformulated as a semidefinite program (SDP) that
is polynomial time solvable. Recall that we are given n samples y1, . . . ,yn ∼ N(0,Σ) under the assumption that
∥vec(Σ− Id)∥1 ≤ r for some r > 0, and Equation (10) was defined as follows:

Σ̂ = argmin
A ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r

λmin(A)≥1

n∑
i=1

∥A− yiy
⊤
i ∥2F

To convert our optimization problem to the standard SDP form, we “blow up” the problem dimension into some integer n′ ∈
poly(d). Let m be the number of constraints and n′ be the problem dimension. For symmetric matrices C,D1, . . . ,Dm ∈
Rn′×n′

and values b1, . . . , bm ∈ R, the standard form of a SDP is written as follows:

min
X∈Rn′×n′

⟨C,X⟩

subject to ⟨D1,X⟩ = b1
...

⟨Dm,X⟩ = bm
X ⪰ 0

(15)

where the inner product between two matrices A,B ∈ Rn′×n′
is written as

⟨A,B⟩ =
n′∑
i=1

n′∑
j=1

Ai,jBi,j

For further expositions about SDPs, we refer readers to (Vandenberghe & Boyd, 1996; Boyd & Vandenberghe, 2004;
Freund, 2004; Gärtner & Matousek, 2012). In this section, we simply rely on the following known result to argue that our
optimization problem will be polynomial time (in terms of n, d, and r) after showing how to frame Equation (10) in the
standard SDP form.
Theorem D.6 (Implied by (Huang et al., 2022)). Consider an SDP instance of the form Equation (15). Suppose it has an
optimal solution X∗ ∈ Rn′×n′

and any feasible solution X ∈ Rn′×n′
satisfies ∥X∥2 ≤ R for some R > 0. Then, there is

an algorithm that produces X̂ in O(poly(n, d, log(1/ε))) time such that ⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ εR · ∥C∥2.

36



Learning multivariate Gaussians with imperfect advice

Remark D.7. Apart from notational changes, Theorem 8.1 of (Huang et al., 2022) actually deals with the maximization
problem but here we transform it to our minimization setting. They also guarantee additional bounds on the constraints with
respect to X̂, which we do not use.

In the following formulation, for any indices i and j, we define δi,j ∈ {0, 1} as the indicator indicating whether i = j. This
will be useful for representation of the identity matrix.

D.3.1. RE-EXPRESSING THE OBJECTIVE FUNCTION

Observe that for any i ∈ [n], we have

∥A− yiy
⊤
i ∥2F = Tr

(
(A− yiy

⊤
i )

⊤(A− yiy
⊤
i )
)

= Tr
(
A⊤A

)
− 2Tr

(
yiy

⊤
i A
)
+Tr

(
yiy

⊤
i yiy

⊤
i

)
Since y1, . . . ,yn ∈ Rd are constants with respect to the optimization problem, we can ignore the Tr

(
yiy

⊤
i yiy

⊤
i

)
term and

instead minimize nTr
(
A⊤A

)
− 2

∑n
i=1 Tr

(
yiy

⊤
i A
)
. As A⊤A is a quadratic expression, let us define an auxiliary matrix

B ∈ Rd×d which we will later enforce Tr(B) ≥ Tr(ATA). Defining a symmetric matrix Y =
∑n

i=1 yiy
⊤
i ∈ Rd×d, the

minimization objective becomes

nTr (B)− 2Tr (YA) = nB1,1 + . . .+ nBd,d − 2⟨Y,A⟩ (16)

D.3.2. DEFINING THE VARIABLE MATRIX X

Let n′ = 2d2 + 3d+ 2 and let us define the SDP variable matrix X ∈ Rn′×n′
as follows:

X =



B A⊤

A Id
A− Id

U
S

sU
sB


∈ Rn′×n′

where the empty parts of X are zero matrices of appropriate sizes, B ∈ Rd×d is an auxiliary matrix aiming to capture A⊤A,
and U and S are diagonal matrices of size d2:

U = diag(u1,1, u1,2, . . . , u1,d, . . . , ud,1, . . . , ud,d) ∈ Rd2×d2

S = diag(s1,1, s1,2, . . . , s1,d, . . . , sd,1, . . . , sd,d) ∈ Rd2×d2

For convenience, we define

M =

[
B A⊤

A Id

]
∈ R2d×2d

so we can write

X =


M

A− Id
U

S
sU

sB

 ∈ Rn′×n′
(17)

In the following subsections, we explain how to ensure that submatrices in X model the desired notions and constraints on
A, B, and so on. For instance, we will use U to enforce ∥vec(A− Id)∥1 ≤ r in an element-wise fashion and use S and sU
for slack variables to transform inequality constraints to equality ones. The slack variable sB is used for upper bounding the
norm of B later, so that we can argue that the feasible region is bounded.
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D.3.3. DEFINING THE COST MATRIX C

To capture the objective function Equation (16), let us define a symmetric cost matrix C ∈ Rn′×n′
as follows:

C =

diag(n, . . . , n) −Y
−Y 0d×d

0(2d2+d+2)×(2d2+d+2)

 ∈ Rn′×n′
(18)

One can check that ⟨C,X⟩ = nB1,1 + . . .+ nBd,d − 2⟨Y,A⟩.

D.3.4. ENFORCING ZEROES, ONES, AND LINKING A ENTRIES WITH A− Id

To enforce that the empty parts of X always solves to zeroes, we can define a symmetric constraint matrix Dzero
i,j ∈ Rn′×n′

such that

(Dzero
i,j )i′,j′ =

{
1 if i′ = i and j′ = j

0 otherwise

and bzeroi,j = 0. Then, ⟨Dzero
i,j ,X⟩ = bzeroi,j resolves to Xi,j = ⟨Dzero

i,j ,X⟩ = bzeroi,j = 0. We can similarly enforce that the
appropriate part of X in M resolves to Id.

Now, to ensure that the A submatrices within M are appropriately linked to A− Id, we can define a symmetric constraint
matrix DA

i,j ∈ Rn′×n′
such that

DA
i,j =



0d×d ∗
∗ 0d×d

†
0d2×d2

0d2×d2

0
0


∈ Rn′×n′

and bAi,j = 0, where ∗ contains 1
4 at the (i, j)-th and (j, i)-th entries and † contains δi,j − 1

2 at the (i, j)-th and (j, i)-th
entries, with 0 everywhere else; if i = j, we double the value. So, ⟨DA

i,j ,X⟩ = bAi,j would enforce that the (i, j)-th and
(j, i)-th entries between the A submatrices within M and those in A− Id are appropriately linked.

D.3.5. MODELING THE ℓ1 CONSTRAINT

To encode ∥vec(A− Id)∥1 ≤ r in SDP form, let us define auxiliary variables {ui,j}i,j∈[d] and define the linear constraints:

• −Ai,j − ui,j ≤ −δi,j , for all i, j ∈ [d]

• Ai,j − ui,j ≤ δi,j , for all i, j ∈ [d]

•
∑d

i=1

∑d
j=1 ui,j ≤ r

The first two constraints effectively encode |Ai,j − δi,j | ≤ ui,j and so the third constraint captures ∥vec(A− Id)∥1 ≤ r as
desired. To convert the inequality constraint to an equality one, we use the slack variables {si,j}i,j∈[d] in S. For instance,
we can define symmetric constraint matrices D+

i,j ∈ Rn′×n′
, D−

i,j ∈ Rn′×n′
, and Dr

i,j ∈ Rn′×n′
with b+i,j = b−i,j = 0 and

br = r as follows:

D+
i,j =



0d×d ∗
∗ 0d×d

0d×d

†
‡

0
0


D−

i,j =



0d×d −∗
−∗ 0d×d

0d×d

†
‡

0
0


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Dr
i,j =


02d×2d

0d×d

1d2×d2

0d2×d2

1
0


where ∗ contains δi,j−1

4 at the (i, j)-th and (j, i)-th entries, † contains − 1
2 at the (i, j)-th and (j, i)-th entries, and ‡ contains

1
2 at the (i, j)-th and (j, i)-th entries, with 0 everywhere else; if i = j, we double the value. So, ⟨D+

i,j ,X⟩ = b+i,j models
δi,j − Ai,j − ui,j + si,j = 0, ⟨D−

i,j ,X⟩ = b−i,j models Ai,j − δi,j − ui,j + si,j = 0, and ⟨Dr
i,j ,X⟩ = bri,j models

sS +
∑

i=1

∑
j=1 ui,j = r.

D.3.6. POSITIVE SEMIDEFINITE CONSTRAINTS

By known properties of the (generalized) Schur complement (see Section 1.4 and Section 1.6 of (Zhang, 2005)), it is known
that X ⪰ 0 if and only if the following properties hold simultaneously:

1. M ⪰ 0

2. A− Id ⪰ 0 ⇐⇒ A ⪰ Id ⇐⇒ λmin(A) ≥ 1, which also implies that A is psd

3. U ⪰ 0 ⇐⇒ u1,1, u1,2, . . . , u1,d, . . . , ud,1, . . . , ud,d ≥ 0

4. S ⪰ 0 ⇐⇒ s1,1, s1,2, . . . , s1,d, . . . , sd,1, . . . , sd,d ≥ 0

5. sU ≥ 0

6. sB ≥ 0

For the first property, since Id ≻ 0, Schur complement tells us that M =

[
B A⊤

A Id

]
⪰ 0 if and only if B ⪰ A⊤A.

Observe that B ⪰ A⊤A implies Tr(B) ≥ Tr(A⊤A), which aligns with our intention of modeling A⊤A by B. Note that
the objective function is nTr(B)− 2Tr(YA) and we have that Tr(B) ≥ Tr(A⊤A) for all feasible matrices B. Thus, for
any pair (A∗,B∗) that minimizes of the objective function, it has to be that Tr(B∗) = Tr((A∗)⊤A∗), since otherwise, the
pair (A∗,B∗∗ = (A∗)⊤A∗) would have a smaller value.

D.3.7. ENFORCING AN UPPER BOUND ON ∥B∥2

To apply Theorem D.6, we need to argue that the feasible region of our SDP is bounded and non-empty, so that ∥X∥2 is
upper bounded. To do so, we need to enforce an upper bound on ∥B∥2.

Since ∥vec(A− Id)∥1 ≤ r, by triangle inequality and standard norm inequalities, we see that

∥A∥2 ≤ ∥A− Id∥2 + ∥Id∥2 ≤ ∥A− Id∥F + ∥Id∥2 = ∥vec(A− Id)∥2 + d ≤ ∥vec(A− Id)∥1 + d ≤ r + d (19)

As B is supposed to model ATA and is constrained only by B ⪰ ATA, it is feasible to enforce Tr(B) ≤ ∥B∥2F ≤ d·(r+d)4

because
∥ATA∥2F ≤ d · ∥ATA∥22 = d · ∥A∥42 ≤ d · (r + d)4

To this end, let us define a symmetric constraint matrix DB
i,j ∈ Rn′×n′

such that

DB =

Id 0(2d2+2d+1)×(2d2+2d+1)

1

 ∈ Rn′×n′

and bB = d · (r + d)4. Then, ⟨DB,X⟩ = bB resolves to Tr(B) + sB = ⟨DB,X⟩ = bB = d · (r + d)4. In other words,
since the slack variable sB is non-negative, i.e. sB ≥ 0, we have

∥B∥2 ≤ Tr(B) ≤ ∥B∥2F ≤ d · (r + d)4 (20)
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D.3.8. BOUNDING ∥C∥2 AND ∥X∥2

Recalling the definition of C in Equation (18), we see that

∥C∥2 ≤
∥∥∥∥[diag(n, . . . , n) −Y

−Y 0d×d

]∥∥∥∥
2

≤ n+ ∥Y∥2

Meanwhile, we know from Lemma A.13 that

∥Y∥2 ≤ ∥Σ∥2 ·

(
1 +O

(√
d+ log 1/δ

n

))
with probability at least 1− δ.

Recall from Algorithm 6 that when we solve the optimization problem of Equation (10), we have that ∥vec(Σ− I)∥1 ≤ r.
So, by a similar chain of arguments as Equation (19), we see that

∥Σ∥2 ≤ ∥Σ− Id∥2 + ∥Id∥2 ≤ ∥Σ− Id∥F + ∥Id∥2 = ∥vec(Σ− Id)∥2 + d ≤ ∥vec(Σ− Id)∥1 + d = r + d

Therefore,

∥C∥2 ≤ n+ ∥Σ∥2 ·

(
1 +O

(√
d+ log 1/δ

n

))
≤ n+ (r + d) ·

(
1 +O

(√
d+ log 1/δ

n

))
∈ poly(n, d, r)

Meanwhile, recalling definition of X from Equation (17), we see that for any feasible solution X,

∥X∥2 ≤ max {∥M∥2, ∥A− Id∥2, ∥U∥2, ∥S∥2, sU, sB}

By Equation (20), we have that ∥B∥2 ≤
√
d · (r + d)2. So,

∥M∥2 ≤ ∥B∥2 + ∥A∥2 + 1 ≤ d · (r + d)4 + r + d+ 1 ∈ poly(d, r)

Also, all the remaining terms are in poly(r, d) since ∥vec(A− Id)∥1 ≤ r. Therefore, ∥X∥2 ∈ poly(d, r) with probability
1− δ. So, ∥X∥2 ≤ R for some R ∈ poly(d, r).

D.3.9. PUTTING TOGETHER

Suppose we aim for an additive error of ε′ > 0 in Equation (11) when we solve Equation (10). From above, we have
that ∥C∥2, R ∈ poly(n, d, r). Let us define ε = ε′

R·∥C∥2
in Theorem D.6. Then, the algorithm of Theorem D.6 produces

X̂ ∈ Rn′×n′
in poly(n, d, log(1/ε)) ⊆ poly(n, d, log(R·∥C∥2

ε′ )) ⊆ poly(n, d, r, log(1/ε′)) time such that ⟨C, X̂⟩ ≤
⟨C,X∗⟩+ εR · ∥C∥2 = ⟨C,X∗⟩+ ε′ as desired.

D.4. Hardness results

Theorem 1.4. Suppose we are given a symmetric and positive-definite Σ̃ ∈ Rd×d as advice with only the guarantee
that ∥vec

(
Σ̃− 1

2ΣΣ̃− 1
2 − Id

)
∥1 ≤ ∆. Then, any algorithm that (ε, 2

3 )-PAC learns N(0,Σ) requires Ω
(

min{d2,∆2/ε2}
ε2 log(1/ε)

)
samples in the worst case.

Proof. Without loss of generality, we can assume Σ̃ = Id since, we can transform the input samples from N(0,Σ)

as x 7→ Σ̃− 1
2x to get samples from N

(
0, Σ̃− 1

2ΣΣ̃− 1
2

)
, so that the advice quality in the transformed space (with

advice taken to be Id) would be ∥vec
(
Id

(
Σ̃− 1

2ΣΣ̃− 1
2

)
Id − Id

)
∥1, which is equal to the original advice quality

∥vec
(
Σ̃− 1

2ΣΣ̃− 1
2 − Id

)
∥1.

To use Lemma 3.1, we need to construct a set of M distributions f1, . . . , fM with fi ≜ N(0,Σi) such that

(i) Advice quality ∥vec (Σi − Id) ∥1 ≤ ∆ for each i ∈ [M ],
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(ii) the pairwise KL divergence dKL(fi∥fj) ≤ O(ε2),

(iii) the the pairwise TV distance dTV(fi, fj) ≥ Ω(ε), and

(iv) logM ≥ Ω
(
min

(
d2, ∆2

ε2

))
.

If we can construct such a family, Lemma 3.1 would give us a sample complexity lower bound of
Ω
(
min

(
d2

ε2 log(1/ε) ,
∆2

ε4 log(1/ε)

))
to (ε, 2/3)-PAC learn the true disitribution, even given advice with quality ≤ ∆.

The following lemma is a Gilbert-Varshamov like bound on the existence of large sets of s-tuples of [N ] with pairwise
distance ≥ (1− 1

40 )s.

Lemma D.8. For any N ≥ 200 and s > 0, there exists A = {A1, . . . , AM} ⊆ [N ]s with M ≥ NΩ(s) such that for all
pairs i ̸= j ∈ [M ], Ai and Aj agree on ≤ s/40 coordinates.

And the following lemma follows from (Ashtiani et al., 2020), Lemma 6.4.

Lemma D.9. For p ≥ 10, there exist N ≥ 2Ω(p2) matrices U1, . . . ,UN ∈ Rp×(p/10) such that the columns of each Ui are
the first p× 10 columns of a p× p orthogonal matrix, and for each pair i ̸= j ∈ [N ], ∥U⊤

i Uj∥2F ≤ p/20.

Let d be a positive integer such that d is a multiple of 10, and either d2 is a multiple of 10
⌈
∆2

ε2

⌉
or d2 < 10

⌈
∆2

ε2

⌉
. For

every ε > 0 and ∆ ≥ ε, there exist infinitely many choices of d that satisfy these criteria. Take p = min
(
d, 10

d

⌈
∆2

ε2

⌉)
.

Then, we will have d = s · p for some integer s ≥ 1, and p will be a multiple of 10. Also take µ = ∆
d

√
10
p ≲ ε/

√
d (using

p ≤ (10/d)⌈∆2/ε2⌉).

Let U1, . . . ,UN ∈ Rp×(p/10) be the N ≥ 2Ω(p2) matrices as in Lemma D.9.

Also let A1, . . . , AM denote the M ≥ 2Ω(p2s) = 2Ω(min(d2,∆2/ε2)) tuples in [N ]s which agree pairwise only on ≤ s/40
coordinates as guaranteed by Lemma D.8.

Then, we use the construction in Theorem 6.3 of (Ashtiani et al., 2020) block-wise to construct each covariance matrix

Σi, i ∈ [M ]. We construct each Σi =

Σi,1 0 · · · 0
0 Σi,2 · · · 0
0 0 · · · Σi,s

 ∈ Rd×d, where each Σi,j = Ip + µUAi(j)U
⊤
Ai(j)

∈

Rp×p.

By Lemma D.9, each Σi,j − Ip = µUAi(j)U
⊤
Ai(j)

has p/10 eigenvalues which are equal to µ and the remaining p− p/10

eigenvalues equal to 0. Thus, we have ∥Σi − Id∥1 =
∑s

j=1 ∥Σi,j − Ip∥1 (decomposing the sum in the ℓ1 norm definition)
≤
∑s

j=1 p ·∥Σi,j−Ip∥F (by Cauchy-Schwarz) ≤ s ·p ·
√

p
10µ

2(since Frobenius norm = Schatten-2 norm) ≤ dµ
√

p/10 ≤ ∆

(substituting sp = d and µ = (∆/d)
√

10/p).

We have Σ−1
i,j = Ip − µ

1+µUAi(j)U
⊤
Ai(j)

by construction of U1, . . . ,UN . By a similar calculation as in Theorem 6.3 of
(Ashtiani et al., 2020), we have dKL(fi, fj) =

1
2Tr(Σ

−1
i Σj−Id) =

∑s
r=1

1
2Tr(Σ

−1
i,rΣj,r−Ip) ≤ sµ2 p

10 ≤ d
10µ

2 ≤ O(ε2)

(using µ ≲ ε/
√
d).

By using a similar argument as in Lemma 6.6 of (Ashtiani et al., 2020), we can lower bound the pairwise TV dis-
tance. By Theorem 1.1 in (Devroye et al., 2018), we have dTV(fi, fj) ≥ Θ

(
min{1, ∥Σ−1/2

i ΣjΣ
−1/2
i − Id∥F}

)
. Since

σmin(Σ
−1/2
i ) = (1 + µ)−1/2 = Θ(1) when ε ≤

√
d, we have dTV(fi, fj) ≥ Ω(ε) when ∥Σi −Σj∥F ≥ Ω(ε). We then
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have

∥Σi −Σj∥2F =

s∑
r=1

∥Σi,r −Σj,r∥2F =

s∑
r=1

µ2∥UAi(r)U
⊤
Ai(r)

−UAj(r)U
⊤
Aj(r)

∥2F

=

s∑
r=1

µ2Tr
((

UAi(r)U
⊤
Ai(r)

−UAj(r)U
⊤
Aj(r)

)(
UAi(r)U

⊤
Ai(r)

−UAj(r)U
⊤
Aj(r)

))
=

s∑
r=1

µ2
(
Tr(UAi(r)U

⊤
Ai(r)

) + Tr(UAj(r)U
⊤
Aj(r)

)− 2∥U⊤
Ai(r)

UAj(r)∥
2
F

)
(using U⊤

Ai(r)
UAi(r) = Ip/10, cyclic property of trace, and ∥A∥2F = Tr(A⊤A))

= ·2µ
2d

10
− 2µ2

s∑
r=1

∥U⊤
Ai(r)

UAj(r)∥
2
F (using Tr(UnU

⊤
n ) =

p
10 ∀n ∈ [N ], d = sp)

≥ 2µ2d

10
− 2µ2

(
#{Ai(r) = Aj(r)}

p

10
+ #{Ai(r) ̸= Aj(r)}

p

20

)
(using U⊤

nUn = Ip/10 and ∥U⊤
mUn∥2F ≤ p/20 for m ̸= n by Lemma D.9)

≥ 2µ2d

10
− 2µ2

(sp
40

− sp

20

)
≥ 9µ2d

40
≥ Ω(ε2) (using Lemma D.8).

This concludes the proof that all requirements of Leamma 3.1 are met and we get the desired result by applying it.

E. Additional experiments

42



Learning multivariate Gaussians with imperfect advice

Figure 4: Here, d = 500, s = 100, and q = ∥µ− µ̃∥1 ∈ {20, 30, 40, 50, 1000, 10000, 100000}. Error bars show standard
deviation over 10 runs. Observe that the slope of the green line looks the same for all q ≥ 1000 instances.
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