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Abstract

Speculative decoding (SPD) aims to accelerate
the auto-regressive token generation process of
a target Large Language Model (LLM). Some
approaches employ a draft model with multi-
ple heads to predict a sequence of future tokens,
where each head handles a token in the sequence.
The target LLM verifies the predicted sequence
and accepts aligned tokens, enabling efficient
multi-token generation. However, existing meth-
ods assume that all tokens within a sequence are
equally important, employing identical head struc-
tures and relying on a single-generation paradigm,
either serial or parallel. To this end, we theoreti-
cally demonstrate that initial tokens in the draft se-
quence are more important than later ones. Build-
ing on this insight, we propose Gumiho, a hy-
brid model combining serial and parallel heads.
Specifically, given the critical importance of early
tokens, we employ a sophisticated Transformer
architecture for the early draft heads in a serial
configuration to improve accuracy. For later to-
kens, we utilize multiple lightweight MLP heads
operating in parallel to enhance efficiency. By
allocating more advanced model structures and
longer running times to the early heads, Gumiho
achieves improved overall performance. The ex-
perimental results demonstrate that our method
outperforms existing approaches, fully validat-
ing its effectiveness. Our code is available at
https://github.com/AMD-AIG-AIMA/Gumiho.
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1. Introduction
While Large Language Models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023) have demonstrated impres-
sive capabilities, their auto-regressive inference introduces
significant latency challenges, especially as the number
of parameters continues to increase. Speculative decod-
ing (SPD) (Leviathan et al., 2023; Chen et al., 2023) has
emerged as a promising solution to this problem. It lever-
ages smaller models to efficiently propose draft tokens for
future steps, which are then verified in parallel by the LLM.
Specifically, in each draft round, the draft model generates
a sequence of multiple draft tokens, and the target LLM
verifies these tokens in parallel. This generation-verification
process constitutes a draft round. These draft tokens are
accepted only if they match the LLM’s original output. If a
mismatch occurs, starting from the first divergent token, all
subsequent draft tokens are discarded.

Recent advances (Cai et al., 2024; Li et al., 2024a;b; Ankner
et al., 2024) have shown that smaller models, which leverage
the hidden states of the LLM itself, can achieve substan-
tial speedups in inference while maintaining output quality.
Medusa (Cai et al., 2024) predicts multiple future tokens
in parallel using MLPs with the last verified token’s hidden
state, while Hydra (Ankner et al., 2024) and Eagle (Li et al.,
2024a) generate tokens serially.

Although Medusa’s parallel prediction paradigm runs faster
through simultaneous draft token predictions, it relies solely
on hidden states from previously verified tokens, making
it blind to earlier unverified predictions within the current
draft round. Serial methods like Eagle, Eagle-2 and Hydra
can fully utilize previously generated draft tokens, but their
sequential paradigm tends to slow down the drafting pro-
cess, making it less efficient. More critically, all approaches
treat all tokens within a draft round as equally important,
which is unsuitable for SPD. In our view, the tokens gen-
erated earlier in each draft round hold more importance
than those generated later. This is because when the first
incorrect token is encountered, it causes both that token
and all subsequent draft tokens to be discarded, even if the
following tokens are correct. We will formally present a
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theorem and mathematically prove that prioritizing the ini-
tial tokens of a sequence consistently improves the mean
accepted tokens (τ ) in each draft round.

Motivated by this, we propose Gumiho, a hybrid model that
prioritizes the initial positions in the draft sequence, combin-
ing both sequential and parallel architectures. We employ
a serial structure comprising a two-layer Transformer, en-
abling comprehensive modeling of token dependencies and
context for early tokens. The subsequent tokens, which are
relatively less critical, are predicted in parallel through sim-
ple MLPs, thereby enhancing computational efficiency. By
combining the serial and parallel architectures, our hybrid
design achieves higher acceptance lengths and less process-
ing time in each draft-verification cycle at the same time.
The key idea of our hybrid model lies in two folds: (1) it
allocates more parameters and leverages serial processing
for crucial early token predictions, maximizing accuracy
where it matters most, and (2) it employs efficient paral-
lel computation with simple architecture for later tokens,
reducing the overall computational cost.

In addition, we enhance Eagle-2’s dynamic tree mechanism
by introducing Full Tree Attention (FTA). While Eagle-2’s
dynamic tree selectively expands promising nodes and re-
ranks draft tokens for optimal verification, this re-ranking
process can result in shorter candidate sequences when later
tokens are discarded due to low scores, potentially reducing
the mean accepted tokens (τ ). We observed that tokens gen-
erated by parallel heads exhibit correlations, as they share
both input and purpose. Specifically, each n-th head is de-
signed to predict the token that should appear n positions
away from the input token. Inspired by this, our full tree
attention mechanism supplements shorter paths with tokens
from longer paths at corresponding positions, thereby in-
creasing the mean accepted tokens (τ ) of shorter candidate
paths. Since these supplementary tokens come from exist-
ing longer candidates, their q, k, and v have already been
computed, incurring no additional computational overhead.

Our contributions are summarized as follows:

• We propose Gumiho, a hybrid structure model for SPD,
inspired by the observation that earlier tokens have
more impact on the overall sequence length accepted,
while later tokens are relatively less critical. We pri-
oritize the generation of earlier tokens by allocating
more computational resources and using a serial ap-
proach to enhance accuracy, while simpler models are
employed in parallel for the later tokens to improve
computational efficiency.

• We demonstrate through theoretical analysis that to-
kens appearing earlier in the draft sequence have a
more significant impact on the overall accepted length.

• We propose a full tree attention mechanism for tree

candidates, allowing tokens from longer candidates to
augment shorter ones. This approach further increases
the acceptance length without incurring additional com-
putational overhead.

• We conduct comprehensive experiments to demon-
strate Gumiho’s superior performance compared to
existing methods.

2. Related Works
With the widespread adoption of large language models
(LLMs), significant research has been devoted to acceler-
ating their inference through techniques such as distilla-
tion (Hinton, 2015; Bercovich et al., 2024; Zhao et al., 2024;
Fu et al., 2024), low-bit quantization (Hubara et al., 2018;
Shen et al., 2020; Kim et al., 2021; Zadeh et al., 2020;
Zafrir et al., 2019), pruning (Gale et al., 2019; Sanh et al.,
2020; Kurtic et al., 2022; Voita et al., 2019), and innovative
network architecture designs (Gu & Dao, 2023; Wu et al.,
2020). These approaches aim to reduce the computational
cost of each forward pass to improve efficiency. However,
they often involve a trade-off (Donisch et al., 2024), as these
optimizations can partially compromise model performance,
requiring a balance between generation quality and compu-
tational overhead. Speculative decoding, a draft-then-verify
paradigm (Xia et al., 2023), achieves lossless acceleration
by leveraging the original LLM for verification.

Drafting approaches can be broadly categorized into two
paradigms (Xia et al., 2024): independent drafting which
employs draft models that can be deployed without addi-
tional training, and self-drafting which requires dedicated
training processes to develop effective draft models.

Independent drafting typically uses a separate, smaller
model to generate multiple future tokens concurrently,
thereby enhancing the efficiency of speculative decod-
ing. For example, using T5-small to accelerate T5-
XXL (Leviathan et al., 2023). These off-the-shelf drafters
do not need extra training or architectural modifications and
benefit from the inherent alignment in prediction behaviors
due to shared tokenizers and pretraining processes. How-
ever, independent drafting requires additional work to find
or train a compatible model that matches the target LLM.
This becomes more challenging when smaller versions of
the LLM don’t exist.

Orthogonal to independent drafting, self-drafting typically
uses the target LLM itself (Liu et al., 2024a; Du et al., 2024;
Elhoushi et al., 2024; Gloeckle et al., 2024; Cai et al., 2024;
Li et al., 2024a; Zimmer et al., 2024; Xiao et al., 2024;
Zhang et al., 2024; Brown et al., 2024; Liu et al., 2024b),
utilizing features like its hidden states for more efficient
drafting. Medusa (Cai et al., 2024) is one of the studies to
leverage the hidden state of the original LLM as input for
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draft models. It employs K distinct MLPs as draft models,
each predicting one of K future tokens. Since these K draft
models operate independently, they can execute in parallel,
enabling Medusa to generate K tokens in a single forward
pass. Hydra (Ankner et al., 2024) is a sequential variant
of Medusa, transforming the parallel MLPs into a serial
architecture. It feeds the unverified tokens from draft mod-
els as input to subsequent ones. This sequential approach
enables each draft model to leverage more contextual infor-
mation when predicting later tokens, enhancing the quality
of successive predictions. Eagle (Li et al., 2024a) advances
the architecture by converting the serial MLPs into serial
Transformers and introducing concatenated token-hidden
state pairs as input. Eagle-2 (Li et al., 2024b) further inno-
vates by implementing a dynamic tree candidate selection
mechanism to enhance token prediction efficiency.

Our method falls within the self-drafting category. Different
from previous self-drafting methods, we utilize the fact that
the importance of a token decreases as its position moves
back and propose different architectures for front-positioned
tokens and later ones.

3. Method
In this section, we begin by introducing the preliminaries
of speculative decoding (SPD). We then present a theorem
and provide a rigorous mathematical proof to validate that
tokens at the beginning of the sequence are more crucial
than those at the end. Finally, we propose Gumiho, a novel
method derived from our theorem.

3.1. Preliminaries

LLM Decoding The process of generating text from
LLMs is termed decoding: the sequential production of
tokens in response to an input prompt. This generation pro-
cess follows an auto-regressive pattern, where each token
yt is generated by sampling from a probability distribu-
tion conditioned on both the initial prompt z and all pre-
viously generated tokens y<t. In practice, the key-value
cache (kv<t) of previously generated tokens is maintained,
with the model taking both kv<t and the current token yt as
inputs for efficient generation.

Let ML denote the Large Language Model, which com-
prises two components: the decoder layer fL(·) and
LM head that maps the embeddings back to the vocab-
ulary with size |V|. The vanilla decoding process can be
formulated as:

kv<t+1, ht+1 = fL(kv<t, e(yt)),
yt+1 ∼ Softmax(LM head(ht+1)), (1)

where ht+1 denotes the hidden states of the final decoder
layer, and e(·) is an embedding function that maps tokens to
their corresponding vector representations. In the following,

we define yt+1 = ML(yt) ≜ ML(yt, kv<t) and ignore
kv<t for simplicity.

Speculative Decoding Auto-regressive text generation in
LLMs is time-consuming. Speculative decoding addresses
this limitation by employing a smaller, faster draft model
MS to generate candidate tokens ahead of time. These
candidate tokens, commonly referred to as drafts, are then
verified in parallel by the target LLM ML using rejection
sampling (Leviathan et al., 2023), i.e., if any token in the
draft sequence is rejected, all subsequent tokens are dis-
carded, and the draft-verification process resumes from the
last accepted token.

During each draft-verification iteration, MS generates a
sequence of D draft tokens {ŷt+i}Di=1. Subsequently, ML
verifies these drafts in parallel according to Eq.(1):

yt+1 ∼ ML(yt),
yt+2 ∼ ML(ŷt+1), (2)

...
yt+D ∼ ML(ŷt+D−1).

The number of accepted draft tokens for each iteration is de-
termined by comparing the draft sequence {ŷt+1, ..., ŷt+D}
with the verified sequence {yt+1, ..., yt+D} using rejection
sampling.

Metrics We assess the method’s performance by measur-
ing its acceleration effect. Specifically, we use the speedup
ratio as a metric, which is calculated by dividing the speed
of our proposed method by the speed of standard (vanilla)
decoding:

Speedup ratio =
speedGumiho

speedvanilla
(3)

The speed of each method is calculated by dividing the total
number of generated tokens by the total processing time:

speed =
total tokens
total time

=
mean accepted tokens × draft rounds

average time × draft rounds

=
mean accepted tokens

average time
(4)

Following existing works (Li et al., 2024b; Ankner et al.,
2024), we primarily use mean accepted tokens (τ ) as the
main metric. We also present the differences in draft time
across different methods to demonstrate the effectiveness of
our approach in improving efficiency.

3.2. Theoretical Analysis

In this section, we prove that tokens at the beginning of
the draft sequence are more crucial than those at the end.
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Figure 1. Left: Differences between our proposed Gumiho and existing methods: Unlike existing approaches that use similar models to
predict every token in a sequence, we propose that initial tokens are more critical than later ones. So we employ a larger model with a
serial structure to generate the early tokens, while leveraging smaller parallel models for the later ones. Right: Overview of Gumiho.
Given an LLM input Describe a beautiful scene., Gumiho predicts the next 7 draft tokens (sun rose above the mountains through the).
The first two tokens (sun and rose) are deemed critical and are produced sequentially using the Transformer MT for higher accuracy. The
remaining tokens are generated simultaneously through the MLP heads, optimizing for computational efficiency.

Consider a draft model that predicts 3 tokens at a time with
a uniform acceptance probability of 0.8 at each position.
The expected length E[L]original of accepted tokens per draft
round is:

E[L]original = 1× P (L = 1) + 2× P (L = 2) + 3× P (L = 3)

=

3∑
i=1

P (L ≥ i)

= 0.8 + 0.82 + 0.83 = 1.95,

where L represents the accepted length determined by the
target LLM’s verification after each draft round. E[·] de-
notes the expectation operator, and P (L = i) represents the
probability that the accepted length L is equal to i.

Now, suppose we redistribute the model’s parameters to
prioritize earlier positions, i.e., allocating more parame-
ters to predict the first position and fewer for subsequent
positions. Assume this improved structure creates position-
dependent acceptance probabilities of 0.85, 0.8, and 0.75
for the first, second, and third positions respectively. The
expected length E[L]improved becomes:

E[L]improved =

3∑
i=1

P (L ≥ i)

= 0.85 + 0.85× 0.8 + 0.85× 0.8× 0.75 = 2.04.

This example empirically demonstrates that when the overall
token accuracy remains constant, improving the accuracy of
the initial token can increase the mean accepted tokens (τ ).

In the following, we provide a theorem to generalize the
above example to a broader scenario. Given a draft se-
quence with length D, we first have an original setting with
acceptance probabilities {pi}Di=1 and denote E[L]original as
its mean accepted tokens (τ ). Since errors accumulate when
predicting a sequence, the acceptance probability of later to-
kens tends to be lower than that of earlier tokens in practical
scenarios. Based on this observation, we have:

1 ≥ p1 ≥ p2 ≥ · · · ≥ pD ≥ 0. (5)

Then, we define an improved setting whose sequence is
separated by index d with 1 < d < D. In this setting,
acceptance probabilities p̃i are modified as follows:

p̃i =

{
pi + ζi, 1 ≤ i ≤ d

pi − ζi, d < i ≤ D
,

s.t. 0 ≤ {ζi}Di=1 ≤ 1, 0 ≤ {p̃i}Di=1 ≤ 1,

d∑
i=1

ζi =

D∑
j=d+1

ζj , ζi < pi. (6)

In this improved setting, we increase the acceptance prob-
abilities for the first d tokens by a small amount ζi and
decrease those for the remaining tokens by the same total
amount. In this way, the sum of the acceptance probabil-
ities remains unchanged. We denote the mean accepted
tokens (τ ) in this improved setting as E[L]improved. With
these definitions above, we can derive the following theo-
rem:
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Theorem 3.1. The mean accepted tokens (τ ) under the im-
proved probability distribution exceeds that of the original
distribution:

E[L]improved ≥ E[L]original.

This theorem shows that redistributing the acceptance proba-
bilities across sequence tokens by increasing the accuracies
of the initial tokens and decreasing those of the later tokens
can improve the overall expected performance. A detailed
proof of this theorem is provided in Appendix A.

3.3. Gumiho

Inspired by Theorem 3.1, we propose Gumiho, a model
that prioritizes the front part of the draft sequence. Gumiho
consists of two main components: heads for generating draft
tokens and a full tree attention mechanism for verification.

Gumiho Heads. As shown in Fig. 1, Gumiho introduces
a hybrid architecture that distinguishes itself from existing
methods. Unlike approaches that rely solely on a single
serial or parallel structure and employ uniform head size
across all positions, Gumiho combines large serial heads
with small parallel heads to enhance accuracy and efficiency.

The serial component aims to increase the accuracy of the
initial tokens and comprises a two-layer Transformer MT
that predicts initial draft tokens sequentially. Specifically,
MT generates the first two tokens of the draft sequence auto-
regressively. Similar to Eagle-2, our method concatenates
the hidden state ht ∈ Rd with the corresponding output
token embedding e(yt) ∈ Rd generated by LLM ML at
time step t, and employs a fully connected layer FC to
reduce the dimension from 2d to d:

ot = FC(cat(e(yt), ht)), (7)

where cat denotes the concatenation operation, and ot ∈
Rd. Then, the concatenated result ot is fed into the serial
component MT, which sequentially generates the first two
drafts:

ĥt+1 = MT(ot), ôt+1 = FC(cat(e(ŷt+1), ĥt+1)), (8)

ĥt+2 = MT(ôt+1), ôt+2 = FC(cat(e(ŷt+2), ĥt+2)). (9)

For simplicity, we omit the input and output of KV cache
in MT, and also the step of using Softmax to obtain ŷt+1,
ŷt+2, which is similar to Eq. (1).

The parallel component aims to speed up the generation
of the remaining tokens while maintaining accuracy and
consists of five different MLPs {Mi

M}5i=1 running concur-
rently. These MLPs share the same architecture, consisting
of two fully connected (FC) layers with a ReLU activation
function in between. They also share the same input, i.e.,
cat(ôt+1, ôt+2) which concatenate the two outputs gener-
ated by the serial model MT. The outputs of MLPs repre-
sent the draft tokens at the following five positions:

Figure 2. Our proposed Full Tree Attention enhances shorter can-
didate paths by borrowing tokens from other tree nodes, thereby
increasing the likelihood that candidates achieve longer acceptance
lengths. Note that for each depth in the tree, we only have s = 3
different tokens.

ĥt+2+i = Mi
M(cat(ôt+1, ôt+2)), i = 1, ..., 5. (10)

Given the hidden states {ĥt+i}7i=1, we obtain the draft to-
kens {ŷt+i}7i=1 using Eq. (1).

Full Tree Attention (FTA). A key distinction between our
Gumiho and Eagle-2 lies in the use of parallel heads for
generating subsequent tokens. To fully leverage this parallel
paradigm, we introduce the full tree attention mechanism,
which enhances the existing Tree Attention mechanism em-
ployed by Eagle-2.

In Eagle-2, tokens at each position are generated in an auto-
regressive manner, meaning that each subsequent token is
entirely dependent on the tokens generated in the previous.
Conversely, our parallel heads Mi

M generate tokens for all
positions simultaneously. This parallel generation paradigm
removes dependencies between these tokens, as they are
determined solely by the outputs of the preceding serial out-
puts generated by MT. The independence between tokens
enables us to perform a full traversal connection operation
on the tokens generated in parallel. Specifically, any two
tokens generated by two different Mi

M can be connected
to form a candidate path. As illustrated in Fig. 2, after the
serial heads output the tokens the and sun, the three parallel
heads generate s subsequent tokens for each position (s = 3
in Fig. 2). These s tokens at each position can be arbitrarily
combined with tokens from other positions, resulting in a
total of s3 candidate paths with only 3s different tokens by
the time we complete the third MLP head. In Fig. 2, the
score for each token is displayed, calculated by multiplying
the score of the preceding token with the confidence of the
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current MLP in generating specific tokens.

To select candidate paths for verification, we choose the top
eight tokens with the highest scores. As shown in Fig. 2,
traditional tree attention often results in some candidate
paths being very short because tokens on early positions
usually have higher scores. To address this issue, our pro-
posed FTA mechanism supplements shorter paths with to-
kens from corresponding positions in longer paths. This is
reasonable since any two tokens from different positions
among the parallel-generated tokens can be combined, and
the borrowed tokens from longer candidate paths do not
conflict with the original tokens in shorter paths. This en-
sures the coherence of the final candidate paths, maintaining
the integrity of the generated sequence. Consequently, this
approach increases the average length of candidate paths,
enhancing the overall performance of the model.

It is worth noting that FTA incurs no additional compu-
tational overhead, as the borrowed tokens already exist
in other candidate paths within the tree, with their query,
key, and value computations already completed. In the
original attention tree, these tokens were simply discarded,
while our approach unblocks them and allows shorter can-
didates to access and utilize them. The rejection sampling
method (Leviathan et al., 2023) for token selection ensures
that the appending of borrowed tokens does not impact pre-
viously selected tokens. Consequently, after applying FTA,
each candidate’s acceptance length equals or exceeds that
of the original implementation.

4. Experiments
In this section, we compare our proposed Gumiho with
other SOTA methods to show the priority of our approach.
Then, we conduct several ablation studies to validate the
effectiveness of each part of our method.

4.1. Experimental Setup

We conduct experiments using seven target LLMs:
Vicuna-7B/13B (Chiang et al., 2023), Llama2-chat-
7B/13B/70B (Touvron et al., 2023), and Llama3-instruct-
8B/70B (Meta, 2024). Target LLMs are fixed during train-
ing, with only the draft heads being trained. Following Eagle
and Eagle-2 (Li et al., 2024a;b), we train our draft model
on the ShareGPT dataset. Our Gumiho model comprises a
Transformer model and five MLPs to predict the next seven
draft tokens: the Transformer autoregressively generates
the first two tokens, and the remaining five are predicted in
parallel by the MLPs. Training details and hyperparameters
can be found in Appendix C.

We evaluate the performance across multiple benchmarks:
MT-Bench (Zheng et al., 2023) for multi-turn dialogue,
HumanEval (Chen et al., 2021) for code generation,

Figure 3. Comparison of average draft time (lower is better) with
different temperatures. Both results are based on Vicuna 7B.

GSM8K (Cobbe et al., 2021) for mathematical reasoning,
Alpaca (Taori et al., 2023) for general instruction-following,
CNN/Daily Mail (Nallapati et al., 2016) for summarization,
and Natural Questions (Kwiatkowski et al., 2019) for ques-
tion answering. We conduct model training using 8×AMD
Instinct MI250 GPUs. For evaluation, we use a single
MI250 GPU for all models except the 70B variant, which
requires 4×MI250 GPUs due to its larger size. Additionally,
we include evaluation results using a single NVIDIA A100
GPU in Appendix B.

We compare our method against several existing approaches:
Medusa (Cai et al., 2024) with multiple parallel MLP heads,
Hydra (Ankner et al., 2024) with sequential MLP heads,
Eagle (Li et al., 2024a) and Eagle-2 (Li et al., 2024b) with
sequential single-layer Transformer head. Eagle-2 shares
the same model parameters as Eagle but distinguishes itself
by incorporating a dynamic tree to generate candidates.

In line with Eagle-2 (Li et al., 2024b), we also conduct
experiments with temperature settings of 0 and 1. A tem-
perature of 0 means that the target LLM uses a greedy
sampling method, where the token with the highest proba-
bility is selected at each position. In contrast, a temperature
of 1 increases the diversity of the output by applying post-
processing to the logits at the current position, rather than
directly selecting the token with the highest probability.
When the temperature is set to 1, Eagle-2 excludes methods
like Medusa since their relaxed acceptance criteria under
non-greedy sampling do not ensure lossless acceleration.
We follow their experimental settings in this work.

4.2. Performance Comparison

Experimental results are shown in Tab. 1. The Speedup
metric quantifies the actual end-to-end acceleration ratio of
token generation speed compared to vanilla auto-regressive
generation, while τ is the average number of tokens accepted
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Table 1. Speedup ratios and mean accepted tokens (τ ) of different methods. V represents Vicuna, L2 represents LLaMA2-Chat, and L3
represents LLaMA3-Instruct. We present the results of different methods across six datasets. Mean represents the average performance
across these six datasets.

Model Method MT-Bench HumanEval GSM8K Alpaca CNN/DM Natural Ques. Mean
Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Temperature=0

V 7B

Medusa 1.96× 2.50 2.15× 2.69 2.01× 2.59 1.94× 2.48 1.60× 2.02 1.68× 2.05 1.89× 2.39
Hydra 2.47× 3.59 2.65× 3.78 2.49× 3.67 2.44× 3.58 1.92× 2.70 2.01× 2.86 2.33× 3.36
Eagle 2.61× 3.82 2.96× 4.20 2.67× 4.00 2.41× 3.66 2.35× 3.34 2.10× 3.13 2.52× 3.69

Eagle-2 2.88× 5.00 3.27× 5.35 2.93× 4.94 2.71× 4.85 2.45× 4.11 2.24× 3.84 2.74× 4.68
Gumiho(ours) 3.15× 5.29 3.65× 5.77 3.10× 5.06 2.83× 4.87 2.73× 4.48 2.34× 3.88 2.97× 4.89

V 13B

Medusa 2.03× 2.58 2.24× 2.77 2.08× 2.64 2.04× 2.44 1.67× 2.10 1.70× 2.10 1.96× 2.44
Hydra 2.65× 3.65 2.88× 3.86 2.69× 3.67 2.65× 3.49 2.08× 2.82 2.16× 2.86 2.52× 3.39
Eagle 2.87× 3.90 3.25× 4.29 2.88× 3.90 2.64× 3.50 2.58× 3.49 2.21× 2.92 2.74× 3.66

Eagle-2 3.16× 4.93 3.68× 5.42 3.19× 4.82 3.01× 4.89 2.79× 4.27 2.41× 3.69 3.04× 4.67
Gumiho(ours) 3.36× 5.16 4.11× 5.97 3.39× 5.04 3.07× 4.88 2.91× 4.41 2.52× 3.76 3.23× 4.87

L2 7B
Eagle 2.22× 3.00 2.53× 3.58 2.21× 3.09 2.04× 2.88 2.08× 2.78 1.88× 2.64 2.16× 3.00

Eagle-2 2.91× 4.76 3.30× 5.38 2.87× 4.76 2.81× 4.65 2.53× 4.10 2.52× 4.16 2.82× 4.64
Gumiho(ours) 3.07× 4.90 3.55× 5.60 3.00× 4.81 2.85× 4.55 2.66× 4.18 2.59× 4.16 2.95× 4.70

L2 13B
Eagle 2.59× 3.30 2.96× 3.90 2.61× 3.45 2.41× 3.16 2.39× 3.09 2.15× 2.82 2.52× 3.29

Eagle-2 3.17× 4.76 3.78× 5.53 3.23× 4.88 3.03× 4.62 2.84× 4.27 2.76× 4.12 3.13× 4.70
Gumiho(ours) 3.34× 4.98 4.05× 5.87 3.35× 5.02 3.12× 4.66 2.93× 4.40 2.84× 4.20 3.27× 4.85

L2 70B Eagle-2 2.51× 4.52 2.98× 5.24 2.63× 4.63 2.48× 4.42 2.04× 3.72 2.14× 3.88 2.47× 4.40
Gumiho(ours) 2.83× 4.71 3.35× 5.43 2.90× 4.69 2.70× 4.46 2.37× 4.08 2.35× 3.90 2.76× 4.54

L3 8B Eagle-2 2.16× 4.36 2.51× 5.06 2.22× 4.45 2.25× 4.88 1.82× 3.81 1.75× 3.54 2.12× 4.35
Gumiho(ours) 2.38× 4.48 2.77× 5.18 2.49× 4.63 2.44× 4.88 2.00× 3.94 1.93× 3.64 2.34× 4.46

L3 70B Eagle-2 2.94× 4.17 3.65× 5.09 3.17× 4.34 3.12× 4.74 2.54× 3.66 2.48× 3.50 2.98× 4.25
Gumiho(ours) 3.38× 4.28 4.28× 5.25 3.79× 4.58 3.48× 4.58 2.91× 3.80 2.87× 3.59 3.45× 4.35

Temperature=1

V 7B Eagle-2 2.51× 4.30 2.67× 4.52 2.46× 4.47 2.38× 4.37 2.15× 3.70 2.02× 3.50 2.37× 4.16
Gumiho(ours) 2.61× 4.42 2.84× 4.62 2.73× 4.52 2.46× 4.40 2.38× 3.94 2.10× 3.51 2.52× 4.23

V 13B Eagle-2 2.81× 4.37 3.32× 4.96 2.80× 4.43 2.66× 4.46 2.51× 3.92 2.25× 3.50 2.73× 4.27
Gumiho(ours) 2.93× 4.54 3.55× 5.30 2.84× 4.59 2.77× 4.54 2.58× 4.04 2.36× 3.72 2.84× 4.46

L2 7B Eagle-2 2.66× 4.63 2.95× 5.15 2.70× 4.76 2.52× 4.40 2.34× 3.98 2.29× 4.02 2.58× 4.49
Gumiho(ours) 2.79× 4.64 3.19× 5.27 2.78× 4.67 2.64× 4.40 2.47× 4.05 2.44× 4.08 2.72× 4.52

L2 13B Eagle-2 3.01× 4.60 3.58× 5.34 3.09× 4.76 2.91× 4.49 2.71× 4.15 2.66× 4.08 2.99× 4.57
Gumiho(ours) 3.18× 4.82 3.86× 5.71 3.24× 4.94 2.98× 4.62 2.80× 4.28 2.76× 4.16 3.14× 4.75

L2 70B Eagle-2 2.28× 4.41 2.73× 5.15 2.42× 4.59 2.31× 4.30 1.87× 3.67 2.00× 3.72 2.27× 4.30
Gumiho(ours) 2.60× 4.65 3.15× 5.46 2.66× 4.61 2.50× 4.43 2.15× 3.98 2.22× 3.95 2.55× 4.51

L3 8B Eagle-2 1.93× 4.04 2.32× 4.80 2.06× 4.27 2.03× 4.57 1.67× 3.55 1.59× 3.27 1.93× 4.08
Gumiho(ours) 2.13× 4.14 2.55× 4.95 2.29× 4.42 2.19× 4.55 1.86× 3.64 1.72× 3.32 2.12× 4.17

L3 70B Eagle-2 2.85× 4.07 3.57× 4.97 3.13× 4.31 3.00× 4.65 2.47× 3.58 2.42× 3.45 2.91× 4.17
Gumiho(ours) 3.29× 4.20 4.20× 5.17 3.69× 4.49 3.34× 4.43 2.84× 3.71 2.85× 3.57 3.37× 4.26

by the target LLM per draft round after verification.

Across diverse target LLMs, model sizes, and temperature
settings, Gumiho demonstrates superior performance. Over-
all, Gumiho surpasses the existing SOTA method EAGLE-2
by 4.5%∼15.8%. The performance gains are particularly
pronounced with 70B model variants. At temperature 0,
Gumiho outperforms EAGLE-2 by 11.7% on LLaMA2 70B
and 15.8% on LLaMA3 70B. This substantial improvement
is primarily attributed to enhancements in τ and a reduction
in draft time. Specifically, the output hidden state for 70B
models has a dimension of 8192, compared to 4096 in the
7B and 13B models. While the larger hidden state increases
computational complexity, it also amplifies the benefits of
our model parallelization, significantly reducing drafting
time and further boosting the speedup ratio.

In Fig. 3, we present the time required by different models
for a draft round. From Eq. (4), it is evident that a shorter
draft time leads to a higher speedup ratio, resulting in im-
proved performance. Fig. 3 demonstrates that the draft time
of Gumiho is consistently shorter than that of Eagle-2 across
all datasets regarding different temperatures, highlighting

the superiority of our approach. This is primarily attributed
to the efficiency of the parallel MLP heads in Gumiho.

4.3. Ablation Studies

In this section, we evaluate the contribution of each compo-
nent in our method to the overall performance. Specifically,
we conduct ablation studies focusing on three key aspects:
(1) The depth of the serial head (Transformer head), where
we vary the number of Transformer layers to assess its im-
pact; (2) The width of parallel heads (MLP heads), where
we experiment with different numbers of MLP heads; and
(3) the effectiveness of full tree attention (FTA). These ab-
lation studies aim to provide a deeper understanding of the
architectural design choices in our proposed method and
their respective contributions to the final performance. We
also present a detailed comparison of draft head accuracy in
Appendix D. Unless otherwise specified, the ablation exper-
iments are conducted using Vicuna 7B as the target LLM,
with MT-Bench as the test dataset and the temperature set
to 0.
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Figure 4. Ablation study on serial head depth. The serial head is a
Transformer model, whose depth represents the number of layers
within the Transformer architecture.

Serial head depth. The serial head depth refers to the
number of layers in the Transformer model. This Trans-
former serves as the initial head responsible for generating
the first two tokens in a draft sequence. In this study, we vary
the number of layers in the Transformer model to examine
how the depth of the initial head affects the model’s overall
performance. The experimental results shown in Fig. 4 re-
veal that reducing the number of Transformer layers results
in a decline in τ , which underscores the significant impact
of the initial heads. However, when the depth increases from
2 to 3 layers, although τ improves further, the speedup ratio
decreases. This is because the overall speedup depends not
only on τ but also on the time required to complete a single
draft process. Using a three-layer Transformer substantially
increases the drafting time, which ultimately reduces the
speedup effect.

It is worth noting that using varied depths to generate the
first two tokens, such as a two-layer Transformer for the
first token and a one-layer Transformer for the second, may
seem intuitive but proves inefficient during inference. Since
Transformers with different architectures cannot share their
key-value (KV) caches, each head must compute its cache
independently. This prevents cache reuse between heads,
increasing the computational overhead. Our approach em-
ploys identical serial heads throughout the model, only
trains one single Transformer model, and reuses it for auto-
regressive token generation during inference. This architec-
tural uniformity enables efficient KV cache sharing across
the entire generation process.

Parallel Head Width. Parallel head width refers to the
number of MLP heads in Gumiho, which run in parallel to
generate subsequent tokens in the draft sequence. The exper-
imental results are shown in Fig. 5. Note that increasing the
number of MLP heads initially improves performance but
eventually leads to a decline. This is because increasing the
number of parallel heads enhances the model’s capacity to
predict longer draft sequences, thereby improving its ability

Figure 5. Ablation study on parallel head width. Parallel heads
refer to the MLPs in Gumiho, and the width indicates the number
of MLP models.

Table 2. Ablation study on the FTA mechanism.

Speedup τ

w/o Full Tree Attention 3.10× 5.18
w/ Full Tree Attention 3.15× 5.29

to generate more accepted tokens. Additionally, since MLP
heads operate in parallel, increasing their number does not
significantly increase runtime. A higher number of mean
accepted tokens with a similar runtime leads to an improved
performance. However, this improvement does not scale in-
definitely. All MLP heads share the same input embedding,
which is derived from the concatenation of outputs from the
preceding Transformer head. During training, this shared
embedding serves as the input to every MLP head and is
simultaneously shaped by the back-propagated losses from
all of them. As the number of MLP heads increases, the em-
bedding must encode a growing amount of information to
meet the requirements of each additional head. This leads to
excessive information being compressed into the limited em-
bedding space, which reduces the clarity and specificity of
the information available to each MLP head and ultimately
causes performance degradation.

Effectiveness of Full Tree Attention (FTA). We verify
the effectiveness of this component by conducting exper-
iments with or without using FTA in our model. The ex-
perimental results are presented in Tab. 2. They indicate
that removing FTA impacts the mean accepted tokens and
diminishes the speedup effect.

Wall Clock Time of Different Components. To provide
a granular understanding of the model’s performance, we
report the wall clock time of key components in the pipeline,
as shown in Tab. 3.
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Table 3. Ablation study on the wall time.

Components Wall Time (ms)

1st Serial Head 2.80
2nd Serial Head 3.46

Parallel Head 2.02
Full Tree Attention 3.41
Other Computation 6.11

Verification 45.50

5. Conclusion
The core idea of this paper is to rigorously prove that the
accuracy of early tokens in a draft sequence is more critical
than that of later ones in speculative decoding. In other
words, given a fixed budget for model parameter size and
overall execution time, prioritizing the heads responsible
for generating the initial tokens can improve overall per-
formance. Building on this insight, we propose Gumiho, a
novel approach that employs a hybrid head design. Specifi-
cally, Gumiho allocates a larger proportion of the parameter
and execution time budget to the head responsible for gener-
ating the initial tokens. This head is a Transformer model
with a serial structure designed for these initial tokens, en-
suring higher accuracy. For those heads that generate later
tokens, Gumiho employs lightweight MLPs and parallelizes
their execution to produce multiple tokens simultaneously.
This hybrid design achieves improved performance by bal-
ancing accuracy and efficiency: the serial Transformer en-
hances the accuracy of the initial tokens, while the parallel
MLPs reduce overall generation time. Experimental results
validate the effectiveness of our approach, demonstrating
that Gumiho surpasses existing state-of-the-art methods.

6. Limitation
Our proposed method, while achieving significant speedup,
utilizes a more parameter-heavy draft model compared to
architectures like Eagle and Medusa. Specifically, the incor-
poration of a two-layer Transformer head alongside five par-
allel MLP heads, trained concurrently, results in increased
GPU memory consumption during the training phase.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Detailed Proof of Theorem 3.1
Given {pi}Di=1 and {p̃i}Di=1 defined in Eq. (5) and Eq. (6) in the main paper, the mean accepted tokens (τ ) for the original
and improved settings are expressed as:

E[L]original =

D∑
k=1

Pori(L ≥ k) =

D∑
k=1

(

k∏
i=1

pi), (11)

and

E[L]improved =

D∑
k=1

Pimp(L ≥ k) =

D∑
k=1

(

k∏
i=1

p̃i). (12)

We aim to prove that:

E[L]improved ≥ E[L]original. (13)

We introduce an auxiliary probability sequence P ′
i that concentrates the scattered changes ζi at two adjacent positions d and

d+ 1. Specifically, we define:

P ′
i =


pi + ζ, i = d

pi − ζ, i = d+ 1

pi, otherwise,
s.t. ζ =

d∑
i=1

ζi =

D∑
j=d+1

ζj . (14)

Here, we assume

pd + ζ ≤ 1. (15)

We will discuss the cases of pd + ζ > 1 at the end.

With these assumptions hold, the corresponding mean accepted tokens (τ ) for this concentrated setting is:

E[L]concentrate =

D∑
k=1

Pcon(L ≥ k) =

D∑
k=1

(

k∏
i=1

P ′
i ). (16)

In the following, we will prove that:

E[L]concentrate ≥ E[L]original, (17)
E[L]improved ≥ E[L]concentrate. (18)

Before proceeding with the main proof, let us examine the special case where pd+1 = 1. In this case, the ordering constraint
1 ≥ p1 ≥ p2 ≥ · · · ≥ pd ≥ pd+1 implies that all probabilities are equal: p1 = p2 = · · · = pd = pd+1 = 1. Given that
pi + ζi ≤ 1 for all i = {1, 2, · · · , d}, we must have ζ1 = ζ2 = · · · = ζd = 0. This leads to ζ =

∑d
i=1 ζi =

∑D
i=d+1 ζi = 0,

meaning that {pi}Di=1 and {p̃i}Di=1 are exactly the same. As a result,, E[L]improved = E[L]original.

For the remainder of the proof, we assume pd+1 < 1.

A.1. The proof of E[L]concentrate ≥ E[L]original

Define

∆E = E[L]concentrate − E[L]original =

D∑
k=1

∆Ek, (19)
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where ∆Ek =
∏k

i=1 P
′
i −

∏k
i=1 pi represents the contributions to the difference of the expected value for each position k.

Step 1: Analyze of ∆E.

We separate ∆E into three parts, where ∆E1 =
∑d

k=1 ∆Ek, ∆E2 = ∆Ed+1 and ∆E3 =
∑D

k=d+2 ∆Ek.

For 1 ≤ k < d, P ′
k = pk and ∆Ek = 0. Therefore:

∆E1 = ∆Ed

=

d∏
i=1

P ′
i −

d∏
i=1

pi

=

d−1∏
i=1

pi · (pd + ζ)−
d∏

i=1

pi

= ζ

d−1∏
i=1

pi. (20)

For k = d+ 1, we have:

∆E2 = ∆Ed+1

=

d+1∏
i=1

P ′
i −

d+1∏
i=1

pi

=

d−1∏
i=1

pi · (pd + ζ)(pd+1 − ζ)−
d+1∏
i=1

pi

=

d−1∏
i=1

pi · (ζpd+1 − ζpd − ζ2)

= ζ(pd+1 − pd − ζ)

d−1∏
i=1

pi. (21)

For k > d+ 1, the difference arises from the terms (pd + ζ) and (pd+1 − ζ) in the product. Thus:

∆E3 =

D∑
k=d+2

∆Ek

=

D∑
k=d+2

(
k∏

i=1

P ′
i −

k∏
i=1

pi

)

=

D∑
k=d+2

(

d−1∏
i=1

pi)(pd + ζ)(pd+1 − ζ)(

k∏
i=d+2

pi)−
k∏

i=1

pi


=

D∑
k=d+2

(

d−1∏
i=1

pi)ζ(pd+1 − pd − ζ)(

k∏
i=d+2

pi)

 . (22)

By combining Eq. (20) ∼ Eq. (22), we have:

∆E = ∆E1 +∆E2 +∆E3

= ζ(pd+1 − pd + 1− ζ)

d−1∏
i=1

pi +

D∑
k=d+2

(

d−1∏
i=1

pi)ζ(pd+1 − pd − ζ)(

k∏
i=d+2

pi)

 . (23)
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Step 2: Scaling.

Define A =
∏d−1

i=1 piζ and recall that in Eq. (5) we have 1 ≥ p1 ≥ p2 ≥ · · · ≥ pD ≥ 0, then the total difference ∆E
becomes:

∆E = A(pd+1 − pd + 1− ζ) +

D∑
k=d+2

A(pd+1 − pd − ζ)(

k∏
i=d+2

pi)


= A

1 + (pd+1 − pd − ζ) + (pd+1 − pd − ζ)

D∑
k=d+2

k∏
i=d+2

pi


= A

1− (pd − pd+1 + ζ)− (pd − pd+1 + ζ)

D∑
k=d+2

k∏
i=d+2

pi


≥ A

1− (pd − pd+1 + ζ)− (pd − pd+1 + ζ)

D∑
k=d+2

pk−d−1
d+1


= A

1− (pd − pd+1 + ζ)(1 +

D∑
k=d+2

pk−d−1
d+1 )

 . (24)

Step 3: Simplifying the sum.

Note that the last term 1 +
∑D

k=d+2 p
k−d−1
d+1 in Eq. (24) is a geometric series. Therefore, we have:

1 +

D∑
k=d+2

pk−d−1
d+1 = 1 + pd+1 + p2d+1 + p3d+1 + · · ·+ pD−d−1

d+1

=
1− pD−d

d+1

1− pd+1
. (25)

Substitute this back into ∆E, and we have:

∆E ≥ A

1− (pd − pd+1 + ζ)(
1− pD−d

d+1

1− pd+1
)

 . (26)

Step 4: Proving ∆E ≥ 0

To ensure ∆E ≥ 0, we need:

(pd − pd+1 + ζ)(
1− pD−d

d+1

1− pd+1
) ≤ 1,

⇐⇒ (pd − pd+1 + ζ)(1− pD−d
d+1 ) ≤ 1− pd+1,

⇐⇒ (pd + ζ)− pD−d
d+1 (pd − pd+1 + ζ) ≤ 1. (27)

Since 1 ≥ pd ≥ pd+1 ≥ 0 and ζ ≥ 0, it follows that pD−d
d+1 (pd − pd+1 + ζ) ≥ 0. Besides, since we have pd + ζ ≤ 1 in

Eq. (15), the inequality holds. Thus, ∆E ≥ 0. Implying:

E[L]concentrate ≥ E[L]original. (28)

A.2. Proving that E[L]improved ≥ E[L]concentrate

We introduce a series of auxiliary sequences with the goal of proving the following inequality chain. Note that the first line
and the last line in the following inequality chain represent the improved setting and the concentrate setting, respectively.
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Note that only two elements are different in every two consecutive lines (except for the last two lines). Specifically, we
merge ζi into ζd one at a time for 1 ≤ i ≤ d− 1.

E(p1 + ζ1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

E(p1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd + ζ1, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

E(p1, p2, p3 + ζ3, · · · , pd + ζd + ζ1 + ζ2, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

· · ·

≥

E(p1, p2, p3, · · · , pd +
∑d

i=1 ζi, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

E(p1, p2, p3, · · · , pd +
∑d

i=1 ζi, pd+1 −
∑D

i=d+1 ζi, pd+2, · · · , pD)

(29)

First Part of the Inequality Chain

We begin by proving the first inequality in the chain, which involves transferring ζ1 from p1 to pd:

E(p1 + ζ1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

E(p1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd + ζ1, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

(30)

15
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Let ∆E1
4 denote the difference between the left-hand side (LHS) and the right-hand side (RHS) of the above inequality:

∆E1
4 =E(p1 + ζ1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

− E(p1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd + ζ1, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

=(p1 + ζ1 − p1) +

d−1∑
k=2

[
k∏

i=1

(pi + ζi)− p1

k∏
i=2

(pi + ζi)

]
+[

d∏
i=1

(pi + ζi)− p1

(
d−1∏
i=2

(pi + ζi)

)
(pd + ζ1 + ζd)

][
1 +

D∑
k=d+1

(

k∏
i=d+1

(pi − ζi)

]

≥ζ1 +

[
d∏

i=1

(pi + ζi)− p1

(
d−1∏
i=2

(pi + ζi)

)
(pd + ζ1 + ζd)

][
1 +

D∑
k=d+1

(

k∏
i=d+1

(pi − ζi)

]

≥ζ1 +

d−1∏
i=2

(pi + ζi) [(p1 + ζ1)(pd + ζd)− p1(pd + ζ1 + ζd)]

[
1 +

D∑
k=d+1

(

k∏
i=d+1

(pi − ζi)

]

=ζ1 +

d−1∏
i=2

(pi + ζi)ζ1 (pd + ζd − p1)

[
1 +

D∑
k=d+1

(

k∏
i=d+1

(pi − ζi)

]
(31)

If pd + ζd − p1 ≥ 0, then ∆E1
4 ≥ 0. This directly implies that the first inequality holds.

If pd + ζd − p1 < 0, then

∆E1
4 ≥ζ1 −

d−1∏
i=2

(pi + ζi)ζ1 (p1 − pd − ζd)

[
1 +

D∑
k=d+1

(pk−d
d+1)

]

=ζ1 −
d−1∏
i=2

(pi + ζi)ζ1 (p1 − pd − ζd)
1− pD−d+1

d+1

1− pd+1

≥ζ1 − ζ1 (p1 − pd − ζd)
1

1− pd+1

=ζ1

[
1− (p1 − pd − ζd)

1

1− pd+1

]
=ζ1

[
(1− pd+1)− (p1 − pd − ζd)

1− pd+1

]
=ζ1

[
(1− p1) + (pd + ζd − pd+1)

1− pd+1

]
(32)

Given that p1 ≤ 1 and pd+1 ≤ pd < 1, the numerator (1− p1) + (pd + ζd − pd+1) and the denominator 1− pd+1 are both
positive. Hence, ∆E1

4 ≥ 0.

In both cases, ∆E1
4 ≥ 0, thereby proving Inequality 30.

Similarly, consider further transferring ζ2 from p2 to pd:

E(p1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd + ζ1, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

E(p1, p2, p3 + ζ3, · · · , pd + ζd + ζ1 + ζ2, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

(33)
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Apparently, this equals to prove:

p1 + p1E(p2 + ζ2, p3 + ζ3, · · · , pd + ζd + ζ1, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

p1 + p1E(p2, p3 + ζ3, · · · , pd + ζd + ζ1 + ζ2, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

(34)

which can be degenerated to Inequality 30 by removing p1 from both auxiliary sequences.

Using the same method, we can iteratively transfer each ζi from pi to pd for i = 1, 2, · · · , d, ensuring that each step
maintains the inequality. Consequently, all inequalities in the chain (29) hold, except the last.

To conclude, after transferring all ζi from i = 1 to d, we arrive at the following:

E(p1 + ζ1, p2 + ζ2, p3 + ζ3, · · · , pd + ζd, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

E(p1, p2, p3, · · · , pd +
∑d

i=1 ζi, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

(35)

This completes the proof for the first part of the inequality chain.

Second Part of the Inequality Chain

We now address the final inequality in the chain (29), specifically:

E(p1, p2, p3, · · · , pd +
∑d

i=1 ζi, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≥

E(p1, p2, p3, · · · , pd +
∑d

i=1 ζi, pd+1 −
∑D

i=d+1 ζi, pd+2, · · · , pD)

(36)

Let ∆E5 denote the difference between the left-hand side and the right-hand side of the above inequality:

∆E5 =E(p1, p2, p3, · · · , pd +
d∑

i=1

ζi, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

− E(p1, p2, p3, · · · , pd +
d∑

i=1

ζi, pd+1 −
D∑

i=d+1

ζi, pd+2, · · · , pD)

=(

d−1∏
i=1

pi)(pd +

d∑
i=1

ζi)

[
D∑

k=d+1

(

k∏
i=d+1

(pi − ζi))−
D∑

k=d+1

(

k∏
i=d+1

P ′
i )

]
(37)

Note that the multiplicative coefficient (
∏d−1

i=1 pi)(pd +
∑d

i=1 ζi) is always positive, as probabilities are non-negative.
Therefore, the sign of ∆E5 depends solely on the later bracketed difference. We denote this difference as ∆E′

5:
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∆E′
5 =

D∑
k=d+1

(

k∏
i=d+1

(pi − ζi))−
D∑

k=d+1

(

k∏
i=d+1

P ′
i )

=

D∑
k=d+1

(

k∏
i=d+1

(pi − ζi))−

(pd+1 − ζ) +

D∑
k=d+2

(

k∏
i=d+2

pi)(pd+1 − ζ)


=

(pd+1 − ζd+1) +

D∑
k=d+2

(

k∏
i=d+1

(pi − ζi))

−

(pd+1 − ζ) +

D∑
k=d+2

(

k∏
i=d+2

pi)(pd+1 − ζ)


= (ζ − ζd+1) +

D∑
k=d+2

 k∏
i=d+1

(pi − ζi)− (

k∏
i=d+2

pi)(pd+1 − ζ)


= (ζ − ζd+1) +

D∑
k=d+2

ζ(

k∏
i=d+2

pi) +

k∏
i=d+1

(pi − ζi)−
k∏

i=d+1

pi


= (ζ − ζd+1) +

D∑
k=d+2

ζ(

k∏
i=d+2

pi) +

k∑
i=d+1

(−ζi)(

k∏
j=d+1
j ̸=i

pj) +R2(ζd+1, ζd+2, · · · , ζk)

 , (38)

where in the last two terms of Eq. (38), we split the result of
∏k

i=d+1(pi − ζi) −
∏k

i=d+1 pi into two terms. The
first term represents the summation of all elements with only one ζi, and R2(ζd+1, ζd+2, · · · , ζk) denotes the sum of
all possible products involving two or more distinct ζi terms from {ζd+1, ζd+2, · · · , ζk}. Now we want to prove that
R2(ζd+1, ζd+2, · · · , ζk) ≥ 0. Since R2(ζd+1, ζd+2, · · · , ζk) only exists when k ≥ d+ 2, we define it as follow:

R2(ζd+1, ζd+2, · · · , ζk) =
k∏

i=d+1

(pi − ζi)−

 k∏
i=d+1

pi −
k∑

i=d+1

ζi

k∏
j=d+1
j ̸=i

pj

 , k ≥ d+ 2. (39)

Then, we can calculate the partial derivative of the function R2(ζd+1, ζd+2, · · · , ζk) with respect to ζm:

d(R2(ζd+1, ζd+2, · · · , ζk))
d(ζm)

= −
k∏

i=d+1
i̸=m

(pi − ζi) +

k∏
j=d+1
j ̸=m

pj . (40)

Given 0 ≤ pi − ζi ≤ pi ≤ 1, we observe that d(R2(ζd+1,ζd+2,...,ζk))
d(ζm) ≥ 0 is always true, which implies that

R2(ζd+1, ζd+2, . . . , ζk) is monotonically non-decreasing with respect to ζm for all m ∈ {d + 1, d + 2, . . . , k}. Note
that R2(ζd+1, ζd+2, . . . , ζk) is differentiable on (0, 1) and continuous on [0, 1] with respect to all ζm. Therefore,
R2(ζd+1, ζd+2, . . . , ζk) attains its minimum value when ζm = 0 for all m ∈ {d + 1, . . . , k}. Since R2(0, 0, . . . , 0) = 0,
we conclude that R2(ζd+1, ζd+2, . . . , ζk) ≥ 0.

Then

∆E′
5 ≥ (ζ − ζd+1) +

D∑
k=d+2

ζ(

k∏
i=d+2

pi)−
k∑

i=d+1

ζi(

k∏
j=d+1
j ̸=i

pj)


= (ζ − ζd+1) +

D∑
k=d+2

(

D∑
i=d+1

ζi)(

k∏
i=d+2

pi)−
k∑

i=d+1

ζi(

k∏
j=d+1
j ̸=i

pj)

 . (41)
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When D − d = 2:

∆E
′[2]
5 = (ζ − ζd+1) +

d+2∑
k=d+2

(

k∏
i=d+2

pi)ζ −
k∑

i=d+1

ζi(

k∏
j=d+1
j ̸=i

pj)


= ζd+2 + pd+2ζ − ζd+1pd+2 − ζd+2pd+1

= ζd+2(1− pd+1) + (ζ − ζd+1)pd+2

≥ (ζ − ζd+1)pd+2. (42)

Since 0 ≤ pi ≤ 1 and 0 ≤ ζi ≤ 1, it is clear that ∆E
′[2]
5 ≥ 0.

Similarly, When D − d = 3:

∆E
′[3]
5 = ∆E

′[2]
5 +

(

d+3∏
i=d+2

pi)ζ −
d+3∑

i=d+1

ζi(

d+3∏
j=d+1
j ̸=i

pj)


≥ (ζ − ζd+1)pd+2 + (pd+2pd+3ζ − ζd+1pd+2pd+3 − ζd+2pd+1pd+3 − ζd+3pd+1pd+2)

= (ζd+2 + ζd+3)pd+2 + (pd+2pd+3ζ − ζd+1pd+2pd+3 − ζd+2pd+1pd+3 − ζd+3pd+1pd+2)

= ζd+2(pd+2 − pd+1pd+3) + ζd+3(pd+2 − pd+1pd+2) + (ζ − ζd+1)pd+2pd+3

≥ ζd+2(pd+2 − pd+1pd+2) + ζd+3(pd+2 − pd+1pd+2) + (ζ − ζd+1)pd+2pd+3

≥ (ζ − ζd+1)pd+2pd+3

≥ 0. (43)

Using induction, assume that for any D − d = k ∈ [2,∞), ∆E
′[k]
5 = (ζ − ζd+1)

∏d+k
i=d+2 pi ≥ 0.

Then for D − d = k + 1:

∆E
′[k+1]
5 ≥ (ζ − ζd+1)

d+k∏
i=d+2

pi + (

d+k+1∏
i=d+2

piζ −
d+k+1∑
i=d+1

ζi(

d+k+1∏
j=d+1
j ̸=i

pj))

= (ζ − ζd+1)

d+k∏
i=d+2

pi +

ζ(

d+k+1∏
i=d+2

pi)− ζd+1(

d+k+1∏
j=d+2

pj)− ζd+2(

d+k+1∏
j=d+1
j ̸=d+2

pj)− · · · − ζd+k+1(

d+k+1∏
j=d+1

j ̸=d+k+1

pj)


= (ζd+2 + ζd+3 + · · ·+ ζd+k+1)

d+k∏
i=d+2

pi+ζ(

d+k+1∏
i=d+2

pi)− ζd+1(

d+k+1∏
j=d+2

pj)− ζd+2(

d+k+1∏
j=d+1
j ̸=d+2

pj)− · · · − ζd+k+1(

d+k+1∏
j=d+1

j ̸=d+k+1

pj)



= ζd+2

 d+k∏
i=d+2

pi −
d+k+1∏
j=d+1
j ̸=d+2

pj

+ ζd+3

 d+k∏
i=d+2

pi −
d+k+1∏
j=d+1
j ̸=d+3

pj

+ · · ·+ ζd+k+1

 d+k∏
i=d+2

pi −
d+k+1∏
j=d+1

j ̸=d+k+1

pj


+ (ζ − ζd+1)

d+k+1∏
i=d+2

pi. (44)
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For the first term in Eq. (44), we observe: d+k∏
i=d+2

pi −
d+k+1∏
j=d+1
j ̸=d+2

pj

 =

 d+k∏
i=d+2

pi −
d+k∏

j=d+1
j ̸=d+2

pj · pd+k+1



≥

 d+k∏
i=d+2

pi −
d+k∏

j=d+1
j ̸=d+2

pj · pd+2


=

 d+k∏
i=d+2

pi −
d+k∏

j=d+1

pj


= (1− pd+1)

(
d+k∏

i=d+2

pi

)
≥ 0. (45)

By the same reasoning, we can show that all coefficients in Eq. (44) are non-negative, and we have:

∆E
′[k+1]
5 ≥ (ζ − ζd+1)

d+k+1∏
i=d+2

pi

≥ 0. (46)

Therefore, we can conclude that ∆E′
5 ≥ 0, and thus:

∆E5 ≥ 0. (47)

Conclusion:

Since:

∆E4 ≥ 0, ∆E5 ≥ 0, (48)

we conclude that the inequality chain (29) holds, which means:

E[L]improved ≥ E[L]concentrate. (49)

A.3. Proving that E[L]improved ≥ E[L]original

Given that:

E[L]improved ≥ E[L]concentrate, E[L]concentrate ≥ E[L]original, (50)

we establish that:

E[L]improved ≥ E[L]original. (51)

A.4. Cases of pd + ζ > 1

At the beginning of the proof, we assume pd + ζ ≤ 1. In cases where pd + ζ > 1, the parameter ζ can be distributed across
multiple positions to satisfy the constraints. Specifically, we divide ζ into n parts:

20



Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding

ζ = ζ̂d + ζ̂d−1 + ζ̂d−2 + · · ·+ ζ̂d−n+1, (52)

where

pd + ζ̂d = 1, (53)

pd−1 + ζ̂d−1 = 1, (54)
· · · , (55)

pd−n+2 + ζ̂d−n+2 = 1, (56)

pd−n+1 + ζ̂d−n+1 < 1. (57)

These adjustments are applied to n positions as follows:

P ′
i =


pi + ζ̂i, i = d− n+ 1, · · · , d
pi − ζ, i = d+ 1

pi, otherwise,
s.t. ζ =

d∑
i=1

ζi =

D∑
i=d+1

ζi =

d∑
i=d−n+1

ζ̂i. (58)

Next, we construct the following inequality chain:

E(p1, p2, p3, · · · , pd, pd+1, pd+2, · · · , pD)

≤

E(p1, p2, p3, · · · , pd + ζ̂d, pd+1 − ζ̂d, pd+2, · · · , pD)

≤

E(p1, p2, · · · , pd−1 + ζ̂d−1, pd + ζ̂d, pd+1 − ζ̂d − ζ̂d−1, pd+2, · · · , pD)

≤

· · ·

≤

E(p1, · · · , pd−n+1 + ζ̂d−n+1, · · · , pd−1 + ζ̂d−1, pd + ζ̂d, pd+1 −
∑d

i=d−n+1 ζ̂i, pd+2, · · · , pD)

(59)

Each step in the inequality chain (59) can be proven using the same method as proving E[L]concentrate ≥ E[L]original.

Next, we construct another inequality:

E(p1, · · · , pd−n+1 + ζ̂d−n+1, · · · , pd−1 + ζ̂d−1, pd + ζ̂d, pd+1 −
∑d

i=d−n+1 ζ̂i, pd+2, · · · , pD)

≤

E(p1, · · · , pd−n+1 + ζ̂d−n+1, · · · , pd−1 + ζ̂d−1, pd + ζ̂d, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

(60)

The inequality (60) can be proven using the same method as proving inequality (36).
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Finally, we construct a third inequality:

E(p1, · · · , pd−n+1 + ζ̂d−n+1, · · · , pd−1 + ζ̂d−1, pd + ζ̂d, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

≤

E(p1 + ζ1, p2 + ζ2, · · · , pd + ζd, pd+1 − ζd+1, pd+2 − ζd+2, · · · , pD − ζD)

(61)

To prove inequality (61), we can follow the same method as proving the first to the second-to-last line in inequality (29). In
that proof, we observed that each step involved moving a non-negative value ζi from an earlier position to a later position,
and the validity of the inequality was independent of the specific value of ζi or the positions involved. In the case of
inequality (61), we have ζ1, · · · , ζd ≥ 0 and ζd−n+1, · · · , ζd ≤ ζ̂d−n+1, · · · , ζ̂d. This means that we are essentially moving
positive values from earlier positions to later positions, similar to the process in inequality (29). Therefore, we can use the
same method to establish inequality (61).

With inequalities (61), (60) and the inequality chain (59) established, we conclude that E[L]improved ≥ E[L]original. Therefore,
we finish the proof of Theorem 3.1 in the main paper.
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B. Experiment Results on A100
This section gives the inference results on a single NVIDIA A100 GPU. It is reasonable that there are different final speedups
on MI250 and A100. However, note that the mean average tokens (τ ) are also slightly different. This is because of the use
of FP16 precision during inference, and different FP16 processing mechanisms in MI250 and A100 GPUs. Using FP32
precision yields identical τ values across both platforms, yet significantly increases the inference latency.

Table 4. Speedup ratios and mean accepted tokens (τ ) of different methods on NVIDIA A100. V represents Vicuna, L2 represents
LLaMA2-Chat, and L3 represents LLaMA3-Instruct. We present the results of different methods across six datasets. Mean represents the
average performance across these six datasets.

Model Method MT-Bench HumanEval GSM8K Alpaca CNN/DM Natural Ques. Mean
Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Temperature=0

V 7B Eagle-2 3.30× 5.03 3.59× 5.36 3.21× 4.94 3.00× 4.86 2.57× 4.10 2.48× 3.82 3.02× 4.69
Gumiho(ours) 3.62× 5.22 4.22× 5.81 3.48× 5.07 3.13× 4.82 2.91× 4.46 2.60× 3.80 3.33× 4.86

V 13B Eagle-2 3.05× 4.92 3.60× 5.42 3.24× 4.79 2.99× 4.90 2.47× 4.21 2.48× 3.71 2.98× 4.66
Gumiho(ours) 3.33× 5.23 4.12× 6.01 3.35× 5.08 3.07× 4.97 2.68× 4.40 2.52× 3.81 3.19× 4.92

L2 7B Eagle-2 3.28× 4.76 3.71× 5.38 3.28× 4.77 3.17× 4.66 2.61× 4.09 2.78× 4.16 3.14× 4.64
Gumiho(ours) 3.44× 4.92 3.92× 5.57 3.42× 4.83 3.19× 4.54 2.82× 4.20 2.91× 4.19 3.28× 4.71

L2 13B Eagle-2 3.02× 4.77 3.60× 5.53 3.40× 4.89 3.10× 4.60 2.54× 4.26 2.77× 4.12 3.07× 4.69
Gumiho(ours) 3.24× 4.97 3.78× 5.85 3.61× 5.03 3.19× 4.63 2.72× 4.38 2.85× 4.20 3.23× 4.84

L3 8B Eagle-2 2.71× 4.35 3.20× 5.06 2.79× 4.47 2.78× 4.87 2.24× 3.81 2.26× 3.53 2.67× 4.35
Gumiho(ours) 2.95× 4.48 3.62× 5.22 3.20× 4.62 2.86× 4.88 2.39× 3.90 2.41× 3.62 2.91× 4.45

Temperature=1

V 7B Eagle-2 2.73× 4.32 2.99× 4.65 2.59× 4.41 2.55× 4.25 2.28× 3.87 2.21× 3.52 2.56× 4.17
Gumiho(ours) 3.00× 4.35 3.30× 4.82 2.98× 4.54 2.61× 4.22 2.48× 3.94 2.29× 3.63 2.78× 4.25

V 13B Eagle-2 2.73× 4.35 3.14× 4.85 2.81× 4.54 2.75× 4.57 2.34× 4.01 2.26× 3.53 2.68× 4.31
Gumiho(ours) 2.92× 4.56 3.46× 5.31 2.95× 4.63 2.89× 4.67 2.42× 4.05 2.43× 3.70 2.85× 4.49

L2 7B Eagle-2 2.94× 4.53 3.32× 5.10 3.01× 4.69 2.80× 4.61 2.50× 3.92 2.60× 4.04 2.86× 4.48
Gumiho(ours) 3.02× 4.65 3.41× 5.31 3.12× 4.74 2.97× 4.43 2.65× 4.07 2.83× 4.12 3.00× 4.55

L2 13B Eagle-2 2.80× 4.61 3.41× 5.37 3.19× 4.75 2.93× 4.50 2.41× 4.15 2.62× 4.06 2.90× 4.57
Gumiho(ours) 2.96× 4.85 3.71× 5.72 3.33× 4.88 2.99× 4.50 2.54× 4.31 2.71× 4.12 3.04× 4.73

L3 8B Eagle-2 2.34× 3.92 2.82× 4.81 2.61× 4.36 2.53× 4.50 2.04× 3.55 2.02× 3.36 2.39× 4.08
Gumiho(ours) 2.52× 4.11 3.13× 4.97 2.81× 4.62 2.67× 4.54 2.19× 3.66 2.12× 3.47 2.57× 4.23
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C. Training Details and Hyper-parameters
Similar to Eagle-2 (Li et al., 2024b), we employ both the regression loss Lreg and the classification loss Lcls to train the
draft model. The total loss L is defined as a weighted combination of these two components:

L = wreg · Lreg + wcls · Lcls,

where wreg and wcls denote the weighting coefficients for the regression loss Lreg and the classification loss Lcls,
respectively.

Similar to EAGLE-2’s tree attention, we select the top 10 output tokens from each Transformer head as input for the
subsequent head, i.e., topk=10. For FTA, we extract the top 35 output tokens from each MLP head , i.e., s=35. Hyper-
parameters can be found in Tab. 5.

Table 5. Hyper-parameter configurations of Gumiho.

Hyper-parameters

Vicuna 7B/13B

LLaMA2 7B/13B

LLaMA3 8B

LLaMA2 70B

LLaMA3 70B

Learning rate 2e-4 1e-4

Transformer layer number 2

MLP head number 5

Batch size 4

wcls 0.1

wreg 1

Training epoch 10

Optimizer AdamW

(β1, β2) (0.9, 0.95)

Per MLP structure [2*hidden state, 1*hidden state]*1 → [1*hidden state, 1*hidden state]*5

topk 10

s 35
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D. Ablation Study on Head Accuracy

Figure 6. Comparison of draft head accuracy on two datasets (MT-Bench and GSM8K). Both results are based on Vicuna 7B with the
temperature set to 0.

We conducted a comparative analysis of head-wise accuracy between our method and EAGLE-2 based on Vicuna 7B with
temperature set to 0 on MT-Bench and GSM8K datasets. It should be noted that we have a total of seven draft heads, while
EAGLE-2 only has six heads. Therefore, to facilitate comparison, we have only conducted an accuracy comparison between
the first six heads of ours and the six heads of EAGLE-2. As illustrated in Fig. 6, our approach enhances the accuracy of
front heads, which are responsible for generating the initial tokens in the draft sequence. The precision of these early tokens
substantially impacts the final mean accepted tokens(τ ). Our back heads employ a parallel MLP architecture, resulting
in lower accuracy compared to EAGLE-2. This accuracy distribution aligns with our theoretical findings. Our theorem
demonstrates that optimizing the accuracy distribution across heads, specifically through enhancing precision in front heads
while proportionally reducing accuracy in back heads, leads to better overall mean accepted tokens(τ ).
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