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ABSTRACT

Anomalous and out-of-distribution (OOD) data present a significant challenge to
the robustness of decisions taken by deep neural networks, with myriad real-world
consequences. State-of-the-art OOD detection techniques use embeddings learned
by large pre-trained transformers. We demonstrate that graph structures and topo-
logical properties can be leveraged to detect both far-OOD and near-OOD data
reliably, simply by characterising each data point (image) as a network of related
features (visual concepts). Furthermore, we facilitate human-in-the-loop machine
learning by expressing this data to comprise high-level domain-specific concepts.
We obtained 97.95% AUROC on far-OOD and 98.79% AUROC on near-OOD
detection tasks based on the LSUN dataset (comparable to the performance of
state-of-the-art techniques).

1 INTRODUCTION

Trustworthy machine learning systems must hand over decisions it is not confident about to human
experts. Most machine learning pipelines operate on the assumption of a closed world. The test
data is assumed to be drawn in an IID fashion from the same distribution as the training data. The
difficulty of OOD detection relies primarily on how semantically close the outliers are to the inliers.
Therefore, based on difficulty [Winkens et al. (2020)], the OOD detection task is split into the
following.

1. Near OOD refers to semantic shifts in the data, such as (SVHN and MNIST). Generally,
this is a more challenging problem to solve, and the AUROC hovers around 93 per cent for
state-of-the-art methods [Fort et al. (2021)].

2. Far OOD is a covariate shift, which is less difficult to detect. The AUROC hovers around
99 per cent in the current state of the art [Fort et al. (2021)].

Common sense is a very an essential yet absent element of AI systems. This crucial ability to
judge and understand everyday things amongst most humans is a non-trivial problem with machines
[Xu et al. (2021)]. The absence of common sense prevents intelligent systems from understanding
a changing world (distribution drift), behaving reasonably in unforeseen situations (such as OOD
detection), and learning quickly from new experiences (i.e. prior information). Furthermore, it is
hard to learn, encode and represent this information. This shared and undefined knowledge base in
humans is known from extensive exposure open domain data - such as basic physical phenomena.

In this paper, we operate under the assumption that common sense can be learnt in patterns of occur-
rences, and this knowledge can be learnt in a domain-specific manner. Therefore, our strategy relies
on creating a commonsense service that learns from experience, based on computational models that
mimic child cognition towards scenes and reasoning.

Intuition Graphs provide a general language for describing and analysing entities with interactions
between them. We want to use the rich relational structures among visual concepts in complex
domains to represent commonsense concepts. Our hypothesis is this would lead to better OOD
prediction while maintaining justifications humans can understand.

Contributions This work includes the following contributions
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1. We propose a novel semi-supervised geometric-learning-based framework that operates on
human-interpretable concepts. This relies on representing each data point (image) as a
graph of visual features.

2. We demonstrate that our technique performs on par with state-of-the-art methods on near
and far-OOD tasks based on the LSUN dataset.

2 BACKGROUND AND RELATED WORK

Detecting Out Of Distribution (OOD) points in a relatively lower dimensional space have been
extensively used [Pimentel et al. (2014)] in experiments. Conventionally, these methods include
density estimation, nearest neighbour-based algorithms, and clustering analysis. The density esti-
mation approach uses probabilistic models to estimate the in-distribution density, while declaring a
data point out of distribution if it is located in a low-density region. Clustering-based methods rely
on distance measures between points to find out-of-distribution points (that are further away from
the neighbourhood). The primary drawback of these methods has always been their inadequacy in
working with high-dimensional data [Theis et al. (2015)], such as images.

Issues Over the last years, state-of-the-art results in the OOD detection task have been based on
deep neural network-dependent approaches. For example, convolutional neural networks have been
used to find bizarre scenes by Sabokrou et al. (2018). Furthermore, the techniques presented in
Andrews et al. (2016) and Fort et al. (2021) depend on an amalgamation of transfer-learning and
representation learning. In sensitive environments, such as clinical settings, generative adversarial
networks have been used by Schlegl et al. (2017). The drawback of a technique that requires adding
more layers to a neural network or modifying its layers is that pre-trained neural networks - is
that neural networks can be overconfident about wrong decisions when employed in an out-of-
distribution setting [Hendrycks and Gimpel (2016); Lakshminarayanan et al. (2017); Guo et al.
(2017)]. On the other hand, using large pre-trained transformer networks does improve performance
- but relies heavily on the assumption that the embeddings generated by them are infallible.

Scene Graph Generation (SGG) refers to the task of automatically mapping an image or a video
into a semantic structural scene graph, [Zhu et al. (2022) requiring the accurate labelling of detected
objects and their relational structures. Although this is a tricky task, the availability of extensive
datasets, such as Visual Genome [Krishna et al. (2016)], and massive models, such as OSCAR [Li
et al. (2020); Zhang et al. (2021)] and RelationFormer [Shit et al. (2022)], has shown impressive
results. In our case, since we do not need the relational structures between objects to be human-
readable, in the interest of reducing computational overhead - we favour object detection networks
over scene graph generation networks.

Commonsense knowledge graphs (CSKGs) are gaining popularity [Ilievski et al. (2021); Guan
et al. (2019)] as origins of background knowledge (domain-specific conceptual, syntactic informa-
tion) that are conceptualised to help with downstream reasoning tasks such as question answering
and planning. In our context, we intend to use these for OOD data detection. For this, we exploit
the recent advances in geometric learning. These same methods allow graph neural networks to be
used to predict molecule properties and social media conversation characteristics.

3 PROBLEM SETUP

This paper assesses the problem of differentiating between in-distribution and out-of-distribution
image examples on a pre-trained neural network. Let us assume that two distributions, Din and
Dout, are drawn from the space X . In dataset Din of

(
xin , yin

)
pairs where x denotes the input

feature vector, and yin ∈ Y in := {1, . . . ,K} denotes the class label. Let Dout denote an out-of-
distribution dataset of (xout , yout ) pairs where yout ∈ Yout := {K +1, . . . ,K +O},Yout ∩Yin =
∅. In our experiments, we sample from the mixture distribution. The conditional probability of
drawing from this mixed distribution is PX|Z=0 = Din for in-distribution and PX|Z=1 = Dout for
out-of-distribution. Our problem setup allows access to OOD samples for training.

We are therefore presented with the following challenge: Given an image X drawn from the mixture
distribution PX∗Z - can we distinguish whether the image is from in-distribution Din?
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4 USING FEATURE NETWORKS AS AN OUT-OF-DISTRIBUTION DETECTOR

This section presents our method for detecting out-of-distribution samples. This detector depends
on a three-stage pipeline, the feature finder, the unsupervised projector, and the supervised detector.
We describe the details of all three components below.

Figure 1: Stages for using Semi-Supervised Feature Networks for OOD detection.

4.1 FEATURE FINDER (ϕ : xinput → G )

We assume the availability of a pre-trained object-detection network that discovers the distinct com-
ponents inside an image, draws boxes around them and assigns classes. Next, the proposed objects
are pruned by thresholding based on the model’s confidence (in section 5.4, we assume ϵ=0.2)in the
prediction. Finally, the stage generates the graph based on either of the following strategies :

• Unweighted Graph : Each class forms a node in the network, but edges are only drawn
between the nodes found in the image. If multiple object pairs are found, multiple edges
are drawn.

• Weighted Graph : As before, each class forms a node in the network, with edges only
drawn between the nodes found in the image. If multiple object pairs are found, multiple
edges are drawn - with pairwise weight factor assigned to each edge as a product of the
intersection over union (IoU) score (Jaccard Index (J)) and the euclidean distance between
the centroids of the two bounding boxes.

G(x) = (V,E);G(x) ∈ G;Eweight
obj1,obj2

=

{
1 + ∥obj1, obj2∥ ∗ J(obj1, obj2) if weighted strategy
1 if unweighted strategy

4.2 PROJECTOR (P : G → Z)

The previous stage’s feature networks (graphs) represent each data point (image). Although the
graph substructures, such as nodes and sub-graphs, are essential for our task - the best depiction of
the entire data point and its intricacies can only be captured by the whole graph. Therefore, this
stage focuses on creating a mapping from the structural and topological properties of this graph to
a vector space which can be used for downstream analysis. Therefore this method performs whole-
graph embedding, creating a projection into our ”graph-feature” space.
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Table 1: OOD detection tasks based on Yu et al. (2015)

Far-OOD Tasks Near-OOD Tasks

Bridge vs (Classroom, Conference
Room, Dining Room, Kitchen, Living
Room, Restaurant, Bedroom)

Bedroom vs (Classroom, Conference Room, Dining
Room, Kitchen, Living Room, Restaurant); Living
Room vs (Restaurant)

Church Outdoor vs (Classroom, Con-
ference Room, Dining Room, Kitchen,
Living Room, Restaurant, Bedroom)

Church Outdoor vs (Tower, Bridge), Bridge vs
(Tower), Classroom vs (Conference Room, Dining
Room, Kitchen, Living room, Restaurant); Kitchen
vs (Living Room, Restaurant)

Tower vs (Classroom, Conference
Room, Dining Room, Kitchen, Living
Room, Restaurant, Bedroom)

Conference Room vs (Dining Room, Kitchen, Liv-
ing Room, Restaurant); Dining Room vs (Kitchen,
Restaurant, Living Room);

Graph-kernel-based methods to perform whole-graph embeddings use handcrafted features such as
shortest paths, graphlets etc. This hampers their performance and introduces problems such as poor
generalisation. This is why, in this stage - we favour the usage of neural embedding frameworks that
learn representations (Z) and can scale to arbitrary-sized graphs.

4.3 DETECTOR (θz : Z → ŷ)

Given the embeddings (Z) learnt from the Graph Neural Network (P), we use a downstream model
to separate and bind the two distributions away from each other. Since the embeddings no longer
have very high dimensions, we can leverage techniques from the rich literature on anomalous data
detection. A classifier, θz , may be trained to output whether the data point expressed by Zi is out
of distribution or not (ŷ). If learning in an unsupervised manner, this includes density estimation,
nearest neighbour, and clustering techniques.

5 EXPERIMENTS

5.1 OUT-OF-DISTRIBUTION DATASETS

The Large scale Understanding Dataset (LSUN) has about 120k to 3Mn images of 10 categories
(each) such as bedroom, kitchen room, living room etc [Yu et al. (2015)]. We consider each of
these categories as its domain. We classify pairwise combinations into far-OOD and near-OOD
tasks depending on the semantic similarity between these domains. Out of the total 45 permutations
possible (in table 1), we define pairs as near-OOD when both are outdoors or indoor scenes.

5.2 GRAPH EMBEDDING ALGORITHMS

1. Graph2Vec [Narayanan et al. (2017)] creates Weisfeiler-Lehman tree features for the
nodes, based on which a feature co-occurrence matrix is developed and analysed to gener-
ate representations of the graphs. With a minimum count of feature occurrences as 5, we
run this for 2 Weisfeiler-Lehman iterations, for ten epochs, with a learning rate of 0.025,
and downsampling with frequency 10−4. This allows us to generate a 128-dimensional
embedding vector.

2. Wavelet Characteristic [Wang et al. (2021)] uses characteristic functions of node features
with wavelet function weights to describe node neighbourhoods. Once generated, node-
level features are combined to create embeddings on the entire graph. We use averaging
as the pooling function and run our experiments with a τ= 1.0, θmax=2.5, 5 characteristic
function evaluations and adjacency matrix powers set to 5. Finally, we generate a 1000-
dimensional embedding.
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3. LDP [Cai and Wang (2018)] relies on calculating the histograms of degree profiles, which
are joined together to form graph representations. We run our experiments assuming 32
histogram bins and generate a 160-dimensional embedding.

4. Feather Graph [Rozemberczki and Sarkar (2020)] method utilises characteristic functions
of node features with random walk weights to describe node neighbourhoods, which are
combined to generate the entire graph’s embeddings. We use averaging as the pooling
function and run our experiments with θmax=2.5, 25 evaluation points and adjacency ma-
trix powers set to 5. This generates a 500-dimensional embedding.

5. Invariant Graph Embeddings [Galland and Lelarge (2019)] computes a graph-descriptor
using a mixture of spectral and node embedding-based features, such as eigenvalues and
scattering. We use [10,20] as the number of histogram bins, [10,20] as spectral embedding
dimensions, with [3,5] as feature embedding dimensions. This lets us generate a 220-
dimensional embedding.

6. GL2Vec [Chen and Koga (2019)] generates embeddings while leveraging line graphs and
edge features. It relies on decomposing a feature co-occurrence matrix of Weisfeiler-
Lehman tree features for the nodes. With a minimum count of feature occurrences as 5, we
run this for 2 Weisfeiler-Lehman iterations, for ten epochs, with a learning rate of 0.025,
and downsampling with frequency 10−4. This allows us to generate a 128-dimensional
embedding vector.

7. NetLSD [Tsitsulin et al. (2018)] generates 250-dimensional embeddings using the heat
kernel trace of the normalised Laplacian matrix over time scales. We use 200 eigenvalue
approximations, with 250-time scale steps and a time scale interval range between the
minimum and maximum of -2.0 and 2.0, respectively.

8. SF [de Lara and Pineau (2018)] was used to generate 128-dimensional embeddings based
on the lowest eigenvalues of the normalised laplacian.

9. FGSD [Verma and Zhang (2017)] was used to generate 200-dimensional embedding using
the histogram of Moore-Penrose spectral features of the normalised laplacian. Here, we
assumed 200 histogram bins, with a histogram range of 20.

5.3 EVALUATION METRICS

We use these metrics to gauge the usefulness of our system in differentiating in and out of distribu-
tion images. Again, these are consistent with what’s used to evaluate performance in OOD detection
literature. [Fort et al. (2021); Liang et al. (2017)

1. Area Under the Receiver Operating Characteristic curve (AUROC) is a threshold-
independent metric representing the relationship between TPR and FPR [Davis and Goad-
rich (2006)], where a perfect detector reaches an AUROC score of 100%. This can be
thought of as the probability that an anomalous example is given a higher OOD score than
an in-distribution example [Fawcett (2006)].

2. AUPR is another threshold-independent metric, [Manning and Schutze (1999); Saito
and Rehmsmeier (2015)] evaluating the area under the PR (graph showing the preci-
sion=TP/(TP+FP) and recall=TP/(TP+FN), plotted against each other). It is useful when
anomalous examples are infrequent, as it considers the base rate of the anomalies. We re-
port the AP (average precision) score summarizes a precision-recall curve as the weighted
mean of precisions achieved at each threshold, with the increase in recall from the previous
threshold used as the weight.

5.4 RESULTS

In this section, we demonstrate our method’s effectiveness in detecting OOD datapoints on the
LSUN-based benchmark (in table 1). We use an object detection model trained on Open Images
V4 with ImageNet pre-trained Inception Resnet V2 as an image feature extractor to extract features.
This specific model [Google (2022)] attains an mAP of 0.58 on the OpenImagesv4 test set and can
successfully find 600 different classes.
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Due to computational constraints, we test 20,000 images in each in-distribution and out-of-
distribution classes on each near-OOD and far-OOD benchmark. In addition, 20% of the data is
held out for unseen testing. The task for each category was randomly chosen from Table 1. In table
2, we describe the AUROC and average precision scores computed for Far-OOD detection between
”Church (Outdoor)” and ”Dining room” classes. Table 3 describes the AUROC and average preci-
sion scores computed for Near-OOD detection between ”Living Room” and ”Dining room” classes.
For both these tasks, logistic regression and gradient boosting were used as θz .

Projection Method
AUROC AUPR (AP)

Logistic Reg Grad Boost Logistic Reg GradBoost

(Accuracy) Test Train Test Train Test Train Test Train

Wavelet Characteristic 84.65 84.77 85.50 85.58 82.72 82.88 82.75 82.84

LDP 85.51 85.58 85.50 85.58 82.82 82.86 82.75 82.84

FeatherGraph 84.81 84.99 85.50 85.58 82.81 83.06 82.75 82.84

IGE 83.66 83.11 85.44 85.77 82.54 82.40 83.27 83.48

GL2Vec 84.20 84.30 85.82 87.04 82.33 82.75 84.99 86.40

NetLSD 85.61 85.58 85.50 85.58 83.96 83.94 82.75 82.84

SF 85.45 85.54 85.50 85.58 83.33 83.54 82.75 82.84

FGSD 84.80 85.01 92.84 93.13 84.20 84.49 92.67 92.96

Graph2Vec (weighted) 94.47 94.25 97.95 98.22 94.34 94.15 97.69 98.14

Table 2: Results for Far-OOD detection were computed on the classes ”Church Outdoor” and ”Din-
ing Room” based on table 1, from the LSUN dataset.

Projection Method AUROC AUPR (AP)
Logistic Reg Grad Boost Logistic Reg GradBoost

(Accuracy) Test Train Test Train Test Train Test Train

Wavelet Characteristic 73.20 73.63 72.99 73.51 72.33 72.27 70.54 70.57
LDP 72.99 73.50 72.99 73.51 70.56 70.53 70.54 70.57
FeatherGraph 73.29 73.78 72.99 73.51 71.73 71.78 70.54 70.57
IGE – – – – – – – –
GL2Vec 72.64 73.01 81.08 82.92 72.56 72.27 81.05 82.42
NetLSD 72.99 73.54 72.99 73.52 72.06 72.28 70.55 70.58
SF 73.06 73.57 72.99 73.51 72.05 72.06 70.54 70.57
FGSD 73.41 74.13 75.97 77.03 72.95 73.17 74.16 74.76
Graph2Vec (weighted) 93.51 93.46 98.48 98.79 92.73 92.73 98.53 98.78

Table 3: Results for Near-OOD detection were computed on the classes ”Living Room” and ”Dining
Room” based on table 1, from the LSUN dataset.

6 DISCUSSION

In Fort et al. (2021) i.e. the current SOTA, an AUROC of 96% has been achieved in near-OOD
detection, while an AUROC of 99% has been achieved in far-OOD detection. Considering that we
achieved 98.79% AUROC on the near-OOD tasks from the LSUN dataset, and 97.95% AUROC on
far-OOD tasks from the LSUN dataset - our model performance is comparable to the state-of-the-art.

6



Under review as a conference paper at ICLR 2023

Benchmarking and comparing the same tests are difficult since many image classification frame-
works (CIFAR-10, 100) contain data points that contain only one feature variable (cars, planes),
thereby negating the potency that graphs bring to express complex relationships inside data. Papers
such as Fort et al. (2021) combine all the classes to create a distribution, such as all digits inside
MNIST becoming one distribution. In extension, all digits inside SVHN become another distribu-
tion. Therefore, each of our classes inside the LSUN dataset is analogous to an entire distribution
and not individual classes, such as cars, buses etc.

Just like words make up a document, the concept of visual words making up images has been studied
in great detail. Topic models such as pLSA [Hofmann (2013)] worked on modelling co-occurence
information under a probabilistic framework to discover underlying semantic structures.

Handcrafted Features Our semi-supervised featured networks are generated based on handcrafted
features, such as human interpretable descriptors, euclidean distance and the jaccard Index. We have
shown performance equivalent to state-of-the-art methods in our domain. However, in other domains
good feature extraction may not be feasible, or an adequately large dataset may not be available. In
future work, we plan to explore how these graphs can be built using lesser hand-engineering so that
we can achieve better generalisation ability.

Constraints Our framework only requires access to an object detector that can find features of
particular interest inside the required dataset and domain. It would also be helpful if this detector
could find features that are expected to be seen in out-of-distribution data. Access to the list of
features that can be detected could mean that the graphs in G contain nodes for every feature and
only draw edges when pairwise relationships are observed., as described in section 4.1.

Using auxiliary models for sanity-checking the model’s decisions is conceptually the same as boost-
ing. This is because we effectively fit successive models to the residuals of previous models. We
believe such a setup can reduce the risk of failure in production settings.

We observe that large amounts of graph data are essential for the self-supervised graph embedding
algorithms to learn discriminative features maximally. When the same experiments were performed
with 1000 images each, performance was generally not outstanding. This is possible because when
the embedding Z is in high enough dimensions, and there are not enough data points -θz can always
fit the training set, but generalisation on the test set is inferior.

A fundamental assumption in our framework currently is access to both the in and out-of-distribution
data. It should be possible to extend our method not to require access to OOD samples, whether to
train auxiliary models or to tune hyperparameters. However, if P has not trained on a varied amount
of data - the discriminative ability may be limited, thereby compromising the performance of the
OOD detector. In future experiments, we intend to examine methods to extend our framework,
including the ability for zero or few-shot OOD detection.

7 CONCLUSION

Deep neural networks can make wrong decisions with high confidence when operating on data it
was not trained on. Therefore, for the safe deployment of AI systems in the real world, model
performance and detection of out-of-distribution data are equally important. To tackle this problem
and find OOD data - we propose a novel semi-supervised geometric-learning-based framework that
operates on human-interpretable concepts. We demonstrate that our technique performs on par with
state-of-the-art methods on near and far-OOD tasks. In future work, we intend to explore more
unsupervised methods to generate feature graphs and test our method on few-shot OOD detection.
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