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Abstract
Query-focused Summarization (QfS) deals
with systems that generate summaries from
document(s) based on a query. Motivated by
the insight that Reinforcement Learning (RL)
provides a generalization to Supervised Learn-
ing (SL) for Natural Language Generation, and
thereby performs better (empirically) than SL,
we use an RL-based approach for this task of
QfS. Additionally, we also resolve the conflict
of employing RL in Transformers with Teacher
Forcing. We develop multiple Policy Gradi-
ent networks, trained on various reward sig-
nals: ROUGE, BLEU, and Semantic Similar-
ity, which lead to a 10 -point improvement over
the State-of-the-Art approach on the ROUGE-L
metric for a benchmark dataset (ELI5). We also
show performance of our approach in zero-shot
setting for another benchmark dataset (Debate-
Pedia) – our approach leads to results com-
parable to baselines, which were specifically
trained on DebatePedia. To aid the RL training,
we propose a better semantic similarity reward,
enabled by a novel Passage Embedding scheme
developed using Cluster Hypothesis. Lastly, we
contribute a gold-standard test dataset to fur-
ther research in QfS and Long-form Question
Answering (LfQA).

1 Introduction

Query-focused Summarization (QfS) (Tombros
and Sanderson, 1998; Dang, 2005; Nema et al.,
2017) advances text summarization by letting the
user provide a query, pertaining to which the sum-
mary must be generated from the document(s).
Specifically, we target QfS for questions on a single
document (see Table 1 for example). Our work is
related to Long-form Question Answering (LfQA)
(Fan et al., 2019; Krishna et al., 2021; Su et al.,
2022). However, it differs from LfQA research
significantly in that LfQA research has to focus on
the retrieval of relevant passage(s) also. Whereas
our system already assumes the presence of a doc-
ument, which has to be summarized.

Query: What is String Pool in Java?

Document1: String pool is nothing but a stor-
age area in Java heap where string literals
stores. It is also known as String Intern Pool
or String Constant Pool. It is just like object al-
location. By default, it is empty and privately
maintained by the Java · · ·

Summary: String Pool, used to reduce the
memory footprint, is a specific area in the
memory allocated to the process used to store
String literal declared within Java program.

Table 1: Example for Query-focused Summarization
for a well-formed question. The document is shortened
(marked by · · · ) for space.

Problem Statement: We develop a system which
abstractively generates summaries (Nallapati et al.,
2016; Rush et al., 2015; Xu and Lapata, 2021,
2022) from a single document given the query.
Specifically, input: query and document, and out-
put: summary. We design a novel Reinforcement
Learning algorithm for training and propose a novel
passage embedding-based reward function.
Motivation: QfS lets the user drive the summariza-
tion. This improves the user experience by letting
the user extract the needed information quickly.
Additionally, present-day QA systems (Calijorne
Soares and Parreiras, 2020) produce only short an-
swers to factual questions. What they lack is the
ability to consume a large piece of information and
present a coherent, compressed summary based on
the needs of the user. Our work aims to further
research in LfQA by successfully building a QfS
system for questions.

We utilize Reinforcement Learning (RL) for
training the model, as RL provides a generalized
loss to train our model. While Cross-Entropy loss

1Source: javatpoint.com/string-pool-in-java
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utilizes token-by-token match, RL helps us general-
ize this further to phrase/sentence/semantic match.
Such a generalization gives the model more free-
dom on what to generate at each time step, as long
as the final generation suffices. Inspired by this,
we employ RL for QfS. We detail on how RL is a
generalization to Supervised Learning (SL) using
Cross-Entropy loss in Section 3.1.

However, employing RL for text generation us-
ing Transformers is non-trivial. RL helps train
agents that perform a sequence of actions, each de-
ciding the next state and the available set of actions.
In contemporary text generation through Trans-
formers, Teacher Forcing2 (Williams and Zipser,
1989) is used, where the generation (action) at time-
step t − 1 has no influence on the generation at
time-step t. Effective utilization of RL for text gen-
eration needs to model this influence, thus necessi-
tating the omission of Teacher Forcing. However,
this increases the training time and memory foot-
print significantly. We propose a way to employ RL
for text generation without Teacher Forcing, based
on Scheduled Sampling (Bengio et al., 2015), Sec-
tion 3.1. To the best of our knowledge, we are the
first work to resolve this conflict of employing
RL in Transformers with Teacher Forcing.

Our contributions are:

1. An RL algorithm that resolves the conflict
of RL-based training in Transformers with
Teacher Forcing. We observe significant im-
provement over the State-of-the-Art SL mod-
els: 37.2% improvement in automatic evalua-
tions (Table 6), 19% improvement in Correct-
ness (human evaluation; Table 8).

2. A human-curated test set, 250 instances, de-
void of Topic Centralization (one document
can cater to multiple queries, Baumel et al.
(2016)), for analysis of QfS models.

3. A passage embedding based novel reward
mechanism (2.21 ROUGE-L improvement
over ROUGE reward; Table 6) to score gen-
erated summaries, trained using the long-
standing, time-honored Cluster Hypothesis
(Jardine and van Rijsbergen, 1971).

4. A new dataset, ∼ 8 million instances, to
train a passage embedder model, scraped from
reddit.

2Teacher Forcing refers to the way of training Autoregres-
sive models where generation of yt (current token) depends
on y1, y2, · · · , yt−1 (true previous tokens), and not on ŷ1, ŷ2,
· · · , ŷt−1 (generated previous tokens).

2 Related Works

Abstractive QfS: Supervised Learning ap-
proaches to abstractive QfS have been primarily
limited by the availability of large-scale datasets.
Dang (2005) present the first QfS dataset with
open-ended questions. However, the size of the
dataset is insufficient to train neural models. Xu
and Lapata (2021, 2022); Laskar et al. (2020)
tackle the scarcity of data through innovative
approaches. Xu and Lapata (2021) generate proxy
queries from generic summarization datasets by
using a masked representation to train a model for
QfS. Xu and Lapata (2022) model the document
as an indicator of all the possible queries on it,
and develop a QfS model by modeling latent
queries through variational inference techniques.
Laskar et al. (2020) take the approach of Transfer
Learning: they fine-tune an abstractive summarizer,
trained on XSum (Narayan et al., 2018), on a
decent-sized (12695 instances) dataset: DebatePe-
dia (Nema et al., 2017). Inspite of the presence of
DebatePedia, researchers have mainly focused on
leveraging generic summarization datasets due to
the size limitation. We circumvent this limitation
by utilizing ELI5 (Fan et al., 2019). Specificially,
we utilize the version by Fan et al. (2019), not the
KILT version (Petroni et al., 2021), as the latter
does not provide gold documents to generate the
summary from. Although, it is a dataset for LfQA,
the format of the dataset makes it suitable for our
use case: QfS for question on a single document.

ELI5 is an automatically curated dataset with
a few shortcomings, which make it unsuitable for
testing models (Krishna et al., 2021). Motivated by
these shortcomings, we propose a novel, human-
curated test set for QfS on well-formed questions
consisting of high-quality 250 instances.
RL for Summarization/QfS: The usage of RL
in QfS has been limited to extractive summariza-
tion only (Mollá and Jones, 2019; Mollá et al.,
2020; Chali and Mahmud, 2021; Shapira et al.,
2022). Mollá and Jones (2019); Mollá et al. (2020);
Shapira et al. (2022) use RL to train sentence selec-
tor models, which select sentences to be incorpo-
rated into the summary. Chali and Mahmud (2021)
present a hybrid summarization, where an extrac-
tive module selects text from the document, which
is then used by the abstractive module to gener-
ate an abstractive summary. However, they use
RL for the extractive module only. To the best of
our knowledge, we are the first to utilize RL for
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abstractive QfS.

We find an abundance of precedence of RL for
abstractive summarization. Paulus et al. (2017)
is the first work in employing RL to train LSTM
models, without Teacher Forcing, for abstractive
summarization. Pasunuru and Bansal (2018); Li
et al. (2019) provide follow-up works with better
reward functions. Both works train LSTM models
without Teacher Forcing. Laban et al. (2020) were
the first to employ RL to a Transformer architec-
ture for abstractive summarization. They fine-tune
the GPT2-small (Radford et al., 2019) model with-
out Teacher Forcing. However, the omission of
Teacher Forcing led to a training time of 10 days
for a generation length of just 10 tokens. This
highlights the severity of the problem which arises
by omitting Teacher Forcing and using sequential
generation during training, and motivates the need
for our approach to effectively incorporate RL.

Passage Embedding/Similarity: A straight-
forward way to obtain paragraph/passage
embeddings is by application of some composition-
ality to the embeddings of the constituent words
(Kenter et al., 2016; Hill et al., 2016; Sinoara
et al., 2019; Iyyer et al., 2015). Yang et al. (2020);
Jiang et al. (2019) attempt to generate passage
embedding by training dual encoder networks to
match similar documents. They rely on citation
and recommendation networks to derive whether
or not two passages are similar. Obtaining passage
similarity/embedding is a common task in Dense
Passage Retrieval (DPR) (Karpukhin et al., 2020).
Ren et al. (2021) utilize Cluster Hypothesis
(Jardine and van Rijsbergen, 1971) to enhance
passage retrieval. However, they do not train any
passage embedding network separately. Ginzburg
et al. (2021) utilize pairwise sentence similarity to
obtain similarity between two paragraphs. They
use a noisy training dataset where paragraphs from
the same document are considered similar and
those from different documents are considered
dissimilar. We are primarily motivated by the
work of Vikraman et al. (2021). They use Cluster
Hypothesis to group similar passages together in
the DPR framework, for downstream tasks. Our
work differs from Vikraman et al. (2021) in the
following aspects: we explicitly train our model
to output passage embeddings and we train on a
much larger dataset.

3 Modeling

In this section we provide the formulation for QfS
and Passage Embedding. Section 3.1 discusses the
application of Policy Gradient to QfS. Section 3.2
discusses our approach to obtain passage embed-
dings. We present architectures in Appendix G.

3.1 Policy Gradient for QfS

We model the task using Reinforcement Learning
(RL) framework. Reward Hypothesis (Sutton and
Barto, 2018; Silver et al., 2021) states that all goals
can be formulated as the maximization of a reward
signal. Following this, our goal is to represent
QfS using a reward adequately. Equations 1 and
2 specify the losses from Maximum Likelihood
Estimation (MLE; used by Supervised Learning
through cross-entropy loss) and Policy Gradient
training. Comparing the two equations, it is vis-
ible that MLE attempts to reward a token-by-
token match We take the RL path to generalize
this rewarding mechanism using more sophisti-
cated lexical and/or semantic rewards (Table 2).
Terminology: 1[x] evaluates to 1 if x is true else
0, y∗k denotes the token generated at time-step k,
τ is the trajectory obtained from the sequence of
token generation, q and d denote the query and
document representation respectively, and n is the
length of the generation.

LMLE = −
n∑

t=1

{
1[yt = y∗t ] logP(y∗t |y∗1, y∗2,

· · · , y∗t−1,q,d)
}

(1)

LPG = −
n∑

t=1

{
(R(τ)− b) logP(y∗t |y∗1, y∗2,

· · · , y∗t−1,q,d)
}

(2)

We formulate QfS in the RL framework (<S , A,
R, P> tuple) as follows:

1. The agent (encoder-decoder network) exists
in a state (S), defined by the thus-far gener-
ated summary, the input query and the input
document.

2. It takes action (A) by sampling a token (y∗k)
from the probability over the vocabulary for
the next time-step. The generation of probabil-
ity distribution constitutes the state transition
dynamics (P).



3. The end of the episode (sequence of genera-
tion) is reached either through the generation
of end-of-sequence token or by reaching the
max episodic length.

4. At the end of the episode the agent achieves
a reward (R), which is then used by the Pol-
icy Gradient algorithm (Equation 2) to update
the policy for the agent. We use the greedily
decoded sequence to compute the baseline re-
ward (b in Equation 2), following Paulus et al.
(2017).

However, it is intractable to run this vanilla RL
framework for long episodes (∼ 150 tokens, Ap-
pendix G, Table 10) when the policy has a huge
number of parameters. It leads to a large time for
forward and backward pass through the network,
in addition to the large memory requirements. Re-
fer to Appendix E for a space and time complex-
ity analysis. We simulate the sequential action
sampling through scheduled sampling for Trans-
formers (Mihaylova and Martins, 2019). Following
the strategy, we conduct a two-pass through the
decoder: the second pass uses the sampled embed-
dings, obtained using Gumbel reparametrization
trick (Goyal et al., 2017). This enables gradient
backpropagation for the first pass through the de-
coder too. We find that using an implementation
where gradients backpropagate through both passes
leads to better results in automatic evaluation (Ta-
ble 6). With this formulation, we train the policy
network using a mixed objective loss (Equation 3,
η = 0.1), following Paulus et al. (2017).

LT OT AL = ηLMLE + (1− η)LPG (3)

3.2 Passage Embedding and Semantic
Similarity

Contemporary works rely on composing sen-
tence/word embeddings to obtain passage embed-
dings. This forms an approximate representation
of the generated and the ground truth summary.
Thus, relying on these representations leads to an
approximate notion of similarity. We amend that
by creating a passage embedder using the Cluster
Hypothesis (Jardine and van Rijsbergen, 1971),
which states: Passages that are clustered together
answer to similar information needs. According to
the hypothesis, summaries of the same query on
the same document should be clustered together
and have a high similarity score. We use this
insight to reward the generated summaries while

training, using the cosine similarity between the
generated passage vectors. We find that similarity
obtained from this embedding generation scheme
leads to better results in human and automatic eval-
uation (Tables 6 and 8).

We use the Cluster Hypothesis for training our
passage embedding model, using a dual encoder
architecture (Appendix G). Our training scheme
considers a special token (for example, [CLS] in
BERT) to represent the passage. We calculate the
similarity, ŷ, between passages, using the dot prod-
uct of the embeddings (Ep and Eq) produced by the
dual encoder architecture, Equation 4. This causes
similar Ep and Eq to lie closer in the embedding
space. While training, we attempt to reduce the
cross-entropy loss, Equation 5, between ŷ and y
(the true labels; 1 for similar passages, else 0).

ŷ =
1

1 + e−Ep·Eq
(4)

LPE = −y log ŷ − (1− y) log(1− ŷ) (5)

We use the trained passage embedding model
to obtain embeddings for the generated summaries
and the ground truth summaries in a batch while
training the QfS model. We use cosine similarity
as a reward signal in the RL framework.

4 Datasets

We use three datasets in this work: (a) ELI5 (Fan
et al., 2019), (b) Reliable QFS Tester, RQFT (our
contribution), and (c) Reddit Passage Embedding
DataseT, RPEDT (our contribution). In the fol-
lowing discussion, we provide a brief overview of
the ELI5 dataset, and move on to discuss RQFT in
Section 4.1, and RPEDT in Section 4.2.

Fan et al. (2019) proposed ELI5 for Long-
form Question Answering (LfQA). It consists of a
triplets in the format: <query, document, answer>,
where the query is a well-formed, open-ended ques-
tion, and the answer is not a span from the docu-
ment. Given the nature of the query and the an-
swer, it fits perfectly in our problem statement. The
dataset contains 234420, 9930 and 24820 samples
for training, validation and testing respectively.

4.1 Reliable QFS Tester (RQFT) Dataset
We note two shortcomings of the ELI5 dataset:

1. Overlap of instances between training and val-
idation set, reported by Krishna et al. (2021).

2. <query, document, answer> triplets in the
ELI5 test set, where the document is irrelevant



Reward Description Formula

ROUGE-L Recall oriented reward to improve coverage ROUGEL(GT,GN)
BLEU Precision oriented reward to generate con-

cise summaries
mean4

i=1(BLEUi(GT,GN))

SimCSE (Gao et al.,
2021)

Semantic match obtained by averaging sen-
tence embeddings

cos(meanm(ES),meann(ET ))

SBERT (Reimers and
Gurevych, 2019)

Semantic match obtained by averaging sen-
tence embeddings

cos(meanm(ES),meann(ET ))

SFPEG Semantic match obtained using Passage
Embedding

cos(EGT ,EGN )

Table 2: Various rewards used to train the RL models. We use both lexical and semantic rewards to promote lexical
and semantic similarity in generation. SFPEG: Similarity From Passage EmbeddinG. ROUGEL and BLEU denote
the standard ROUGE-L and BLEU functions; mean denotes average; cos denotes cosine similarity; S denotes a
sentence from Ground Truth (GT ) summary; T denotes a sentence from Generated (GN ) summary.

to the query. We observed this shortcoming
while analyzing the trained models on random
samples from the test set.

Motivated by these, we curate a dataset with
manual efforts, without any automation scripts, to
ensure quality. We curate the dataset from two
sources- (i) Wikipedia and (ii) high school text-
books. Both are excellent sources for a variety of
concepts. We explain how the dataset is curated in
Appendix K.

Table 3 presents statistics on the dataset. We can
see that each document corresponds to more than
1 query on average. This was an intentional de-
cision made while curating the dataset to tackle
topic centralization (Baumel et al., 2016). We
include an example of the dataset in the Appendix
(Table 17). We establish the quality of the dataset
in Appendix L.

While the size of RQFT is small, such a size for
evaluation is not unprecedented for summarization
(Angelidis and Lapata, 2018; Chu and Liu, 2019;
Bražinskas et al., 2020; Amplayo et al., 2021; An-
gelidis et al., 2021). Inspite of the small size, our
dataset acts as a high quality benchmark for QfS,
covering 13 domains (listed in Appendix K), de-
void of topic centralization.

4.2 Reddit Passage Embedding DataseT
(RPEDT)

Cluster Hypothesis states: Passages that are clus-
tered together answer to similar information needs.
We gather RPEDT to facilitate the training of a
passage embedding model using Cluster Hypothe-
sis. Reddit forums (popularly known as subreddits)

Characteristic Value

Size of dataset 250

Avg. # of words
Query 15.52

Document 930.57
Summary 115.72

Avg. # of queries per document 1.41

Table 3: Statistics of RQFT dataset, we use NLTK to
tokenize the strings.

contain data in the format of posts (queries) and
comments (answers to the posts, often multiple in
number). We scrape this data, forming a repository
of queries and multiple answers to each query. We
gather data from 39 subreddits, Appendix F de-
scribes the data gathering scheme and lists the sub-
reddits. While training, we transform the dataset
into the following format– <p, q>, where p and
q are passages that may or may not answer the
same query. We perform in-batch negative random
sampling to generate q (one q per p) that does not
answer the same query as p. Table 4 highlights
the statistics; the last row denotes the total number
of <p, q> samples generated during training. Our
quality check experiment, Appendix M, validates
the quality of RPEDT.

5 Experiments and Results

In this section we provide details on our experi-
ments. Section 5.1 presents the results obtained on
all the experiments. Finally, Section 5.2 presents
the results obtained from human evaluation on
RQFT. Table 5 lists all the trained models. BART



Characteristic
Value

Train Test

# of questions 154, 722 19, 647
Avg. # of A per Q 3.04 2.26
Avg. # of W in Q 15.58 17.80
Avg. # of W in A 145.36 170.88
Training samples 15, 462, 880 223, 046

Table 4: Statistics of RPEDT, we use NLTK to tokenize
into words. Q: Question, A: Answer, W: Words.

SL represents our implementation of of the model
trained by Lewis et al. (2020) for ELI5.

Model ID Reward

BART SL -
BART R ROUGE-L

BART R-SEM ROUGE-L + SimCSE
BART R-B ROUGE-L + BLEU

BART R-SBERT ROUGE-L + SBERT
BART R-SFPEG ROUGE-L + SFPEG

BART SFPEG SFPEG

Table 5: Index of all the models trained in our work.
All models except BART SL have been trained using
Reinforcement Learning; the rewards are listed in the
adjacent column. BART SL has been trained using
Cross Entropy loss (Supervised Learning).

5.1 Automatic Evaluation Results
We perform three experiments- (i) EXPT-I: QfS on
ELI5 test dataset, (ii) EXPT-II: QfS on RQFT, and
(iii) EXPT-III: QfS on RQFT with random docu-
ments. Additionally, we also report automatic eval-
uation figures on DebatePedia (Nema et al., 2017).
As the training and primary analysis involves only
ELI5, we move the DebatePedia results to the Ap-
pendix (Appendix D). In EXPT-III, we replace
the true document with another random document.
The motivation behind this experiment was to rig-
orously test whether the trained models summarize
the document based on the query, or generate to-
kens by ignoring the document altogether. We use
the Fan et al. (2019) version of ELI5 dataset, not
the KILT version. Hence we present competing re-
sults from Fan et al. (2019) and Lewis et al. (2020)
only, and omit results on KILT version, such as
those from Su et al. (2022).

We test the performance of the trained models
using Beam Search (beam size = 15, minimum

tokens = 64, maximum tokens = 256). We find
that using these generation conditions work best
(based on automatic evaluation). We present the
results generated for all the experiments in Table 6.
We also present the average length of generations in
Table 7. Using these generation parameters, we see
that the BART SL model obtains better ROUGE-
L (1.14 points) than the one presented by Lewis
et al. (2020). We attribute this gain to the usage of
Scheduled Sampling, leading to more robustness
in generation than a model trained using Teacher
Forcing.

We can see in Table 6 that the models trained
using Reinforcement Learning (RL) perform sig-
nificantly better than BART SL (the baseline), with
a 10.62 improvement on ROUGE-L for ELI5 test
set. We can also see that the models obtain signifi-
cantly better results, than the baseline, on our test
dataset (EXPT-II), achieving as high as 14.89 im-
provement on ROUGE-L. The RL-based models
achieve better scores on our dataset as compared
to ELI5 test set, however, we fail to see such sig-
nificant gains for BART SL. We present a possible
reason for this in Section 6.3. Also, we see that
the scores for EXPT-II and EXPT-III are closer for
BART SL, in comparison to the RL-based models.
This indicates two things-

1. BART-SL model generates relevant (to the
query) content (irrespective of the document-
random or true). But, the RL models actually
utilize the provided document. This shows
that the RL models truly learn the task of QfS,
justifying the significant boost (∼ 10 points).

2. While Krishna et al. (2021) point out several
shortcomings of the ELI5 dataset, it can be
seen that, using the dataset, RL models can
learn to summarize according to a query given
the true document.

5.2 Human Evaluation Results
We present human evaluations on Fluency and Cor-
rectness of our models. We use two annotators for
human evaluation. We ask them to rate the Flu-
ency on a Likert Scale (“Very Poor”, 0 to “Very
Good”, 4). For Correctness, we follow a YES (1)
or NO (0) marking scheme. We randomly sample
50 instances from the RQFT dataset, and present
the generated summaries, and the human written
summaries to the annotators. The summaries are
anonymized, such that the evaluators have no un-
derstanding of the source: human written or auto-



Model
ELI5 dataset Our dataset (EXPT-II) Our dataset (EXPT-III)

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Fan et al. (2019) 28.9 5.4 23.10 28.82 6.97 25.41 23.13 4.39 20.91
Lewis et al. (2020) 30.6 6.2 24.3 - - - - - -

BART SL (b) 29.68 5.89 25.44 29.67 7.88 26.40 23.32 4.51 20.96
BART R 38.93 8.05 34.54 43.08 15.30 39.08 24.38 4.40 22.17

BART R-SEM 38.02 6.56 33.13 44.12 15.15 40.39 25.39 4.51 23.06
BART R-B 39.52 8.25 34.92 43.46 15.67 39.29 26.01 4.88 23.45

BART R-SBERT 36.9 6.36 32.8 42.93 15.10 39.56 25.41 4.47 23.19
BART R-SFPEG 39.40 6.92 34.10 45.52 16.83 41.29 25.89 4.99 23.50

BART SFPEG 34.76 5.96 29.66 44.30 15.79 40.39 25.82 4.63 23.61

Table 6: Quantitative comparison of our models. For the purposes of comparison, we also provide the results
obtained by Fan et al. (2019) and Lewis et al. (2020). We use ROUGE metrics, ROUGE-1 (R-1), ROUGE-2 (R-2),
and ROUGE-L (R-L) to compare the models on both the ELI5 test dataset (EXPT-I) and RQFT (EXPT-II: with
true document and EXPT-III: with random document). We use BART SL as the baseline (denoted by b) to judge
the efficacy of training models under the Reinforcement Learning framework. BART SL is our implementation of
Lewis et al. (2020), hence row 3 represents the results for Lewis et al. (2020) for EXPT-II and EXPT-III.

Model EXPT-I EXPT-II

BART SL 77.32 95.78
BART R 234.29 234.02

BART R-SEM 239.98 233.84
BART R-B 241.27 235.89

BART R-SBERT 237.09 235.19
BART R-SFPEG 239.23 232.73
BART SFPEG 239.19 234.93

Table 7: Length of generations (# of words) from the
models. We use NLTK to tokenize the generations. We
provide an analysis on how RL models utilize more
tokens for better summarize in Section 6.1.

matically generated or even the generator model.
Table 8 presents the results generated from human
evaluation. We can see a similar trend as in Ta-
ble 6: BART R-SFPEG model obtains the highest
Fluency and Correctness.

We also compute the IAA scores for Fluency and
Correctness for the evaluations of all the models.
For Fluency, we map the scores to ratings: Pos-
itive (3 and 4), Neutral (2) and Negative (0 and
1), and compute the fraction of times the anno-
tators agree on the ratings. We observe that the
annotators agree almost always, with a minimum
agreement of 0.88 (for BART SL). For Correctness,
we use Cohen Kappa score to report the agreement.
We observe moderate agreement (McHugh, 2012),
with a minimum score of 0.61 (for BART R-SEM).
Through hypothesis testing, we validate that BART

R-SFPEG model is significantly better than the
BART SL model. We find that BART R-SFPEG is
significantly more correct than BART MLE, with
a 10% significance level (p value = 0.077). In
terms of Fluency, BART R-SFPEG is significantly
more fluent than BART SL model with a 1% sig-
inificance level (p value = 0.00012).

Model Fluency Correctness

BART SL 3.08 / 3.12 0.26 / 0.28
BART R 3.34 / 3.30 0.38 / 0.32

BART R-SEM 3.26 / 3.23 0.24 / 0.18
BART R-B 3.24 / 3.26 0.28 / 0.26

BART R-SEM 3.28 / 3.27 0.22 / 0.26
BART R-SFPEG 3.46 / 3.48 0.48 / 0.44
BART SFPEG 3.06 / 3.04 0.28 / 0.26

Human 4.0 / 3.98 1.0 / 1.0

Table 8: Results from human evaluations of the machine
generated text. The scores are reported in A / B format;
where A is the average score computed from ratings by
Annotator 1 and B is the average score computed from
ratings by Annotator 2.

6 Analysis

Our initial analyses on the ELI5 test set revealed a
recurring problem: our models (all of the 7 models)
would copy the query into the generated summary.
On further probing, we discovered that this cor-
related highly with the absence of content in the



document relevant to the given query. Frequent
occurrences motivated us to create a manually cu-
rated test set for reliable analyses. In this section
we present a detailed analysis of our models. In
Section 6.1 we present a comparative analysis of
all the models, in Section 6.2 we analyse the mod-
els when multiple queries are posed on the same
document and in Section 6.3 we analyse our mod-
els when the document is replaced with a random
document. Our analysis reveals that the RL models
actually learn QfS as compared to the BART-SL
model, which has the tendency to ignore the pro-
vided document. This justifies the significant boost
(∼ 10 points) in performance.

6.1 Comparative Analysis
All the Reinforcement Learning (RL) based models
generate self-contained, easy to follow summaries.
On the other hand, the BART SL model generates
very crisp summaries, too frugal with the amount
of words (Table 7). The RL-based models present
a lot of relevant material in the generated sum-
mary, but the BART SL model jumps straight to
the point. While the latter can be usually desired,
the tendency to be too frugal with words can leave
the user wanting for more. We include an exam-
ple in Appendix A to highlight the differences.
We believe that this difference is a result of using
ROUGE as a reward signal. ROUGE leads the
model to choose more of the relevant content while
training to increase the reward. However, we also
observe a downside to this: as ROUGE rewards
same word stems, we see multiple tokens with the
same stem, discussed in Appendix A. Although
the BART-SFPEG model does not use ROUGE as
a reward, we see that it also has verbose genera-
tions. This is also understandable: choosing more
relevant content increases semantic match too.

We also note that BART SL model hallucinates
(Ji et al., 2022) significantly more than all the RL-
based models, inspite of the crispness, which con-
tributes to lower Correctness score (Table 8). We
highlight this phenomenon in Appendix A.

6.2 Multiple Queries Same Document
We also test abilities of the models when they are
probed with different queries on the same docu-
ment. We observe that the Reinforcement Learning
(RL) based models perform better in this arena too.
Appendix B includes an example highlighting the
difference between the BART SL and an RL-based
model. We see that, although the BART SL model

manages to generate different summaries for the
two queries, they are either hallucinated or mostly
unrelated to the query. Whereas, the RL-based
model manages to understand the necessities of the
queries, and generates summaries for them.

6.3 Analysis for Random Document

Section 5.1 motivates the need for this experiment.
Quantitative results show that BART SL does not
have as significant a drop in performance as the
Reinforcement Learning (RL) based models when
we use a random document. While analyzing the
generations, we observe that the BART SL model
ignores the document. Although the generated text
stays relevant to the query, it cannot be stated as
a query focused summary of the document, as the
content is absent in the document. This leads us
to believe that the BART SL does not truly learn
to solve QfS, which also explains the relatively
insignificant change in scores when the quality of
the dataset is improved (ELI5 test set vs RQFT,
Table 6).

We include an example of generation from ran-
dom document for BART SL and an RL-based
model in the Appendix C. We see that the RL-
based model generates content from the document,
based on whatever it understands from the query,
which strongly confirms our belief that the RL-
based models learn a much better solution to QfS.

7 Conclusion and Future Work

In this work we present Reinforcement Learning
(RL) based models for the task of QfS. We observe
that these models perform significantly better than
a model, with the same architecture, trained using
Supervised Learning (SL). We also observe that the
RL-based models generate summaries with much
lesser hallucination than the Supervised Learning
model. Additionally, we also resolve the conflict of
employing RL in Transformers with Teacher Forc-
ing, by utilizing Scheduled Sampling. We present a
novel reward derived using the Cluster Hypothesis.
Through the work, we also contribute two datasets
for the community: RPEDT, to train passage em-
bedding models, and RQFT, a gold standard test
dataset for analyses of QfS models.

The takeaway from our work is that RL is a better
framework to tackle QfS. We observe that RL helps
the model learn QfS much better than SL, even with
straightforward lexical rewards, such as ROUGE.
Additionally, we also conclude, from results, that



Cluster Hypothesis leads to much better semantic
feedback than competing passage embedders.

Training RL models for long horizon (higher
generation length) poses challenges in terms of ex-
ploration of action space and temporal credit/blame
assignment (Jiang and Agarwal, 2018). In our fu-
ture work, we would focus on tackling this chal-
lenge. Our motivation is that it would reduce the
convergence time, and provide even better results.

8 Ethics Statement

We present two new datasets in our work: RPEDT
and RQFT. While curating RQFT, we attempt to
refrain from including any sensitive topic into our
dataset, based on the knowledge of the curators and
the quality check annotators. However, we cannot
guarantee such claims for RPEDT. We understand
that the passage embedding models trained on the
dataset can learn biases and stereotypes present
in RPEDT. Hence, we urge the community to use
our passage embedding models and RPEDT with
caution.

We utilize a total of 4 annotators to conduct qual-
ity check experiments and human evaluation. 2
annotators are post-graduates and the other 2 are
under-graduates in the Computer Science depart-
ment of an organization (medium of communica-
tion: English). The annotators have been paid suffi-
ciently, according to the geographical location, on
an agreed upon rate.

9 Limitations

The most striking limitation of our work is the
necessity of huge computation power, which has
restricted us from an extensive experimentation on
hyperparameter search. In light of such limitations,
we report results from a single run. And we also
acknowledge the presence of hyperparameter con-
figurations that can lead to better performance of
the models. However, we note that such a limi-
tation does not mirror during inference, and our
models can be cheaply (relatively) deployed for
public use.

Another limitation of our work is that the pas-
sage embedding models have been trained on rela-
tively limited data gathered from only one source
(Reddit). We acknowledge the fact that training
on varied sources can lead to better representation
of passages, however, keeping time and resource
constraints in mind, we train our models on data
gathered from only one source.
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A Comparison of Generations from the
Models

We present a randomly sampled instance from our
test dataset in Table 18: we include the query and
the generations from all six models, we omit the
document for readability.

We can see that the BART SL model generates a
very crisp response to the query, stating what pop-
ulation growth is. However, it fails to respond to
the other aspect of the query: What does popula-
tion change indicate for an area? It also moves
on to generate an ill-stated hallucinated (Ji et al.,

2022) example (absent in the document). We note
the absence of such hallucination in the Reinforce-
ment Learning (RL) models. However, we note
that only 3 of the 5 RL-based models are able to
incorporate both aspects of the query. We also note
digressions in the RL-based models, with BART R-
SEM generating significantly more unrelated con-
tent. We observe that this is a general trend: BART
R-SEM often generates content very haphazardly.
We hypothesize that this is caused by using an ap-
proximate semantic similarity scheme as a reward
signal.

We also note repeated generations (not neces-
sarily consecutive) with same word stems (such
as percent, leading to repeated percentage in the
BART R-SFPEG generation) in the RL-based mod-
els, trained using ROUGE as a reward.

B Comparison of Models for Multiple
Queries on Same Document

We present two randomly sampled instances, two
queries with the same document, from our dataset
in Table 19: we include the query and the genera-
tions from BART SL and BART R model only, we
omit the document for readability.

For the first query, BART SL hallucinates that
Green Revolution has not helped India, given that
the document states otherwise. BART R model
picks up the key arguments from the document and
indeed presents a decent summary pertaining to
Green Revolution’s help to India.

For the second query, BART SL ignores the
query altogether and generates some related sen-
tences only. While BART R picks up key infor-
mation related to Buffer Stock and articulates a
satisfactory summary again.

C Comparison of Models for QfS with
Random document

We present two random samples from our test set
where the documents have been replaced by an-
other random, unrelated document, in Table 20. We
see that for the given query, BART SL and BART
R have unrelated (and different) documents. BART
SL manages to generate content very much related
to the query, which indicates an unfair strong in-
fluence of the query on the generation, so much so
that the document gets ignored. However, BART
R generates content from the document indicating
that document indeed has appreciable influence on
its generation, which is the ideal case in QfS.
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D Results on DebatePedia

We generate result on the test set of DebatePedia
using our best RL model: BART R-SFPEG. We
utilize the model trained on ELI5 directly to gen-
erate results on the test set of DebatePedia. We
observe that we perform atleast as good as mod-
els trained/fine-tuned on DebatePedia, proving the
generalization of our approach.

Model R-1 R-2 R-L

BERTABS(Liu and Lapata,
2019)

13.3 2.8 2.8

BART (Lewis et al., 2020) 21.4 6.3 18.4
LQSUM (Xu and Lapata,
2022)

23.5 7.2 20.6

BART R-SFPEG 24.2 6.9 20.7

Table 9: Results on the DebatePedia test set. R-1:
ROUGE-1, R-2: ROUGE-2, R-L: ROUGE-L

E Time and Space Complexity Analysis

We present an analysis for the attention layer only,
as that is the bottleneck for space utilization and
time consumption, as input length increases. An
L-layered decoder utilizes O(n2) time and space
for predicting the next token provided the previous
n tokens. If the decoding is done without Teacher
Forcing, that is nth token is generated and then
passed through the decoder as an input to gener-
ate the (n + 1)th token, then the space and time
required is:

O(12 + 22 + 32 + · · ·+ n2) = O(n3)

On the other hand, if we employ the two pass
decoding using Scheduled Sampling, the time and
space utilized is O(2 ∗ n2) = O(n2).

F RPEDT Scraping Scheme

We generate RPEDT by scraping posts (queries)
and comments (answers) from 39 subreddits. Table
21 presents the list of the subreddits we use to
generate the dataset. We gather data within the
timeframe: July, 2011 and July, 2022. We set the
following criteria to filter the gathered posts and
comments:

1. We consider a post (and related comments)

gatherable if and only if the post has a score3

of atleast 2.

2. We consider a comment (under a gatherable
post) if and only if the comment has a score
of atleast 2.

After scraping the dataset, we discard posts with
no associated comments and comments with less
than 50 words4. Finally, we divide the dataset into
train and test sets as follows: we accumulate all
the posts (and associated comments) from the ex-
plainlikeimfive subreddit into the test set, and use
the rest for training.

G Architecture Details

QfS: We train a Sequence-to-Sequence model to
generate summaries, given the query and the docu-
ment. Our trained model uses BART (Lewis et al.,
2020) as the backbone, to obtain representations
of the query and document, and finally generate
the summary. Figure 1 illustrates the input to and
output from the architecture. Query and document
are concatenated and fed to the encoder, and we
expect the decoder to generate the summary. We
use pretrained BART-large model as the starting
point for our QfS model.

Table 10 reports statistics on the length of inputs
and outputs. Accordingly, we increase the posi-
tional embeddings’ length of the BART model in
our implementation to 1568 (approximately equal
to µvalid + 2σvalid, where µ and σ denote average
and standard deviation of the encoder input length
respectively, Table 10). The first 1024 places of
the new positional embeddings are initialized using
the positional embeddings of the pre-trained BART
model.
Passage Embedding: We train an encoder-only
model to generate passage embeddings. Specifi-
cally, we fine-tune the BERT-large model (Devlin
et al., 2019) to output passage embeddings through
the [CLS] token. Figure 2 depicts the dual encoder
scheme used to fine-tune the BERT model. We
use Equation 4 and 5 to train the model. In addi-
tion to the passage similarity task, we also employ
Masked Language Modelling (MLM) task during
fine-tuning. We observed that the fine-tuned model
experienced an increased validation perplexity for
MLM, as compared to the pretrained BERT-large

3We compute score as the difference between the upvotes
and downvotes, score = upvotes− downvotes

4We use SpaCy to tokenize the comments.

https://spacy.io
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Figure 2: Dual Encoder schematic for training the Pas-
sage Embedding model.

model. We mirror the schemes for MLM train-
ing suggested by Devlin et al. (2019), during fine-
tuning. We keep the default maximum length of
BERT (512 tokens), as we see that the average gen-
erations from the QfS model are expected to be
∼ 150 tokens.

H Training Details for QfS

We use the BART-large (12 layers, 16 attention
heads, 1024 dimensional embedding) pretrained
model as our starting point. We train on 8 x A100
machines, with all the models taking a total time
of 21 days to be trained till convergence. Table
11 outlines the hyperparameters used for training.
We train all the models without any explicit learn-
ing rate scheduler, and found this to lead to faster
convergence in our experiments.

I Training Details for Passage Embedding

We fine-tune both BERT-base and BERT-large
(both cased) pretrained models. We train on 2 x
A100 machines, with the base model taking a total
of 64 hours and the large model taking a total of
186 hours. Table 12 lists the hyperparameters used

Split Statistic Average Std. Dev.

Train
Enc Inp Len 1120.06 260.14
Dec Out Len 149.07 167.09

Valid
Enc Inp Len 1122.85 250.48
Dec Out Len 147.08 165.55

Test
Enc Inp Len 1123.07 255.31
Dec Out Len 147.24 162.62

Table 10: Statistics of the lengths of inputs (Enc Inp
Len) to the encoder (query + document, concatenated)
and outputs (Dec Out Len) from the decoder (sum-
mary). The statistics are obtained after tokenization
using BART tokenizer.

Hyperparameter Value

Max Epochs 5
Learning Rate 2−5 (SL) / 5−7 (RL)

Effective Batch Size 128
Max Sequence Length 1568

Optimizer Adam

Table 11: Values of various hyperparameters used while
training QfS models. Effective batch size is the number
of samples passed through the model before parameter
updates. SL: Supervised Learning, RL: Reinforcement
Learning.

for training. We use the combined loss (Passage
Similarity loss, Equation 5, + MLM loss) to train
the models. We observe that models fine-tuned
for a single epoch perform best on the test set of
RPEDT. Appendix J presents a comparison of the
two trained models, in terms of the downstream
task performance.

Hyperparameter Value

Max Epochs 2
Learning Rate 1−6

Effective Batch Size 4096
Max Sequence Length 512

Optimizer Adam

Table 12: Values of various hyperparameters used while
training Passage Embedding model. Effective batch size
is the number of samples (positive labelled instances
+ in-batch sampled negative labelled instances) passed
through the model before parameter updates.



J Bert-large vs BERT-base for Passage
Embedding

We compare BERT-large and BERT-base, as pas-
sage embedding models, based on the quality of the
models in the downstream task of QfS. We use the
fine-tuned passage embedding models to reward
generated summaries, on how similar they are to
the ground truth summaries, while training the QfS
model using Reinforcement Learning. Table 13
presents the results obtained from two QfS models:
BART R-SFPEG-L (reward: ROUGE + SFPEG
from the BERT-large model) and BART R-SFPEG-
B (reward: ROUGE + SFPEG from the BERT-base
model). We observe that BERT-large led to signif-
icantly better results, and hence proceeded to use
BERT-large fine-tuned passage embedding model
for further experiments, such as human evaluation,
in our work.

Experiment Model
Metrics

R-1 R-2 R-L

EXPT-I
M-I 39.52 6.92 34.92
M-II 38.74 6.27 33.50

EXPT-II
M-I 45.52 16.83 41.29
M-II 43.94 15.42 40.06

Table 13: Comparison of performance of BART R-
SFPEG-L (M-I) and BART R-SFPEG-B (M-II) for
EXPT-I and EXPT-II.

K Details on RQFT Curation and
Domains

We curate the dataset from two sources- (i)
Wikipedia and (ii) high school textbooks. While
preparing samples from Wikipedia, we manually
copy text from the website, form queries on the
text data, and write a summary based on the query.
High school textbooks contain chapters followed
by open-ended questions on concepts within the
chapters. We use the questions at the end of the
chapter to form our dataset. The answers to the
questions are also freely available from online
sources, which aid students in their exams. We
create <query, document, summary> triplets by (a)
Copying material from the chapter (relevant to the
query) and (b) Copying the answer to the question
from an online source (the curator verifies whether
or not the answer is correct by reading the question
and the extracted document). While following this

process, we noted that multiple questions could
be answered from consecutive paragraphs of the
chapters. Using this, we copied material relevant to
multiple queries from the chapter to form a single
document, ensuring absence of topic centralization
in RQFT (Baumel et al., 2016). As these were
consecutive paragraphs, coherence was trivially en-
sured.

We construct the dataset from Wikipedia and
High School textbooks. The domains from
Wikipedia involve: POLITICS, FAMOUS PER-
SONALITY, COUNTRY, VIDEO GAME and TV
SERIES. The domains from High School textbooks
include SCIENCE, SOCIAL SCIENCE, BIOL-
OGY, BUSINESS STUDIES, GEOGRAPHY, HIS-
TORY, POLITICAL SCIENCE and SOCIOLOGY.
Effectively the dataset includes samples from 13
domains.

L Quality Check: RQFT

We report quality check results performed by two
independent annotators. We design the quality
check framework as follows:

1. Each annotator is presented with 30 <query,
document, summary> triplets, of which 10
samples (random-samples) are such that the
summary does not correspond to the query and
document. We keep 5 from random-samples
and 10 from the rest 20 (correct-samples)
common between the two annotators to com-
pute the Cohen Kappa score.

2. Each annotator is asked to mark YES (score
1) or NO (score 0) to the following questions:

(a) “Is the query relevant to the document?”
(ANN-1): This ensures that the dataset
contains queries that are synchronous
with the paired document. The ideal
score is 1 for both random-samples and
correct-samples.

(b) “Does the summary answer the query
while being faithful to the document?”
(ANN-2): This ensures that the written
summary is indeed correct and is not
hallucinated (Ji et al., 2022). The ideal
score is 0 for random-samples and 1 for
correct-samples.

(c) “Is the summary grammatically correct,
fluent, and coherent?” (ANN-3): This
ensures the readability, fluency, and



grammatical correctness of the written
summary. The ideal score is 1 for both
random-samples and correct-samples.

Table 14 presents the results obtained from the
quality check experiment. The values represent
the average score the annotators assigned for the
annotations: ANN-1, ANN-2, and ANN-3, over the
30 samples. Using the 15 common samples, we
observe a perfect Cohen Kappa (1.0) between the
annotators.

ANN-1
ANN-2

ANN-3
+ −

Annotator 1 1.0 0.95 0.0 0.95
Annotator 2 1.0 1.0 0.0 1.0

Table 14: Quality scores assigned by annotators 1 and
2 for ANN-1, ANN-2, and ANN-3. +: correct-samples,
−: random-samples.

M Quality Check: RPEDT

In order to validate the quality of RPEDT, we pro-
vide <Q, P1, P2> triplets to annotators, where P1

and P2 answer the query, Q. We ask them to rate
how well does each passage (P1 and P2) answer
the query, on a scale of 0 (bad) to 2 (good). We
employ two annotators for the task, who rate a total
of 707 triplets (79 common). Table 16 presents the
results from annotation. We measure agreement by
noting the number of times they rate passages with
the same score. We observe that annotators agree
78.4% on the rating for P1 and 86% on the rating
for P2.

Score Criteria

0
Passage is not related to the topic,

or does not discuss anything
relevant to the question

1
Passage partially answers

the question

2
Passage completely answers

the question

Table 15: Annotation guidelines for the quality check
of RPEDT.

RP1 RP2

Annotator 1 1.79 1.73
Annotator 2 1.87 1.86

Table 16: Average ratings provided by the two annota-
tors for P1 (RP1 ) and P2 (RP2 ), higher is better.



Query: Why do stars twinkle? And, why don’t planets twinkle?

document: The twinkling of a star is due to atmospheric refraction of starlight. The starlight,
on entering the earth’s atmosphere, undergoes refraction continuously before it reaches the earth.
The atmospheric refraction occurs in a medium of gradually changing refractive index. Since the
atmosphere bends starlight towards the normal, the apparent position of the star is slightly different
from its actual position. The star appears slightly higher (above) than its actual position when
viewed near the horizon. Further, this apparent position of the star is not stationary, but keeps on
changing slightly, since the physical conditions of the earth’s atmosphere are not stationary, as was
the case in the previous paragraph. Since the stars are very distant, they approximate point-sized
sources of light · · ·

Summary: Stars appear to twinkle due to atmospheric refraction. The light of a star after the entry
of light into the earth’s atmosphere undergoes refraction continuously till it reaches the surface
of the earth. Stars are far away. So, they are a point source of light. As the path of light coming
from stars keeps changing, thus the apparent position of stars keeps changing and the amount of
light from stars entering the eye keeps twinkling. Due to this, a star sometimes appears bright and
sometimes dim, which is the effect of twinkling. The planets are much nearer to the earth than the
stars and because of this, they can be considered as a large source of light. If a planet is considered
to be a collection of a very large number of point sources of light, then the average value of change
in the amount of light entering the eye from all point-size light sources is zero. Due to this the
effect of twinkling is nullified.

Table 17: Example of a randomly sampled <query, document, summary> triplet from the annotated dataset.



Query: What is population growth? What does population change indicate for an area?

BART SL: Population growth refers to the change in number of inhabitants of a territory during a
specific period of time . It can be expressed either in absolute numbers or in terms of percentage
percentage of the total population . For example , let ’s say you have a region with a population of
1, 000 people . Over the next 10 years , there will be an increase in population growth as more people
move in and out of that area . This means that the population will increase by 10 % .

BART R: Population change refers to the change in number of inhabitants of a territory during a
specific period of time. This change may be positive as well as negative. Population growth occurs
not only by increasing births rate but also due to decreasing death rate. There are two ways by which
the population size changes – births and deaths. The crude birth rate (CBR) is a simple method of
measuring the rate of births in a particular region. It can be expressed either in terms of absolute
numbers or in numbers of live births per thousand of population. Similarly, the mortality rate is
an important indicator of the region’s demographic structure, social advancement and levels of its
economic development.

BART R-SFPEG: Population change refers to the change in number of inhabitants of a territory
during a specific period of time. This change may be positive as well as negative. Population growth
occurs not only by increasing births rate but also due to decreasing death rate.Population change is an
important indicator of economic development, social upliftment and historical and cultural background
of the region. It can be expressed either in absolute numbers or in terms of percentage. Percentage is
the percentage of population in a particular geographical area that is increasing or decreasing over a
time period as a function of its demographic structure, socio-economic advancement and other factors
such as its geographical location, population density, age, sex ratio, etc. (%)Population growth is a
dynamic process that affects the population size over time as it changes from one place to another.

BART SFPEG: Population change refers to the change in number of inhabitants of a territory during a
specific period of time. This change may be positive as well as negative. Population growth occurs not
only by increasing births rate but also due to decreasing death rate.Population change is an important
indicator of economic development, social upliftment and historical and cultural background of the
region. It can be expressed either in absolute numbers or in terms of percentage. There are two ways
by which the population size changes – births, deaths and migration. The crude birth rate (CBR) is
expressed as the ratio of live births in a year per thousand of population. Conversely, the mortality
rate is a simple method of measuring mortality of any area.

BART R-SEM: By and large mortality rates are affected by the region’s demographic structure,
social advancement and levels of its economic development. Population growth occurs not only by
increasing births rate but also due to decreasing death rate. · · · When people move from one place
to another places, their population may increase or decrease depending on their place of origin and
the place they move to is called the Place of destination. Population change refers to the change in
the total population of a territory during a specific period of time. Population change is an important
indicator of economic and social development, socio-economic status and historical and cultural
background of the territory.

BART R-B: Population change refers to the change in number of inhabitants of a territory during a
specific period of time. This change may be positive as well as negative. Population growth occurs
not only by increasing births rate but also due to decreasing death rate. There are different ways by
which the population size changes in a region depending on the region’s demographic structure, social
advancement and levels of its economic development. It can be expressed either in absolute numbers
or in terms of percentage. The crude birth rate (CBR) is a simple method of measuring mortality
of any area and it is expressed in numbers of live births per thousand of population for a particular
region.

Table 18: Comparison of generations from all the trained models. The query has two aspects, color-coded by teal
and violet. Text-segments in generations are colored accordingly based on which part of the query they answer.



Query One: How has green revolution helped
India, if at all?

Query Two: Why is a buffer stock created by the
government?

BART SL: I do n’t think the green revolution
has helped at all . The food insecure people are
disproportionately large in some regions of the
country because of poverty , tribal and remote
areas , regions more prone to natural disasters etc
. In fact , the states of Uttar Pradesh (eastern and
south - eastern parts of India ) , Orissa , Andaman
and Nicobar Islands , and West Bengal have been
experiencing famine since the 1970 ’s .

BART SL: If there is a shortage of food in a
region , the government can buy it from the market
at a lower price than what people are willing to
pay for it , and then distribute it to the people who
need it . This way , they do n’t have to worry
about people going hungry all the time .

BART R: The food insecure people are dispro-
portionately large in some regions of the coun-
try, such as economically backward states with
high incidence of poverty, tribal and remote areas,
regions more prone to natural disasters etc. Af-
ter Independence, Indian policymakers adopted
all measures to achieve self-sufficiency in food
grains. India adopted a new strategy in agricul-
ture, which resulted in ‘Green Revolution’, espe-
cially in the production of wheat and rice. The
farmers are paid a pre-announced price for their
crops. This price is called Minimum Support
Price (MSP). The MSP is declared by the gov-
ernment every year before the sowing season to
provide incentives to farmers for raising the pro-
ductivity of these crops and to encourage them
to increase their production in order to reduce
their dependence on imported foodgrains (such
as wheat, rice, maize, sugar, pulses, oilseeds etc.).
In the mid-1960s, wheat was the most productive
crop in India and it was grown in a large number
of small and medium-scale farms in rural areas
and in small towns and villages. These small
farms were able to produce large quantities of
foodgrain and the farmers were rewarded with a
subsidy of Rs 1,000 per acre per hectare

BART R: Since the advent of the Green Revolu-
tion in the early-1970s, the country has avoided
famine even during adverse weather conditions.
India is aiming at Self-sufficiency in Foodgrains
since Independence. The attainment of food secu-
rity therefore involves eliminating current hunger
and reducing the risks of future hunger. After
Independence, Indian policymakers adopted all
measures to achieve self-sufficient in food grains.
This system has two components: (a) buffer stock,
and (b) public distribution system.Buffer Stock is
the stocks of grains procured by the government
through the Food Corporation of India (FCI). The
FCI purchases wheat and rice from the farmers in
states where there is surplus production. These
grains are sold to the consumers at a price lower
than the market price of these grains, which is
known as the Minimum Support Price (MSP). In
the case of wheat or rice, it is sold at the MSP
of Rs 2,000 per tonne and in case for rice at Rs
1,500/tonne of rice the price is Rs 3,200/towards
Rs 4,300/tons for the same amount of grain. There
are a buffer price to be paid to farmers for procur-
ing the grains at these prices.

Table 19: Comparison of BART SL and BART R in the case of multiple queries over the same document. Text in
red highlights the hallucinated segment in the generation.



Query: Why do organisms need water?

Document: Primary activities include agriculture, animal husbandry, forestry, fishing, mining and
quarrying, etc. Secondary activities include manufacturing industry, building and construction
work, etc. Tertiary activities include transport, communications, commerce, administration and
other services. The proportion of people working in different activities varies in developed and
developing countries. Developed nations have a high proportion of people in secondary, and tertiary
activities. Developing countries tend to have a higher proportion of their workforce engaged in
primary activities. · · ·

BART SL: Water is an essential part of the life cycle of every living thing . It ’s what keeps them
alive and allows them to grow and reproduce . Without it , they would n’t be able to do all the
things they do . For example , water is essential for photosynthesis , which is the process of turning
food into energy that can be used by other organisms .

Document: During 1998, tropical cyclones formed within seven different tropical cyclone basins,
located within various parts of the Atlantic, Pacific, and Indian Oceans. During the year, a total of
125 tropical cyclones had formed, with 72 of them have been named by various weather agencies
when they attained maximum sustained winds of 35 knots (65 km/h, 40 mph). The strongest
tropical cyclones of the year are Zeb, Ron and Susan which peaked with a pressure of 900 hPa
(26.58 inHg). Hurricane Mitch of late · · ·

BART R: The most notable storms were Hurricane Georges and Hurricane Mitch. Four Category 5
tropical cyclones were formed in 1998. Although a semi-permanent anticyclone persisted through
the summer of 1998, causing most of the storms to remain at sea, some storm did threaten the Baja
California Peninsula due to a weak ridge of high pressure in the mid-latitudes, and the subtropical
low pressure area over the central and eastern Pacific Ocean (Pacific Oscillation (POW)). However,
the most powerful storms that formed during the season were the hurricanes and tropical depressions
(tropical storms). The most destructive storms of this year were hurricanes, which caused significant
damage and killed at least 11,000 people, making the system the second deadliest Atlantic hurricane
in recorded history, behind only the Great Hurricane of 1780. In the North Atlantic basin, it was
the deadliest hurricane season on record, with the damages amounting to $9.37 billion and $6.08
billion (1998 USD) in damage, respectively. The season had above average activity, featuring
a record-breaking 30 tropical storms, as well as a high number of hurricanes with a maximum
sustained winds of more than 111 mph (178 km/h).

Table 20: Comparison of BART R and BART SL for QfS from random document.

explainlikeimfive Showerthoughts NoStupidQuestions Lightbulb

tipofmytongue legaladvice Advice needadvice

answers TooAfraidToAsk AskReddit askscience

AskCulinary AskSocialScience AskEngineers TrueAskReddit

AskDocs CrazyIdeas explainlikeIAmA AskHistorians

askphilosophy ExplainLikeImCalvin cscareerquestions gamedev

engineering biology chemistry Physics

FanTheories gardening writing Survival

ReverseEngineering Health Cooking slowcooking

socialskills datascience nutrition

Table 21: List of subreddits used for scraping


