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Abstract

This study aims to address the pervasive chal-001
lenge of quantifying uncertainty in large lan-002
guage models (LLMs) without logit-access.003
Conformal Prediction (CP), known for its004
model-agnostic and distribution-free features,005
is a desired approach for various LLMs and006
data distributions. However, existing CP meth-007
ods for LLMs typically assume access to the008
logits, which are unavailable for some API-009
only LLMs. In addition, logits are known010
to be miscalibrated, potentially leading to de-011
graded CP performance. To tackle these chal-012
lenges, we introduce a novel CP method that013
(1) is tailored for API-only LLMs without logit-014
access; (2) minimizes the size of prediction015
sets; and (3) ensures a statistical guarantee of016
the user-defined coverage. The core idea of this017
approach is to formulate nonconformity mea-018
sures using both coarse-grained (i.e., sample019
frequency) and fine-grained uncertainty notions020
(e.g., semantic similarity). Experimental results021
on both close-ended and open-ended Question022
Answering tasks show our approach can mostly023
outperform the logit-based CP baselines.024

1 Introduction025

Large Language Models (LLMs) have made signif-026

icant advancements (Thoppilan et al., 2022; Wei027

et al., 2022, 2023), highlighting the research po-028

tential of natural language generation (Peinl and029

Wirth, 2023). However, they often generate infor-030

mation that is not accurate, factual, or grounded031

in reality, referred to as "hallucination" (LeCun,032

2023). Therefore, it is crucial to quantify LLM033

uncertainty to ensure responsible responses.034

However, uncertainty quantification (UQ) for035

LLMs is challenging due to the complex data dis-036

tributions and inner model mechanism, as well as037

the often limited access to logit information. A038

potential solution is to use conformal prediction039

(CP) (Vovk et al., 2005; Angelopoulos and Bates,040

2021; Kato et al., 2023; Wang et al., 2023), which041

is known for being model-agnostic and distribution- 042

free, and with rigorous coverage guarantees. Given 043

a user-defined error rate α, CP provides a guar- 044

anteed coverage rate for prediction sets/intervals. 045

It measures the uncertainty from a model predic- 046

tion using nonconformity score functions, e.g., 047

1− f(X)Y (Sadinle et al., 2019), where f(X)Y is 048

the softmax score for the true label Y . 049

Most of the existing CPs for LLMs rely on the 050

access to model logits to measure nonconformity 051

scores. For instance, Kumar et al. (2023) define 052

nonconformity scores as softmax scores for logits 053

of different options in the multi-choice question an- 054

swering (MCQ) task and Quach et al. (2023) apply 055

the conformal risk control framework (Angelopou- 056

los et al., 2021), an extension of CP, to LLMs by 057

utilizing model-based log probability. However, 058

for some API-only LLMs like Bard (Manyika and 059

Hsiao, 2023), logit-access is almost impossible for 060

end users. Even though the logits are available 061

(e.g., for 4w (OpenAI, 2023)), they are known to 062

be miscalibrated and can lead to degraded perfor- 063

mance of CP w.r.t. estimating the prediction sets or 064

intervals (Nguyen and O’Connor, 2015; Lin et al., 065

2022), e.g., a large set size (i.e., low efficiency). 066

To enable CP without logit-access, a straightfor- 067

ward way is to calculate the frequency of each re- 068

sponse via sampling and approximate model-based 069

probabilities. However, we theoretically prove 070

that this approach is extremely computationally 071

expensive (Lemma 3.1). As nonconformity scores 072

typically measure the level of uncertainty, CP de- 073

pends on the ranking of the nonconformity mea- 074

sures rather than their actual values (Shafer and 075

Vovk, 2008). Therefore, we propose to sample re- 076

sponses for a certain number of times (e.g., 30) 077

for each input and then utilize the frequency of 078

each response as a coarse-grained uncertainty no- 079

tion. This approach reduces the overall sampling 080

costs and eliminates the dependence on the logits. 081

However, when using frequency as the only non- 082
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Figure 1: Illustrations of the proposed problem and solution. Three uncertainty notions for measuring nonconformity:
(1) Frequency-only, where the nonconformity score is calculated as 1− the frequency of a response out of 10 samplings.
Concentration issues arise at scores of 0.6, 0.7, and 0.8. For instance, responses from different prompts (e.g., "Big Bill Broonzy"
and "Joan Rivers") have the same score of 0.6, as well as responses within the same prompt (e.g., "Bill Boonzy" and "Sir William
Rockington") which both have a score of 0.7, and so forth. (2) Frequency combined with NE, where the nonconformity score
is calculated as 1− frequency + NE, revealing concentration issues at scores of 0.75 and 0.86. (3) Frequency, NE, and SS
combined, where the nonconformity score is calculated as 1− frequency + NE − SS, with no observed concentration issues.

conformity measure, we observe that nonconfor-083

mity scores concentrate on certain values as some084

responses may share the same frequency even if085

they have varied levels of uncertainty (see Figure086

1), consequently diminishing the efficiency of pre-087

diction sets.088

To distinguish between responses that share the089

same frequency, we first identify two potential090

causes: the respective concentration issues across091

different prompts and within the same prompt,092

which indicates we need to integrate prompt-wise093

and response-wise notions to respectively miti-094

gate these two causes. We then propose two ad-095

ditional fine-grained uncertainty notions: normal-096

ized entropy (NE), measuring prompt-wise self-097

consistency to alleviate concentration issues across098

different prompts; and semantic similarity (SS),099

measuring response-wise similarity to the most fre-100

quent response within the same prompt, to mitigate101

internal concentration issues specific to the prompt.102

Figure 1 illustrates the different scores defined us-103

ing frequency-only, frequency combined with NE,104

and frequency combined with NE and SS as non-105

conformity measures, respectively. By considering106

various uncertainty information, the proposed non-107

conformity score function can better distinguish108

the uncertainty of different responses.109

Our contributions are summarized as follows:110

• To our knowledge, this is the first CP work dedi-111

cated to LLMs without logit-access that provides112

a coverage guarantee for the prediction set with113

a small size.114

• We propose a novel CP approach that uses both 115

course-grained and fine-grained uncertainty no- 116

tions as the non-conformity measures. We also 117

theoretically prove (1) it is computationally infea- 118

sible to use response frequency to approximate 119

model output probability, and (2) our approach 120

ensures a rigorous statistical coverage guarantee. 121

• We conduct experiments on both close- and open- 122

ended QA tasks and demonstrate the effective- 123

ness of our method. Notably, we mostly surpass 124

all baselines, including four logit-access methods 125

and one method without logit-access. 126

2 Preliminaries of Conformal Prediction 127

Conformal prediction (CP) (Vovk et al., 2005) is a 128

model-agnostic method offering distribution-free 129

uncertainty quantification, which produces predic- 130

tion sets/intervals containing ground-truth labels 131

with a desired error rate α. One of the widely used 132

CP methods is split CP. Formally, let (X,Y ) be a 133

sample, where X represents features and Y repre- 134

sents the outcome. We denote the calibration set as 135

(Xi, Yi)i=1,...,n and the test set as (Xtest, Ytest). CP 136

presents the following nesting property: 137

α1 > α2 ⇒ C1−α1(X) ⊆ C1−α2(X). (1) 138

where C : X → 2Y is a set-valued function that 139

generates prediction sets over the powerset of Y 140

given an input X . 141

Theorem 2.1 (Conformal coverage guarantee). 142

Suppose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are 143

independent and identically distributed (i.i.d.). 144
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C1−α(Xtest) is a set-valued mapping satisfying145

the nesting property in Eq. 1. Then the following146

holds:147

P (Ytest ∈ C1−α(Xtest)) ≥ 1− α, (2)148

where α ∈ (0, 1) is the user-defined error rate.149

Nonconformity Measures. The nonconformity150

measure N is a core element in CP. It measures151

uncertainty in the model’s output by assessing the152

deviation of a specific instance or output from pat-153

terns observed in the training data. Typically, we154

have logit access to models to measure nonconfor-155

mity, e.g., 1− f(X)Y . For LLMs, N is typically156

derived from the post-hoc logits.157

Split CP Steps. Split CP typically involves four158

steps (Angelopoulos and Bates, 2021):159

1. Establish heuristic uncertainty notions.160

2. Define the nonconformity measures/score func-161

tion N(x, y) ∈ R.162

3. Compute q̂ as the ⌈(n+1)(1−α)⌉
n quantile of the163

nonconformity scores.164

4. Use q̂ to generate prediction sets for new exam-165

ples: C(Xtest) = {Y : N(Xtest, Y ) ≤ q̂}.166

3 Methodology167

Our method considers two pivotal challenges aris-168

ing from the LLMs without logit-access: how to ap-169

proximate the logit information of LLMs; and how170

to further improve CP efficiency, i.e., small predic-171

tion sets. We propose the Logit-free Conformal172

Prediction for LLMs (LofreeCP), where its non-173

conformity measures consist of three notions: fre-174

quency, representing coarse-grained uncertainty;175

NE, representing prompt-wise fine-grained uncer-176

tainty; and SS, representing response-wise fine-177

grained uncertainty.178

3.1 Frequency As the Rankings Proxy179

A straightforward way is to approximate real pre-180

dictive probabilities through a sufficiently large181

number of samplings. However, as we show in182

Lemma 3.1, a minimum of 9,604 samples is re-183

quired to achieve a 95% confidence level with a 1%184

margin of error. Therefore, the implementation is185

impractical due to computational constraints.186

Lemma 3.1 (Minimum Sample Size for Confident187

Probability Estimation). Let freq(Yi) be the abso-188

lute frequency of outcome Yi in the sampling, Ntotal189

be the total number of samplings, pi be the desired 190

estimated probability, ϵ be the estimation error, and 191

δ be the target confidence level. To determine the 192

minimum sample size for confident probability es- 193

timation, for any given ϵ > 0 and 0 < δ < 1, the 194

following inequality must hold: 195

P

{∣∣∣∣freq(Yi)

Ntotal
− pi

∣∣∣∣ ≤ ϵ

}
≥ δ. (3) 196

Then, the minimum sample size Ntotal satisfying 197

Inequality 3 is given by: 198

Ntotal ≥
(u1−(1−δ)/2

2ϵ

)2

, (4) 199

where u1−(1−δ)/2 is the quantile of the standard 200

normal distribution corresponding to the confi- 201

dence level 1− (1− δ)/2. The proof of Lemma 3.1 202

is given in Appendix A.1. 203

Since nonconformity measures are grounded 204

in assessing the model’s predictive uncertainty 205

(Shafer and Vovk, 2008), the primary focus lies 206

in the rankings of uncertainty inherent in noncon- 207

formity measures rather than the absolute values 208

themselves. Further, self-consistency theory (Wang 209

et al., 2022; Li et al., 2022) states that a repetitively 210

sampled response is viewed as a form of consis- 211

tency linked to higher confidence in the response. 212

To empirically validate this intuition, we randomly 213

select 2000 questions from the TriviaQA dataset 214

(Joshi et al., 2017). We conducted 20 samplings 215

from the Llama-2-7b model (Touvron et al., 2023), 216

extracted logits, and subsequently computed model 217

output probabilities. The observed results depicted 218

in Figure 2a indicate a direct positive correlation 219

between response frequency and average real prob- 220

ability. As the response frequency climbs, there is 221

a corresponding increase in the average real prob- 222

ability, suggesting a growing level of confidence 223

and certainty in the model’s responses. Therefore, 224

we propose to use frequency as the proxy of proba- 225

bility ranking. It is defined as 226

F (ŷ(i)
a ,m) =

p̃[ŷ
(i)
a ]

m
, (5) 227

where p̃ represents the empirical absolute fre- 228

quency, ŷ(i)a is the a-th non-repeated sampled re- 229

sponse for i-th prompt, m is the sampling quantity 230

from LLMs for each prompt. However, only using 231

response frequency as nonconformity measures re- 232

sults in the concentration of nonconformity scores 233

on certain values. This issue makes it challenging 234

to discern nonconformity differences among re- 235

sponses with the same scores, rendering ineffective 236

calibration in CP. 237
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Figure 2: Empirical findings with TriviaQA dataset.

3.2 Fine-grained Uncertainty Notions238

To resolve the concentration issue, we propose two239

fine-grained uncertainty measures. Firstly, inspired240

by self-consistency theory (Wang et al., 2022; Li241

et al., 2022), we incorporate NE, a prompt-wise242

fine-grained uncertainty notion, to mitigate the con-243

centration issue across different prompts. NE is244

a measure of the uncertainty or diversity in the245

model’s predictions when generating responses to246

a given prompt. It is defined as247

H(x(i)|{ŷ(i)
j }

m
j=1) = |

∑n
a=1 F̃ (ŷ

(i)
a ) log(F̃ (ŷ

(i)
a ))

logm
|, (6)248

where x(i) is the i-th instance of the prompt dataset,249

m is the number of sampled responses, n is the250

number of non-repeated responses, ŷ(i)j is the j-251

th sampled response. Following experiments in252

Section 3.1, we show that as NE increases, the253

number of unanswered questions also increases254

(Figure 2b), indicating a rise in uncertainty.255

Secondly, to address concentration issues within256

a prompt, we introduce SS as a response-wise fine-257

grained uncertainty measure. This metric semanti-258

cally assesses the similarity between each non-top-259

1 response and the top-1 response within a prompt.260

Intuitively, when two non-top-1 responses share the261

same frequency, the one more semantically similar262

to the top-1 response is more likely to express high263

confidence and low uncertainty. We use the cosine264

similarity to express SS. It is defined as 265

SS(ŷ(i)
a , P

(i)

highest) =
v(ŷ

(i)
a ) · v(P (i)

highest)

∥v(ŷ(i)
a )∥ · ∥v(P (i)

highest)∥
, (7) 266

where v(x) is the vector representation of x, 267

P
(i)
highest is the response having the highest frequency 268

for i-th prompt. However, if the response to be mea- 269

sured is the one with the highest frequency, we do 270

not consider SS with itself. 271

3.3 CP for LLMs Without Logit-Access 272

Considering both the coarse-grained and fine- 273

grained uncertainty notions, the final nonconfor- 274

mity score function of LofreeCP is defined as 275

N (i) = −F (ŷ(i)
a ,m) + λ1 ·H(x(i)|{ŷ(i)

j }
m
j=1)

− λ2 · SS(ŷ(i)
a , P

(i)
highest),

(8) 276

where λ = (λ1, λ2) representing a hyperparam- 277

eter configuration controls the balance between 278

the coarse-grained and fine-grained uncertainty no- 279

tions. LofreeCP has the coverage guarantee: 280

Proposition 3.2 (Coverage guarantee of LofreeCP). 281

Suppose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are i.i.d. 282

Let C1−α(Xtest) be defined as in Step 3. Then we 283

have the coverage guarantee: 284

P {Ytest ∈ C1−α (Xtest)} ≥ 1− α, 285

where α ∈ (0, 1) denotes the desired error rate. 286

The proof of the coverage guarantee of LofreeCP 287

is provided in Appendix A.2. 288

LofreeCP consists of three stages: calibration, 289

validation, and testing. The calibration stage aims 290

to find the quantile based on the desired error rate. 291

We sample m responses from the LLM for each 292

prompt and store them in a response pool. Then, we 293

obtain the nonconformity scores of the true labels 294

with the following rules: if the true label exists in 295

the pool, we use the nonconformity measures from 296

Equation 8 to calculate its nonconformity score; 297

otherwise, we set the nonconformity score as ∞ 298

to signify that it is nearly impossible to for the 299

LLM to generate the true response. After obtaining 300

all nonconformity scores of the calibration set, we 301

find the quantile based on the desired error rate. 302

We use this quantile as a threshold value for both 303

the validation and test stages. 304

We then use the validation set to choose the op- 305

tima hyperparameter configuration λ = (λ1, λ2). 306

Subsequently, we conduct evaluations on the test 307
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set using the chosen configuration. Both stages308

follow identical sampling steps to the calibration,309

traversing all responses and calculating the noncon-310

formity scores. We preserve the responses whose311

nonconformity score is less than the threshold in312

our final prediction set. The pseudocode of the313

LofreeCP method is provided in Appendix B.10.314

4 Experiments315

4.1 Experimental Setup316

Backbone LLMs and Evaluation Tasks. Since317

we need to compare LofreeCP with logit-based318

methods, from where logits can be retrieved di-319

rectly, we consider different open-source LLMs,320

including Llama-2-7B, Llama-2-13B, WizardLM-321

v1.2(13b) (Xu et al., 2023) and Vicuna-v1.5(7b)322

(Chiang et al., 2023) models as our backbone mod-323

els. Note that our method uses these LLMs as if324

they were API-only LLMs, i.e., it assumes no ac-325

cess to any internal information of LLMs. We use326

both open-ended Question-Answering (QA) and327

close-ended Multi-Choice Question-Answering328

(MCQ) tasks for evaluation.329

Datasets. We use standard benchmarking330

datasets TriviaQA and MMLU (Hendrycks et al.,331

2020), following (Kumar et al., 2023) and (Quach332

et al., 2023). We also include the WebQuestions333

benchmark (Berant et al., 2013). For QA, we use334

the TriviaQA dataset, which consists of trivia335

questions spanning a wide range of topics such336

as history and science, and the WebQuestions337

dataset, which is focused on questions asked by338

users on a search engine. MMLU dataset, covering339

57 subjects (e.g., mathematics, history), is used for340

MCQ. We focus on a subset of 16 subjects out of341

the total 57, as in Kumar et al. (2023).342

Baselines. Baselines include methods without343

logit-access and those based on logit:344

• Top-Kwhite. A logit-based non-CP method345

without coverage guarantee, which includes re-346

sponses with the first K highest probabilities for347

each prompt in the prediction set.348

• Standard Split Conformal Prediction (SCP)349

(Vovk et al., 2005). A logit-based CP method,350

which follows the steps shown in Section 2.351

• Sorted Adaptive Prediction Sets (SAPS)352

(Huang et al., 2023). A logit-based CP method,353

which uses the highest probability and replaces354

other probabilities with some weighted values to355

mitigate the miscalibration issue.356

• Top-Kblack. A non-CP method without logit- 357

access and coverage guarantee, which includes 358

responses with the first K highest frequency for 359

each prompt in the prediction set. 360

• Conformal Language Modeling (CLM) 361

(Quach et al., 2023). The state-of-the-art 362

logit-based CP method, which uses the general 363

risk control framework. This baseline is only 364

used in QA as it is not applied to MCQ. 365

Metrics. We use following metrics for evaluation 366

(Angelopoulos and Bates, 2021): 367

• Empirical Coverage Rate (ECR) assesses 368

whether the conformal procedure has the correct 369

coverage with the theoretical guarantee. 370

• Size-Stratified Coverage (SSC) (Angelopoulos 371

et al., 2020) assesses the worst coverage rate of 372

each bin among different set sizes. 373

• Average Prediction Set Size (APSS) assesses the 374

efficiency of CP. We expect the APSS of an effi- 375

cient CP method to be small. 376

4.2 Results for QA 377

We perform QA using TriviaQA and WebQuestions 378

datasets. The results for Llama-2-13b are reported 379

in Tables 1-2, those for Llama-2-7b are shown in 380

the sensitivity analysis of Section 4.5 and those for 381

WizardLM-v1.2(13b) and Vicuna-7b-v1.5 can be 382

found in Appendix D. In Table 1, the LofreeCP 383

method excels on TriviaQA across all error rate 384

settings, outperforming the second-best method, 385

CLM, by 7.7% in terms of APSS at an error rate 386

of 0.25. Regarding SSC, our LofreeCP method 387

surpasses the second-best method, First-Kwhite, by 388

1.6%. In Table 2, our method demonstrates superior 389

performance on WebQuestions in most settings. 390

For instance, at an error rate of 0.45, our LofreeCP 391

method outperforms the second-best method, CLM, 392

by 11.6% in terms of APSS. Regarding SSC, we 393

outperform the second-best method, SCP, by 4.3%. 394

WizardLM-v1.2(13b) and Vicuna-7b-v1.5 exhibit 395

similar trends to Llama-2-13b. 396

The smallest APSS indicates that our method 397

can produce the most efficient prediction sets. The 398

highest SSC indicates that our method is attentive 399

to the conditional coverage rate, achieving well- 400

calibrated uncertainty estimates within diverse size 401

categories. The rationale behind the observed su- 402

perior performance is that our nonconformity mea- 403

sure can capture the coarse-grained uncertainty of 404

responses and effectively optimize nonconformity 405

through fine-grained considerations, thereby miti- 406
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Table 1: Results for TriviaQA using Llama-2-13b: Among all baselines, only First-Kwhite and First-Kblack are non-CP-based,
while the rest are CP-based methods. In the results, bold indicates that the method produces the best performance among all
methods; ✗ denotes that the method fails to produce the set with the desired error rate.

Methods Logit-Access
Error Rate

0.2 0.25 0.3
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 82.1 76.6 3.39 76.1 72.9 1.90 ✗ ✗ ✗
CLM ✓ 80.2 73.4 2.29 75.2 69.1 1.55 70.1 68.3 1.28
SCP ✓ 80.3 75.7 2.25 75.1 70.0 1.59 70.3 74.5 1.21

SAPS ✓ 80.0 77.9 2.74 75.1 64.2 1.80 70.0 49.4 1.55
First-Kblack ✗ 80.1 76.8 2.70 76.4 72.2 1.90 ✗ ✗ ✗

LofreeCP (Ours) ✗ 80.1 79.0 2.19 75.3 74.5 1.43 70.3 76.7 1.08

Methods Logit-Access
Error Rate

0.35 0.4 0.45
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ ✗ ✗ ✗ 62.4 62.5 1.00 ✗ ✗ ✗
CLM ✓ 65.0 69.3 0.96 60.1 72.7 0.81 55.2 83.3 0.70
SCP ✓ 65.1 76.4 1.02 60.3 75.7 0.85 55.3 82.5 0.74

SAPS ✓ 65.1 57.4 1.28 60.1 70.7 0.85 55.1 76.5 0.72
First-Kblack ✗ 66.5 66.5 1.00 ✗ ✗ ✗ ✗ ✗ ✗

LofreeCP (Ours) ✗ 65.1 78.5 0.90 60.0 81.0 0.75 55.2 84.1 0.66

Table 2: Results for WebQuestions using Llama-2-13b.

Methods Logit-Access
Error rate

0.35 0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 66.4 57.5 6.18 61.6 58.1 3.81 57.5 55.0 2.91 50.6 49.0 1.97
CLM ✓ 65.3 50.5 4.54 60.5 52.9 2.86 55.0 51.6 1.81 50.1 56.8 1.27
SCP ✓ 65.1 46.7 4.61 61.6 49.3 3.01 55.2 55.8 2.02 50.2 57.8 1.39

SAPS ✓ 65.2 46.2 5.19 60.6 56.2 3.39 55.5 37.7 2.40 50.8 21.7 1.86
First-Kblack ✗ 65.1 54.9 6.20 60.0 55.3 3.78 56.9 54.4 2.91 53.7 52.4 1.97

LofreeCP (Ours) ✗ 65.1 61.1 5.33 60.0 60.0 2.68 55.1 60.1 1.60 50.3 59.9 1.06

gating the inherent miscalibration issue in LLMs.407

4.3 Ablation Study408

To demonstrate the impact of our fine-grained un-409

certainty notions (NE and SS) on mitigating the410

concentration issues, we conduct a series of ab-411

lation studies using the TriviaQA dataset with a412

sampling quantity of 20. We compare LofreeCP413

with its different variants: we remove one fine-414

grained notion at a time (Freq&SS, removing the415

NE notion; and Freq&NE, removing the SS no-416

tion), and finally remove both fine-grained notions417

(Freq-Only). We report APSS and ECR, the direct418

indicators of the concentration issue, in Figure 3.419

Impact of Concentration Issue. As introduced420

in Section 3, the concentration issue occurs when421

the nonconformity score is concentrated on cer-422

tain values. When we use the frequency-only vari-423

ant (Freq-Only), this issue can be observed in all424

error rate settings, as shown in Figure 3: Freq-425

Only has the largest APSS and the most conser-426

vative ECR. Due to its coarse-grained uncertainty427

notion, Freq-Only tends to generate similar non-428

conformity scores clustered into several groups,429

making it hard to differentiate granular uncertain-430

ties to produce efficient prediction sets.431

Full Method Mitigates Concentration Issue. 432

We further observe that the concentration issue is 433

mitigated in all error rate settings by incorporating 434

fine-grained notions (NE & SS). For example, at 435

an error rate of 0.2, Freq-Only exhibits an APSS of 436

nearly 6.5, while the full method LofreeCP has an 437

APSS of 4.27, resulting in a drop of more than 23%. 438

The method including only SS or NE also mitigates 439

the concentration issue to some extent, while the 440

full method performs the best in terms of APSS and 441

ECR. The results suggest that NE and SS both have 442

a significant impact on improving the efficiency of 443

prediction sets by mitigating concentration issues 444

of nonconformity scores. 445

4.4 Results for MCQ 446

In addition to open-ended tasks, e.g. QA, LofreeCP 447

is also effective at close-ended tasks that can be con- 448

verted into a generation pipeline, e.g. MCQ. We 449

conduct MCQ experiments on the MMLU dataset 450

using Llama-2-13b with a sampling quantity of 20. 451

We present the results in Figure 4.1 LofreeCP ex- 452

hibits superior performance. When compared with 453

SCP and SAPS across all 16 subjects, LofreeCP 454

1We omit the results from top-K methods as they exhibit
much larger APSS than other methods for MCQ.
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Figure 3: Ablation study. The blue bar chart represents APSS,
while the gray line represents ECR.

achieves the best performance in 9 subjects and ties455

for the best in subjects of professional medicine,456

college chemistry, and marketing, resulting in the457

overall best performance in 12 out of 16 subjects.458

In contrast, SCP only ties for the best in 3 sub-459

jects. SAPS achieves the solo best performance in460

3 subjects and ties for the best in 1 subject.461

An intriguing observation is related to subjects462

in the business and management (B&M) category463

(e.g., marketing and public relations). When us-464

ing LofreeCP method, these subjects show slightly465

larger APSS than the two logit-based methods,466

SCP and SAPS. This suggests that the logits for re-467

sponses to B&M questions predicted by the Llama-468

2-13b model are better calibrated than the remain-469

ing subjects from the Science, Technology, Engi-470

neering, and Mathematics (STEM) category. Our471

LofreeCP method mitigates the model miscalibra-472

tion issue by refraining from directly using logits.473

4.5 Sensitivity Analyses474

BackBone Models. To investigate the influence475

of different backbone models on the performance476

of LofreeCP, we conduct experiments using Llama-477

2-7b and Llama-2-13b with a sampling quantity of478

20. Results of SSC and APSS are shown in Figure479

5. We observe that better performance of APSS480

and SSC in the 13b setting than in the 7b setting.481

We believe this is because Llama-2-13b is more482

powerful than Llama-2-7b, and produces more con-483

fident and calibrated responses, thereby providing484

more efficient prediction sets. Results for Vicuna-485

v1.5(7b) are provided in Appendix D, indicating486

2 2.5 3 3.5
APSS

Professional accounting
Business ethics

Management
Public relations

Marketing
College chemistry

Professional medicine
College medicine

Clinical knowledge
Anatomy

High school biology
Formal logic

Machine learning
College computer science

High school computer science
Computer security

SCP
SAPS
LICP
(Ours)

Figure 4: Results on MMLU for MCQ task, with the error
rate of 0.2. Our method and baselines are applied individually
to each of the 16 subjects.

that Vicuna-v1.5(7b) can only produce prediction 487

sets with higher error rates compared to Llama-2 488

backbones. This is because Vicuna-v1.5(7b) is less 489

powerful for these two datasets. This demonstrates 490

that CP performance for LLMs is largely dependent 491

on the performance of the backbone models. 492

Sampling Quantity The sampling quantity regu- 493

lates the number and types of sampled responses ac- 494

quired from LLMs, thereby influencing frequency, 495

NE and SS. We vary the sampling quantity from 10 496

to 40 on the TriviaQA dataset using Llama-2-13b, 497

incrementing by 5 each time. Results shown in Fig- 498

ure 6 suggest that a larger sampling quantity tends 499

to present better performance w.r.t. efficiency. This 500

is because, with a higher sampling quantity, the fre- 501

quency notion more accurately represents response 502

rankings. Of particular interest is that, at an error 503

rate of 0.2, the sampling quantity of 15 exhibits in- 504

ferior performance compared to the quantity of 10. 505

We hypothesize it is because a sampling quantity 506

0.25 0.3 0.35 0.4 0.45
Error Rate

0

2

4

6

8

10

AP
SS

LLaMA-2-7B
LLaMA-2-13B

0.25 0.3 0.35 0.4 0.45
Error Rate

50

60

70

80

90

SS
C

LLaMA-2-7B
LLaMA-2-13B

Figure 5: Results of the sensitivity analysis for different
backbone models: Llama-2-7b and Llama-2-13b.
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Figure 7: Sensitivity analysis of temperature.

of 15 remains insufficient to adequately represent507

rankings meanwhile introducing more non-robust508

randomness in responses. In addition, we observe509

a larger impact of the sampling quantity on APSS510

when a small error rate guarantee is required.511

Temperature Scaling. The temperature (Hinton512

et al., 2015) in LLMs adjusts the randomness in513

generated outputs by scaling logits during the soft-514

max operation. Higher temperatures boost the di-515

versity of the output, which may further affect the516

performance of LofreeCP. In this experiment, we517

vary temperatures2 (0.5, 0.75, 1.0, 1.25, and 1.5) in518

the Llama-2-13b model. Results for the TriviaQA519

dataset are presented in Figure 7. The smallest520

(best) APSS is observed at a temperature of 0.75.521

We observe an overall growing trend as the temper-522

ature increases from 0.75 to 1.50. This indicates523

that excessive diversity can result in uncertain and524

suboptimal predictions. The decline from 0.50 to525

0.75 implies that too much determinism may hurt526

CP efficiency due to a lack of randomness and527

diversity. We also note a significant temperature528

influence on APSS when aiming for low error rates.529

5 Related Work530

Conformal Prediction for NLP. CP has already531

found diverse applications in NLP, e.g., text infill-532

ing and part-of-speech prediction Dey et al. (2021),533

sentiment analysis Maltoudoglou et al. (2020), and534

Automatic Speech Recognition Ernez et al. (2023).535

In the application of CP to LLMs, existing meth-536

ods are predominantly logit-based. For instance,537

2Temperature ranges between 0 and 2.

Kumar et al. (2023) apply standard CP (Vovk et al., 538

2005) to Llama-2-13b (Touvron et al., 2023) for the 539

MCQ task by computing softmax scores of token 540

logits for options to measure nonconformity. Simi- 541

larly, Quach et al. (2023) extend CP to LLMs using 542

the general risk control framework (Angelopoulos 543

et al., 2021). However, recent studies have pointed 544

out that relying solely on logits may be flawed due 545

to hallucinations in LLMs (LeCun, 2023). Conse- 546

quently, there is ongoing research aiming to reduce 547

reliance on logits. Huang et al. (2023) propose to 548

use the highest probability and replace other prob- 549

abilities with weighted values. All these methods 550

involve the utilization of logits. 551

Uncertainty Estimation in LLMs. Recent de- 552

velopments in LLMs have highlighted the impor- 553

tance of estimating their uncertainty. While there 554

has been significant research on uncertainty in 555

NLP (Van Landeghem et al., 2022; Ulmer et al., 556

2022), several methods exist to estimate the confi- 557

dence of LLMs, including Deep Ensemble meth- 558

ods (Lakshminarayanan et al., 2017), Monte Carlo 559

dropout (Gal and Ghahramani, 2016), Density- 560

based estimation (Yoo et al., 2022), Confidence 561

learning (DeVries and Taylor, 2018), as well as 562

approaches based on logits. However, recent stud- 563

ies highlight concerns that LLMs may generate 564

unfaithful and nonfactual content (Maynez et al., 565

2020). Additionally, logits of LLMs often exhibit 566

overconfidence when producing incorrect answers, 567

indicating that logits alone may not be entirely re- 568

liable for studying uncertainty (Desai and Durrett, 569

2020; Miao et al., 2021; Vasconcelos et al., 2023). 570

6 Conclusion 571

We study the critical problem of CP for API-only 572

LLMs without logit-access. We propose a novel 573

solution to define the nonconformity score func- 574

tion by leveraging uncertainty information from 575

diverse sources. In particular, under a limited sam- 576

pling budget, we first use the response frequency as 577

the coarse-grained proxy of uncertainty levels. We 578

then propose two fine-grained uncertainty notions 579

(NE and SS) to further distinguish uncertainty at 580

a nuanced level. Our proposed approach does not 581

rely on model logits and can alleviate the known 582

miscalibration issue when using logits. Experi- 583

ments demonstrate the superior performance of our 584

approach compared to logit-based and logit-free 585

baselines. Our work opens up a new avenue to un- 586

certainty estimation in LLMs without logit-access. 587
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Limitations588

Our approach encounters a common limitation of589

open-ended Natural Language Generation (NLG)590

tasks: the unbounded output space. In our work, we591

address this challenge by sampling a fixed number592

of times for every prompt from LLMs to achieve593

a comprehensive output space, but we recognize594

the potential for more effective and convincing ap-595

proaches to handle this issue within the framework596

of CP. Secondly, another future direction is to ex-597

pand our CP method to non-exchangeability sce-598

narios, particularly in NLG domains, where cal-599

ibration and test sets may not adhere strictly to600

the assumption of being independent and identi-601

cally distributed (i.i.d.). Finally, due to financial602

constraints, we do not evaluate our approach on603

several proprietary LLMs (e.g., GPT 4) that allow604

users to obtain token log probabilities. Thus future605

work can validate our method on these models.606
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A Theoretical Proofs801

A.1 Proof of Lemma 3.1802

Proof. When Ntotal is sufficiently large, the Linde-803

berg–Lévy central limit theorem yields the follow-804

ing equation:805

freq(Yi)
Ntotal

− pi√
pi(1− pi)/Ntotal

∼ N(0, 1),806

From this, we conclude that807

P

{∣∣∣∣∣
freq(Yi)
Ntotal

− pi√
pi(1− pi)/Ntotal

∣∣∣∣∣ ≤ u1−(1−δ)/2

}
≥ δ.808

Approximately replacing pi in the denominator809

with freq(Yi)
Ntotal

, we obtain810

P


∣∣∣∣∣∣

freq(Yi)
Ntotal

− pi√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)/Ntotal

∣∣∣∣∣∣ ≤ u1−(1−δ)/2

811

≥ δ.812

This equation is equivalent to813

P{−u1−(1−δ)/2 ≤
freq(Yi)
Ntotal

− pi√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)/Ntotal

814

≤ u1−(1−δ)/2} ≥ δ.815

We can then reformulate the above equation as:816

P{freq(Yi)
Ntotal

817

− u1−(1−δ)/2 ·

√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)

Ntotal
818

≤ pi ≤
freq(Yi)

Ntotal
819

+ u1−(1−δ)/2 ·

√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)

Ntotal
}820

≥ δ.821

In the left part of this equation, freq(Yi)
Ntotal

rep-822

resents the absolute frequency, pi represents the823

desired estimated probability, and u1−(1−δ)/2 ·824

√
freq(Yi)

Ntotal
(1− freq(Yi)

Ntotal
)

Ntotal
is the error term between 825

them. Recall that we aim to ensure: 826

P

{∣∣∣∣freq(Yi)Ntotal
− pi

∣∣∣∣ ≤ ϵ

}
≥ δ. 827

Therefore, we need to guarantee: 828

u1−(1−δ)/2 ·

√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)

Ntotal
· 2 ≤ 2ϵ. 829

This implies that we must control the error term 830

to not exceed our predetermined estimation error. 831

Note that the left part of this equation reaches its 832

maximum value when freq(Yi) = 1
2 . Hence, to 833

achieve this, we only require: 834√
1/4

Ntotal
· u1−(1−δ)/2 · 2 ≤ 2ϵ. 835

This simplifies to 836

Ntotal ≥
(u1−(1−δ)/2

2ϵ

)2

837

838

A.2 Proof of Proposition 3.2 839

Proof. Let N denote the nonconformity measures 840

of the calibration set (Xi, Yi)i=1,...,n, and let α1 841

and α2 be the desired error rates, where α1 > α2. 842

As indicated in Step 2, we have q̂1 ≤ q̂2. Given 843

C(Xtest) = {Y : N(Xtest, Y ) ≤ q̂}, it follows that 844

C1−α1(X) ⊆ C1−α2(X). Consequently, the nest- 845

ing property, as defined in Equation 1, is satisfied. 846

Therefore, Proposition 3.2 holds. 847

B Implementation Details 848

B.1 Dataset 849

The TriviaQA benchmark (available at https: 850

//nlp.cs.washington.edu/triviaqa/ or can 851

be accessed from Hugging Face at https: 852

//huggingface.co/datasets/trivia_qa) and 853

the WebQuestions benchmark (available at 854

worksheets.codalab.org or can be accessed 855

from Hugging Face at https://huggingface. 856

co/datasets/web_questions) are employed for 857

QA. Both datasets operate within a closed-book 858

setting, where LLMs refrain from using supporting 859

text when answering questions. 860

The MMLU benchmark (can be accessed 861

from Hugging Face at https://huggingface. 862
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co/datasets/lukaemon/mmlu) is designed for863

MCQ, which covers 57 subjects across STEM, the864

humanities, the social sciences, and more. For our865

MCQ experiments, we leverage the dataset con-866

taining 16 subjects from the MMLU: computer867

security, high school computer science, college868

computer science, machine learning, formal logic,869

high school biology, anatomy, clinical knowledge,870

college medicine, professional medicine, college871

chemistry, marketing, public relations, manage-872

ment, business ethics, professional accounting.873

For the TriviaQA dataset, we randomly select874

10,000 question-answer pairs. Similarly, for the875

WebQuestions dataset, we randomly select 5,000876

question-answer pairs. Regarding the MMLU877

dataset, we use all available data for each of the 16878

subjects. Across all three datasets, we apply the879

same splitting strategy: 50% of the data serves as880

the calibration set, 25% as the validation set, and881

25% as the test set for each trial.882

B.2 Backbone LLMs883

We utilize the Hugging Face API to access884

open-source LLMs in our experiments, includ-885

ing Llama-2-7B (accessible at huggingface.886

co/meta-llama/Llama-2-7b-hf), Llama-887

2-13B (accessible at huggingface.co/888

meta-llama/Llama-2-13b-hf), WizardLM-889

v1.2(13b) (accessible at huggingface.co/890

WizardLM/WizardLM-13B-V1.2), and Vicuna-891

v1.5(7b) (accessible at huggingface.co/lmsys/892

vicuna-7b-v1.5). Access to Llama-2-7b and893

Llama-2-13b requires requesting approval via894

the Meta website (https://llama.meta.com/).895

Upon approval, access to these resources will be896

granted.897

B.3 Length-Normalization898

We use length normalization (Wu et al., 2016) on899

logits to obtain response probability/likelihood:900

p(x, yk) = exp(
logpθ(yk|x)

lp(yk)
)901

where902

lp(y) =
(5 + |y|)0.6

(5 + 1)0.6
903

B.4 Evaluation904

We extract an answer by analyzing the text until905

we encounter the first line break, comma, or pe-906

riod. This implies that in the dataset, we will disre-907

gard data whose answers contain line breaks, com- 908

mas, or periods. Following this, we standardize the 909

answers by converting them to lowercase, remov- 910

ing articles, punctuation, and duplicate whitespace. 911

The generated answers are then evaluated using the 912

exact match metric, where an answer is considered 913

correct only if it exactly matches the provided an- 914

swer. These guidelines align with those described 915

in Quach et al. (2023). 916

For SSC, We focus exclusively on bins with a set 917

size greater than 0 and a sample number exceeding 918

10% of the total test samples. This is because bins 919

with a size of 0 and fewer samples lack reliability 920

for coverage measurement. 921

B.5 LLMs Parameters 922

We employ the default Transformer generative LMs 923

parameters for our experiments, using default stan- 924

dard sampling with do_sample set to True, top_k 925

set to 0, top_p set to 1, and Temperature set to 926

1, except when conducting model hyperparameter- 927

tuning experiments. In such hyperparameter-tuning 928

cases, we explicitly mention the parameters in main 929

body of the paper. 930

B.6 Semantic Similarity 931

The measure of semantic similarity was established 932

leveraging the FastText model available within the 933

gensim package. The configuration parameters 934

were carefully selected, defining a vector size of 935

200 and imposing a minimum count threshold of 1 936

to ensure robustness and inclusivity in the model’s 937

representations. 938

B.7 Experiment trails 939

We conduct 50 trials for all experiments, then aver- 940

age the results to eliminate randomness during the 941

calibration. 942

B.8 Error Rate Settings 943

We do not apply the same error rate settings across 944

different models or datasets. This is because each 945

model varies in its coverage ability for the same 946

dataset. Likewise, the same model doesn’t possess 947

identical coverage abilities for different datasets. 948

Therefore, we adjust error rate settings for different 949

combinations of model and dataset accordingly. 950

B.9 GPUs 951

We utilize six NVIDIA RTX 3090 graphics cards 952

to support experiments. 953
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B.10 Pseudocode954

We show the pseudocode in Method 1, where we955

do not explicitly display the repetitive process of956

using various hyperparameter configurations to de-957

termine the best one. In our actual implementations,958

we explore the range [0:0.05:2] for both λ1 and λ2.959

This range spans from 0 to 2, with each step incre-960

menting by 0.05, thus covering values such as 0,961

0.05, 0.1, 0.15, and so forth up to 2. Subsequently,962

we form different combinations to execute the cali-963

bration and validation stages. Ultimately, we utilize964

the best hyperparameter configurations for testing965

purposes.966

Method 1 LofreeCP method
Require: Prompt x(i), LLM fθ , response ŷ

(i)
j , current sam-

pling number j, required sampling number m, response
pool P (i), response with the highest frequency P

(i)
highest,

semantic similarity between response a and b: S(a,b)
1: for x(i), i = 1 to n do

P (i) = {} ▷ Calibration stage starts
2: for j = 1 to m do

ŷ
(i)
j ←− fθ(x

(i)) ▷ Sample response from LLM
given the prompt

3: if ŷ(i)
j in P (i) then

p̃[ŷ
(i)
j ] ++ ▷ Increment frequency for existing

response
4: else

p̃[ŷ
(i)
j ] = 1 ▷ Initialize frequency for new response

5: end if
6: end for
7: Sort(P (i))
8: Get P (i)

highest ▷ Get the response with the highest
frequency

9: if y(i) in P (i) then
N (i) = p̃[ŷ

(i)
a ]
m

+ λ1 · H(x(i)|{ŷ(i)
j }

m
j=1) - λ2 ·

S(ŷ
(i)
a , P

(i)
highest)

10: else
N (i) =∞ ▷ Nonconformity measures

11: end if
12: end for
13: q̂α = Quantile({N (1), N (2), ..., N (n)}, ⌈(n+1)(1−α)⌉

n
) ▷

Find quantile q̂α ▷ Calibration stage ends
14: for sampling same as 1 ~ 7 do ▷ Validation / Test stage

starts
15: for each ŷ

(i)
α in P (i) do

N
(i)
α = P (i)[ŷ

(i)
α ]

m
+ λ1 · H(x(i)|{ŷ(i)

j }
m
j=1) - λ2 ·

S(ŷ
(i)
α , P

(i)
highest)

16: end for
17: C(x

(i)
test) = {ŷ

(i)
a : N

(i)
α ≤ q̂} ▷ Nonconformity

measures
18: end for ▷ Validation / Test stage ends

C Prompts967

C.1 Few-shot Prompts of TriviaQA968

We use the 32-shot question-answer pair prompts969

from the TriviaQA dev set, the same as those in970

Quach et al. (2023). 971

Answer these questions. 972

Q: Which American-born Sinclair won the 973

Nobel Prize for Literature in 1930? 974

A: Sinclair Lewis 975

Q: Where in England was Dame Judi Dench 976

born? 977

A: York 978

Q: In which decade did Billboard 979

magazine first publish an American hit 980

chart? 981

A: 30s 982

Q: From which country did Angola achieve 983

independence in 1975? 984

A: Portugal 985

Q: Which city does David Soul come from? 986

A: Chicago 987

Q: Who won Super Bowl XX? 988

A: Chicago Bears 989

Q: Which was the first European country 990

to abolish capital punishment? 991

A: Norway 992

Q: In which country did the widespread 993

use of ISDN begin in 1988? 994

A: Japan 995

Q: What is Bruce Willis’ real first 996

name? 997

A: Walter 998

Q: Which William wrote the novel Lord Of 999

The Flies? 1000

A: Golding 1001

Q: Which innovation for the car was 1002

developed by Prince Henry of Prussia in 1003

1911? 1004

A: Windshield wipers 1005

Q: How is musician William Lee Conley 1006

better known? 1007

A: Big Bill Broonzy 1008

Q: How is Joan Molinsky better known? 1009

A: Joan Rivers 1010

Q: In which branch of the arts is 1011

Patricia Neary famous? 1012

A: Ballet 1013

Q: Which country is Europe’s largest 1014

silk producer? 1015

A: Italy 1016

Q: The VS-300 was a type of what? 1017

A: Helicopter 1018

Q: At which university did Joseph 1019

Goebbels become a doctor of philosophy? 1020

A: Heidelberg 1021

13



Q: Which prince is Queen Elizabeth II’s1022

youngest son?1023

A: Edward1024

Q: When did the founder of Jehovah’s1025

Witnesses say the world would end?1026

A: 19141027

Q: Who found the remains of the Titanic?1028

A: Robert Ballard1029

Q: Who was the only Spice Girl not to1030

have a middle name?1031

A: Posh Spice1032

Q: What are the international1033

registration letters of a vehicle from1034

Algeria?1035

A: DZ1036

Q: How did Jock die in Dallas?1037

A: Helicopter accident1038

Q: What star sign is Michael Caine?1039

A: Pisces1040

Q: Who wrote the novel Evening Class?1041

A: Maeve Binchy1042

Q: Which country does the airline Air1043

Pacific come from?1044

A: Fiji1045

Q: In which branch of the arts does1046

Allegra Kent work?1047

A: Ballet1048

Q: Banting and Best pioneered the use of1049

what?1050

A: Insulin1051

Q: Who directed the movie La Dolce Vita?1052

A: Federico Fellini1053

Q: Which country does the airline LACSA1054

come from?1055

A: Costa Rica1056

Q: Who directed 2001: A Space Odyssey?1057

A: Stanley Kubrick1058

Q: Which is the largest of the Japanese1059

Volcano Islands?1060

A: Iwo Jima1061

Q: (Question)1062

A:1063

C.2 Prompts of Webquestions1064

We also use 32-shot question-answer pair prompts1065

from the Webquestions train set.1066

Answer these questions.1067

Q: What country is the Grand Bahama1068

Island in?1069

A: Bahamas1070

Q: What two countries invaded Poland in1071

the beginning of WW2? 1072

A: Germany 1073

Q: Which countries border the US? 1074

A: Canada 1075

Q: Where is Rome, Italy located on a 1076

map? 1077

A: Rome 1078

Q: What is Nina Dobrev’s nationality? 1079

A: Bulgaria 1080

Q: What country does Iceland belong to? 1081

A: Iceland 1082

Q: What does Thai mean? 1083

A: Language 1084

Q: Who was Ishmael’s mom? 1085

A: Hagar 1086

Q: What are the major cities in France? 1087

A: Paris 1088

Q: What city did Esther live in? 1089

A: Susa 1090

Q: What sport do the Toronto Maple Leafs 1091

play? 1092

A: Ice Hockey 1093

Q: What is Martin Cooper doing now? 1094

A: Inventor 1095

Q: What county is the city of Hampton, 1096

VA in? 1097

A: Hampton 1098

Q: What county is Heathrow Airport in? 1099

A: London 1100

Q: What type of car does Michael Weston 1101

drive? 1102

A: Wishcraft 1103

Q: What was Tupac’s name in Juice? 1104

A: Bishop 1105

Q: Who does Maggie Grace play in Taken? 1106

A: Kim 1107

Q: What style of music did Louis 1108

Armstrong play? 1109

A: Jazz 1110

Q: Where does Jackie French live? 1111

A: Australia 1112

Q: Where is Jack Daniels factory? 1113

A: Tennessee 1114

Q: What is Charles Darwin famous for? 1115

A: Evolution 1116

Q: Where to visit in N. Ireland? 1117

A: Antrim 1118

Q: What are dollars called in Spain? 1119

A: Peseta 1120

Q: Who plays Meg in Family Guy? 1121

A: Mila Kunis 1122
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Q: Where did Martin Luther King get1123

shot?1124

A: Memphis1125

Q: What was Nelson Mandela’s religion?1126

A: Methodism1127

Q: Who will win the 2011 NHL Stanley1128

Cup?1129

A: Canada1130

Q: What is Henry Clay known for?1131

A: Lawyer1132

Q: What is the money of Spain called?1133

A: Euro1134

Q: Where are Sunbeam microwaves made?1135

A: Florida1136

Q: Where was Kennedy when he got shot?1137

A: Dallas1138

Q: Where did the Casey Anthony case take1139

place?1140

A: Orlando1141

Q: (Question)1142

A:1143

C.3 Prompts of MMLU1144

Each subject in MMLU uses similar prompts. We1145

take the high school biology as examples.1146

Please engage in the multiple-choice1147

question-answering task. You should1148

generate the option (A, B, C, or D) you1149

think is right. Examples are provided.1150

(Select 8-shot randomly from other1151

subjects)1152

This is a question from high school1153

biology.1154

A piece of potato is dropped into a1155

beaker of pure water. Which of the1156

following describes the activity after1157

the potato is immersed into the water?1158

(A) Water moves from the potato into the1159

surrounding water.1160

(B) Water moves from the surrounding1161

water into the potato.1162

(C) Potato cells plasmolyze.1163

(D) Solutes in the water move into the1164

potato.1165

The correct answer is option: B.1166

You are the world’s best expert in high1167

school biology. Reason step-by-step and1168

answer the following question.1169

From the solubility rules, which of the1170

following is true?1171

(A) All chlorides, bromides, and iodides 1172

are soluble 1173

(B) All sulfates are soluble 1174

(C) All hydroxides are soluble 1175

(D) All ammonium-containing compounds 1176

are soluble 1177

The correct answer is option: 1178

D Additional Results 1179

D.1 Ablation Study 1180

Table 3: SCC Results of Ablation Study

Error Rate 0.20 0.25 0.30 0.35 0.40 0.45

Freq-Only 77.1 72.9 75.3 77.2 79.4 81.7
Freq + NE 78.8 74.0 76.8 77.9 80.2 83.3
Freq + SS 78.2 74.7 76.6 78.7 80.0 82.9
All (Ours) 79.2 74.3 76.5 78.6 81.5 84.0

Table 4: Portion of Concentration

Method Portion of Concentration (%)

Freq-Only 66.6
Freq + NE 45.5
Freq + SS 59.8
All (Ours) 35.1

D.2 Sensitivity Experiments 1181

More results regarding sampling quantity and tem- 1182

perature sensitivity are included in Figures 8-9 due 1183

to the page limit in the main body. 1184

20 40
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Figure 8: All results of the sensitivity analysis to variations
in sampling quantity.

D.3 Results for WizardLM-v1.2 (13B) and 1185

Vicuna-v1.5 (7B) 1186

To save on computation costs, we use float16 preci- 1187

sion (half-precision) for experiments in this section. 1188

We use standard sampling with sampling quantity 1189
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Figure 9: All results of the sensitivity analysis to variations
in temperature.

of 30. Results for TriviaQA are shown in Table 5,1190

for WebQuestions are shown in Table 7. Results1191

for TriviaQA are shown in Table 6, for WebQues-1192

tions are shown in Table 8. Results for WizardLM-1193

v1.2 (13B) and Vicuna-v1.5 (7B) consistently align1194

with the main body results, demonstrating that the1195

LofreeCP method mostly outperforms baselines.1196
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Table 5: Results for TriviaQA using WizardLM-v1.2.

Methods Logit-Access
Error Rate

0.25 0.3 0.35
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 75.1 68.7 3.19 71.0 65.8 2.56 66.4 63.3 1.84
CLM ✓ 75.1 63.3 3.01 70.1 64.9 2.20 65.0 63.3 1.43
SCP ✓ 75.4 57.9 3.29 70.1 62.2 2.15 65.2 56.4 1.68

SAPS ✓ 75.1 70.6 3.83 70.1 53.2 2.30 65.1 54.9 1.37
First-Kblack ✗ 75.7 58.0 4.94 71.5 66.6 2.59 68.4 65.6 1.84

LofreeCP (Ours) ✗ 75.1 68.0 4.07 70.0 67.7 1.92 65.1 70.1 1.27

Methods Logit-Access
Error Rate

0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ ✗ ✗ ✗ 55.2 56.0 0.99 ✗ ✗ ✗
CLM ✓ 60.1 65.3 1.25 55.1 69.1 0.92 50.1 71.3 0.81
SCP ✓ 60.0 65.9 1.30 55.1 67.8 1.01 50.1 70.1 0.82

SAPS ✓ 60.0 47.3 1.37 55.2 53.7 1.05 50.1 60.6 0.83
First-Kblack ✗ ✗ ✗ ✗ 56.9 57.4 0.99 ✗ ✗ ✗

LofreeCP (Ours) ✗ 60.2 69.8 0.98 55.3 70.4 0.81 50.2 72.5 0.69

Table 6: Results for TriviaQA using Vicuna-v1.5.

Methods Logit-Access
Error Rate

0.475 0.5 0.525
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 53.0 42.1 2.23 50.4 42.4 1.63 ✗ ✗ ✗
CLM ✓ 52.5 45.1 2.60 50.1 45.5 1.39 47.5 47.7 1.21
SCP ✓ 52.6 39.0 2.66 50.0 40.5 1.43 47.9 49.3 1.14

SAPS ✓ 52.7 40.1 2.30 50.3 48.8 1.59 47.5 45.6 1.24
First-Kblack ✗ 53.4 44.1 2.75 50.9 42.3 1.62 ✗ ✗ ✗

LofreeCP (Ours) ✗ 52.5 39.3 2.27 50.0 39.1 1.33 47.6 50.1 1.12

Methods Logit-Access
Error Rate

0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 45.0 46.7 0.99 ✗ ✗ ✗ ✗ ✗ ✗
CLM ✓ 45.2 50.7 1.01 42.5 50.6 0.85 40.1 56.2 0.83
SCP ✓ 45.4 52.4 0.96 42.6 48.6 0.85 40.5 52.0 0.76

SAPS ✓ 45.0 46.2 1.04 42.6 50.8 0.84 40.1 57.9 0.75
First-Kblack ✗ ✗ ✗ ✗ 44.6 46.2 0.97 ✗ ✗ ✗

LofreeCP (Ours) ✗ 45.1 55.3 0.96 42.7 58.0 0.82 40.2 58.5 0.73

Table 7: Results for WebQuestions using WizardLM-v1.2.

Methods Logit-Access
Error rate

0.45 0.5 0.55 0.6
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 55.5 42.5 3.40 53.0 40.6 2.70 49.1 39.0 1.91 ✗ ✗ ✗
CLM ✓ 55.1 52.3 3.02 50.2 40.1 2.01 45.2 28.6 1.58 40.4 31.2 1.19
SCP ✓ 55.2 45.9 3.63 50.1 40.8 2.04 45.0 37.1 1.55 40.2 47.8 1.04

SAPS ✓ 55.0 45.7 3.38 50.1 41.1 2.15 45.2 28.6 1.58 40.4 31.2 1.19
First-Kblack ✗ 56.7 43.6 3.40 50.9 45.0 1.91 ✗ ✗ ✗ 41.4 41.1 1.00

LofreeCP (Ours) ✗ 55.0 45.3 2.87 50.0 46.5 1.88 45.1 49.9 1.18 40.1 51.7 0.82

Table 8: Results for WebQuestions using Vicuna-v1.5.

Methods Logit-Access
Error rate

0.575 0.6 0.625 0.65
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 43.2 23.8 1.99 41.7 26.9 1.57 ✗ ✗ ✗ 36.6 36.6 1.00
CLM ✓ 42.5 32.3 1.88 40.1 36.2 1.32 37.6 38.2 1.08 35.0 41.8 0.83
SCP ✓ 42.6 31.1 1.91 40.1 34.4 1.28 38.2 37.3 1.06 35.2 43.7 0.87

SAPS ✓ 42.5 32.3 1.88 40.1 36.2 1.32 37.6 38.2 1.08 35.0 41.8 0.83
First-Kblack ✗ 43.7 25.9 2.01 40.9 25.5 1.57 ✗ ✗ ✗ 36.8 36.8 1.00

LofreeCP (Ours) ✗ 42.5 32.4 1.73 40.1 36.7 1.22 37.5 39.6 0.97 35.0 39.3 0.81
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