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Abstract
Recent large language models (LLMs) support
long contexts ranging from 128K to 1M tokens. A
popular method for evaluating these capabilities
is the needle-in-a-haystack (NIAH) test, which
involves retrieving a “needle” (relevant informa-
tion) from a “haystack” (long irrelevant context).
Extensions of this approach include increasing
distractors, fact chaining, and in-context reason-
ing. However, in these benchmarks, models can
exploit existing literal matches between the nee-
dle and haystack to simplify the task. To address
this, we introduce NOLIMA, a benchmark extend-
ing NIAH with a carefully designed needle set,
where questions and needles have minimal lexical
overlap, requiring models to infer latent associ-
ations to locate the needle within the haystack.
We evaluate 13 popular LLMs that claim to sup-
port contexts of at least 128K tokens. While
they perform well in short contexts (<1K), per-
formance degrades significantly as context length
increases. At 32K, for instance, 11 models drop
below 50% of their strong short-length baselines.
Even GPT-4o, one of the top-performing excep-
tions, experiences a reduction from an almost-
perfect baseline of 99.3% to 69.7%. Our analysis
suggests these declines stem from the increased
difficulty the attention mechanism faces in longer
contexts when literal matches are absent, making
it harder to retrieve relevant information. Even
models enhanced with reasoning capabilities or
CoT prompting struggle to maintain performance
in long contexts. We publicly release the dataset
and evaluation code at https://github.com/adobe-
research/NoLiMa.1
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1. Introduction
In recent years, large language models (LLMs) have made
remarkable advancements in handling long-context inputs
(Chen et al., 2023; Xiong et al., 2024; Peng et al., 2024).
This capability has unlocked new possibilities in various
NLP tasks that require understanding or generating content
over extended documents. Examples include long- or multi-
document question answering (QA), summarization, and
many-shot in-context learning (Lee et al., 2024; Chang et al.,
2024; Agarwal et al., 2024). To evaluate these models’ effec-
tiveness in handling long contexts, several benchmarks have
been developed. One prominent benchmark is Needle-in-a-
Haystack (NIAH), which tests a model’s ability to search
for and retrieve a specific fact (the “needle”) hidden within
irrelevant information (the “haystack”) (Kamradt, 2023; Mo-
htashami & Jaggi, 2023). While the baseline NIAH task
assesses surface-level retrieval capabilities, recent adapta-
tions have increased its complexity. These enhancements in-
clude introducing multiple needles, incorporating additional
distractor material, and interconnecting facts to necessitate
in-context reasoning (e.g., fact-chaining) (Hsieh et al., 2024;
Levy et al., 2024; Kuratov et al., 2024). Other benchmarks,
such as long-, multi-document QA, and long conversation
understanding, have also been proposed to evaluate long-
context comprehension in a more downstream task manner
(Liu et al., 2024; Yen et al., 2024; Zhang et al., 2024; Dong
et al., 2024; Wang et al., 2024; Maharana et al., 2024).

Arguably, these tasks share a common foundation: the abil-
ity to recall previously seen information (Goldman et al.,
2024). This broader category, termed association recall
tasks, has been extensively studied in machine learning
(Graves et al., 2014; Ba et al., 2016). A key argument is
that the attention mechanism, which is the underlying foun-
dation of many LLMs, is inherently adept at identifying
and recalling associations present in the input (Olsson et al.,
2022; Arora et al., 2024). However, this raises an important
question: Long-context benchmarks feature tasks where the
queried input (e.g., a question or a task) has literal matches

(such as GPT-4.1) have improved long-context performance. How-
ever, the main finding of this paper also holds for these newer
models: performance on NOLIMA starts declining rapidly on con-
texts that are relatively short compared to their claimed context
length. See Appendix E for detailed results.
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with the provided context. Do such literal matches make it
easier for language models to locate relevant information
and output correct answers?

We argue that many existing long-context benchmarks either
explicitly (e.g., synthetic tasks or NIAH-based) or implicitly
(e.g., multi-document or long-document QA) contain such
literal matches. To address this, we introduce NOLIMA,
a benchmark designed to minimize literal overlap between
questions and their corresponding needles. In NOLIMA,
questions and needles contain keywords that are related
through associative links, such as real-world knowledge
or commonsense facts. By embedding these needles in a
haystack, NOLIMA challenges models to leverage latent
associative reasoning capabilities rather than relying on
surface-level matching.

We evaluate NOLIMA over 13 state-of-the-art language
models, all claiming to support token lengths of at least
128K, including GPT-4o, Gemini 1.5 Pro, and Llama 3.3
70B (Hurst et al., 2024; Gemini Team et al., 2024; Meta,
2024). Unlike NIAH-based evaluations, which contain lit-
eral matches and exhibit near-saturated performance, NO-
LIMA presents a more demanding challenge that highlights
the limitations of these models. Their performance declines
noticeably as context length increases, with considerable
drops even at 2K–8K tokens. For instance, at 32K tokens,
11 out of 13 models achieve only half of their short-context
performance.

We conduct extensive analyses using NOLIMA, yielding
the following insights:

• Impact of Latent Hops and Fact Direction: We
demonstrate how the number of associative reasoning
steps (latent hops) and the ordering of elements within
a fact statement influence task performance. (§ 4.4.1)

• Context Length vs. Needle Position: Our aligned-
depth analysis shows that as latent reasoning complex-
ity grows, performance depends more on context length
than needle position. Without surface cues, longer con-
texts overwhelm the attention mechanism. (§ 4.4.2)

• Chain-of-Thought (CoT) Prompting and Reasoning-
based Models: While CoT prompting or reasoning-
based models such as GPT-o1 (OpenAI et al., 2024)
improve performance by encouraging step-by-step rea-
soning, they fail to fully mitigate the challenge, partic-
ularly in contexts exceeding 16K tokens. (§ 4.4.3)

• Ablation Tests: We confirm that the presence of literal
matches significantly simplifies the task, enabling mod-
els to achieve high accuracy in answering questions. In
contrast, when literal matches serve as distractors, they
severely impair accuracy. (§ 4.4.4)

R-1 R-2 R-L

Long-document QA
∞Bench QA (Zhang et al., 2024) 0.966 0.545 0.960
∞Bench MC (Zhang et al., 2024) 0.946 0.506 0.932

RAG-style (Multi-doc) QA
RULER QA (Hsieh et al., 2024) 0.809 0.437 0.693
HELMET (RAG) (Yen et al., 2024) 0.689 0.304 0.555

Recall-based
Vanilla NIAH (Kamradt, 2023) 0.905 0.789 0.855
RULER S-NIAH (Hsieh et al., 2024) 0.571 0.461 0.500
BABILong (0K) (Kuratov et al., 2024) 0.553 0.238 0.522

NOLIMA 0.069 0.002 0.067

Table 1. ROUGE precision scores between the input document
and the question: higher ROUGE scores indicate greater literal
matches between the question and the relevant context.

Through NOLIMA, we reveal the limitation of literal match-
ing in long-context benchmarks and introduce a novel ap-
proach for evaluating models’ latent reasoning in longer
contexts.

2. Related Work
With the increasing popularity of long-context language
modeling, numerous benchmarks have been introduced to
evaluate this capability. Needle-in-a-Haystack (NIAH) is
the most well-known and widely used benchmark (Mo-
htashami & Jaggi, 2023; Kamradt, 2023). However, due to
performance saturation, various extensions have been pro-
posed. These include increasing complexity by adding more
needles, chaining needles to require inter-needle reasoning
(fact-chaining), or incorporating arithmetic or code reason-
ing (Kamradt, 2023; Hsieh et al., 2024; Levy et al., 2024;
Kuratov et al., 2024; Hengle et al., 2024; Zhang et al., 2024;
Vodrahalli et al., 2024). Some tasks increase the complexity
to such an extent that they become overly difficult even in
short-context scenarios. For instance, BABILong includes
tasks that perform poorly (e.g., the counting task achieves
28% accuracy) even without any irrelevant background text
(0K) (Kuratov et al., 2024). Similarly, the Ancestral Tree
Challenge (ATC) employs extensive fact-chaining, result-
ing in tasks that are overly complex even for short contexts
(<1K) (Li et al., 2024). While such tasks challenge lan-
guage models in long contexts, they raise the question of
whether the tasks are inherently too complex for models to
handle, regardless of context length.

Literal Matching in Long-Context Benchmarks. An-
other frequent pattern in many long-context benchmarks is
the presence of literal matches between the facts required
to answer a question and the question itself. This fact is not
limited to synthetic recall-based tasks (e.g., vanilla NIAH,
RULER retrieval-based sets) but also affects downstream-
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Question Needle Keyword Type

Which character has been to Wq? (Def.) Actually, [CHAR] lives next to the Wn. Wn Buildings&Landmarks (e.g., Semper Opera)
(Inv.) Wn is next to where [CHAR] lives. Wq Countries, cities, states (e.g., Dresden)

Table 2. An example template of the proposed needle set in NOLIMA. (All templates are available in Appendix A.) The placeholders
[CHAR], Wq , and Wn represent the randomly selected character (also the answer), the query keyword, and the needle keyword,
respectively. Def.: default order. Inv.: inverted order.

like QA-based benchmarks (Hsieh et al., 2024; Liu et al.,
2024; Zhang et al., 2024; Bai et al., 2024; Yen et al., 2024),
which often implicitly include literal matches between the
relevant document and the question. Although many of these
studies introduce complexity by adding similar documents
as distractors, literal matches can still provide cues. These
cues may help models focus on potential relevant facts based
on matches, as attention mechanisms excel at recalling repet-
itive patterns (Olsson et al., 2022; Arora et al., 2024). We
later demonstrate to what extent literal matches simplify
recall-based questions (cf. 4.4.4). To quantify the preva-
lence of these matches in popular benchmarks, we compute
ROUGE (R-1, R-2, and R-L) precision scores2 (Lin, 2004)
between the question and the context – the needle (in recall-
based tasks), the relevant document (in multi-document
setups), or the full document (in long-document QA). This
analysis measures the degree of literal overlap between the
question and the context. Table 1 demonstrates that NO-
LIMA has much less literal overlap than other datasets.

3. NOLIMA

The goal of NOLIMA is to design a task that is inherently
simple to solve through associative reasoning, but for which
surface-level matching has zero utility. As a result, NO-
LIMA allows us to cleanly investigate associative reasoning
in long-context scenarios without confounding from surface-
level effects.

The main elements of NOLIMA are similar to vanilla NIAH.
A “needle” – a single key piece of information – is placed
within a “haystack”, i.e., a long irrelevant text (in our case,
snippets from books). Given a question, the model is then
tested on its ability to find the needle. The needle is designed
to be a clearly relevant answer to the question. In contrast to
existing NIAH tasks, we impose the condition that the ques-
tion have minimal literal match with the needle. To achieve
this, we design a set of needles and corresponding questions,
collectively referred to as a “needle set.” Table 2 presents
one of the constructed needle set templates (see Appendix A
for the full list). Each needle consists of a unique character
and specific information about them. Example:

2We use precision as our metric to measure how many of the
question’s tokens occur in the relevant context, rather than the
reverse.

Actually, Yuki lives next to the Semper Opera House.

The needle contains a keyword (Wn, here “Semper Opera
House”) that serves as the critical link between needle and
question. The question is designed to retrieve this informa-
tion by asking which character possesses a specific attribute
Wq , “Dresden” in the example:

Which character has been to Dresden?

The Semper Opera House is located in Dresden. Thus, the
model should be able to identify the latent association link
between Wq (“Dresden”) in the question and Wn (“Sem-
per Opera House”) in the needle. Since there is no literal
overlap between needle and question, the model must rely
on this latent association link to retrieve “Yuki”, the correct
answer. For some of our needles, the association involves
commonsense reasoning instead of world knowledge. Ex-
ample: “Then Yuki mentioned that he has been vegan for
years.” → “Which character cannot eat fish-based meals?”
To push the limits of the model’s ability to identify hidden
associations, we include questions that require two hops to
connect Wq with Wn, for example:

Which character has been to the state of Saxony?

Here, the model should tap into its knowledge that Dresden
(and hence the Semper Opera) is located in the state of
Saxony. This two-hop setup further increases the difficulty
of identifying the latent association of Wq with Wn.

To make NOLIMA an effective benchmark for evaluating
LLM long-context abilities, we impose several constraints
on the needle set. (i) We select keywords that ensure sim-
plicity – so that, without irrelevant context, the associations
are clear and the model can identify the correct answer. (ii)
We randomize the assignment of character names from a
diverse pool to minimize sensitivity to tokenization prob-
lems and mitigate ethnic bias (Navigli et al., 2023; Jiang
et al., 2024). Names already occurring in the haystacks are
excluded. (iii) We ensure Wn is uniquely associated with
Wq, avoid language-based cues, and in most cases employ
preface phrases–short lead-ins or contextual buildup (e.g.,
“Actually,” “In 2013, after waiting in line...”)–to isolate nee-
dles from preceding context. See Appendix A for details.
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🪡 Needle set📚 Books
w/o distractors

-------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
----------...

Scan over 
chunks

🦙 Llama 3.3 70b

Which character has been 
to France?

Gather questions

+

Task Prompt:
You'll be given a text snippet and a question afterward. You must answer the 
question based on the information in the text snippet. The answer should 
either be based on a *direct mention* or a *strong inference*. IMPORTANT: 
The response should include an explanation leading to the final answer or, if 
there is no answer, write N/A.

+ 4 Shots (2+2 N/A) Examples

Story: {Chunk}
Question: {Question}

👤
🔍

Manually check 
flagged examples

(not N/A)

-------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
---------------
--------...

-------------
---------------
---------------
---------------
---------------
---------------
-------... ----
---------------
---------------
---------------
---------------
---------------
---------------
---------------
----...  -------
---------------
---------------
---------------
---------------
---------------
---...

Remove undesired or 
misleading content from the text

Repeat until no further removal

Figure 1. Haystack filtering pipeline for undesired or misleading content

3.1. Haystack Filtering Pipeline

We devise a filtering process to ensure that the haystack does
not contain: (1) Any distracting words that have extreme
literal or high semantic similarity with the key points men-
tioned in the question, (2) Any information that explicitly or
through inference is a potential false answer to the question.

Distractor Filtering. For this step, we use an embedding
function, Contriever (Izacard et al., 2022), to find similar
words in the haystack to the keywords of the questions.
First we gather all words in the haystack and compute their
respective embedding. Then using dot-product similarity
we compute their similarity to the question keywords. We
manually inspect the top-20 similar words per each Wq

and flag those with high semantic or substring similarity for
removal. In the removal process those sentences that contain
flagged words are removed from the haystack. This initial
filtering step helps to avoid an uncontrolled set of superficial
distractors that could undesirably disrupt the experimental
results. We will discuss the impact of distractors on the
model performance in our analysis (Section 4.4.4).

Filtering Undesired Answer Candidates. In this step,
we implement a semi-automatic redaction process to detect
and remove text spans that could be interpreted as plausi-
ble but unintended answers. As shown in Figure 1, this
process takes the haystack text—already filtered for distrac-
tors—along with questions from our needle set as input.
Assuming the model should infer cases within short con-
texts, we scan the input texts in smaller chunks.3 To identify
potential answers within a chunk, we pair each question

3With an 800-character stride and a 1000-character chunk size
(∼250 tokens).

with the chunk and input them into an instruction-tuned
language model, along with a short instruction and few-shot
examples. The model responds with either “N/A” (indicat-
ing no relevant information was found) or an explanation
identifying a possible candidate answer. Flagged examples
are manually reviewed4 to determine whether the identified
content should be removed. If no relevant content is identi-
fied, the text remains unchanged. This process is repeated
across all selected haystacks until no further removals are
necessary.

4. Experiments
4.1. Dataset Configuration

In NOLIMA, we use 5 groups of needles, each with two
“word order” variations: default and inverted. In the default
order, the answer character (CHAR) precedes the needle key-
word (Wn), following the pattern “. . . [CHAR] . . .Wn” (see
Table 2, column “Needle”). In the inverted order, the charac-
ter name follows Wn, yielding the pattern “Wn . . . [CHAR]
. . . ”. Each group includes 2–6 keyword sets, with some
sets containing multiple Wq items to produce both one-hop
and two-hop examples. This setup results in 58 question-
needle pairs in total. To generate the haystacks, we select
10 open-license books, ensuring each covers at least 50K
tokens. Using the filtering mechanism described in Section
3.1, we process the text to prepare it for haystack construc-
tion. To mitigate potential memorization issues—since these
books are publicly available—we construct haystacks by
concatenating short snippets. Specifically, we iteratively
and randomly select a book, extract a continuous snippet

4All manual reviews—in both filtering steps—were conducted
by one of the authors.
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Models Claimed Effective Base Score 1K 2K 4K 8K 16K 32KLength Length (×0.85: Thr.)

GPT-4o 128K 8K 99.3 (84.4) 98.1 98.0 95.7 89.2 81.6 69.7
Llama 3.3 70B 128K 2K 97.3 (82.7) 94.2 87.4 81.5 72.1 59.5 42.7
Llama 3.1 405B 128K 2K 94.7 (80.5) 89.0 85.0 74.5 60.1 48.4 38.0
Llama 3.1 70B 128K 2K 94.5 (80.3) 91.0 81.8 71.2 62.7 51.8 43.2
Gemini 1.5 Pro 2M 2K 92.6 (78.7) 86.4 82.7 75.4 63.9 55.5 48.2
Jamba 1.5 Mini 256K <1K 92.4 (78.6) 76.3 74.1 70.8 62.2 52.7 43.6
Command R+ 128K <1K 90.9 (77.3) 77.0 73.5 66.2 39.5 21.3 7.4
Gemini 2.0 Flash 1M 4K 89.4 (76.0) 87.7 87.5 77.9 64.7 48.2 41.0
Mistral Large 2 128K 2K 87.9 (74.7) 86.1 85.5 73.3 51.4 32.6 18.8
Claude 3.5 Sonnet 200K 4K 87.5 (74.4) 85.4 84.0 77.6 61.7 45.7 29.8
Gemini 1.5 Flash 1M <1K 84.7 (72.0) 68.6 61.6 51.0 44.4 35.5 28.6
GPT-4o mini 128K <1K 84.8 (72.1) 67.7 58.2 44.2 32.6 20.6 13.7
Llama 3.1 8B 128K 1K 76.7 (65.2) 65.7 54.4 44.1 31.9 22.6 14.2

Table 3. NOLIMA benchmark results on the selected models. Following Hsieh et al. (2024), we report the effective length alongside the
claimed supported context length for each model. However, we define the effective length as the maximum length at which the score
remains above a threshold, set at 85% of the model’s base score (shown in parentheses). Scores exceeding this threshold are underlined.
Scores that are below 50% of the base score are shaded in red .

(under 250 tokens), and append it to the haystack until it
exceeds 2K lines, resulting in haystacks exceeding 60K to-
kens. In all experiments, each needle is placed 26 times at
equal intervals across the evaluated context length. With
5 randomly generated haystacks, 58 question-needle pairs,
and 26 placements per context length, this setup results in
7,540 tests per context length experiment.

4.2. Models

For the filtering process, we opted for using the Llama 3.3
70b instruction tuned model (Meta, 2024). As a control
test, for each question, we place its needle in 100 randomly
selected chunks to determine whether the model (1) under-
stands the filtering task and (2) is familiar with the facts and
capable of inferring the answer. The model achieves a score
of 99.8% in this test, indicating its ability to effectively flag
conflicting information from the haystacks.

For the evaluation process, we select five closed-source
models: GPT-4o, GPT-4o Mini (Hurst et al., 2024), Gemini
1.5 Pro Flash, Gemini 2.0 Flash (Gemini Team et al., 2023;
2024) and Claude 3.5 Sonnet (Anthropic, 2024), along with
seven open-weight Llama models: The Llama 3.x model
family (3.1 8B, 70B, 405B, and 3.3 70B) (Dubey et al., 2024;
Meta, 2024), Mistral Large (Mistral, 2024), Command R+
(Cohere For AI, 2024), and Jamba 1.5 Mini (Team et al.,
2024). All these models are well-known and widely used
in long-context setups. In our analysis on reasoning-based
prompting and models, we evaluate GPT-o1, GPT-o3 Mini
(OpenAI et al., 2024; OpenAI, 2025), and DeepSeek-R1
Distill-Llama-70B (DeepSeek-AI et al., 2025). More de-
tails regarding model versions and deployment details are
described in Appendix B.

4.3. Evaluation Setup & Metric

During inference, we use a task template (see Appendix C)
that instructs the model to answer the question based on
the provided text. Since all questions seek the name of the
character mentioned in the needle, any returned answer con-
taining the correct name is considered accurate. Accuracy
is reported as the proportion of tests with correct answers.

Models are evaluated on all tasks over context lengths of
250, 500, 1K, 2K, 4K, 8K, 16K, and 32K. To take into
account how models would perform on NOLIMA regardless
of long-context scenario, we control the difficulty of the task
by reporting a base score. Evaluations at context lengths of
250, 500, and 1K are used to compute the base score. These
three are the shortest contexts. If a model can solve the task
at these lengths, then any deterioration of its performance at
greater lengths is expected to be solely due to its difficulties
with generalizing over long contexts. For each question-
needle example, we compute the average scores over 5
haystacks, then take its maximum score across the 250, 500,
and 1K tests. The final base score is obtained by averaging
these maximum scores across all question-needle examples.
Inspired by Hsieh et al. (2024), we also report the effective
length of each model. While they use the performance of
Llama 2 at 4K context length as a threshold (85.6%), we
define the threshold as 85% of the base score. Thus, the
effective length of a model is the largest tested length that
exceeds this threshold. Additionally, some plots show the
normalized score, calculated by dividing the accuracy score
by the base score.

4.4. Results

Table 3 presents the performance results of all NOLIMA
tests on the selected models. Most models achieve high base
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scores, indicating that the designed needle set is relatively
simple to answer in shorter contexts. Even models with
base scores exceeding 90.0% exhibit a significantly shorter
effective length than their claimed lengths, generally limited
to ≤2K tokens, with GPT-4o being an exception. While
GPT-4o demonstrates strong overall performance, it fails
to generalize effectively beyond 8K tokens.1 Out of the
13 models, 11 exhibit performance at 32K lengths that is
half or less of their base scores. For comparison, in other
benchmarks with similar settings, such as BABILong (QA1)
(Kuratov et al., 2024) and RULER (Hsieh et al., 2024),
Llama 3.1 70B achieves effective lengths of 16K5 and 32K,
respectively. However, in NOLIMA, Llama 3.1 70B has an
effective length of only 2K and shows a significant drop in
performance at 32K lengths (42.7% vs. 94.3% base score).
Models such as Claude 3.5 Sonnet, Gemini 1.5 Flash, GPT-
4o mini, and Llama 3.1 8B may have weaker base scores,
but their effective lengths are calculated relative to these
scores. This reveals an interesting observation: Models like
Claude 3.5 Sonnet and Gemini 2.0 Flash, despite having
a lower base score, may underperform in shorter contexts
but demonstrate better length generalization than models
with higher base scores, such as Llama 3.1 70B and Llama
3.3 70B. In fact, both Sonnet and Gemini 2.0 Flash achieve
even higher raw scores in 4K-token experiments compared
to some higher-base-score models.

Model scaling generally improves performance, as seen in
the progression from Llama 3.1 8B to 70B, Gemini 1.5
Flash to Pro, or GPT-4o mini to GPT-4o. However, the
benefits of scaling diminish at larger scales; for example,
the performance gap between Llama 3.1 70B and 405B is
smaller (and sometimes worse) than that between 8B and
70B. In general, “lite” models such as Gemini 1.5 Flash,
GPT-4o mini, and Llama 3.1 8B perform well in shorter
contexts (<1K tokens) but fail to generalize effectively in
longer contexts.

Based on the dataset construction method described in Sec-
tion 4.1, NOLIMA can generate haystacks at any desired
length. We applied this to test GPT-4o and Gemini 2.0 Flash
at 64K and 128K tokens. GPT-4o maintained over 50% of
its base score at 128K, while Gemini 2.0 Flash dropped to
just 16.4%. Full results and evaluation details are provided
in Appendix E.

4.4.1. LATENT HOPS & INVERSION

As discussed in Section 3, our needle set also includes exam-
ples requiring two-hop associative linking from the question
keyword to the needle keyword. To evaluate the impact
on length generalization, Figure 2(a) presents the normal-
ized performance of two top-performing models on one-hop

5In BABILong, the effective length is also based on 85% of the
0K base performance threshold
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Figure 2. Impact of (a) number of hops and (b) inversion of order
(“[CHAR] . . .Wn” vs. “Wn . . . CHAR”) on normalized perfor-
mance across GPT-4o and Llama 3.3 70B models. The red dotted
line indicates the 0.85 effective threshold.

and two-hop tasks. It is evident that, for the same context
lengths, questions involving two-hop latent reasoning steps
are more challenging than those requiring one-hop reason-
ing. Notably, the performance gap between one-hop and
two-hop tasks widens with increasing context lengths. GPT-
4o demonstrates impressive generalization performance,
handling both types of examples effectively even at context
lengths up to 4K. A detailed breakdown of performance on
one-hop and two-hop examples is provided in Appendix F,
complementing the aggregate results shown in Table 3.

Each group of needles includes both a default and an in-
verted template and Figure 2(b) shows that inverted exam-
ples are more challenging to answer. We argue this difficulty
arises from the model’s causal attention mechanism, par-
ticularly in longer contexts where attention signals weaken.
In the default template, the question – in particular Wq –
can link directly to Wn, which generally will contain infor-
mation about the character’s name since the name appears
earlier in the sequence. This allows the model to backtrace
effectively from Wq through Wn to the character. In the
inverted template, Wq may still attend to Wn, but since the
fact is incomplete (the character hasn’t been mentioned yet),
the model cannot use that attention to resolve the question.
Instead, it must rely on weaker signals encoded in the char-
acter’s name to establish the link, which becomes harder
with longer contexts due to diminishing attention strength.
While these findings shed light on the challenge, deeper
mechanistic analysis is beyond the scope of this paper and
requires further study.

4.4.2. NEEDLE PLACEMENT DEPTH ANALYSIS

A common evaluation across NIAH-based benchmarks
(Kamradt, 2023) examines the impact of needle placement
within the context window. In Figure 3(a), we observe a
“lost-in-the-middle” effect (Liu et al., 2024) in 32K, where
model performance dips when the needle appears in the
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Figure 3. The full sweep plots (a & b) illustrate performance across the entire context window, where 0% corresponds to the beginning of
the haystack and 100% to the end. The plots for the last 2K tokens (c & d) depict performance when needle placements are aligned within
that range for various context lengths; 0 marks the end of the context, and larger values indicate positions farther from the end (up to 2K
tokens inward). The color shading of each plot line represents the tested context length. To minimize noise and highlight trends more
clearly, we increased the number of placements from 26 to 51 and applied a moving average with a window size of 12.6

middle of longer contexts.

Additionally, Figure 3(b) reveals a key phenomenon: longer
contexts in more complex (two-hop) examples dampen the
performance distribution over the full sweep depending on
their length. In vanilla multi-document or NIAH-based
benchmarks (Kamradt, 2023; Liu et al., 2024), models per-
form consistently well when the needle (or gold document)
appears at the very beginning or end of the context window,
with minimal impact from context length. However, in NO-
LIMA, as task complexity increases in two-hop scenarios,
larger context sizes shift the entire trendline downward to-
ward zero, with performance declining even at the edges of
the context window.

To further investigate this issue, we devise an alternative
setup that focuses on analyzing the last 2K tokens instead
of sweeping across the full context. Therefore, we align
the placement positions in the last 2K tokens for all context
lengths (see Figure 4). This ensures that for a certain token
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Figure 4. Needle placements in full sweep (top) vs. last 2K tokens
sweep (bottom): In the last 2K setup, placement positions are
aligned in different context lengths, unlike the proportion-based
positioning in full sweep.

depth the only changing factor in each plotline is the context
length, which in turn means that the model has more tokens
that it needs to attend to.

Based on the final 2K results in Figure 3(c), the one-hop
setup confirms our earlier observations from the full-sweep
plots. The “lost-in-the-middle” phenomenon—where per-
formance dips toward the center of the context—primarily
appears in simpler tasks. Each plotline drops as it moves
toward the center, reflecting its dependence on placement
position and the way the model encodes positional infor-
mation. In contrast, the two-hop scenario appears to be
influenced more by attention limitations than by position
encoding alone. Figure 3(d) reveals that, rather than depth
exacerbating performance drops, the plot lines remain rela-
tively stable over the last 2K positions. However, context
length significantly reduces the overall performance trends
observed in this range. Llama 3.x models, like many other
recent language models, feature rotary position embeddings
(RoPE), a relative PE (Su et al., 2024). For each token depth
in Figure 3(d), as the relative distance between question and
fact remains the same regardless of context length, position
encoding does not explain the performance drop. Instead,
the main limiting factor is the increased context length: as
the number of tokens grows, the attention mechanism strug-
gles to process information effectively. In the absence of
strong surface-level cues (e.g., literal matches), locating rel-
evant facts becomes challenging for the model, regardless
of their position within long contexts.

4.4.3. COT PROMPTING

Since NOLIMA examples require an associative reasoning
between the needle and question keywords to retrieve the

6All figures use Llama 3.3 70B. Plots without smoothing ap-
plied are available in Appendix G.
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4K 8K 16K 32K

One-hop
- w/o CoT 90.3 84.1 73.2 56.2
- w/ CoT 95.6 91.1 82.6 60.6
Increase rate 5.9% 8.3% 12.8% 7.8%

Two-hop
- w/o CoT 70.7 57.4 42.7 25.9
- w/ CoT 82.4 70.1 56.7 34.3
Increase rate 16.5% 22.1% 32.7% 32.4%

Table 4. Comparison of Chain-of-Thought (CoT) improvements in
performance for Llama 3.3 70B, evaluated on both one-hop and
two-hop tests.

correct answer, in this part we evaluate when the model is
prompted to reason in a Chain-of-Thought (CoT) style (Wei
et al., 2022) before returning a final answer (see Appendix
C for more details). In Table 4, we present the results when
asked for CoT compared to asking directly for the final
answer. CoT prompting shows improvements over long-
context tests and it shows a higher rate of improvement
in two-shot. Despite the improvements, the tasks seem to
remain challenging. For example, two-hop examples with
CoT prompting barely achieve the scores of one-hop exam-
ples without CoT and continue to perform poorly on texts
16K tokens or longer. The challenge with CoT prompting
is that the questions in NOLIMA are straightforward. They
are mentioning a singular clue to the answer, meaning they
cannot be further decomposed into simpler steps. This limits
the benefits of CoT prompting. However, the difficulty lies
in reasoning through the association between the question
and the needle, which remains a significant challenge for
the model.

To assess the performance of reasoning-based models (e.g.,
GPT-o1) on NOLIMA, we selected the 10 most challenging
needle-question pairs from the 58 available, based on the
results summarized in Table 3. We refer to this subset as
NOLIMA-Hard and present the evaluation results in Table 5.
While reasoning-based models outperform CoT prompting
on Llama 3.3, they still fail to achieve full-length generaliza-
tion on this subset. Across all models, performance drops
below the 50% mark at 32K context length. Notably, base
scores are nearly perfect, demonstrating the simplicity of
the task—even within this designated “hard” subset. This
means that even with intermediate reasoning steps, mod-
els still struggle to link the needle to the question in long
contexts without surface-level cues.

4.4.4. ABLATION STUDY: LITERAL MATCH EFFECT

To examine the simplifying impact of literal matches on
results, we define two new sets of tests: (1) Direct: ques-
tions that explicitly ask about the fact stated in the needle
by stating Wn in the question, resembling a vanilla NIAH

Base 4K 8K 16K 32KScore

Llama 3.3 70b
- w/o CoT 98.3 55.5 37.2 16.7 8.9
- w/ CoT 97.1 73.0 51.2 31.8 10.1

Reasoning models
GPT-o1 99.9 92.0 78.0 60.1 31.1
GPT-o3 Mini 98.8 52.8 36.9 25.5 18.9
DeepSeek R1-DL-70b 99.9 91.4 75.5 49.4 20.7

Table 5. Evaluation results of NOLIMA-Hard: Scores falling be-
low 50% of the base score are highlighted in red .

evaluation (Kamradt, 2023). (2) Multiple Choice (MC):
questions that maintain the required latent associative rea-
soning while incorporating literal matches. In this setup,
the question includes four character names as answer op-
tions—three from the haystack and one correct answer from
the needle.

As expected, Table 6 shows that direct examples with a high
degree of literal overlap between the question and the needle
are straightforward for the model to answer, even in long
contexts, consistent with prior findings in RULER (Hsieh
et al., 2024). Additionally, literal matches significantly aid
the model when the questions remain unchanged, and only
the multiple-choice format is introduced. The inclusion of
literal matches in the multiple-choice setup provides sig-
nificant guidance to the model. By offering the character
names as answer options, including the correct name from
the needle, the model can focus its search within a smaller
scope. This dramatically simplifies the task of identifying
the correct answer, as the literal match serves as a direct
hint, reducing ambiguity in the reasoning process.

Distracting Literal Matches. While literal matches serve
as cues if they are part of the relevant fact, they can also
act as distractors if they are irrelevant to the answer. In
Section 2, we noted that some related benchmarks include
similar documents in the context as distractors to test the
model’s ability to discern the correct answer from irrelevant
ones. This setup creates matches between the query and
both relevant and irrelevant documents or facts. In contrast,

8K 16K 32K

Direct 98.3 98.5 98.5

One-hop 84.1 73.2 56.2
- w/ Literal Match (MC) 98.7 97.4 93.1

Two-hop 57.4 42.7 25.9
- w/ Literal Match (MC) 96.3 94.6 87.2

Table 6. Results in two literal match setups: direct and multiple
choice (MC) questions. Model: Llama 3.3 70B
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Figure 5. Normalized performance comparison across GPT-4o and
Llama 3.3 70B models, with and without distractors. The red
dotted line marks the 0.85 effective threshold.

NOLIMA allows us to explore a different scenario: when
the context contains distracting words overlapping with the
question, while the relevant fact has minimal overlap with
the query. We insert a distractor sentence into the haystack
(details in Appendix D) containing Wq but entirely irrel-
evant to both the needle and the question’s intent. This
setup poses a significant challenge, requiring the model
to disregard irrelevant literal overlaps while identifying a
relevant fact with no meaningful overlap with the query.
As shown in Figure 5, such distractors have a substantial
impact on degrading length generalization. GPT-4o now
demonstrates an effective length of just 1K, while Llama 3.3
70B performs even worse. While adding distractors slightly
lowers base scores (GPT-4o: 93.8, Llama 3.3 70B: 84.4),
the normalized plots still clearly illustrate a performance
drop at longer lengths. These results highlight the challenge
of resolving queries in contexts where irrelevant overlaps
mislead the model, and the relevant fact shares no overlap
with the question.

5. Conclusion
NOLIMA provides a challenging benchmark for evaluating
the reasoning capabilities of large language models in long-
context settings. By removing literal overlaps between ques-
tions and relevant information, the benchmark tests models’
ability to infer and link information within extensive irrel-
evant content. Our findings show that even state-of-the-art
models struggle, especially as context length increases, re-
vealing serious limits in their attention mechanism. While
causal attention should theoretically access all previous to-
kens, models often rely on surface-level cues in longer con-
texts. This vulnerability becomes more pronounced when
the context contains literal matches that fail to connect with
the truly relevant fact, causing models to overlook the cor-
rect information and focus instead on superficial signals. We
believe our findings with NOLIMA are likely to extend to
downstream applications. For instance, in search engines or

RAG systems, a relevant document containing the correct an-
swer may have a lexical gap with the query. So, even if such
a document is retrieved alongside others that likely have
higher lexical similarity, language models may struggle to
extract the correct answer, as they can become distracted by
the lexical overlap with these other documents. This work
highlights the need for benchmarks that go beyond surface-
level retrieval to assess deeper reasoning. NOLIMA sets
a new standard for evaluating long-context comprehension
and emphasizes the importance of developing approaches
capable of handling complex reasoning in long contexts.

Impact Statement
This paper presents work aimed at advancing the field of
long-context language modeling by evaluating and analyz-
ing the most commonly used LLMs. There are many poten-
tial societal consequences of our work, none which we feel
must be specifically highlighted here.
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A. Needle Set Design & Considerations
In Table 7, we demonstrate the full needle set that we use in NOLIMA. In designing the needle templates, there are multiple
considerations involved. First, all templates in the needle set begin with a small introductory phrase or at least one word
(e.g., “Actually,” “In 2013,”) to distinguish themselves from the preceding context. This ensures that the needle’s keyword or
character is not inadvertently linked to the prior context. Since a newline is appended at the end of each needle, this issue is
mitigated if the keyword or character appears at the end of the needle.

Question Needles Keyword Types

Which character has been to Wq?

Def. There was [CHAR] who was an engineer liv-
ing in Wn.

Wn Countries, cities, states

Inv. There was an engineer living in Wn, named
[CHAR].

Wq Countries, cities, states

Which character has been to Wq? Def. Actually, [CHAR] lives next to the Wn. Wn Buildings & Landmarks
Inv. Wn is next to where [CHAR] lives. Wq Countries, cities, states

Which character has been to Wq?

Def. In 2013, after waiting in line for hours, [CHAR]
finally saw the original Wn painting up close.

Wn Buildings & Landmarks

Inv. In 2013, the original Wn painting was seen up close
by [CHAR], finally, after waiting in line for hours.

Wq Countries, cities, states

Which character cannot drink Wq?

Def. A message came in from [CHAR] saying, “I’m
Wn” and nothing more.

Wn Dietary restriction
(e.g., lactose intolerant)

Inv. A message came in saying, “I’m Wn,” from
[CHAR].

Wq Drinks & Beverages

Which character cannot eat Wq?
Def. Then [CHAR] mentioned that he has been Wn for

years.
Wn Dietary restriction

(e.g., vegan)
Inv. There was a Wn guest, named [CHAR]. Wq Foods

Table 7. Our proposed needle set templates in NOLIMA. The placeholders [CHAR], Wq , and Wn represent the randomly selected
character (also the answer), the query keyword, and the needle keyword, respectively. Def.: default order. Inv.: inverted order.

Another consideration is that the needle keyword should be uniquely associated with the query keyword. For instance, in the
following sentence:

There was an engineer living in Cambridge, named Yuki.

Although the term ”Cambridge” is commonly associated with the ”United Kingdom,” it is not uniquely so; it could also refer
to cities in the United States, Canada, or other countries. Additionally, we aim to avoid relying on language-specific markers.
Many cities have distinctive elements in their names, such as orthographic features, morphological structures, or cultural
naming conventions, that hint at their linguistic or geographic origins. By minimizing the influence of such markers, the
needle design ensures a more rigorous evaluation of the model’s ability to make meaningful connections based on learned
knowledge rather than surface-level linguistic cues. For each template, we manually curated 2-6 keyword pairs, resulting in
a total of 28 keyword pairs. Taking into account the order of fact statements, this generates 58 needle-question pairs.

B. Models
In Table 8, we list all the models selected for evaluation. Models that are open weights were deployed using the vLLM
library (Kwon et al., 2023), with weights obtained from HuggingFace (Wolf et al., 2020).

C. Task Prompt Templates & Inference Settings
In Table 9, we present the task prompts used across all evaluations. While we do not employ the commonly used ”Let’s
think step by step” prompt in the Chain-of-Thought (CoT) setup (Kojima et al., 2022), our prompt encourages the model
to elaborate and expand its reasoning sufficiently before producing a final answer. To manage the extensive testing
scope—7,540 tests per context length—we limit reasoning to three sentences or a maximum of 192 generated tokens.
In the CoT setup, a test is considered successful if the final answer (on the newline) includes the correct answer. This
differs with the non-CoT setup, where success is determined based on whether the correct answer is present within the
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Model Context Length Open Weights? Model Revision

GPT-4.1 1M No gpt-4.1-2025-04-14
GPT-4.1 mini 1M No gpt-4.1-mini-2025-04-14
GPT-4.1 nano 1M No gpt-4.1-nano-2025-04-14

GPT-4o 128K No gpt-4o-2024-11-20
GPT-4o mini 128K No gpt-4o-mini-20240718

Llama 4 Maverick 1M Yes meta-llama/Llama-4-Maverick-17B-128E-Instruct
Llama 4 Scout 10M Yes meta-llama/Llama-4-Scout-17B-16E-Instruct

Llama 3.3 70B 128K Yes meta-llama/Llama-3.3-70B-Instruct
Llama 3.1 405B 128K Yes meta-llama/Llama-3.1-405B-Instruct
Llama 3.1 70B 128K Yes meta-llama/Llama-3.1-70B-Instruct
Llama 3.1 8B 128K Yes meta-llama/Llama-3.1-8B-Instruct

Gemini 1.5 Pro 2M No gemini-1.5-pro-002
Gemini 1.5 Flash 1M No gemini-1.5-flash-002
Gemini 2.0 Flash 1M No gemini-2.0-flash
Gemini 2.5 Flash 1M No gemini-2.5-flash-preview-05-20

Gemma 3 27B 128K Yes google/gemma-3-27b-it
Gemma 3 12B 128K Yes google/gemma-3-12b-it
Gemma 3 4B 128K Yes google/gemma-3-4b-it

Claude 3.5 Sonnet 200K No anthropic.claude-3-5-sonnet-20241022-v2

Jamba 1.5 Mini 256K Yes ai21labs/AI21-Jamba-1.5-Mini
Command R+ 128K Yes CohereForAI/c4ai-command-r-plus-08-2024
Mistral Large 2 128K Yes mistralai/Mistral-Large-Instruct-2411

Reasoning-based models
GPT-o1 128K No gpt-o1-2024-12-17
GPT-o3 Mini 128K No gpt-o3-mini-2025-01-31
DeepSeek R1-DL-70b 128K Yes deepseek-ai/DeepSeek-R1-Distill-Llama-70B

Table 8. Details of the selected models used for evaluation.

generated output. For all standard instruction-tuned models, we use greedy decoding during generation. For reasoning-based
models, we utilize the default sampling decoding mechanism for GPT-o1 and GPT-o3 Mini, while R1-based models employ
top-P sampling with p = 0.95 and a temperature of 0.6. In addition, we cap the maximum number of generated tokens in
reasoning-based models at 1536 tokens, including both reasoning and output tokens. In all models, we apply each model’s
instruction-tuned chat templates.

D. Distractor Design
To construct and integrate the distractor sentences mentioned in Section 4.4.4, we devised two templates, applied uniformly
across all needle-question pairs. Depending on the Wq , we use one of the following templates:

There was an article about Wq in the daily newspaper.

or

There was a photo of Wq in the daily newspaper.

Some instances of Wq may naturally include an article (e.g., ”a” or ”an”), making them better suited for the second template,
while others fit the first. Regardless of the choice, the templates are designed to remain neutral and unrelated to the intent of
the question or the fact stated by any needle.

To minimize interference with the needle, we randomly place the distractor sentence while ensuring a token distance of at
least 20% of the context length. For example, in a 1K-token test, the distractor must be at least 200 tokens away from the
needle. Additionally, to avoid any advantage from proximity to the beginning or end of the context (which may gain extra
attention), we restrict placement to between the 20% and 80% marks of the context length. Together, these two constraints
leave a span of 40%-60% of the context length available for random placement of the distractor sentence.
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Mode Prompt Template

w/o CoT

You will answer a question based on the following book snippet:

{haystack w/ needle}

Use the information provided in the book snippet to answer the question. Your
answer should be short and based on either explicitly stated facts or strong,
logical inferences.

Question: {question}

Return only the final answer with no additional explanation or reasoning.

w/ CoT

You will answer a question based on the following book snippet:

{haystack w/ needle}

Use the information provided in the book snippet to answer the question.
Be aware that some details may not be stated directly, and you may need
to INFER the answer based on the given information. Begin with a brief
explanation of your reasoning in NO MORE THAN THREE (3) sentences.
Then, return the final answer on a new line.

Question: {question}

Table 9. Details of prompt templates utilized in our evaluation.

Models Claimed Effective Base Score 1K 2K 4K 8K 16K 32K 64K 128K7
Length Length (×0.85: Thr.)

GPT-4.1 1M 16K 97.0 (82.5) 95.6 95.2 91.7 87.5 84.9 79.8 69.7 64.7
GPT-4o 128K 8K 99.3 (84.4) 98.1 98.0 95.7 89.2 81.6 69.7 62.4 56.0
Gemini 2.5 Flash 1M 2K 94.4 (80.2) 90.1 86.1 79.4 68.2 57.9 48.4 — —
Gemini 2.0 Flash 1M 4K 89.4 (76.0) 87.7 87.5 77.9 64.7 48.2 41.0 33.0 16.4
Llama 4 Maverick 1M 2K 90.1 (76.6) 81.6 78.3 68.8 49.0 34.3 24.5 — —
Gemma 3 27B 128K <1K 88.6 (75.3) 73.3 65.6 48.1 32.7 20.2 9.5 — —
Gemma 3 12B 128K 1K 87.4 (74.3) 74.7 61.8 39.9 27.4 16.8 7.3 — —
Llama 4 Scout 10M 1K 81.7 (69.4) 72.3 61.8 50.8 35.5 26.9 21.6 — —
GPT-4.1 Mini 1M <1K 80.9 (68.8) 66.7 62.8 58.7 51.9 46.2 38.8 — —
GPT-4.1 Nano 1M <1K 80.7 (68.6) 60.8 48.2 36.7 28.8 19.5 9.4 — —
Gemma 3 4B 128K <1K 73.6 (62.6) 50.3 35.3 16.4 7.5 2.3 0.9 — —

Table 10. NOLIMA benchmark results for GPT-4o, Gemini 2.0 Flash, and additional recent models. For models with stronger performance
at 32K, we extend evaluation to 64K and 128K using the same setup. Scores above the effective threshold are underlined; scores below
50% of the base score are shaded in red .

E. Results Beyond 32K & Recent LLMs
Based on the dataset configuration outlined in Section 4.1, we construct haystacks by randomly concatenating snippets
extracted from the filtered books dataset. This setup enables evaluation across scalable context lengths, including 64K and
128K tokens, and can be extended further as model limits allow.

Two practical adjustments were made in this evaluation setup, without altering the core methodology: (1) Reduced Placement
Count: Due to cost limitations, we reduce the number of needle placements from the default 26 to 11 placements per context
length. This change minimizes API usage while still preserving meaningful coverage across the haystack. (2) Token Limit
Constraints: GPT-4o has a strict 128,000 token limit, including both input and output tokens. To accommodate the task
prompt and model response, we limit the haystack length to 127,500 tokens for this model. To ensure a fair comparison, we
use the same haystack length for Gemini 2.0 Flash.

The results of this evaluation are presented in Table 10, focusing on GPT-4o and Gemini 2.0 Flash at 64K and 128K context

7127,500-token haystack used based on model token limit constraints.
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Figure 6. Unsmoothed needle placement depth plots corresponding to the smoothed results in Figure 3. These plots reflect raw performance
values prior to applying the moving average.

lengths. While GPT-4o does not fully meet its claimed performance at the maximum context length, it nonetheless maintains
over 50% of its base score at 128K, indicating relatively strong performance at that scale. In contrast, Gemini 2.0 Flash
shows a sharper decline, dropping to 16.4% at 128K.

To cover recent model releases, Table 10 also includes entries for newer models such as the GPT-4.1 series and Gemini
2.5 Flash8 (Team, 2025; Gemini Team et al., 2024). For those that showed stronger performance at 32K, we also extend
the evaluation to 128K using the same setup. GPT-4.1 shows clear improvements over prior models; however, its effective
context length remains around 16K–well below the claimed 1M–and its performance drops below 65% on 128K context
lengths.

F. One- & Two-hop Results
Tables 11 and 12 present detailed results on the one-hop and two-hop subsets of the NOLIMA benchmark, evaluated across
the selected models. The tables follow the same format and thresholding criteria as Table 3, reporting both the claimed
and effective context lengths. Note that the base scores–and consequently the thresholds–are computed separately for
each subset. Although both one-hop and two-hop subsets show strong base scores, two-hop tasks generally yield shorter
effective context lengths. This suggests that while models can perform well on complex reasoning in short contexts, their
performance degrades more rapidly as context length increases, indicating reduced length generalization under greater
reasoning demands.

Models Claimed Effective Base Score 1K 2K 4K 8K 16K 32KLength Length (×0.85: Thr.)

GPT-4o 128K 16K 99.3 (84.4) 97.7 97.5 95.6 91.9 87.3 79.8
Llama 3.3 70B 128K 8K 97.7 (83.1) 97.1 93.6 90.3 84.1 73.2 56.2
Llama 3.1 405B 128K 4K 91.7 (78.0) 88.7 87.3 80.2 68.4 59.6 49.4
Llama 3.1 70B 128K 4K 96.4 (82.0) 95.2 89.8 82.7 76.9 66.3 56.9
Gemini 1.5 Pro 2M 4K 90.8 (77.2) 85.7 85.5 81.9 72.3 63.4 55.1
Jamba 1.5 Mini 256K 2K 93.1 (79.1) 80.0 80.2 77.9 71.5 62.9 56.0
Command R+ 128K 2K 91.6 (77.8) 79.4 78.4 75.6 52.2 26.9 10.4
Gemini 2.0 Flash 1M 4K 92.5 (78.6) 91.5 93.5 89.6 78.4 61.8 52.8
Mistral Large 2 128K 4K 83.3 (70.8) 82.5 86.1 80.3 62.5 44.1 27.5
Claude 3.5 Sonnet 200K 8K 90.5 (76.9) 89.9 91.6 89.5 78.2 61.1 45.2
Gemini 1.5 Flash 1M 1K 85.7 (72.9) 76.4 71.8 63.6 57.0 48.7 41.3
GPT-4o mini 128K 1K 88.4 (75.2) 81.0 73.6 57.6 45.4 30.2 20.0
Llama 3.1 8B 128K 1K 83.0 (70.5) 75.7 69.3 60.7 49.6 35.7 22.7

Table 11. NOLIMA benchmark results on one-hop examples. Base scores and effective lengths are computed using only the one-hop
subset. Scores above the effective threshold are underlined, while scores that are below 50% of the base score are shaded in red .

8Without reasoning (thinking budget = 0).
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Models Claimed Effective Base Score 1K 2K 4K 8K 16K 32KLength Length (×0.85: Thr.)

GPT-4o 128K 8K 99.3 (84.4) 98.7 98.7 95.8 85.9 74.6 57.4
Llama 3.3 70B 128K 1K 96.7 (82.2) 90.6 79.8 70.7 57.4 42.7 25.9
Llama 3.1 405B 128K 2K 95.3 (81.0) 89.4 82.0 67.4 49.8 34.6 23.8
Llama 3.1 70B 128K 1K 92.0 (78.2) 85.9 72.0 57.0 45.2 33.8 26.4
Gemini 1.5 Pro 2M 1K 94.9 (80.7) 87.1 79.4 67.4 53.6 45.7 39.6
Jamba 1.5 Mini 256K <1K 91.7 (77.9) 71.8 66.6 62.0 50.7 40.0 28.4
Command R+ 128K <1K 90.0 (76.5) 74.0 67.4 54.7 23.8 14.3 3.8
Gemini 2.0 Flash 1M 2K 85.7 (72.8) 83.1 80.0 63.6 47.8 31.4 26.4
Mistral Large 2 128K 2K 93.6 (79.5) 90.4 84.7 64.7 37.8 18.4 7.9
Claude 3.5 Sonnet 200K 2K 84.0 (71.4) 79.8 74.5 63.0 41.5 26.9 10.9
Gemini 1.5 Flash 1M <1K 83.5 (71.0) 59.1 49.0 35.6 28.8 19.2 12.9
GPT-4o mini 128K <1K 80.4 (68.3) 51.4 39.3 27.6 16.9 8.8 5.9
Llama 3.1 8B 128K <1K 68.9 (58.6) 53.4 36.0 23.6 10.0 6.5 3.8

Table 12. NOLIMA benchmark results on two-hop examples. Base scores and effective lengths are computed using only the two-hop
subset. Scores above the effective threshold are underlined, while scores that are below 50% of the base score are shaded in red .

G. Raw Needle Placement Depth Plots
Figure 6 presents the needle placement depth plots corresponding to Figure 3, prior to the application of the moving average
employed in the main figure.
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