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ABSTRACT

Molecular discovery has received significant attention across various scientific
fields by enabling the creation of novel chemical compounds. In recent years, the
majority of studies have approached this process as a multi-objective optimiza-
tion problem. Despite notable advancements, most methods optimize only up to
four molecular objectives and are mainly designed for scenarios with a predeter-
mined number of objectives. However, in real-world applications, the number of
molecular objectives can be more than four (many-objective) and additional ob-
jectives may be introduced over time (dynamic-objective). To fill this gap, we
propose DyMol, the first method designed to tackle the dynamic many-objective
molecular optimization problem by utilizing a novel divide-and-conquer approach
combined with a decomposition strategy. We validate the superior performance of
our method using the practical molecular optimization (PMO) benchmark.

1 INTRODUCTION

Molecular discovery is foundational to progress in a variety of scientific fields, ranging from the de-
velopment of new pharmaceuticals to the creation of innovative materials (Bilodeau et al., 2022). At
its core, molecular discovery is a complex process that seeks to identify molecules with specific, de-
sirable properties. In essence, this process is fundamentally a constrained multi-objective optimiza-
tion problem, where the objectives are to simultaneously maximize or minimize certain attributes of
molecules (Fromer & Coley, 2023). Unlike single-objective optimization, the multi-objective opti-
mization problem introduces distinct challenges that arise from the necessity to balance multiple and
often conflicting objectives (Marler & Arora, 2004). Therefore, it becomes infeasible to identify a
single optimal solution that satisfies all objectives. Instead, the focus shifts to finding Pareto optimal
solution sets that represent various trade-offs among these objectives (Gunantara, 2018).

To tackle the multi-objective molecular optimization (MOMO) problem, much prior work has em-
ployed a range of generative models, including sampling-based methods (Fu et al., 2021; Xie et al.,
2021), genetic algorithms (Jensen, 2019; Tripp et al., 2021), probabilistic models (Bengio et al.,
2021), and reinforcement learning (Olivecrona et al., 2017; Jin et al., 2020). However, given the
necessity of simultaneously optimizing multiple objectives, several studies have commonly adopted
the scalarization method, which transforms multiple objectives into a single objective function by ag-
gregating them using weighted sums or other combining strategies (Gunantara, 2018). Alternatively,
the Bayesian optimization (BO) methods have been employed to address multiple objectives concur-
rently by leveraging acquisition functions to navigate the optimization landscape without needing
to quantify the relative weights of each objective (Fromer & Coley, 2023). While prior frameworks
have shown effectiveness, many of these methods have primarily focused on optimizing a limited
number of objectives, typically up to four, and are often designed for a fixed number of objectives.

In real-world drug discovery, the significance of dynamic many-objective molecular optimization
setting becomes evident (Luukkonen et al., 2023). From a many-objective perspective, the drug
development process is complex and multifaceted, typically requiring optimization of more than four
objectives. In particular, a new drug must meet various criteria, including potency, safety, solubility,
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Figure 1: The overview of our DyMol method for dynamic many-objective molecular optimization problem,
specifically exemplifies the scenario involving five molecular objectives. (a) Our method begins by decompos-
ing complex many-objective sets into more manageable sub-problems facilitated by our decomposition module.
(b) The optimization then progresses from a single objective, systematically incorporating additional objectives
over time according to the decomposition order, thereby enabling progressive optimization.

bioavailability, and stability (Sadybekov & Katritch, 2023). From a dynamic-objective standpoint,
the changing demands of the pharmaceutical market coupled with the emergence of new scientific
insights during the drug development process may require the adjustment or the introduction of new
optimization objectives. However, to our knowledge, no prior studies have tackled these issues.

The dynamic many-objective molecular optimization problem presents distinct challenges that set
it apart from the typical MOMO problem. The many-objective aspect introduces an enormously
large search space, which hinders efficient exploration and convergence to optimal Pareto solutions
(Yuan et al., 2015). The dynamic-objective nature of this problem further exacerbates difficulties
by continually altering the optimization landscape through the introduction of new objectives. To
tackle these challenges, our approach diverges from most previous works, which typically aim to
find Pareto optimal solutions for all objectives in a high-dimensional joint search space.

In this paper, we propose DyMol, which is a divide-and-conquer approach that decomposes the
complex many-objective task into a series of manageable sub-problems, allowing us to address each
of them sequentially. This progressive optimization scheme systematically unfolds the inherent
complexities associated with the many-objective settings. Moreover, we incrementally introduce
objectives over time in our method, allowing it to seamlessly adapt to the dynamic-objective settings
with the incorporation of new objectives. To enhance our method’s adaptability for new objectives,
we have also developed an objective adaptation technique that detects changes in the optimization
landscape and helps the model to identify effective Pareto solutions.

2 METHODS

2.1 OBJECTIVE DECOMPOSITION

As shown in Figure 1, at time stage t0, our method begins by decomposing complex many-objective
sets into more manageable sub-problems. This decomposition process is facilitated by our decom-
position module, which analyzes the complexities of each objective and automatically determines
the order in which they should be prioritized during optimization. Specifically, the generative model
initially optimizes all objectives jointly for a limited number of iterations. The model uses an initial
molecule as a starting point and produces an optimized molecule. Once complete, both the opti-
mized and initial molecules are evaluated by objective functions F(x, t0), also referred to as oracle
functions. From this evaluation, we calculate ordering scores by subtracting the objective scores of
the initial molecules from the optimized molecules. These scores offer insights into the extent of
improvement in objective scores accomplished by the model. A lower ordering score indicates that
optimizing a specific objective is more challenging, implying the need for early prioritization.
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2.2 PROGRESSIVE OPTIMIZATION

The main idea behind our method is to employ a divide-and-conquer approach to provide adapt-
ability and efficiency when dealing with dynamic many-objective optimization. Consider a scenario
where we have a total of five molecular objectives: objectives A through E, as shown in Figure 1.
Following the decomposition order of A → D → E → B → C, our proposed model begins by solely
optimizing objective A as follows:

Maximize
x∈X1

F(x, t1) = {fA(x)},

subject to gj(x, t1) ≤ 0, j = 1, 2, . . . , k;

hj(x, t1) = 0, j = 1, 2, . . . , l;

(1)

where x denotes the molecular vector, F(x, t1) represents the set of molecular objective functions at
time stage t1 ∈ T , and fA(x) is the objective function A that maps the molecule x to a real number.
Note that X1 represents the feasible set in the decision space specific to t1, potentially different from
the general decision space X due to the dynamic nature of the problem. The gj(x, t1) and hj(x, t1)
represent inequality and equality constraints, respectively, derived from the physical, biological, or
chemical requirements that a molecule must meet to be viable in a real-world environment.

When the model satisfies a certain score threshold related to objective A or reaches a predetermined
number of iterations, it progresses to the next time stage t2 and incrementally incorporates additional
objective D. Consequently, the optimization problem is expanded to maximize:

F(x, t2) = {fA(x), fD(x)}. (2)
However, the introduction of a new objective function fD(·) necessarily alters the optimization land-
scape by expanding the dimensions of the objective space. In this context, our objective adaptation
technique plays a crucial role by enabling the model to adapt to this evolving optimization landscape.
Specifically, it detects changes in the composition of objective scores, which provide learning feed-
back for model training and updates. For instance, at stage t1, the objective scores are solely based
on the value of objective A. However, at t2, they evolve to encompass a composite value of both
objectives A and D. The major role of the objective adaptation technique is to retrain the model us-
ing these updated objective scores, enabling the model to adjust to the evolving Pareto front PF(t),
which is defined as the set of optimal trade-offs among objectives such as follows:

PF(t) = {f(x∗) | x∗ ∈ X ,∄x ∈ X : x ≻ x∗ w.r.t. F(x, t)}, (3)
where x∗ represents the Pareto optimal solution, f(x∗) denotes the vector of objective function
values for this solution, and F(x, t) indicates the set of objective functions that evolves over time.

As time stages progress, the model systematically incorporates each new subsequent objective in
line with the decomposition order and sequentially adjusts to the evolving Pareto front. Eventu-
ally, at the end of the time stage, the model can address the complete set of objectives. Thus, our
method can be considered as a divide-and-conquer approach, as it strategically divides the complex
optimization task into a series of simpler sub-problems, each focusing on a specific subset of the ob-
jectives. However, distinct from conventional divide-and-conquer methods that solve sub-problems
independently and then combine their solutions, our approach is characterized by its sequential
adaptation and refinement of solutions. As new objectives are introduced, the model dynamically
adjusts its search process and integrates the incremental sub-problem solutions into a comprehensive
solution that addresses all objectives. This adaptive nature of our method can make it effective in
the dynamic-objective settings, where the optimization landscape progressively evolves over time.

2.3 PARETO SAMPLING AND OBJECTIVE ADAPTATION

Our proposed model employs likelihood Pθ to autoregressively generate molecule xg , from initial
molecule sequence x0 up to a maximum length L as:

Pθ(xg = xL) =

L∏
j=0

Pθ(xj |xj−1, xj−2, . . . , x0). (4)

These generated molecules are evaluated by F(x, t) to obtain objective scores. To provide learning
feedback, we compute reward scores R(x, t) at each time stage t by taking the weighted sum of
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objective scores from F(x, t). This is represented as R(x, t) =
∑n

i=1 wi(t)fi(x), where n is the
total number of objective functions and wi(t) is the relative weight for fi(x) at time stage t. To fur-
ther enhance the training efficiency, we utilize experience replay B that stores previously optimized
molecules with high reward scores. In contrast to traditional approaches that primarily emphasize
score-convergence, we develop the Pareto sampling technique to also consider Pareto diversity.

Figure 2: Molecules and their reward scores are stored
in experience replay, which serves two major roles:
ranking molecules by rewards for convergence sam-
pling, and extracting the Pareto front for Pareto sam-
pling. These sampled molecules are then integrated into
the loss function for training the generative model.

As shown in Figure 2, we perform two types
of sampling: convergence sampling, where we
sample molecules xc with high reward scores
from B to promote score-convergence, and
Pareto sampling, where we sample molecules
xp from the Pareto front to encourage Pareto
diversity. Finally, we optimize the model pa-
rameters θ using the following loss function:

L(θ, t) = [− logPθ(x) + logPprior(x) +R(x, t)]2
(5)

where Pprior is the likelihood of a pre-trained
model that imposes additional constraints based
on the chemical grammar. It should be noted
that x encompasses a set of molecules xg , xc,
and xp, represented as x = {xg, xc, xp}.

As time stages advance t → t + 1, the intro-
duction of new objective changes the composi-
tion of objective scores and the reward scores.
Although the generative model is initially un-
aware of these changes, we introduce the ob-
jective adaptation technique to update θ. This
involves retraining the model using updated reward scores to account for the impact of new objec-
tives. The objective adaptation loss can be expressed as:

LOA(θ, t) = [− logPθ(xb) + logPprior(xb) +R(xb, t+ 1)]
2
, (6)

where xb denotes all molecules from B. Note that we employ REINVENT (Olivecrona et al., 2017)
as our backbone generative model due to its superior performance.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP & COMPETING METHODS

We evaluated the performance of our proposed method using the practical molecular optimization
(PMO) benchmark (Gao et al., 2022). In this setup, oracle call budgets are strictly limited to 10,000
evaluations to reflect the real-world constraints of molecular discovery. For the oracle functions in
our experiments, we adopted the most commonly used molecular objective functions in previous
MOMO studies (Jin et al., 2020; Xie et al., 2021). These include biological objectives GSK3β and
JNK3, which represent inhibition scores against two target proteins related to Alzheimer’s disease, as
well as non-biological objectives like QED and SA that quantify drug-likeness and synthesizability,
respectively. To extend our approach to many-objective settings, we included further objectives such
as DRD2, associated with dopamine receptor binding affinity, as well as Osimertinib MPO objective
for discovering new therapeutics that optimize existing drugs with multiple desirable attributes.

We compared the performance of our method against a range of competing methods, including
Random ZINC (Sterling & Irwin, 2015), SMILES-VAE (Gómez-Bombarelli et al., 2018), MIMOSA
(Fu et al., 2021), GFlowNet (Bengio et al., 2021), and GraphGA (Jensen, 2019). Additionally, we
evaluated against BO methods such as GPBO (Tripp et al., 2021), LaMBO (Stanton et al., 2022),
and HN-GFN (Zhu et al., 2023); well-known many-objective optimization algorithms like MOEA/D
(Zhang & Li, 2007) and NSGA-III (Verhellen, 2022); and RL-based methods, including REINVENT
(Olivecrona et al., 2017), REINVENT BO (Tripp et al., 2021), and AugMem (Guo & Schwaller,
2023). Note that REINVENT was acknowledged as the best-performing algorithm for molecular
optimization, as evidenced by the original PMO benchmark results (Gao et al., 2022).
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Table 1: Comparative performance in scenarios with Four objectives (GSK3β+JNK3+QED+SA), Five objec-
tives (GSK3β+JNK3+QED+SA+DRD2), and Six objectives (GSK3β+JNK3+QED+SA+DRD2+Osimertinib
MPO) using 10 different seeds. The evaluation metrics used are the hypervolume (HV) and R2 indicators.

Four objectives Five objectives Six objectives

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Random ZINC 0.065±0.013 4.809±0.243 0.005±0.003 8.867±0.202 0.001±0.000 14.456±0.344
SMILES-VAE 0.073±0.023 4.839±0.435 0.004±0.001 9.226±0.512 0.001±0.000 15.109±0.548
GFlowNet 0.063±0.011 4.952±0.196 0.011±0.004 9.011±0.314 0.004±0.001 14.462±0.422
MIMOSA 0.082±0.028 4.905±0.410 0.016±0.012 9.195±0.761 0.005±0.005 15.454±1.701
LaMBO 0.123±0.006 4.496±0.148 0.009±0.001 9.302±0.159 Out-of-memory Out-of-memory
HN-GFN 0.120±0.000 4.013±0.060 0.004±9.861 9.861±0.096 0.002±0.000 15.349±0.102
MOEA/D 0.176±0.123 4.615±1.193 0.094±0.052 8.105±1.561 0.025±0.018 15.054±2.028
NSGA-III 0.234±0.107 3.477±0.837 0.071±0.047 7.130±1.349 0.016±0.020 14.366±2.393
GraphGA 0.254±0.069 3.379±0.666 0.100±0.057 7.676±1.312 0.051±0.030 11.814±1.787
GPBO 0.275±0.091 3.311±0.757 0.091±0.031 7.670±0.761 0.026±0.024 12.840±1.811
REINVENT BO 0.309±0.021 2.795±0.103 0.071±0.014 7.537±0.620 0.033±0.019 10.929±1.019
REINVENT 0.338±0.030 2.770±0.116 0.099±0.054 7.578±1.187 0.062±0.028 10.032±0.922
AugMem 0.395±0.038 2.496±0.192 0.090±0.043 8.011±0.955 0.071±0.072 12.472±3.758
DyMol (Ours) 0.422±0.023 2.297±0.095 0.247±0.087 4.943±0.990 0.143±0.056 8.842±1.632

3.2 EXPERIMENTAL RESULTS

The performances of our proposed method and the competing methods were assessed by two eval-
uation metrics: the hypervolume indicator (HV) (Zitzler et al., 2003) and the R2 indicator (R2)
(Brockhoff et al., 2012). The HV measures the volume of the objective space dominated by the
Pareto front, while the R2 evaluates the quality of a solution set based on user-defined reference
points. A higher HV value indicates a better solution set, while a lower R2 value is more desirable.

As shown in Table 1, our method outperforms all competing methods across all scenarios. Notably,
in scenarios with Five and Six objectives, our method demonstrates a substantial performance im-
provement. This highlights the effectiveness of our divide-and-conquer approach that successfully
handles the inherent complexity of many-objective problems by decomposing them into manageable
sub-problems. However, other methods struggle with exponential increases in complexity.

Figure 3: Finetuning performance of the top 4
methods in dynamic-objective scenarios.

To assess our method in dynamic-objective scenar-
ios, we propose a novel experimental setup where
a model has initially been fully optimized for a set
of Five objectives. Subsequently, a new, sixth ob-
jective (Osimertinib MPO) is introduced, requiring
additional optimization. Instead of re-optimizing all
objectives from scratch, we implement a fine-tuning
approach that leverages the model already optimized
for the initial Five objectives, and further optimiz-
ing the new objective. As depicted in Figure 3, our
method effectively reaches the baseline performance
of the Six objectives within fine-tuning 2000 oracle
calls and continues to improve beyond that. This
achievement can be attributed to our objective adap-
tation technique and the incremental nature of adding
objectives within our method.

4 CONCLUSION

In this work, we propose DyMol as a novel and first method to address the dynamic many-objective
molecular optimization problem by leveraging the divide-and-conquer approach. DyMol decom-
poses complex many-objective sets into manageable sub-problems for progressive optimization.
Our results demonstrate that DyMol outperforms competing methods in both many-objective and
dynamic-objective scenarios. Future work can include extending research to material science.
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APPENDIX

A PSEUDO-CODE

This section provides the DyMol pseudo-code for the entire training process.

Algorithm 1: Decomposition Module
Input: Generative model Pθ, Prior model Pprior, Decomposition oracle calls Norder, Number

of batch size Nbatch, Objective function f , Number of objectives n, Initial joint objective sets
Fjoint

Initialize Generative model Pθ = Pprior

Experience replay buffer B= {}
Length of replay buffer N = 0
Sample batch of initial molecules xinit ∼ Pθ

while N < Norder do
Sample batch of molecule xg ∼ Pθ

Calculate the objective scores Fjoint(xg, 0)

Compute the reward scores R(xg, 0) =
∑n

i=1
fi(xg)

n
Update replay buffer B ∪ (xg, R(xg, 0))
Sample xc from TopK high scoring molecules from buffer xc ∼ TopK(B)
x = xg ∪ xc

Update model L(θ, 0) = [− logPθ(x) + logPprior(x) +R(x, 0)]2
N = N +Nbatch

end
Sample batch of prototype molecules xproto ∼ Pθ

Ordering scores =
∑ Fjoint(xproto)−Fjoint(xinit)

Nbatch

Ordering = Argsort(Ordering scores)
Return Ordering

Algorithm 2: Progressive Optimization
Input: Generative model Pθ, Prior model Pprior, Experience replay Buffer B, Score threshold
sthre, Objective function f , Number of objectives n, Objective order Ordering

Objective Ordering → {f1, f2, ..., fn}
Initialize objective function sets F = {}
for t=1 to t = n do

Objective set update F ∪ ft
Relative reward weight {w1, w2, ..., wt} = 1

t
wt = wt × 1.5
while ft(xg) < sthre do

Sample batch of molecule xg ∼ Pθ

Calculate the objective scores F (xg, t)
Calculate Pareto front PF
Compute the reward scores R(xg, t) =

∑t
i=1 wifi(xg)

Update replay buffer B ∪ (xg, R(xg, t))
Sample TopK high scoring molecules from buffer xc ∼ TopK(B)
Sample molecules from Pareto front xp ∼ PF
x = xg ∪ xc ∪ xp

Update model L(θ, t) = [− logPθ(x) + logPprior(x) +R(x, t)]2

end
Objective adaptation with entire TopK buffer xb = TopK(B)
LOA(θ, t) = [− logPθ(xb) + logPprior(xb) +R(xb, t+ 1)]

2

end
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B RELATED WORK

B.1 GENERATIVE MODELS FOR MOLECULAR DISCOVERY

In recent years, there has been a growing interest in the use of various generative models for molec-
ular discovery. Generative models employed in molecular discovery can be broadly classified into
four categories: 1) sampling-based methods, 2) genetic algorithms, 3) reinforcement learning (RL),
and 4) probabilistic models. The sampling-based methods (Xie et al., 2021; Fu et al., 2021) focus
on sampling from a distribution of possible molecules with desirable properties. The genetic algo-
rithms (Jensen, 2019; Tripp et al., 2021) employ a population-based approach that evolves molecules
through iterative selection, crossover, and mutation guided by a fitness function. The RL-based
methods (Olivecrona et al., 2017; Jin et al., 2020) involve an agent that interacts with an environ-
ment to generate molecular structures. In this paradigm, the agent receives rewards for producing
chemical compounds with desired properties, thereby gradually refining its strategy towards achiev-
ing optimal molecular designs. The probabilistic models, GFlowNets (Bengio et al., 2021), generate
molecular structures by identifying high-potential regions using probability distributions from data.

B.2 MULTI-OBJECTIVE MOLECULAR OPTIMIZATION

In the context of the MOMO problem, the challenge lies in simultaneously optimizing multiple
molecular objectives, which often conflict with each other (Luukkonen et al., 2023). To address this,
two prominent multi-objective optimization techniques have been widely adopted: scalarization
and Bayesian optimization (BO). For instance, in the case of scalarization, MIMOSA (Fu et al.,
2021) has employed straightforward linear scalarization techniques to handle the MOMO problem.
These techniques aim to aggregate multiple objectives into a single objective function by using
weighted sums or Tchebycheff methods (Lin et al., 2022). On the other hand, BO offers a black
box optimization approach that has been integrated into various molecular generative models to
enhance sample efficiency (Laumanns & Ocenasek, 2002). In particular, GPBO (Tripp et al., 2021)
exemplifies the integration of BO within the framework of GraphGA (Jensen, 2019) as the backbone
model. Similarly, LaMBO (Stanton et al., 2022) leverages BO on top of denoising autoencoders to
address multi-objective sequence design problems. Recently, HN-GFN (Zhu et al., 2023) proposes
a multi-objective BO algorithm that leverages hypernetwork-based GFlowNets.

B.3 DYNAMIC MANY-OBJECTIVE OPTIMIZATION

Dynamic many-objective optimization, while yet to be widely explored in molecular optimization,
has found application in diverse fields such as manufacturing (Quan et al., 2022), environmental
management (Liu et al., 2021), and mineral processing (Ding et al., 2018). Existing approaches in
these domains have predominantly employed decomposition-based MOEA/D (Zhang & Li, 2007)
and non-dominated sorting NSGA-III (Deb & Jain, 2013) frameworks due to their effectiveness in
navigating high-dimensional search space.

C EXPERIMENTAL DETAILS

C.1 COMPETING METHODS

Here, we provide a detailed overview of the competing methods, outlining their key principles,
methodologies, and how they stand in comparison to our proposed method.

• Random ZINC (Sterling & Irwin, 2015) functions as a baseline, employing a straightfor-
ward approach of randomly sampling molecules from the ZINC dataset. It demonstrates
the basic level of effectiveness that can be achieved by merely sampling from an existing
dataset, without the application of any advanced optimization or generation strategies.

• SMILES-VAE (Gómez-Bombarelli et al., 2018) is a sampling-based method using a vari-
ational autoencoder model to generate molecules. These molecules are represented as
SMILES strings, a textual format that encodes molecular structures using concise strings
of characters to denote atoms and their connections.
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• MIMOSA (Fu et al., 2021) is a sampling-based method that utilizes Markov Chain Monte
Carlo for efficient sampling from a targeted molecular distribution. It begins with an input
molecule and progressively samples subsequent molecules from the specified distribution.

• GFlowNets (Bengio et al., 2021) represents one of the unique classes of probabilistic mod-
els that integrate the principles from both RL and sampling-based methods. Specifically,
this model is designed to sample more frequently from areas of higher rewards by leverag-
ing a probabilistic approach in its training process.

• GraphGA (Jensen, 2019) is a genetic algorithms-based method that evolves molecules in a
population through iterative selection, crossover, and mutation, guided by a fitness function.
It leverages chemical domain knowledge to design molecular mutation and crossover rules
that efficiently explore the molecular space.

• GPBO (Tripp et al., 2021) employs the Bayesian optimization (BO) framework to tackle
the multi-objective molecular optimization problem. It utilizes GraphGA as its backbone
model and aims to enhance sample efficiency by incorporating BO within its method.

• LaMBO (Stanton et al., 2022) leverages the BO framework on top of denoising autoen-
coders to address multi-objective sequence design problems. It employs a discriminative
multi-task Gaussian process to improve sample efficiency by predicting objective values.

• HN-GFN (Zhu et al., 2023) is one of the most recent methods that tackle the multi-
objective molecular optimization problem. It introduces a multi-objective BO algorithm
with GFlowNets as its core model for sampling diverse molecule candidates. Additionally,
it employs a hindsight-like off-policy strategy with the main purpose of sharing the memory
of high-performing molecules, thereby accelerating the learning process.

• MOEA/D (Zhang & Li, 2007) is one of the most popular algorithms for handling dynamic
many-objective optimization problems. It decomposes a multi-objective problem into sim-
pler single-objective subproblems using scalarization functions. Each subproblem is then
optimized concurrently using evolutionary algorithms. Our proposed method aligns with
decomposition-based algorithms in its approach. However, unlike MOEA/D-based algo-
rithms, our method is specifically designed for molecular optimization and does not solely
rely on the population-based nature of evolutionary algorithms. Additionally, our method
proposes a unique incremental objective addition strategy, starting with a single objective
and systematically introducing additional objectives over time. Furthermore, we have de-
veloped an objective adaptation technique to aid our model in adapting to newly introduced
objectives.

• NSGA-III (Deb & Jain, 2013) is another widely popular algorithm for addressing dynamic
many-objective optimization problems. It categorizes solutions into trade-off fronts based
on their dominance relationships. Molecular NSGA-III (Verhellen, 2022) provides compre-
hensive results for small molecule drug generation by utilizing NSGA-based algorithms.

• REINVENT (Olivecrona et al., 2017) is a reinforcement learning (RL)-based method that
utilizes an agent interacting with an environment to generate molecules. It utilizes an au-
toregressive approach to sequentially generate molecules represented as SMILES strings,
with each step in the generation process building upon the previously generated elements.
The generation process is further guided by a pre-trained prior model that enforces chemical
grammar constraints, ensuring the chemical validity of the generated molecular structures.
REINVENT has been recognized as the best-performing algorithm for the molecular op-
timization problem, as evidenced by the PMO benchmark (Gao et al., 2022). Due to its
superior performance, many other methods have adopted REINVENT as their backbone
model. In alignment with this trend, we have also employed REINVENT as our backbone
model to leverage its proven capabilities in generating chemically valid molecules.

• REINVENT BO (Tripp et al., 2021) is the RL-based method that incorporates the BO
framework. In essence, REINVENT BO shares similarities with GPBO, but instead of
using GraphGA as its backbone model, it employs REINVENT. This method can demon-
strate the potential level of performance that can be achieved from integrating the RL-based
method and the BO framework when addressing dynamic many-objective molecular opti-
mization problems.

• AugMem (Guo & Schwaller, 2023) is another RL-based method that builds upon the
REINVENT method. It enhances the performance of REINVENT by incorporating a data
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augmentation technique and experience replay. The authors claim that their method has
achieved a new state-of-the-art performance in the PMO benchmark. Hence, in our compar-
ative analysis, we have primarily compared our method against AugMem. The results indi-
cate that our method has successfully achieved better performance than AugMem, thereby
demonstrating the effectiveness of our progressive optimization via the divide-and-conquer
approach in addressing dynamic many-objective molecular optimization problems.

We reproduced SMILES-VAE, GFlowNet, MIMOSA, GraphGA, GPBO, REINVENT, and Aug-
Mem within PMO benchmark repository settings (Gao et al., 2022). We closely followed the rec-
ommended hyperparameter tuning strategy from the PMO benchmark repository, and we disabled
the early stop strategy for the fair comparison of hypervolume. However, we observed that the de-
fault hyperparameter setting consistently yielded comparable to or similar to those obtained through
hyperparameter tuning. In the case of REINVENT BO, the Bayesian optimization algorithm used in
GPBO was additionally applied to the REINVENT model. For LaMBO and HN-GFN, we conducted
experiments by replacing only the objective function of these papers with the objective function used
in the PMO benchmark (Huang et al., 2021). For NSGA-III and MOEA/D, we implemented these
based on the repository by Jonas Verhellen (Verhellen, 2022).

C.2 IMPLEMENTATION DETAILS FOR DYMOL

We implemented the proposed DyMol using PyTorch (Paszke et al., 2019) and integrated it within
the PMO benchmark. We did not change any hyperparameter settings of the baseline generative
model REINVENT (Olivecrona et al., 2017) from the default PMO benchmark setting. For the
decomposition module, we determined the ordering using Norder oracle calls during stage t0. In
the progressive optimization stage, we advanced to the next stage when either the average objec-
tive score in the generated batch surpassed the predefined threshold sthre or the patience threshold
of Nthre oracle calls in that stage was reached. Throughout each stage, we calculated the relative
weights of the objectives using a weighted sum approach, with their averages representing the cu-
mulative importance of each objective. However, when dealing with newly introduced objectives in
each stage, we multiplied their weights by a factor of 1.5 within a predetermined time period. This
adjustment was made to facilitate a rapid adaptation to the newly introduced objectives. During
each iteration, the generative model produced B samples, from which we computed their objective
scores using a dedicated objective function. Subsequently, we calculated the reward scores for these
samples and stored both the generated molecules and their corresponding reward scores in the ex-
perience replay buffer B. For Pareto Sampling (PS), we split sample acquisition equally between
convergence sampling and Pareto sampling. During the transition from stage t to t + 1, Objective
Adaptation (OA) recalibrated the reward scores for the next stage’s objectives using the top-k high-
reward molecules from the current stage. This recalibration was then used to update the parameters
of the generative model, providing learning feedback in the updated objective space.

Table 2: Detailed overview of the specific hyperparameter settings employed in our DyMol method.

Generative model (REINVENT from PMO benchmark)

Batch size B 64
Embedding dimension 128
Hidden dimension 512
Number of layer 3
Sigma 500
Experience replay size 24
Learning rate 5e-04
Optimizer Adam

Decomposition and Progressive Optimization

Number of calls in Decomposition Module Norder 500
Score threshold per stage sthre 0.35
Patience threshold per stage Nthre 2500
Convergence sampling 12
Pareto sampling 12
TopK in high reward Buffer B 100
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C.3 EMPIRICAL RUNNING TIME

We performed all experiments using an RTX 3090 GPU. In the case of Random ZINC, the running
time solely reflects the time taken for objective function computation and hypervolume calculation,
as it involves random sampling from the ZINC dataset. The computation times for Random ZINC
with Four, Five, and Six objectives were 0.3, 0.6, and 1.0 hours, respectively. For further details on
the empirical running times of each method with Four objectives, please refer to Table 3.

We empirically confirmed that methods in the REINVENT family, such as REINVENT, AugMem,
and DyMol, as well as those in the genetic algorithm family like GraphGA and NSGA, not only
performed better but also had significantly faster running times. For MOEA/D, although it can be
considered as a genetic algorithm, we observed that it consumed a considerable amount of time
due to neighborhood calculation. In addition, BO methods such as GPBO, LaMBO, and HN-GFN
exhibited high computational costs. Despite employing a batch size of 20 in LaMBO, we encoun-
tered out-of-memory issues, and the training of the surrogate model, such as the Gaussian Process
(GP), required extensive time and GPU resources. Interestingly, although HN-GFN displayed con-
siderable performance improvements compared to the GFlowNet, the experience replay mechanism
appeared to yield greater benefits than the BO-based proxy oracle.

Table 3: Average empirical running times for each method under Four objectives (GSK3β+JNK3+QED+SA)
optimization scenario.

Method Running time (hr)

RandomZINC 0.344
SMILES-VAE 2.086
GFlowNet 0.856
MIMOSA 0.589
LaMBO 66.490
HN-GFN 87.904
MOEA/D 14.38
NSGA-III 0.413
GraphGA 0.430
GPBO 0.908
REINVENT BO 17.434
REINVENT 0.471
AugMem 0.765
DyMol (Ours) 0.494

D ANALYSIS OF MANY-OBJECTIVE SCENARIOS

In this section, we present the ablation study supporting the main results of our main manuscript, as
detailed in Table 4. Then, we analyze the relationship between score convergence and Pareto diver-
sity, as demonstrated in Table 5 and Table 6. We also present results where objective orders were
assigned arbitrarily in Table 7, as opposed to using the ordering scores derived from the decom-
position module. Furthermore, we provide the results of many-objective optimization with various
combinations, including the additional objective of Fexofenadine MPO, in Table 8 and Table 9.

D.1 MAIN ABLATION STUDY

As shown in Table 4, we have conducted an ablation study to investigate the impact of key tech-
niques on the performance of our method: Pareto Sampling (PS), Divide-and-Conquer (DC), and
Objective Adaptation (OA). We observed that each of these techniques significantly contributes to
improved performance. DC primarily focuses on improving convergence, bringing solutions closer
to the optimal Pareto front values. PS enhances performance through emphasis on Pareto diver-
sity. Remarkably, OA leads to substantial performance gains, especially in Five-objective scenarios,
highlighting its capability to adapt effectively to newly introduced objectives.
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Table 4: Ablation study for each technique: Pareto Sampling (PS), Divide-and-Conquer (DC), and Objective
Adaptation (OA).

Ablation Four objectives Five objectives Six objectives

PS DC OA HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

- - - 0.338 2.770 0.099 7.578 0.062 10.032
✔ - - 0.379 2.501 0.103 7.018 0.073 10.033
- ✔ - 0.363 2.692 0.150 6.276 0.101 10.408
- ✔ ✔ 0.373 2.621 0.209 5.480 0.105 10.269
✔ ✔ - 0.412 2.321 0.182 5.488 0.122 9.439
✔ ✔ ✔ 0.422 2.297 0.247 4.943 0.143 8.842

D.2 SCORE CONVERGENCE AND PARETO DIVERSITY

In the main ablation study presented in Table 4, we observed a minimal performance gain when
applying Pareto Sampling (PS), especially in the Five objectives scenario. We hypothesized that this
resulted from focusing solely on Pareto diversity without ensuring a score convergence. Therefore,
to test this hypothesis, we conducted an experiment presented in Table 5, where we implemented
Pareto Sampling alone without considering score convergence. Notably, as the number of objec-
tives increased, the extent of performance decline became more pronounced. The results showed
a significant performance decrease for scenarios involving Five and Six objectives, with a slight
decrease for Four objectives. This suggests that achieving score convergence in complex problems
is challenging, and the absence of score convergence sampling has a more pronounced effect in
such cases. The importance of prioritizing score convergence before Pareto diversity aligns with our
divide-and-conquer (DC) strategy. Given that DC aims to improve the score convergence of joint
objectives, PS is likely to be more effective when combined with DC. As indicated in Table 6, a
notable performance improvement is evident when both DC and PS are employed together, rather
than applying PS alone.

Table 5: The performance of Pareto sampling (PS) with, and without score convergence sampling (SC). This
result indicates that Pareto diversity without score convergence leads to inferior performance.

Ablation Four objectives Five objectives Six objectives

SC PS HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

✔ - 0.338 2.770 0.099 7.578 0.062 10.032
- ✔ 0.335 2.660 0.053 7.912 0.021 11.669
✔ ✔ 0.379 2.501 0.103 7.018 0.073 10.033

Table 6: Ablation study on the combined use of Pareto Sampling (PS) with Divide-and-Conquer (DC). When
PS was applied alongside DC, a significant improvement in performance was observed.

Ablation Four objectives Five objectives Six objectives

DC PS HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

- - 0.338 2.770 0.099 7.578 0.062 10.032
- ✔ 0.379 2.501 0.103 7.018 0.073 10.033

✔ - 0.363 2.692 0.150 6.276 0.101 10.408
✔ ✔ 0.412 2.321 0.182 5.488 0.122 9.439

D.3 ABLATION STUDY ON THE ORDERING OF OBJECTIVES

In our DC approach, the ordering of objectives is very crucial. As there is no pre-defined order for
training, the sequence heavily depends on domain-specific knowledge. This becomes increasingly
challenging in scenarios with many objectives, where the number of objectives reaches five or six,
resulting in an exponential increase in the number of potential ordering combinations. As a result,
the manual determination of objective order becomes even more challenging. To address and resolve
these challenges, we have established a criterion for determining the order of objectives through our
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Table 7: Ablation study of DyMol based on the ordering of each objective. The highest performing results are
in bold, and the lowest performing ones are underlined. The experimental results showed that the optimization
order of DRD2 is a crucial element for the overall performance. Note that ‘Osi’ denotes Osimertinib MPO.

Ordering of objectives Metrics

QED SA JNK3 GSK3β DRD2 Osi HV(↑) R2(↓)

3 2 0 1 - - 0.416 2.300
2 3 1 0 - - 0.364 2.596

4 3 0 1 2 - 0.242 4.893
3 4 0 2 1 - 0.235 4.921
4 3 1 0 2 - 0.242 4.870
4 3 1 2 0 - 0.103 7.327
3 4 2 0 1 - 0.229 5.145
4 3 2 1 0 - 0.097 7.361

4 5 0 1 2 3 0.133 8.419
5 4 0 1 3 2 0.150 8.116
5 4 0 2 1 3 0.143 8.544
5 4 0 2 3 1 0.120 8.708
5 4 0 3 1 2 0.137 8.622
4 5 0 3 2 1 0.128 8.668
4 5 1 0 2 3 0.121 8.498
4 5 1 0 3 2 0.131 8.410
5 4 1 2 0 3 0.065 11.553
4 5 1 2 3 0 0.114 8.848
5 4 1 3 0 2 0.050 12.051
5 4 1 3 2 0 0.123 9.001
5 4 2 0 1 3 0.124 8.721
5 4 2 0 3 1 0.144 8.300
4 5 2 1 0 3 0.055 12.153
4 5 2 1 3 0 0.122 8.747
5 4 2 3 0 1 0.049 12.257
4 5 2 3 1 0 0.105 9.852
4 5 3 0 1 2 0.141 8.660
5 4 3 0 2 1 0.142 8.476
4 5 3 1 0 2 0.054 12.283
4 5 3 1 2 0 0.133 8.738
4 5 3 2 0 1 0.052 12.447
5 4 3 2 1 0 0.109 9.634

decomposition module. This enables the model to autonomously evaluate their significance and
establish the appropriate order.

In this section, we present the results of experiments in which we replaced the ordering mecha-
nism of the decomposition module with manual ordering, as outlined in Table 7. These experiments
consider various combinations in many-objective optimization scenarios. To reduce the number of
combinations, QED and SA are positioned last. This is attributed to the fact that QED and SA are
known to be more manageable tasks, as they typically start training with high objective scores that
surpass the score threshold. Please note that there is no universally applicable rule for assessing
the importance of objectives. Therefore, while we cannot assert that our decomposition module
outperforms all possible combinations in scenarios like Six objectives scenarios with a large num-
ber of potential orderings, it has demonstrated strong performance in many cases. This illustrates
that our decomposition module can serve as a valuable tool for guiding the ordering of objectives
strategically.

A notable observation from the ordering results is the performance variation associated with the
position of DRD2 in the ordering sequence. In scenarios with both Five and Six objectives, orderings
that placed DRD2 last yielded the best performance, whereas those training DRD2 first were least
effective. This consistent trend of diminished performance when the DRD2 objective is prioritized
first highlights a potential avenue for future research. This could involve a more in-depth exploration
into the complexities and specific challenges associated with the DRD2 receptor.
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D.4 RESULTS OF DYMOL ACROSS VARIOUS OBJECTIVE COMBINATIONS

In the main paper, DRD2 was used as the fifth objective and Osimertinib MPO as the sixth. In
this section, we expand our study by including Fexofenadine MPO as an additional objective. We
present the results of experiments involving various combinations of molecular objectives in many-
objective scenarios. In Table 8 and Table 9, ‘Osi’ represents Osimertinib MPO, and ‘Fexo’ signifies
Fexofenadine MPO. The base objectives set in each scenario consists of Four objectives: QED, SA,
GSK3β, and JNK3. In scenarios with Five objectives, we add one additional objective to this base
set, and in scenarios with Six objectives, two additional objectives are included. Across all scenarios,
DyMol consistently outperforms the baseline REINVENT backbone model in terms of both HV and
R2 metrics. These results demonstrate the adaptability and effectiveness of our method, showing that
its performance is not confined to a specific set of molecular objectives. Instead, DyMol exhibits
robustness and efficacy across a diverse range of many-objective scenarios, effectively handling
various combinations of molecular objectives. Furthermore, the inclusion of an additional objective,
‘Fexo’ (Fexofenadine MPO), in our experiments further validates the versatility and robustness of
our proposed method.

Table 8: Performance comparison of Five objectives many-objective optimization scenarios using 10 different
seeds. In Five objectives scenario, one additional molecular objective was included.

Five Objectives Method Metrics

DRD2 Osi Fexo HV(↑) R2(↓)

✔ - - REINVENT 0.083±0.041 7.912±0.844
DyMol (Ours) 0.247±0.087 4.943±0.990

- ✔ - REINVENT 0.170±0.074 6.092±1.232
DyMol (Ours) 0.248±0.050 5.137±0.621

- - ✔
REINVENT 0.178±0.052 5.731±0.666

DyMol (Ours) 0.231±0.059 5.137±0.621

Table 9: Performance comparison of Six objectives many-objective optimization scenarios using 10 different
seeds. In Six objectives scenario, two additional molecular objectives were included.

Six Objectives Method Metrics

DRD2 Osi Fexo HV(↑) R2(↓)

✔ ✔ - REINVENT 0.062±0.028 9.880±0.798
DyMol (Ours) 0.143±0.056 8.842±1.632

✔ - ✔
REINVENT 0.069±0.042 10.637±1.675

DyMol (Ours) 0.125±0.060 9.545±1.338

- ✔ ✔
REINVENT 0.118±0.034 9.686±1.134

DyMol (Ours) 0.181±0.021 8.119±0.455

E ANALYSIS OF HYPERVOLUME IMPROVEMENT CURVES

In this section, we present the hypervolume improvement curves for many-objective scenarios and
further analyze the early stages of hypervolume improvement curves to investigate the optimization
mechanism for each method.

E.1 RESULTS OF ADDITIONAL HYPERVOLUME IMPROVEMENT CURVES

As shown in Figure 4, we observed that our method consistently outperforms all other compet-
ing methods across various many-objective scenarios, including those with Four objectives, Five
objectives, and Six objectives. Note that for the sake of simplicity and clarity in our compara-
tive analysis, we chose to focus on the top 8 performing methods – MOEA/D, NSGA-III, GraphGA,
GPBO, REINVENT BO, REINVENT, AugMem, and our method. Intriguingly, our method exhibits
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Figure 4: Average HV improvement curves for various many-objective scenarios.

Figure 5: Early stage HV improvement curves for various many-objective scenarios.

a larger performance gap compared to other competing methods, particularly in scenarios with Five
and Six objectives. This observation highlights the effectiveness of our divide-and-conquer approach
in managing the complexities inherent in many-objective optimization problems, effectively dealing
with exponential increases in complexity.

E.2 EARLY STAGE HYPERVOLUME IMPROVEMENT CURVES

Shifting our focus to the early stages of the hypervolume improvement curves, defined in this study
as the initial oracle calls up to 3000, we conducted an in-depth analysis to gain deeper insights
into the optimization mechanisms employed by each method. As shown in Figure 5, we observed
that genetic algorithm-based methods such as MOEA/D, NSGA-III, GraphGA, and GPBO exhibit
rapid improvement in the beginning, however, their performance plateau after. We think that this is
because the population-based nature of these methods allows for a broad exploration of the solution
space at the beginning. This wide exploration is effective in quickly identifying high-potential areas,
leading to rapid improvements in performance. However, as the algorithm progresses, the population
may start to converge, reducing the Pareto diversity. When this happens, it can limit the algorithm’s
capacity to explore new and promising regions of the search space, often resulting in a plateau in
performance.

In contrast, RL-based algorithms like REINVENT, REINVENT BO, AugMem, and DyMol consis-
tently improve hypervolume performance through continuous learning and adaptation via trial-and-
error interactions with the environment. Furthermore, RL-based algorithms are inherently effective
for the exploration process as they are designed to explore and learn from the environment.

F ANALYSIS OF DYNAMIC-OBJECTIVE SCENARIOS

In this section, we explain more detailed information regarding the dynamic-objective scenarios and
the primary motivation behind the design of this novel experimental setup. Furthermore, we provide
additional experiments that explore dynamic-objective scenarios with different types of molecular
objectives and various numbers of objectives.
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(a) Initial optimization of Four ob-
jectives (GSK3β + JNK3 + QED +
SA) with 10,000 oracle calls, sub-
sequently followed by the introduc-
tion and fine-tuning of a fifth objec-
tive (DRD2).

(b) Initial optimization of Four ob-
jectives (GSK3β + JNK3 + QED +
SA) with 10,000 oracle calls, sub-
sequently followed by the intro-
duction and fine-tuning of a fifth
(DRD2) and a sixth objective (Os-
imertinib MPO).

(c) Initial optimization of Five ob-
jectives (GSK3β + JNK3 + QED
+ SA + DRD2) with 10,000 oracle
calls, subsequently followed by the
introduction and fine-tuning of a
sixth objective (Osimertinib MPO).

Figure 6: Fine-tuning performance of the top 4 methods in various dynamic-objective scenarios, where new
objectives are introduced.

F.1 SIGNIFICANCE AND MOTIVATION

The concept of dynamic-objective scenarios can be significant in fields like drug discovery, where
the optimization landscape continually evolves in response to various factors such as regulatory
changes, scientific advancements, and emerging public health needs. In practice, molecular objec-
tives in projects such as drug development are not static; they change and evolve as new scientific
information and pharmaceutical requirements emerge. Hence, the main motivation for developing
our novel experimental setup is its significance in real-world applicability and relevance in such sce-
narios. Despite the evident importance of dynamic-objective scenarios, to the best of our knowledge,
prior studies have not approached or tackled these challenges.

F.2 EXPERIMENTAL SETUPS FOR DYNAMIC-OBJECTIVE SCENARIOS

In our main paper, we proposed a novel experimental setup to evaluate the adaptability and effi-
ciency of the optimization model in dynamic many-objective scenarios. The experiment began with
the model already fully optimized for a specific set of molecular objectives, achieved through 10,000
oracle calls. After this initial optimization, we introduced a new objective to the optimization pro-
cess. In our main paper, this new objective was selected as Osimertinib MPO. The introduction of
this new objective simulates a common scenario in drug development, where additional criteria or
requirements emerge during the optimization process. Instead of restarting the optimization process
from scratch with the initial set of objectives and an additional objective, we opted for a fine-tuning
approach, utilizing fine-tuning oracle calls. This approach involved adjusting the already optimized
model (for the initial set of objectives) to accommodate the new objective. The rationale behind this
strategy is to leverage the existing strengths and solutions of the model while efficiently integrating
the new objective. We think that this approach is more resource-efficient and time-effective com-
pared to re-optimizing all objectives from the beginning. The key focus of this experimental setup is
to assess how well and how quickly the model can adapt to the introduction of a new objective. We
measured the performance of the model in terms of its ability to maintain or improve the optimiza-
tion levels of the initial objectives while effectively optimizing for the new objective. The results
from these experiments can provide vital insights into the adaptability of each method in dynamic-
objective scenarios. The model’s ability to efficiently integrate and optimize new objectives without
compromising existing optimization levels can serve as a key indicator of its robustness and practical
applicability in real-world scenarios.

F.3 ADDITIONAL RESULTS FOR DYNAMIC-OBJECTIVE SCENARIOS

Here, we present additional experimental results for various dynamic-objective scenarios. Figure 6-
(a) illustrates one specific scenario where the initial set of Four objectives (GSK3β + JNK3 + QED
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+ SA) is optimized with 10,000 oracle calls. Following this, a fifth objective (DRD2) is introduced
and integrated through a fine-tuning approach by employing additional fine-tuning oracle calls. In
the sub-figure, the red dashed line represents the baseline performance level established by jointly
optimizing all Five objectives (GSK3β + JNK3 + QED + SA + DRD2) with 10,000 oracle calls.
This baseline performance serves as a reference point to evaluate how efficiently and rapidly each
method adapts to the addition of new molecular objectives.

It is important to note that in our comparative analysis, for the sake of simplicity and to present
the performance of the top-performing methods succinctly in a single figure, we selectively com-
pared and plotted the performance results of the top 4 performing methods – AugMem, REINVENT,
GraphGA, and our method. As depicted in Figure 6-(a), our method demonstrates the capability to
reach the baseline performance of Five objectives within just 4000 fine-tuning oracle calls and con-
tinues to improve thereafter. Conversely, the other methods do not achieve comparable performance
within the same number of oracle calls.

In addition to the scenario presented in Figure 6-(a), we further explore different dynamic-objective
scenarios as illustrated in Figures 6-(b) and 6-(c). Figure 6-(b) presents a scenario where the ini-
tial set of Four objectives (GSK3β + JNK3 + QED + SA) is optimized with 10,000 oracle calls.
Subsequently, this is followed by the integration of a fifth objective (DRD2) and a sixth objective
(Osimertinib MPO), each through a fine-tuning approach with additional fine-tuning oracle calls.
Hence, in this sub-figure, the red dashed line indicates the baseline performance for optimizing all
Six objectives (GSK3β + JNK3 + QED + SA + DRD2 + Osimertinib MPO) jointly with 10,000
oracle calls, accounting for the inclusion of the two additional objectives. Similarly, Figure 6-(c)
depicts yet another dynamic-objective scenario. Here, the initial set of Five objectives (GSK3β +
JNK3 + QED + SA + DRD2) is first optimized with 10,000 oracle calls, followed by the introduc-
tion and integration of the sixth objective (Osimertinib MPO) using the fine-tuning approach with
additional oracle calls.

Consistent with the results from Figure 6-(a), both Figures 6-(b) and 6-(c) demonstrate that our
method demonstrates the capability to efficiently reach and exceed the baseline performance within a
limited number of fine-tuning oracle calls. This is in contrast to the other competing methods, which
do not exhibit comparable performance within the same constraint of oracle calls. These results
collectively highlight the adaptability and efficiency of our method in various dynamic-objective
scenarios.

G MOLECULE EXAMPLES

In this section, we present visual examples of molecules generated by our proposed method that
achieved high reward scores across various many-objective optimization problems, including those
with Four, Five, and Six objectives. The corresponding objective scores for these molecules are
indicated numerically beneath each molecule graph. For a more detailed visual presentation of these
molecule examples, please refer to the following page.
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Figure 7: Sampled molecules with high reward scores in Four objectives (QED + SA + GSK3β + JNK3)
optimization scenario.
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Figure 8: Sampled molecules with high reward scores in Five objectives (QED + SA + GSK3β + JNK3 +
DRD2) optimization scenario.
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Figure 9: Sampled molecules with high reward scores in Six objectives (QED + SA + GSK3β + JNK3 + DRD2
+ Osimertinib MPO) optimization scenario.
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