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Abstract
Denoising Diffusion Probabilistic Models have
shown an impressive generation quality although
their long sampling chain leads to high compu-
tational costs. In this paper, we observe that a
long sampling chain also leads to an error accu-
mulation phenomenon, which is similar to the
exposure bias problem in autoregressive text gen-
eration. Specifically, we note that there is a dis-
crepancy between training and testing, since the
former is conditioned on the ground truth samples,
while the latter is conditioned on the previously
generated results. To alleviate this problem, we
propose a very simple but effective training reg-
ularization, consisting in perturbing the ground
truth samples to simulate the inference time pre-
diction errors. We empirically show that, without
affecting the recall and precision, the proposed
input perturbation leads to a significant improve-
ment in the sample quality while reducing both
the training and the inference times. For instance,
on CelebA 64×64, we achieve a new state-of-the-
art FID score of 1.27, while saving 37.5% of the
training time. The code is available at https:
//github.com/forever208/DDPM-IP.

1. Introduction
Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-
Dickstein et al., 2015; Ho et al., 2020) are a new generative
paradigm which is attracting a growing interest due to its
very high-quality sample generation capabilities (Dhariwal
& Nichol, 2021; Nichol et al., 2022; Ramesh et al., 2022).
Differently from most existing generative methods which
synthesize a new sample in a single step, DDPMs resemble
the Langevin dynamics (Welling & Teh, 2011) and the gen-
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eration process is based on a sequence of denoising steps, in
which a synthetic sample is created starting from pure noise
and autoregressively reducing the noise component. In more
detail, during training, a real sample xxx0 is progressively de-
stroyed in T steps adding Gaussian noise (forward process).
The sequence xxx0, ...,xxxt, ...,xxxT so obtained, is used to train
a deep denoising autoencoder (µ(·)) to invert the forward
process: x̂xxt−1 = µ(xxxt, t). At inference time, the gener-
ation process is autoregressive because it depends on the
previously generated samples: x̂xxt−1 = µ(x̂xxt, t) (Sec. 3).

Despite the large success of DDPMs in different generative
fields (Sec. 2), one of the main drawbacks of these models
is their very long computational time, which depends on the
large number of steps T required at both the training and
the inference stage. As recently emphasised in (Xiao et al.,
2022), the fundamental reason why T needs to be large is
that each denoising step is assumed to be Gaussian, and
this assumption holds only for small step sizes. Conversely,
with larger step sizes, the prediction network (µ(·)) needs
to solve a harder problem and it becomes progressively less
accurate (Xiao et al., 2022). However, in this paper, we
observe that there is a second phenomenon, related to the
sampling chain, but partially in contrast with the first, which
is the accumulation of these errors over the T inference
sampling steps. This is basically due to the discrepancy
between the training and the inference stage, in which the
latter generates a sequence of samples based on the results
of the previous steps, hence possibly accumulating errors.
In fact, at training time, µ(·) is trained with a ground truth
pair (xxxt,xxxt−1) and, given xxxt, it learns to reconstruct xxxt−1

(µ(xxxt, t)). However, at inference time, µ(·) has no access
to the “real” xxxt, and its prediction depends on the previ-
ously generated x̂xxt (µ(x̂xxt, t)). This input mismatch between
µ(xxxt, t), used during training, and µ(x̂xxt, t), used during test-
ing, is similar to the exposure bias problem (Ranzato et al.,
2016; Schmidt, 2019) shared by other autoregressive gener-
ative methods. For example, Rennie et al. (2017) argue that
training a network to maximize the likelihood of the next
ground-truth word given the previous ground-truth word
(called “Teacher-Forcing” (Bengio et al., 2015)) results in
error accumulation at inference time, since the model has
never been exposed to its own predictions.

In this paper, we first empirically analyze this accumulation
error phenomenon. For instance, we show that a standard
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DDPM (Dhariwal & Nichol, 2021), trained with T steps,
can generate better results using a number of inference
steps T ′ < T (Sec. 6.2). A similar phenomenon was also
observed by Nichol & Dhariwal (2021), but the authors did
not provide an explanation for that. We believe that the
reason for this apparently contrasting result is that while, on
the one hand, longer chains can better satisfy the Gaussian
assumption in the reverse diffusion process, on the other
hand, they lead to a larger accumulation of errors.

Second, in order to alleviate the exposure bias problem, we
propose a surprisingly simple yet very effective method,
which consists in explicitly modelling the prediction error
during training. Specifically, at training time, we perturb
xxxt and we feed µ(·) with a noisy version of xxxt, this way
simulating the training-inference discrepancy, and forcing
the learned network to take into account possible inference-
time prediction errors. Note that our perturbation is different
from the content-destroying forward process, because the
new noise is not used in the ground truth prediction target
(Sec. 5.2). The proposed method is a training regularization
which forces the network to smooth its prediction function:
to solve the proposed task, two spatially close points xxx1 and
xxx2 should lead to similar predictions µ(xxx1, t) and µ(xxx2, t).
This regularization approach is similar to Mixup (Zhang
et al., 2018) and the Vicinal Risk Minimization (VRM)
principle (Chapelle et al., 2000), where a neighborhood
around each sample in the training data is defined and then
used to perturb that sample keeping fixed its target class
label.

Third, we propose alternative solutions to the exposure bias
problem for diffusion models, in which, rather than using
input perturbation, we obtain a smoother prediction function
µ(·) by explicitly encouraging µ(·) to be Lipschitz continu-
ous (Sec. 5.4). The rationale behind this is that a Lipschitz
continuous function µ(·) generates small prediction differ-
ences between neighbouring points in its domain, leading to
a DDPM which is more robust to the inference-time errors.

Finally, we empirically analyse all the proposed solutions
and we show that, despite being all effective for improving
the final generation quality, input perturbation is both more
efficient and more effective than the explicit minimization
of the Lipschitz constant in DDPMs (Sec. 6.1). Moreover,
directly perturbing the network input at training time has no
additional training overhead and this solution is very easy to
be reproduced and plugged into existing DDPM frameworks:
it can be obtained with just two lines of code without any
change in the network architecture or the loss function. We
call our method Denoising Diffusion Probabilistic Models
with Input Perturbation (DDPM-IP) and we show that it can
significantly improve the generation quality of state-of-the-
art DDPMs (Dhariwal & Nichol, 2021; Song et al., 2021a)
and speed up the inference-time sampling. For instance,

on the CIFAR10 (Krizhevsky et al., 2009), the ImageNet
32×32 (Chrabaszcz et al., 2017), the LSUN 64×64 (Yu
et al., 2015) and the FFHQ 128×128 (Karras et al., 2019)
datasets, DDPM-IP, with only 80 sampling steps, generates
lower FID scores than the state-of-the-art ADM (Dhariwal
& Nichol, 2021) with 1,000 steps, corresponding to a more
than 12.5× sampling acceleration.

In summary, our contributions are:

• We show that there is an exposure bias problem in
DDPMs which has not been investigated so far.

• To alleviate this problem, we propose different regular-
ization methods whose common goal is to smooth the
prediction function, and we specifically suggest input
perturbation (DDPM-IP) as the best and the simplest
of such solutions.

• Using common benchmarks, we show that DDPM-IP
can significantly improve the generation quality and
drastically speed up both training and inference.

2. Related Work
Diffusion models were introduced by Sohl-Dickstein et al.
(2015) and later improved in (Song & Ermon, 2019; Ho
et al., 2020; Song et al., 2021b; Nichol & Dhariwal, 2021).
More recently, Dhariwal & Nichol (2021) have shown that
DDPMs can yield higher-quality images than Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014;
Brock et al., 2018). Similarly to GANs, the generation
process in DDPMs can be both unconditional and condi-
tioned. For instance, GLIDE (Nichol et al., 2022) learns to
generate images according to an input textual sentence. Dif-
ferently from GLIDE, where the diffusion model is defined
on the image space, DALL·E-2 (Ramesh et al. (2022)) uses
a DDPM to learn a prior distribution on the CLIP (Radford
et al., 2021) space. Text-to-image generation is explored
also in Stable Diffusion (Rombach et al., 2021) and Imagen
(Saharia et al., 2022). Apart from images, DDPMs can also
be used with categorical distributions (Hoogeboom et al.,
2021; Gu et al., 2021), in an audio domain (Mittal et al.,
2021; Chen et al., 2021), in time series forecasting (Ra-
sul et al., 2021) and in other generative tasks (Yang et al.,
2022; Croitoru et al., 2022). Differently from previous work,
our goal is not to propose an application-specific prediction
network, but rather to investigate the training-testing discrep-
ancy of the DDPMs and propose a solution which can be
used in different application fields and jointly with different
denoising architectures.

Accelerating the DDPM training or reducing the number
of sampling steps T (Sec. 1) have been thoroughly inves-
tigated due to their practical implications. For instance,
Song et al. (2021a) propose Denoising Diffusion Implicit
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Models (DDIMs), based on a non-Markovian diffusion pro-
cess, which can use a number of inference sampling steps
smaller than those used at training time, without retraining
the network. Salimans & Ho (2022) propose to distil the
prediction network into new networks which progressively
reduce the number of sampling steps. However, the disad-
vantage is the need of training multiple networks. Rombach
et al. (2021) speed up sampling by splitting the process into
a compression stage and a generation stage, and applying
the DDPM on the compressed (latent) space. Hoogeboom
et al. (2022) present an order-agnostic DDPM, inspired by
XLNet (Yang et al., 2019), in which the sequence xxx0, ...,xxxT

is randomly permuted at training time, leading to a partially
parallelized sampling process. Chen et al. (2021) found that,
instead of conditioning the prediction network (µ(·)) on a
discrete diffusion step t, it is beneficial to condition µ(·) on
a continuous noise level. Similarly, Kong & Ping (2021)
introduce continuous diffusion steps, resulting in a unified
framework for fast sampling. In order to use larger size
sampling steps and a non-Gaussian reverse process (Sec. 1)
Xiao et al. (2022) include an adversarial loss in DDPMs and
propose Denoising Diffusion GANs. Karras et al. (2022)
suggest using Heun’s second-order deterministic sampling
method, leading to high quality results and fast sampling.
Xu et al. (2022) accelerate the generation process of con-
tinuous normalizing flow using a Poisson flow generative
model. Our approach is orthogonal to these previous works,
and it can potentially be used jointly with most of them.

3. Background
Without loss of generality, we assume an image domain and
we focus on DDPMs which define a diffusion process on the
input space. Following (Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021), we assume that each pixel value is linearly
scaled into [−1, 1]. Given a sample xxx0 from the data dis-
tribution q(xxx0) and a prefixed noise schedule (β1, ..., βT ),
a DDPM defines the forward process as a Markov chain
which starts from a real image xxx0 ∼ q(xxx0) and iteratively
adds Gaussian noise for T diffusion steps:

q(xxxt|xxxt−1) = N (xxxt;
√

1− βtxxxt−1, βtIII), (1)

q(xxx1:T |xxx0) =

T∏
t=1

q(xxxt|xxxt−1), (2)

until obtaining a completely noisy imagexxxT ∼ N (000, III). On
the other hand, the reverse process is defined by transition
probabilities parameterized by θθθ:

pθθθ(xxxt−1|xxxt) = N (xxxt−1;µθθθ(xxxt, t), σtIII), (3)

where σt =
1−ᾱt−1

1−ᾱt
βt with ᾱt =

∏t
i=1 αi and αi = 1−βi.

Given xxx0, xxxt can be obtained (Ho et al., 2020) by:

xxxt =
√
ᾱtxxx0 +

√
1− ᾱtϵϵϵ, (4)

where ϵϵϵ is a noise vector (ϵϵϵ ∼ N (000, III)). Instead of pre-
dicting the mean of the forward process posterior (i.e.,
x̂xxt−1 = µθθθ(xxxt, t)), Ho et al. (2020) propose to use a network
ϵϵϵθθθ(·) which predicts the noise vector (ϵϵϵ). Using ϵϵϵθθθ(·) and a
simple L2 loss function, the training objective becomes:

L(θθθ) = Exxx0∼q(xxx0),ϵϵϵ∼N (000,III),t∼U({1,...,T})[||ϵϵϵ−ϵϵϵθθθ(xxxt, t)||2].
(5)

Note that, in Eq. 5, xxxt and ϵϵϵ are ground-truth terms, while
ϵϵϵθθθ(xxxt, t) is the network prediction. Using Eq. 5, the train-
ing and the sampling algorithms are described in Alg. 1-2,
respectively.

Algorithm 1 DDPM Standard Training
1: repeat
2: xxx0 ∼ q(xxx0), t ∼ U({1, ..., T}), ϵϵϵ ∼ N (000, III)
3: compute xxxt using Eq. 4
4: take a gradient descent step on ∇θθθ||ϵϵϵ− ϵϵϵθθθ(xxxt, t)||2
5: until converged

Algorithm 2 DDPM Standard Sampling
1: x̂xxT ∼ N (000, III)
2: for t := T, ..., 1 do
3: if t > 1 then zzz ∼ N (000, III), else zzz = 000
4: x̂xxt−1 = 1√

αt
(x̂xxt − 1−αt√

1−ᾱt
ϵϵϵθθθ(x̂xxt, t)) + σtzzz

5: end for
6: return x̂xx0

4. Exposure Bias Problem in Diffusion Models
Comparing line 4 of Alg. 1 with line 4 of Alg. 2, we note
that the inputs of the prediction network ϵϵϵθθθ(·) are different
between the training and the inference phase. Concretely,
at training time, standard DDPMs use ϵϵϵθθθ(xxxt, t), where xxxt

is a ground truth sample (Eq. 4). In contrast, at inference
time, they use ϵϵϵθθθ(x̂xxt, t)), where x̂xxt is computed based on
the output of ϵϵϵθθθ(·) at the previous sampling step t+1. As
mentioned in Sec. 1, this leads to a training-inference dis-
crepancy, which is similar to the exposure bias problem
observed, e.g., in text generation models, in which the train-
ing generation is conditioned on a ground-truth sentence,
while the testing generation is conditioned on the previously
generated words (Ranzato et al., 2016; Schmidt, 2019; Ren-
nie et al., 2017; Bengio et al., 2015). In order to quantify the
error accumulation with respect to the number of inference
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sampling steps, we use a simple experiment in which we
start from a (randomly selected) real image xxx0, we compute
xxxt using Eq. 4, and then apply the reverse process (Alg. 2)
starting from xxxt instead of a random xxxT . This way, when
t is small enough, the network should be able to “recover”
the path to xxx0 (the denoising task is easier). We quantify
the total error accumulated in t reverse diffusion steps by
comparing the difference between the ground truth distri-
bution q(xxx0) and the predicted distribution q(x̂xx0) using the
FID scores in Tab. 1. The experiment was done using ADM
(Dhariwal & Nichol, 2021) (trained with T = 1, 000) and
ImageNet 32×32, and we compute the FID scores using 50k
samples. Tab. 1 (first row) shows that the longer the reverse
process, the higher the FID scores, indicating the existence
of an error accumulation which is larger with larger values
of t. In Appendix 5, we repeat this experiment using deter-
ministic sampling, which quantifies the error accumulation
removing the randomness from the sampling process.

Table 1. An empirical estimate of the exposure bias on ImageNet
32×32.

Model Number of reverse diffusion steps

100 300 500 700 1,000

ADM 0.983 1.808 2.587 3.105 3.544
ADM-IP (ours) 0.972 1.594 2.198 2.539 2.742

Finally, in Tab. 3 we will report the FID scores of ADM
on different datasets, which show that most of the best re-
sults are obtained in the range from 100 to 300 sampling
steps, despite all the models have been trained with 1,000
diffusion steps. These results confirm previous similar ob-
servations (Nichol & Dhariwal, 2021), and we believe that
the reason for this apparently counterintuitive phenomenon,
in which fewer sampling steps lead to a better generation
quality, is due to the exposure bias problem. Indeed, while
more sampling steps correspond to a reverse process which
can be more easily approximated with a Gaussian distribu-
tion (Sec. 1), longer sampling trajectories produce a larger
accumulation of the prediction errors. Hence, the range
[100, 300] leads to a better generation quality because it
presumably trades off these two opposing aspects.

5. Method
5.1. Regularization with Input Perturbation

The solution we propose to alleviate the exposure bias prob-
lem is very simple: we explicitly model the prediction er-
ror using a Gaussian input perturbation at training time.
More specifically, we assume that the error of the prediction
network in the reverse process at time t + 1 is normally
distributed with respect to the ground-truth input xxxt (see

Sec. 5.3). This is simulated using a second, dedicated ran-
dom noise vector ξξξ ∼ N (000, III), using which, we create a
perturbed version (yyyt) of xxxt:

yyyt =
√
ᾱtxxx0 +

√
1− ᾱt(ϵϵϵ+ γtξξξ). (6)

For simplicity, we use a uniform noise schedule for ξξξ by
setting γ0 = ... = γT = γ. In fact, although selecting the
best noise schedule (β1, ..., βT ) in DDPMs is usually very
important to get high-quality results (Ho et al., 2020; Chen
et al., 2021), it is nevertheless an expensive hyperparameter
tuning operation (Chen et al., 2021). Therefore, to avoid
adding a second noise schedule (γ0, ..., γT ) to the training
procedure, we opted for a simpler (although most likely sub-
optimal) solution, in which γt does not vary depending on t
(more details in Sec. 5.3). In Alg. 3 we show the proposed
training algorithm, in whichxxxt is replaced by yyyt. In contrast,
at inference time, we use Alg. 2 without any change.

Algorithm 3 DDPM-IP: Training with input perturbation
1: repeat
2: xxx0 ∼ q(xxx0), t ∼ U({1, ..., T})
3: ϵϵϵ ∼ N (000, III), ξξξ ∼ N (000, III)
4: compute yyyt using Eq. 6
5: take a gradient descent step on ∇θθθ||ϵϵϵ− ϵϵϵθθθ(yyyt, t)||2
6: until converged

5.2. Discussion

In this section, we analyze the difference between Alg. 3
and Alg. 1. Specifically, in line 5 of Alg. 3, we use yyyt as the
input of the prediction network ϵϵϵθθθ(·) but we keep using ϵϵϵ as
the regression target. In other words, the new noise term (ξξξ)
we introduce is used asymmetrically, because it is applied to
the input but not to the prediction target (ϵϵϵ). For this reason,
Alg. 3 is not equivalent to choose a different value of ϵϵϵ in
Alg. 1, where ϵϵϵ is instead used symmetrically both in the
forward process (Eq. 4) and as the target of the prediction
network (line 4 of Alg. 1).

This difference is schematically illustrated in Fig. 1, where,
for both Alg. 1 (i.e., DDPM) and Alg. 3 (DDPM-IP), we
show the corresponding pairs of input and target vectors of
the prediction network (respectively, (xxxt, ϵϵϵ) and (yyyt, ϵϵϵ)). In
the same figure, we also show a second version of Alg. 1
(called DDPM-y), where we use the standard training proto-
col (Alg. 1) but change the noise variance in order to adhere
to the same distribution generating yyyt. In fact, it can be easy
shown that yyyt in Alg. 3 is generated using the following
distribution (see Appendix A.2 for a proof):

q(yyyt|xxx0) = N (yyyt;
√
ᾱtxxx0, (1− ᾱt)(1 + γ2)III). (7)
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Hence, we can obtain the same input noise distribution of
Alg. 3 in Alg. 1 using ϵ′ϵ′ϵ′ ∼ N (000, III) and:

yyyt =
√
ᾱtxxx0 +

√
1− ᾱt

√
1 + γ2ϵ′ϵ′ϵ′. (8)

We call DDPM-y the version of Alg. 1 with this new noise
distribution. DDPM-y is obtained from Alg. 1 using Eq. 8
in line 3 and replacing xxxt with yyyt and ϵϵϵ with ϵ′ϵ′ϵ′ in line 4.
However, note that, for a given yyyt, if ξξξ ̸= 000, then ϵϵϵ ̸= ϵ′ϵ′ϵ′ (see
Fig. 1), thus, DDPM-IP and DDPM-y share the same input
to ϵϵϵθθθ(·), but they use different targets. In Appendix A.3,
we empirically show that DDPM-y is even worse than the
standard DDPM.

Intuitively, the proposed training protocol, DDPM-IP, de-
couples the noise vector ϵ′ϵ′ϵ′ actually generating yyyt from the
ground truth target vector ϵϵϵ which is asked to be predicted
by ϵϵϵθθθ(·). In order to solve this problem, ϵϵϵθθθ(·) needs to
smooth its prediction function, reducing the difference be-
tween ϵϵϵθθθ(xxxt, t) and ϵϵϵθθθ(yyyt, t), and this leads to a training
regularization which is similar to VRM (Sec. 1).

Figure 1. The inputs and the prediction targets are different in
vanilla DDPM, DDPM-IP and DDPM-y.

5.3. Estimating the Prediction Error

In this section, we analyze the actual prediction error of
ϵϵϵθθθ(·) and we use this analysis to choose the value of γ in
Eq. 6. Analogously to Sec. 4, we use ADM, trained using
the standard algorithm Alg. 1 and two datasets: CIFAR10
and ImageNet 32×32. At testing time, for a given t and
ϵ̂ϵϵ = ϵϵϵθθθ(x̂xxt, t), we replace ϵϵϵ with ϵ̂ϵϵ in Eq. 4 and we compute
the predicted x̂xx0. Finally, the prediction error at time t is
eeet = x̂xx0 − xxx0. Note that using x̂xx0 and xxx0 to estimate the
error instead of comparing x̂xxt and xxxt, has the advantage that
the former is independent of scaling factors (

√
1− ᾱt) and,

thus, it makes the statistical analysis easier. Using different
values of t, uniformly selected in {1, ..., T}, we empirically
verified that, for a given t, eeet is normally distributed: eeet ∼
N (000, ν2t III), with standard deviation νt (see Appendix A.5).

In Fig. 2 we plot the value of νt with respect to t. The two
curves corresponding to the two datasets are surprisingly

close to each other. In principle, we could use this empirical
analysis and set γt = νt in Eq. 6. In this way, when we per-
turb the input to ϵϵϵθθθ(·), we empirically imitate its actual pre-
diction error which is the base of the exposure bias problem.
However, this choice would require a two-step training: first,
using Alg. 1 to train the base model and empirically estimate
νt for different t. Then, using Alg. 3 with the estimated γt
schedule to retrain the model from scratch. To avoid this and
make the whole procedure as simple as possible, we simply
use a constant value γ, independently of t. This value was
empirically set using a grid search on both CIFAR10 and Im-
ageNet 32×32 on a small range of values covering the last
half of the sampling trajectory. Specifically, we investigated
the range νt ∈ [0,Et[νt]] = [0, 0.2] (see Fig. 2), which was
chosen following Karras et al. (2022), who showed that the
last part of the inference trajectory has usually the largest
impact on the Diffusion Model performance. We finally
set γ = 0.1 and, in the rest of this paper, we always use a
constant γ = 0.1, regardless of the dataset and the baseline
DDPM. Although a DDPM-specific γ value would most
likely lead to better quality results, we prefer to emphasise
the ease of use of our proposal which does not depend on
any other hyperparameter.

0 200 400 600 800 1000
timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

t

ImageNet 32x32
CIFAR10 32x32

Figure 2. The inference time standard deviation νt of the prediction
error of a pre-trained network with respect to the sampling step
t. The mean of the blue and the orange curve is 0.20 and 0.19,
respectively.

5.4. Regularization based on Lipschitz Continuous
Functions

In this section, we propose two alternative solutions to the
exposure bias problem which can help to better investigate
the phenomenon. The goal is the same as in Sec. 5.1, i.e.,
we want to smooth the prediction function ϵϵϵθθθ(xxxt, t) to make
it more robust with respect to local variations of xxxt which
are due to the inference-time prediction errors. To do so,
instead of using input perturbation, we explicitly encourage
ϵϵϵθθθ(·) to be Lipschitz continuous, i.e. to satisfy:
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||ϵϵϵθθθ(xxx, t)− ϵϵϵθθθ(yyy, t)|| ≤ K||xxx− yyy||, ∀(xxx,yyy) (9)

for a small constant K. We implement this idea using two
standard Lipschitz constant minimization methods: gradient
penalty (Rifai et al., 2011; Gulrajani et al., 2017) and weight
decay (Krogh & Hertz, 1991; Miyato et al., 2018). In both
cases we do not perturb the input of ϵϵϵθθθ(·), and we use the
original training algorithm (Alg. 1), with the only difference
being the loss function used in line 4, where the L2 loss is
used jointly with a regularization term described below.

Gradient penalty. In this case, the regularization is based
on the Frobenius norm of the Jacobian matrix (Rifai et al.,
2011; Goodfellow et al., 2016), and the final loss is:

LGP (θθθ) = ||ϵϵϵ− ϵϵϵθθθ(xxxt, t)||2 + λGP

∥∥∥∥∂ϵϵϵθθθ(xxxt, t)

∂xxx

∥∥∥∥2
F

, (10)

where λGP is the weight of the gradient penalty term. How-
ever, a gradient penalty regularization is very slow (Yoshida
& Miyato, 2017) because it involves one forward and two
backward passes for each training step.

Weight decay. As shown in (Liu et al., 2022), Lipschitz
continuity can also be encouraged using a weight decay
regularization (see Appendix A.6 for more details). In this
case, the final loss is:

LWD(θθθ) = ||ϵϵϵ− ϵϵϵθθθ(xxxt, t)||2 + λWD||θθθ||2, (11)

where λWD is the weight of the regularization term.

6. Results
In this section, we evaluate the generation quality of the pro-
posed solutions and we compare them with state-of-the-art
DDPMs. We use unconditional image generation tasks on
different datasets and standard metrics: the Fréchet Incep-
tion Distance (FID) (Heusel et al., 2017) and the Spatial
Fréchet Inception Distance (sFID) (Nash et al., 2021). As a
variant of FID, sFID uses spatial features rather than the stan-
dard pooled features to better capture spatial relationships,
rewarding image distributions with a coherent high-level
structure. As mentioned in Sec. 5.3, in all our experiments
we use γ = 0.1 without any dataset or baseline specific
tuning of our only hyperparameter.

6.1. Evaluation of the Different Proposed Solutions

In this section, we empirically compare to each other the
three regularization methods proposed in Sec. 5 to alleviate
the exposure bias problem. For all three approaches, we
use the state-of-the-art diffusion model ADM (Dhariwal

& Nichol, 2021) (without classifier guidance) as the base-
line, and we call: (1) “ADM-IP” the version of ADM trained
using Alg. 3, (2) “ADM-GP” the version of ADM trained us-
ing the gradient penalty, and (3) “ADM-WD” for the weight
decay (Sec. 5.4). We use λGP = 1e−6 and λWD = 0.03 as
the loss weights for ADM-GP and ADM-WD, respectively.

For this experiment, we use CIFAR10 because ADM-GP
is too time-consuming to be trained on larger datasets. The
results in Tab. 2 show that all three models outperform the
baseline in image quality, demonstrating the effectiveness
of smoothing the prediction function using the proposed
regularization methods. However, training ADM-GP is too
slow and cannot be scaled to larger datasets, thus we do not
recommend this solution. Moreover, ADM-IP gets the best
FID and sFID scores, thus, in the rest of this paper, we use
the input perturbation approach described in Sec. 5.1 as our
basic solution.

Table 2. Comparison of different regularization methods. All the
models are tested using T = 1, 000 sampling steps.

Model CIFAR10 32×32

FID sFID

ADM (baseline) 2.99 4.76
ADM-GP 2.80 4.41
ADM-WD 2.82 4.61
ADM-IP 2.76 4.05

Finally, we use ADM-IP to quantify the reduction in the
exposure bias following the protocol described in Sec. 4.
The results reported in Tab. 1 show that ADM-IP leads to
a significantly lower exposure bias than ADM, and this
difference is larger with longer sampling sequences.

6.2. Main results

Comparison with DDPMs. We compare ADM-IP with
ADM using CIFAR10, ImageNet 32×32, LSUN tower
64×64, CelebA 64×64 (Liu et al., 2015) and FFHQ
128×128. Following prior work (Ho et al., 2020; Nichol &
Dhariwal, 2021), we generate 50K samples for each trained
model and we use the full training set to compute the refer-
ence distribution statistics, except for LSUN tower where
(again following (Ho et al., 2020; Nichol & Dhariwal, 2021))
we use 50K training samples as the reference data. When
training, we always use T = 1, 000 steps for all the mod-
els. At inference time, the results reported with T ′ < T
sampling steps have been obtained using the respacing tech-
nique (Nichol & Dhariwal, 2021). As previously mentioned
(see Sec. 5.3) we keep fixed γ = 0.1 in all the experiments
and the datasets. We refer to Appendix A.7 for the complete
list of hyperparameters (e.g. the learning rate, the batch size,
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Table 3. Comparison between ADM and ADM-IP using models trained with T = 1, 000 sampling steps and tested with T ′ ≤ T steps.

Sampling steps
(T ′) Model CIFAR10 ImageNet 32 LSUN tower 64 CelebA 64 FFHQ 128

FID sFID FID sFID FID sFID FID sFID FID sFID

1,000 ADM (baseline) 2.99 4.76 3.60 3.30 3.39 7.96 1.60 3.80 9.65 12.53
ADM-IP (ours) 2.76 4.05 2.87 2.39 2.68 6.04 1.31 3.38 2.98 5.59

300 ADM 2.95 4.95 3.58 3.48 3.31 8.39 1.82 4.25 9.55 12.6
ADM-IP 2.67 4.14 2.74 2.58 2.60 5.98 1.43 3.36 3.74 5.97

100 ADM 3.37 5.66 4.26 4.48 3.50 11.10 3.02 5.76 14.52 16.02
ADM-IP 2.70 4.51 3.24 3.13 2.79 6.56 2.21 4.33 5.94 7.90

80 ADM 3.63 5.97 4.61 4.76 4.17 12.60 3.75 6.80 17.00 18.02
ADM-IP 2.93 4.69 3.57 3.33 2.95 6.93 2.67 4.69 6.89 8.79

etc.) and network architecture settings, which are the same
for both ADM and ADM-IP.

The results reported in Tab. 3 show that, independently of
the dataset and the number of sampling steps (T ′ ≤ T ),
ADM-IP is always better than ADM in terms of both the
FID and sFID metrics, sometimes drastically better. For
instance, on LSUN, with T ′ = 80, we have a more than 5
sFID score improvement with respect to ADM. On FFHQ
128×128, with T ′ = 1, 000, we have almost 7 points of
improvement compared to both the FID and the sFID scores.
In addition to the experiments shown in Tab. 3, we used
T ′ = 900 sampling steps and our ADM-IP on CelebA
64×64, achieving a result of 1.27 FID, which is the new
state-of-the-art performance for unconditional generation
on this dataset.

Note that, for most datasets, both the baseline (ADM) and
ADM-IP reach the best results with T ′ < T (specifically,
with T ′ ∈ [100, 300]). As mentioned in Sec. 4, this is most
likely a confirmation of the exposure bias problem: a shorter
sampling trajectory accumulates a smaller prediction error.

Besides generating significantly better images, ADM-IP
converges much faster than the baseline during training in
all the five datasets (see Fig. 3 and 4). For instance, on
LSUN tower and CelebA, ADM-IP converges at 220K and
300K training iterations while ADM saturates around 300K
and 480K iterations, respectively. Fig. 3 shows also that,
even before convergence, ADM-IP quickly beats the ADM
results obtained when the latter has converged. For instance,
on CelebA, ADM-IP gets FID 1.51 at 120K training iter-
ations, whereas ADM gets FID 1.6 at convergence (480K
iterations), exhibiting a 4x training speed-up. On the larger
resolution FFHQ dataset, ADM receives FID 14.52 at con-
vergence (420K iterations), while ADM-IP achieves a FID
score of 8.81 with only 60K iterations: an improvement of
5.71 points with a 7x training speed-up. Fig. 4 shows a simi-
lar trend for the CIFAR10 dataset. In this figure, we also plot

the results of ADM-IP with different γ values (Sec. 5.3).

The training iterations until convergence for each model are
summarized in Tab. 4. The much faster convergence of our
method is most likely due to the regularization effect of the
input perturbation. In fact, as commonly happens with regu-
larization techniques (Zhang et al., 2018; Liu et al., 2021;
Balestriero et al., 2022), the proposed input perturbation
also introduces an inductive bias in training. In our case,
it is: close points in the domain of the prediction function
should lead to similar outcomes. Our empirical results show
that this bias helps the DDPM training.

Tab. 4 also shows that ADM-IP can drastically accelerate the
inference process, i.e. obtaining better results than the base-
line with shorter sampling trajectories. For example, with
only 60 or 80 steps, ADM-IP gets a better or an equivalent
FID than ADM (tested with the standard 1,000 sampling
steps) on all datasets, except for CelebA, where ADM-IP
needs 200 sampling steps to reach the same result. This
comparison shows a remarkable 5x to 16.7x speed-up of
the inference stage, which is particularly significant for the
larger resolution FFHQ dataset.

Finally, we measure the recall and precision for the gen-
erated samples using the method in Kynkäänniemi et al.
(2019). The results show that the recall and precision
achieved by ADM and ADM-IP have no significant dif-
ference, which indicates that our input perturbation does not
affect the sample diversity (see Appendix A.4).

Comparison with DDIMs. In order to show the generality
of our proposal, we use Alg. 3 with the Denoising Diffusion
Implicit Models (DDIMs) proposed by Song et al. (2021a)
(Sec. 2). We train both the baseline (DDIM) and our method
(DDIM-IP) on CIFAR10 using the public code provided by
Song et al. (2021a). Since training with DDIM is particu-
larly slow, we use only CIFAR10 for this comparison. We
use the default hyperparameters settings (e.g. T = 1, 000)
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Figure 3. FID scores with respect to the number of training iterations. Each FID value is computed using T ′ = 1, 000 inference sampling
steps, except for the FFHQ dataset, for which we used T ′ = 100.
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Figure 4. CIFAR10: FID scores with respect to the number of
training iterations with different γ values. Each FID score is
computed using T ′ = 100 inference sampling steps.

in their code and train both models for 1,600K iterations
with batch size 128. We test the performance of the two
models with both η = 0 and η = 0.5, where η is the co-
efficient of stochasticity sampling in DDIMs. Also in this
case, for our method (DDIM-IP) we use γ = 0.1 without

any fine-tuning.

We report the results in Tab. 5, which show that DDIM-IP
consistently obtains better FID scores than DDIM in all con-
ditions (i.e., independently of the number of sampling steps
and the value of η). Importantly, the fewer the sampling
steps, the more the FID gain which is obtained with input
perturbation. For instance, with η = 0.5, the FID gain of
DDIM-IP is 7.16 with 10 sampling steps versus 0.89 with
1,000 sampling steps. Analogously, with η = 0 and 10
sampling steps, DDIM-IP drastically improves DDIM with
a 3.67 FID margin. Since the main advantage of DDIMs
with respect to DDPMs is their reduced number of sam-
pling steps (Song et al., 2021a), and they indeed are mainly
used for accelerating the inference stage, input perturbation
greatly matches this goal, and it significantly improves the
sample quality of the implicit models in a short sampling
sequence regime.

7. Conclusions
In this paper, we proposed DDPM-IP, a regularization
method for DDPM training which is based on input pertur-
bation to explicitly model the prediction errors and alleviate
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Table 4. ADM-IP training and testing acceleration. Note that, for a
single training iteration, ADM and ADM-IP take exactly the same
amount of time, and the same is true for a single sampling step.

Dataset Model
Training
iterations

Sampling
steps FID

CIFAR10
32×32

ADM 500K 1,000 2.99
ADM-IP 460K 80 2.93

ImageNet
32×32

ADM 4500K 1,000 3.53
ADM-IP 4000K 80 3.50

LSUN tower
64×64

ADM 300K 1,000 3.39
ADM-IP 220K 60 3.31

CelabA
64×64

ADM 480K 1,000 1.60
ADM-IP 300K 200 1.53

FFHQ
128×128

ADM 420K 1,000 9.65
ADM-IP 180K 60 8.72

Table 5. CIFAR10: Comparison between DDIM and DDIM-IP
using models trained with T = 1, 000 sampling steps and tested
with T ′ ≤ T steps.

η Model Sampling steps (T ′)

10 20 50 100 1,000

0 DDIM 14.21 7.50 5.17 4.66 4.29
DDIM-IP 10.54 5.70 4.66 4.52 4.27

0.5 DDIM 17.24 8.87 5.59 4.88 4.45
DDIM-IP 10.06 5.53 3.95 3.66 3.56

the DDPM exposure bias problem. We empirically showed
that DDPM-IP can significantly improve image quality and
drastically reduce both the training and the inference time.
The proposed method is straightforward and does not re-
quire any change in the network architecture or the specific
loss function. This simplicity makes it very easy to be re-
produced and plugged into existing DDPMs. Although we
tested DDPM-IP only on an image domain, there are no
domain-specific assumptions behind our method, hence we
presume it can be more generally applied to other domains.

Limitations. Since training DDPMs is very computation-
ally heavy, in this paper we used only datasets with small
resolution images. We leave the extension of our experi-
ments to larger resolution images (and corresponding larger
backbone networks) as a future work. However, we em-
phasize that our best results have been obtained with FFHQ
128×128, which is the dataset with the largest resolution im-
ages we tested, which probably confirms that our regulariza-
tion method is specifically effective with higher dimensional
input spaces.

Acknowledgments
This work has been supported by the European Union’s
Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 955778.
Moreover, we acknowledge the CINECA award under the
ISCRA initiative, for the availability of high-performance
computing resources and support.

References
Balestriero, R., Bottou, L., and LeCun, Y. The effects of

regularization and data augmentation are class dependent.
arXiv:2204.03632, 2022.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent neu-
ral networks. In NeurIPS, 2015.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Chapelle, O., Weston, J., Bottou, L., and Vapnik, V. Vicinal
risk minimization. In NIPS, 2000.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. In ICLR, 2021.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsam-
pled variant of imagenet as an alternative to the cifar
datasets. arXiv:1707.08819, 2017.

Croitoru, F.-A., Hondru, V., Ionescu, R. T., and Shah, M.
Diffusion models in vision: A survey. arXiv preprint
arXiv:2209.04747, 2022.

Dhariwal, P. and Nichol, A. Q. Diffusion models beat GANs
on image synthesis. In NeurIPS, 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NeurIPS, 2014.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen, D.,
Yuan, L., and Guo, B. Vector quantized diffusion model
for text-to-image synthesis. arXiv:2111.14822, 2021.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
NeurIPS, 30, 2017.

9

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Input Perturbation for Diffusion Models

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. NeurIPS, 30,
2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
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A. Appendix
A.1. Exposure Bias Analysis

In this section, we repeat the experiment in Sec. 4 by removing the randomness component of the sampling process in
order to isolate the error of the reverse process which is due only to the prediction network. Specifically, we use again
ADM (Dhariwal & Nichol, 2021) (trained with T = 1, 000) and ImageNet 32×32, and we directly measure the difference
between a ground truth real image xxx0 and the predicted x̂xx0 using a deterministic sampling, described in Alg. 4. In more
detail, given a real image xxx0, we first compute xxxt by Eq. 4, then we use the pre-trained network ϵϵϵθθθ (trained with the standard
algorithm Alg. 1) to run the reverse diffusion for t steps. Note that we adopt the equation in line 4 of Alg. 2 but we remove
the stochastic term σtzzz. Differently from the analogous experiment presented in Sec. 4, this deterministic reverse diffusion
process allows the model to target the mode of xxx0 instead of favouring diversity (Luo, 2022). Finally, we use the average
pixel-wise L1 distance between xxx0 and x̂xx0 to estimate the cumulative error computed in the whole trajectory of t steps. Note
that, since each pixel is normalized in [−1, 1] (Sec. 3), then this distance is upper bounded by 2.

Algorithm 4 Deterministic measurement of exposure bias
1: Initialize δt = 0, nt = 0 (∀t ∈ {1, ..., T})
2: repeat
3: xxx0 ∼ q(xxx0), t ∼ U({1, ..., T}), ϵϵϵ ∼ N (000, III)
4: compute xxxt using Eq. 4
5: for τ := t, ..., 1 do
6: x̂xxτ−1 = 1√

ατ
(x̂xxτ − 1−ατ√

1−ᾱτ
ϵϵϵθθθ(x̂xxτ , τ))

7: end for
8: δt = δt + ||xxx0 − x̂xx0||1/M , where M is the number of pixels in xxx0

9: nt = nt + 1
10: until N iterations
11: if nt ̸= 0, then δ̄t =

δt
nt

(∀t ∈ {1, ..., T})

In Tab. 6, we report the exposure bias measured using δ̄t with respect to different trajectory lengths (t). This table shows
that the error accumulates greatly as the number of reverse diffusion steps increases. In Fig. 5 we visualize a few pairs of
images (xxx0, x̂xx0) with the corresponding length of the diffusion trajectory (t). These images clearly show how large the error
is accumulated with the diffusion chain getting longer.

Table 6. A deterministic estimate of the exposure bias (δ̄t) with respect to different lengths of the reverse diffusion trajectory. The error is
upper bounded by 2.

Model Number of reverse diffusion steps

100 300 600 1,000

ADM 0.0539 0.1074 0.1821 0.8165

A.2. Distribution of the Perturbed Input

In this section, we prove that yyyt is Gaussian distributed as described in Eq. 7. Generally speaking, if A ∼ N (µA, σ
2
A) and

B ∼ N (µB , σ
2
B) are two independent Gaussian distributed random variables, then its linear combination S = aA+ bB

(with a, b two scalars) is also Gaussian distributed:

S ∼ N (aµA + bµB , a
2σ2

A + b2σ2
B). (12)

In our case, we have that, for a given xxx0, yyyt is a linear combination of xxxt and ξξξ, which are two independent, Gaussian
distributed random variables:
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Figure 5. Visualization of the exposure bias problem with different diffusion chain lengths.

q(xxxt|xxx0) = N (xxxt;
√
ᾱtxxx0, (1− ᾱt)III), (13)

ξξξ ∼ N (000, III), (14)
yyyt = xxxt +

√
1− ᾱtγξξξ. (15)

Hence, if in Eq. 12 we replace S with yyyt, A with xxxt, B with ξξξ, and we use a = 1 and b =
√
1− ᾱtγ, we get:

q(yyyt|xxx0) = N (yyyt;
√
ᾱtxxx0, (1− ᾱt)III + γ2(1− ᾱt)III) = (16)

= N (yyyt;
√
ᾱtxxx0, (1− ᾱt)(1 + γ2)III). (17)

A.3. Ablation Study: Input Perturbation is not Equivalent to Using a Different Noise Variance

The goal of this section is to empirically show that DDPM-IP is not equivalent to using a standard DDPM algorithm with a
different noise distribution. Following the discussion in Sec. 5.2, and adopting the same terminology, we compare DDPM-IP
with DDPM-y, where the latter is trained using the standard algorithm (Alg. 1) but adopting the noise distribution of yyyt.
Tab. 7 shows that DDPM-y is even worse than DDPM.

Table 7. CIFAR10: comparing DDPM, DDPM-y and DDPM-IP using different numbers of revers diffusion steps.

Model Input Target 80 steps 100 steps 300 steps 1000 steps

FID sFID FID sFID FID sFID FID sFID

DDPM xxxt ϵϵϵ 3.63 5.97 3.37 5.66 2.95 4.95 2.99 4.76
DDPM-y yyyt ϵ′ϵ′ϵ′ 4.24 6.51 3.90 6.23 3.21 5.39 3.25 5.04
DDPM-IP yyyt ϵϵϵ 2.93 4.69 2.70 4.51 2.67 4.14 2.76 4.05

A.4. Recall and Precision

We compare Recall and Precision for ADM and ADM-IP using the improved metrics (Kynkäänniemi et al., 2019) and the
code of Dhariwal & Nichol (2021). For each dataset and model, we generate 50,000 samples with 1,000 sampling steps. The
results in Tab. 8 indicate that the Recall and Precision values achieved by ADM and ADM-IP have no significant difference,
while ADM-IP gets slightly better results on CIFAR10 32×32 and FFHQ 128×128. Note that, due to the limited memory
of our NVIDIA V100 16G GPU, we experienced an out-of-memory issue when computing Recall and Precision on the
ImageNet 32×32 dataset, thus this result is not reported in Tab. 8.
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Table 8. Comparing Recall and Precision for ADM and ADM-IP on the four datasets using 1,000 sampling steps.

Model CIFAR10 32×32 LSUN tower 64×64 CelebA 64×64 FFHQ 128×128

Recall Precision Recall Precision Recall Precision Recall Precision

ADM 0.600 0.690 0.618 0.631 0.592 0.703 0.583 0.690
ADM-IP 0.606 0.696 0.612 0.640 0.601 0.700 0.585 0.703

A.5. Gaussian Prediction Error

In this section, we use ImageNet 32×32 to empirically show that eeet ∼ N (000, ν2t III) (Sec. 5.3), i.e., that the prediction error
is nearly isotropic Gaussian distributed. To do so, we need to prove that, for each t and each input dimension (i.e., for
each pixel and color channel) i ∈ {1, ...,M}, the pixel-wise error (eit) follows eit ∼ N (0, ν2t ). To test this hypothesis, we
uniformly select a subset of 100 t values in {1, ..., T} using a stride of 10. Then, for each t, we use 10K images and all the
pixels to compute the pixel independent mean µt and variance ν2t of the error, which we use to standardize the error values
for all the pixels eit (i.e., ēit =

eit−µt

ν2
t

). Then, for each i, we use 50 randomly selected ēit values and the Shapiro–Wilk test
(Shapiro & Wilk, 1965) to verify that they follow a standard normal distribution. The confidence level is set at 95% and
we reject the null hypothesis if the p-value is less than 0.05. The null hypothesis was rejected only in a small minority of
cases, confirming that the error eeet is almost isotropic Gaussian distributed. Fig. 6 shows a few histogram examples for eit
computed at different pixels.

A.6. Relation between the Lipschitz Constant Minimization and the Weight Decay Minimization

By definition, in Lipschitz continuos functions, the relation between the output difference ∥fw(x1)− fw(x2)∥ and the input
difference ∥x1 − x2∥ of two points is governed by a constant K as follows:

∥fw(x1)− fw(x2)∥ ≤ K · ∥x1 − x2∥ . (18)

Since a neural network is usually a stack of layers, without loss of generality we consider a single layer neural network,
f(x) = ReLU(Wx+ b), thus we have:

∥f(Wx1 + b)− f(Wx2 + b)∥ ≤ K · ∥x1 − x2∥ . (19)

Using the first order term of Tylor Series to approximate the left side of the above equation, we get:∥∥∥∥∂f∂y ·W (x1 − x2)

∥∥∥∥ ≤ K · ∥x1 − x2∥ , (20)

where the details of Tylor Series approximation are:

• Let y = Wx+ b, we approximate f(y) at the point y = 0.

• Hence, f(y) ≈ f(0) + f ′(0)(y − 0)f(y) ≈ f(0) + f ′(0)(y − 0).

• Substitute y with y1 and y2, where y1 = Wx1 + b, y2 = Wx2 + b.

• Thus, f(y1)− f(y2) ≈ f(0) + f ′(0)y1 − f(0)− f ′(0)y2 = f ′(0)(y1 − y2) = f ′(0)W (x1 − x2).

Since ∂f
∂y is bounded by 1 when f = ReLU , we can ignore it, and we have:

∥W (x1 − x2)∥ ≤ K ∥x1 − x2∥ . (21)

We now introduce the Spectral Norm ∥W∥2. According to the definition ∥W∥2 = max
x̸=0

∥Wx∥
∥x∥

, we have:
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(a) eit with t = 300, i = 1 (b) eit with t = 300, i = 1025 (c) eit with t = 300, i = 2049

(d) eit with t = 600, i = 528 (e) eit with t = 600, i = 1552 (f) eit with t = 600, i = 2576

(g) eit with t = 900, i = 1024 (h) eit with t = 900, i = 2048 (i) eit with t = 900, i = 3072

Figure 6. The empirical distribution of eit with different random values of t and i.

∥W (x1 − x2)∥ ≤ ∥W∥2 · ∥x1 − x2∥ . (22)

Comparing Eq. 21 with Eq. 22, we can use ∥W∥2 as the Lipschitz constant K. We can use the Frobenius Norm ∥W∥F to
approximate the Spectral Norm ∥W∥2 because, using the Cauchy inequality, we have:

∥Wx∥ ≤ ∥W∥F · ∥x∥ , (23)

where the definition of the Frobenius Norm is: ∥W∥F =
√∑

i,j w
2
i,j .

Thus, we can use the Frobenius Norm ∥W∥F to approximate the constant K. Minimizing this constant during training is
often implemented by adding a loss term λ ∥W∥2F to the loss function. This loss term is exactly the Weight Decay according

to the definition of ∥W∥F =
√∑

i,j w
2
i,j .
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A.7. Hyperparameters

For both ADM and ADM-IP, we use the hyperparameters specified in (Dhariwal & Nichol, 2021), except for LSUN tower,
for which we used a resolution of 64×64. The hyperparameter values are reported in Tab. 9. We train all the models using
the AdamW optimizer (Loshchilov & Hutter, 2019). Furthermore, we use 16-bit precision and loss-scaling (Micikevicius
et al., 2017) for mixed precision training, but keeping 32-bit weights, EMA, and the optimizer state. We use an EMA rate of
0.9999 for all the experiments. These settings are the same as in (Dhariwal & Nichol, 2021).

We use Pytorch 1.8 (Paszke et al., 2019) and trained all the models on different NVIDIA Tesla V100s (16G memory). In
more detail, we use 2 GPUs to train the models on CIFAR10 for 2 days, and 4 GPUs to train the models on ImageNet 32×32
for 34 days. For LSUN tower 64×64, CelebA 64×64 and FFHQ 128×128, we used 16 GPUs to train the models for 3 days,
5 days and 4 days, respectively.

Table 9. ADM and ADM-IP hyperparameter values

CIFAR10
32×32

ImageNet
32×32

LSUN tower
64×64

CelebA
64×64

FFHQ
128×128

Diffusion steps 1,000 1,000 1,000 1,000 1,000
Noise schedule cosine cosine cosine cosine cosine
Model size 57M 57M 295M 295M 543M
Channels 128 128 192 192 256
Residual blocks 3 3 3 3 3
Channels multiple 1, 2, 2, 2 1, 2, 2, 2 1, 2, 3, 4 1, 2, 3, 4 1, 1, 2, 3, 4
Heads channels 32 32 64 64 64
Attention resolution 16, 8 16, 8 32, 16, 8 32, 16, 8 32, 16, 8
BigGAN up/downsample True True True True True
Dropout 0.3 0.3 0.1 0.1 0.1
Batch size 128 512 256 256 128
Training iterations 540K 5000K 340K 540K 480K
Training images 50K 1281K 708K 203K 70K
Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4

Regarding the DDIM and DDIM-IP experiments, we use the default hyperparameters specified in the public code of Song
et al. (2021a). We train both DDIM and DDIM-IP on CIFAR10 from scratch for 1600K iterations with batch size 128. The
complete list of hyperparameters is shown in Tab. 10. We train DDPM/DDPM-IP with a single NVIDIA Tesla V100s (16G
memory) for 8 days on a Pytorch 1.8 platform.

Table 10. DDIM and DDIM-IP hyperparameter values on CIFAR10 dataset

Diffusion Steps 1000 Variance type fixed large
Noise schedule linear Ema rate 0.9999
Channels 128 Batch size 128
Channels multiple 1,2,2,2 Iterations 1600K
Residual blocks 2 Training images 50K
Attention resolution 16 Optimizer Adam
Dropout 0.1 Learning rate 2e-4

A.8. Qualitative Comparison between ADM and ADM-IP

In this section, we qualitatively compare ADM with ADM-IP. For a fair comparison, we start sampling the same xxxT for
both models. Fig. 7, 8, 9, 10, 11 show that the images generated by ADM-IP are usually comparable or better than those
produced by ADM. For example, in Fig. 7, ADM fails to run into the bird, the boat and the dog modes in the first, the third
and the sixth image on the second row. Similarly, in Fig. 9, ADM fails to complete the building in the fourth image on the
second row. Moreover, the details and colors of the towers generated by ADM-IP are more visually realistic and appealing.
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Finally, on the FFHQ 128×128 dataset, the ADM generated samples suffer from overexposure and loss of background
detail, whereas the ADM-IP samples do not (see Fig. 11).

(a) Samples generated by ADM trained on CIFAR10 (FID 2.99)

(b) Samples generated by ADM-IP trained on CIFAR10 (FID 2.76)

Figure 7. CIFAR10, qualitative results. The samples are generated using 1,000 sampling steps.

(a) Samples generated by ADM trained on ImageNet 32×32 (FID 3.53)

(b) Samples generated by ADM-IP trained on ImageNet 32×32 (FID 2.72)

Figure 8. ImageNet 32×32, qualitative results. The samples are generated using 1,000 sampling steps.

A.9. Additional Qualitative Results for ADM-IP

We show additional images generated by our ADM-IP models trained on CIFAR10 (Fig. 12), ImageNet 32×32 (Fig. 13),
LSUN tower 64×64 (Fig. 14), CelebA 64×64 (Fig. 15) and FFHQ 128×128 (Fig. 16). For each dataset, we used the best
number of sampling steps as indicated in Tab. 3.

17



Input Perturbation for Diffusion Models

(a) Samples generated by ADM trained on LSUN tower 64×64 (FID 3.39)

(b) Samples generated by ADM-IP trained on LSUN tower 64×64 (FID
2.68)

Figure 9. LSUN tower 64×64, qualitative results. The samples are generated using 1,000 sampling steps.

(a) Samples generated by ADM trained on CelebA 64×64 (FID 1.60)

(b) Samples generated by ADM-IP trained on CelebA 64×64 (FID 1.31)

Figure 10. CelebA 64×64, qualitative results. The samples are generated using 1,000 sampling steps.
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(a) Samples generated by ADM trained on FFHQ 128×128 (FID 9.65)

(b) Samples generated by ADM-IP trained on FFHQ 128×128 (FID 2.98)

Figure 11. FFHQ 128×128, qualitative results. The samples are generated using 1,000 sampling steps.

Figure 12. Samples generated by ADM-IP trained on CIFAR10 (FID 2.67 , 300 sampling steps)
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Figure 13. Samples generated by ADM-IP trained on ImageNet 32×32 (FID 2.66, 300 sampling steps)

Figure 14. Samples generated by ADM-IP trained on LSUN tower 64×64 (FID 2.60 , 300 sampling steps)

Figure 15. Samples generated by ADM-IP trained on CelebA 64×64 (FID 1.27, 900 sampling steps)
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Figure 16. Samples generated by ADM-IP trained on FFHQ 128×128 (FID 2.98, 1,000 sampling steps)

21


