
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

FASTEDIT: LOW-RANK STRUCTURED REGULARIZATION
FOR EFFICIENT MODEL EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

When new knowledge emerges, it is crucial to efficiently update large language models
(LLMs) to reflect the latest information. However, state-of-the-art methods widely adopted
in the model editing community—such as MEMIT, EMMET, and AlphaEdit—suffer from
prohibitively slow editing speeds, often taking over 15 hours to sequentially edit 5,000
facts on models like LLaMA-3-8B, making real-time updates impractical, especially as
model scale increases. Moreover, they require extensive pre-computation to sample pre-
edit knowledge—a step that can take over 24 hours—severely limiting their deployability.
In this paper, we present FastEdit, a framework that leverages the intrinsic low-rank struc-
ture of FFN key spaces not only for speed but also for more effective editing. FastEdit
regularizes only the low-rank primary semantic subspace—where most pre-edit knowl-
edge resides—while leaving the remaining directions in the key space unregularized and
freely editable. This design channels edits into the unregularized subspace, thereby bet-
ter preserving pre-trained knowledge in the primary semantic subspace, and enables fast
computation via the Sherman–Morrison–Woodbury identity. On LLaMA-3-8B, FastEdit
completes 5,000 sequential edits within 4 hours and consistently achieves higher editing
accuracy and stability. Moreover, it requires only a small number of pre-edit samples,
drastically reducing preprocessing overhead. Our work shows that low-rank structure pro-
vides a principled way to balance editability, efficiency, and knowledge preservation.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in understanding and generating
human language (Brown et al., 2020; Touvron et al., 2023). Yet, their knowledge remains largely static after
training—updating even a single fact typically requires full retraining or incurs risks of corrupting unrelated
knowledge (De Cao et al., 2021; Mitchell et al., 2022a; Meng et al., 2022; Zhao et al., 2023). This rigidity
poses a fundamental challenge for applications in dynamic domains such as news, medicine, or education,
where models must adapt quickly and precisely to new information (Leike et al., 2023; Vellal et al., 2024).

To enable fine-grained control over model knowledge, recent work has introduced knowledge editing: tech-
niques that modify specific facts through localized weight updates while preserving general behavior (Meng
et al., 2023; Ramesh et al., 2024; Gupta et al., 2024b; Fang et al., 2025). While conceptually appealing,
these methods face two critical bottlenecks: computational inefficiency and practical infeasibility. Most
approaches rely on expensive optimization procedures—such as inverting large d × d matrices (d: hidden
dimension)—leading to O(d3) time complexity per edit (Gupta et al., 2024a; Li & Chu, 2025; Ma et al.,
2025). As a result, updating thousands of facts sequentially becomes impractical, especially for large-scale
models. Moreover, many methods depend on extensive pre-computation using large sets of pre-edit data to
estimate representation statistics. For example, collecting and processing samples for covariance estimation
on LLaMA-3-8B (Meta, 2024) can take over 24 hours, severely limiting deployability (Meng et al., 2022;

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

2023; Ma et al., 2025). These costs stem from treating edits as dense, unstructured operations, without
leveraging the underlying geometry of the model’s latent space (Aghajanyan et al., 2021; Yu & Wu, 2023).

In this work, we ask: Can we design a model editing framework that is both principled and truly effi-
cient—enabling fast updates with low computational and pre-editing overhead, while better preserving ex-
isting knowledge?

We propose FastEdit, a structure-aware editing framework that exploits the intrinsic low-rank structure of
FFN key spaces (Aghajanyan et al., 2021; Yu & Wu, 2023). FastEdit leverages this structure by applying
regularization only to the primary semantic subspace—where most pre-edit knowledge resides—while leav-
ing its complementary subspace unregularized. This design channels edits into the unregularized directions,
helping to preserve core pretrained knowledge during editing, as validated by our safety metric. Computa-
tionally, it enables a closed-form update via the Sherman–Morrison–Woodbury (SMW) identity (Golub &
Van Loan, 2013), avoiding O(d3) matrix inversion and reducing per-edit complexity to O(dr2) time and
O(dr) space, where r is substantially smaller than d.

Our approach yields three key advances: (1) a principled, structure-aware regularization that safeguards
core knowledge while allowing flexible editing; (2) a highly efficient closed-form update that drastically
reduces computational overhead; and (3) a scalable, incremental solver for long-term knowledge integration.
Experiments on counterfactual and factual editing benchmarks demonstrate that FastEdit achieves superior
edit accuracy and stability, especially under massive sequential editing. On LLaMA-3-8B, it completes
5,000 sequential edits within 4 hours—compared to over 15 hours for full-rank baselines—while requiring
only a small number of pre-edit samples. These results highlight that exploiting the latent low-dimensional
structure of neural representations provides a viable pathway toward efficient, reliable, and scalable model
editing in practical settings.

2 RELATED WORK

Knowledge editing aims to update specific factual knowledge in pre-trained language models without full
retraining. Existing methods fall into two main paradigms. Training-based approaches construct tailored
datasets to train auxiliary components for parameter updates. MEND (Mitchell et al., 2022a) and InstructE-
dit (Zhang et al., 2024) employ meta-learning to train hypernetworks that predict localized parameter modifi-
cations. SERAC (Mitchell et al., 2022b) introduces a memory-augmented architecture with a scope classifier
and a counterfactual model to generate corrected outputs. T-Patcher (Huang et al., 2023) and MELO (Yu
et al., 2024) insert feedforward memory modules to store and retrieve new factual associations during in-
ference. Memory-based methods, a category of training-free editing, store edits externally and retrieve
them at inference time via similarity-based lookup (Dong et al., 2022; Zheng et al., 2023; Hartvigsen et al.,
2023; Jiang et al., 2024). These approaches decouple knowledge updates from model parameters, enabling
efficient and reversible edits, where in-context learning is usually utilized (Bi et al., 2025). Another training-
free paradigm is Locate-then-edit, which identifies and directly modifies knowledge-localized components
within the model (Wang et al., 2024; Park et al., 2025; Gupta et al., 2023; Li et al., 2024a; Gupta et al.,
2024b; 2025; Dai et al., 2025). ROME (Meng et al., 2022) pioneers this approach by modeling MLP lay-
ers as associative memory and applying causal tracing to guide rank-one weight updates. Subsequent work
generalizes and improves this framework: MEMIT (Meng et al., 2023) and EMMET (Gupta et al., 2024b)
extends ROME to batched editing for improved scalability, while AlphaEdit (Fang et al., 2025) constrains
edits within the null space of existing knowledge representations to better preserve model integrity.

Several benchmarks have been introduced to assess not only the local correctness of edits but also their
ability to support logical reasoning and generalization (Zhong et al., 2023; Gu et al., 2024a; Cohen et al.,
2024), providing a more comprehensive evaluation of knowledge editing methods. As knowledge editing
techniques advance and are applied in more complex or sequential scenarios, unintended side effects have

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

increasingly come to light. These include knowledge conflict and distortion (Li et al., 2024b), gradual and
catastrophic forgetting during large-scale editing (Gupta et al., 2024a), attenuation of edited knowledge over
time (Li & Chu, 2024), overfitting (Zhang et al., 2025) and failure in lifelong editing due to knowledge su-
perposition in parameter space (Hu et al., 2025). To mitigate such issues, regularization strategies have been
proposed. RECT (Gu et al., 2024b) restricts updates to a sparse subset of parameters, while PRUNE (Ma
et al., 2025) and AdaEdit (Li & Chu, 2025) apply singular value decomposition (SVD) to preserve the
dominant components of parameter changes, thereby enhancing stability and reducing interference.

3 PRELIMINARIES

We focus on the locate-then-edit framework for model editing, which aims to update specific knowledge
in large language models (LLMs) by identifying and modifying relevant parameters. Recent studies have
shown that factual knowledge is primarily stored in the feed-forward network (FFN) modules of Transform-
ers (Geva et al., 2021). Further analysis via causal mediation has revealed that editing the second linear
layer within the FFN of earlier Transformer blocks is particularly effective for knowledge update (Meng
et al., 2022). Concretely, each such linear layer, parameterized by a weight matrix W ∈ Rd̂×d, associates
input representations k ∈ Rd with output vectors v ∈ Rd̂, forming a key-value mapping that encodes
knowledge.

To update a piece of knowledge, we seek a new output vector v′ that produces the desired behavior. While
v′ can be learned via gradient-based optimization, the challenge lies in finding a parameter perturbation ∆
such that the updated layer W +∆ maps k to v′, i.e., (W +∆)k = v′. Crucially, we want this update to
retain the model’s original knowledge. That is, the perturbation ∆ should introduce minimal interference to
the model’s pre-existing behavior on unrelated knowledge.

To formalize this, suppose we have b0 pieces of preserved knowledge, encoded as input-output pairs
(K0,V0), where K0 ∈ Rd×b0 and V0 ∈ Rd̂×b0 satisfy WK0 = V0. Additionally, let b1 new knowl-
edge edits be represented by (K1,V1), with K1 ∈ Rd×b1 and V1 ∈ Rd̂×b1 . We then formulate the update
as an optimization problem that balances faithful editing with knowledge preservation (Meng et al., 2023):

∆ = argmin
∆̃

(∥∥∥(W + ∆̃)K1 −V1

∥∥∥2 + ∥∥∥(W + ∆̃)K0 −V0

∥∥∥2) . (1)

where ∥·∥ is the Frobenius norm. Using the fact that WK0 = V0, the second term simplifies to
∥∥∥∆̃K0

∥∥∥2.
Applying the normal equation (Lang, 2012), the closed-form solution (when the inverse exists) is:

∆ = argmin
∆̃

(∥∥∥(W + ∆̃)K1 −V1

∥∥∥2 + ∥∥∥∆̃K0

∥∥∥2)
= (V1 −WK1)K

⊤
1

(
K0K

⊤
0 +K1K

⊤
1

)−1
.

(2)

This solution provides a principled way to update model parameters while preserving existing knowledge,
forming the foundation of many recent model editing methods. However, the inversion usually takes a lot of
time with a time complexity of O(d3), particularly for large language models (large d).

4 METHOD

4.1 EFFICIENT REGULARIZATION VIA LATENT STRUCTURE MODELING

We build upon the locate-then-edit paradigm (Meng et al., 2022; 2023) and formulate knowledge editing as a
regularized optimization problem: modify the model weights W by an update ∆ to satisfy a new knowledge

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

constraint (K1,V1), while minimizing interference with existing knowledge K0. The objective is:

L = ∥(W +∆)K1 −V1∥2F + λ ∥∆K0∥2F , (3)

where λ > 0 is a regularization coefficient that balances the trade-off between satisfying the new knowledge
and minimizing interference with existing representations. A larger λ enforces stronger invariance over K0,
reducing side effects at the potential cost of underfitting the edit. The term ∥∆K0∥2F measures how the
update ∆ affects existing representations. However, directly using it in optimization can be computationally
expensive. To simplify this, we can naively apply the submultiplicative property:

∥∆K0∥2F ≤ ∥K0∥22∥∆∥2F , (4)

which decouples ∆ from K0 and leads to a scalar-weighted Frobenius norm. While computationally ef-
ficient, this upper bound is structurally blind: it penalizes all directions of ∆ equally, regardless of their
semantic impact on the model’s latent space. To design a semantically aware and efficient regularizer, we
instead consider the expected influence of ∆ under a structured probabilistic model of the key distribution.

Low-Rank Plus Diagonal (LR+D) Factor Model. Specifically, we assume that the pre-editing hidden
representation k follows a low-rank plus diagonal (LR+D) structure (Fan et al., 2013), motivated by empir-
ical findings that Transformer representations often lie in a low-dimensional subspace (Aghajanyan et al.,
2021; Yu & Wu, 2023). We further justify the low-rank nature of these representations from a mathematical
perspective; see Appendix F.1 for a formal analysis. The model is given by:

k = µ+Uz+ ε, (5)

where µ ∈ Rd is the mean (assumed to be 0 after centering), z ∈ Rr0 is a low-dimensional latent variable
(r0 ≪ d) with E[z] = 0 and Cov(z) = I, U ∈ Rd×r0 captures dominant semantic directions (e.g.,
topics or relations), and ε ∼ N (0,D) represents isotropic or anisotropic noise with diagonal covariance
D = diag(d1, . . . , dd), independent of z. This model subsumes several important special cases. When
U = 0, it reduces to a diagonal-covariance Gaussian: k ∼ N (µ,D). Further, if D = σ2I, the covariance
becomes isotropic (C = σ2I), and the expected penalty E

[
∥∆k∥2F

]
becomes σ2∥∆∥2F , recovering the

scalar-scaled Frobenius norm in Equation 4.

Under this model, the expected regularization term in Equation 3 can be derived as:

EK0

[
∥∆K0∥2F

]
∝ Ek

[
∥∆k∥22

]
= Trace

(
∆⊤∆(UU⊤ +D)

)
,

See Appendix F.2 for a detailed derivation. This expectation reveals that the impact of ∆ is governed not
merely by its magnitude, but by its alignment with the underlying structure of the key space. Specifically,
edits that align with the semantic subspace spanned by U—i.e., directions of high data variance—have
greater influence on existing representations and are thus more disruptive. In contrast, perturbations in the
orthogonal complement U⊥—i.e., the null space of U⊤—affect lower-variance directions and incur less
interference. Consequently, the expectation implicitly encodes the geometry of the latent representation
space, assigning higher penalty to changes along semantically salient directions. Replacing the empirical
Frobenius norm ∥∆K0∥2F in Equation 3 with this expected regularizer leads to the modified objective:

∆ = argmin
∆̂

∥∥∥(W + ∆̂)K1 −V1

∥∥∥2
F
+ λ · Trace

(
∆̂⊤∆̂(UU⊤ +D)

)
. (6)

Letting R = V1 −WK1, the closed-form solution is given by:

∆ = RK⊤
1 M

−1, where M = K1K
⊤
1 + λ(UU⊤ +D). (7)

To compute M−1 efficiently, we decouple the static prior λ(UU⊤+D) from the dynamic edit term K1K
⊤
1 .

Let M0 = λ(UU⊤ + D). Since M0 is diagonal-plus-low-rank, its inverse can be precomputed once and
reused. Applying the Sherman–Morrison–Woodbury identity to M = M0 +K1K

⊤
1 yields

M−1 = M−1
0 −M−1

0 K1

(
Ib1 +K⊤

1 M
−1
0 K1

)−1
K⊤

1 M
−1
0 . (8)

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Because M−1
0 admits a structured form that avoids explicit d × d storage, all operations scale linearly in d

and depend only on the small edit rank b1. The per-edit time complexity is therefore O(dr0b1 + db21 + b31),
which is efficient when b1 ≪ d. A detailed derivation is provided in Appendix D.

Estimation of U and D. Given the low-rank plus diagonal (LR+D) structure in Equation 5, the population
covariance of a pre-editing key vector k is (see Appendix F.3 for a detailed derivation):

Cov(k) = E
[
(k− µ)(k− µ)⊤

]
= UE[zz⊤]U⊤ + E[εε⊤] = UU⊤ +D, (9)

Since the true covariance is unknown, we estimate this structure from the sampled pre-editing keys K0 ∈
Rd×b0 by computing the sample covariance Cdata =

1
b0−1 (K0−µ̂)(K0−µ̂)⊤, where µ̂ denotes the empirical

mean of the pre-editing keys. However, when b0 is small or the sampled keys are noisy, Cdata may provide
a poor estimate of the true latent structure, leading to unstable or semantically misaligned regularization.
To improve robustness, we incorporate a structural prior derived from the MLP down-projection weights
W, whose right singular vectors span the input directions of maximal variance for the MLP output. Let
Wdown = PSQ⊤ be its SVD, and let Vr = Q:,1:r0 ∈ Rd×r0 denote the top-r0 right singular vectors. We
define the prior covariance as:

Cprior = VrΛvV
⊤
r , (10)

where Λv is a diagonal matrix of prior weights (e.g., identity or squared singular values). To ensure numer-
ical compatibility, we normalize Cprior such that ∥Cprior∥F = ∥Cdata∥F . The fused covariance is:

Cfused = (1− α) ·Cdata + α ·Cprior, α ∈ [0, 1], (11)

where α = 0 recovers the data-driven estimate, and α = 1 uses only the prior. Given the fused covariance,
we compute its eigendecomposition Cfused = PΛP⊤, and set:

U = P:,1:r0Λ
1/2
1:r0,1:r0

, (12)

D = diag
(
Cfused −UU⊤) . (13)

Selecting the top-r0 eigenvectors is justified by the Eckart–Young–Mirsky theorem (Golub & Van Loan,
2013), which states that the truncated eigendecomposition provides the best rank-r0 approximation to Cfused
in the Frobenius norm. This ensures that UU⊤ captures the most significant shared variation in the key
space, while the diagonal D absorbs residual noise and idiosyncratic variations.

4.2 EFFICIENT SEQUENTIAL EDITING VIA PERIODIC SPECTRAL COMPRESSION

Real-world knowledge editing often occurs sequentially: new facts arrive in batches, requiring updates
without reprocessing all prior data. Let {(Kt,Vt)}Tt=1 denote a sequence of edit requests. At each step t,
we aim to satisfy (Wt−1 + ∆t)Kt = Vt (with W0 the initial weights), while preserving both previously
edited and pre-editing knowledge. This requires computing the inverse of the following matrix:

Mt =

t∑
i=1

KiK
⊤
i + λ(UU⊤ +D),

which generalizes the single-step matrix M in Equation 7. A straightforward approach would reap-
ply the Sherman–Morrison–Woodbury (SMW) identity using all accumulated keys K1:t = [K1, . . . ,Kt]

(K1:tK
⊤
1:t =

∑t
i=1 KiK

⊤
i). This results in a per-step computational cost of O(dr0t), which grows linearly

as the number of edits increases and as a result makes the update progressively more expensive. When
t becomes large—particularly as it approaches the dimension d of the input key space—the inversion of
SMW inner system scales as O(t3), causing the overall cost to approach O(d3) and effectively negating the
efficiency gains from the low-rank assumption.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

To maintain efficiency, we apply periodic low-rank compression: every τ incoming key vectors, we perform
SVD on the accumulated keys and retain only the top singular components that preserve most of the direc-
tional energy. Let Kcomp denote the compressed key matrix from previous cycles (or empty initially), and let
Kall = [Kcomp,Kbuff] be the full set of keys to compress, where Kbuff is the current buffer of unprocessed
keys. We compute the SVD Kall = USV⊤ and retain the largest r components such that

r = min

{
k :

∑k
i=1 σ

2
i∑r′

i=1 σ
2
i

≥ γ, k ≤ rmax

}
,

where σi are the singular values, r′ = rank(Kall), γ ∈ (0, 1] is the energy retention threshold, and rmax caps
the maximum rank to prevent unbounded growth (e.g., 3000). The compressed key matrix is then updated
as Kcomp ← U:,1:rS1:r,1:r, and the buffer is reset. The accumulated keys Kall is used in the SMW updates
at each step, ensuring per-step computational cost remains bounded at O(dr0rmax). The full procedure is
summarized in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We detail the language models, baseline editing methods, benchmark datasets, and evaluation metrics used in
our study. Full implementation details—including descriptions of baselines and datasets, hyperparameters,
and evaluation protocols—are provided in Appendix B. Our code is available at https://anonymous.
4open.science/r/FastEdit-SME.

LLMs and Baselines. We conduct experiments on three decoder-only language models: GPT2-XL (1.5B
parameters), GPT-J (6B parameters), and LLaMA3 (8B parameters), with key vector dimensionalities of
6,400, 16,384, and 14,336, respectively. These models differ in both architecture and training data, enabling
a comprehensive assessment of the generalization capability of editing methods across diverse large language
models. We compare against a range of state-of-the-art locate-then-edit baselines: MEMIT (Meng et al.,
2023), PMET (Li et al., 2024a), EMMET (Gupta et al., 2024b), AlphaEdit (Fang et al., 2025), RECT (Gu
et al., 2024b), PRUNE (Ma et al., 2025), and AdaEdit (Li & Chu, 2025). We exclude ROME (Meng et al.,
2022) as it corresponds to a special case of EMMET with batch size 1. Notably, most of these baselines
perform poorly under sequential editing settings (Thede et al., 2025). Following Fang et al. (2025), we adapt
all baselines to preserve previously edited knowledge, which substantially improves their performance (see
Appendix A). We integrate our low-rank regularization framework into three representative baselines that
employ distinct weight update rules: MEMIT, EMMET, and AlphaEdit. The resulting variants—denoted
MEMIT-F, EMMET-F, and AlphaEdit-F—are obtained by incorporating a low-rank constraint into their
respective parameter update formulations. Specifically, MEMIT-F implements the update rule in Equation 7,
while the adaptations for EMMET-F and AlphaEdit-F are detailed in Appendix A.

Datasets and Evaluation Metrics. We evaluate our method on two standard factual editing benchmarks:
ZsRE (Levy et al., 2017) and CounterFact (Meng et al., 2022). We adopt three core evaluation metrics: Effi-
cacy (Eff.*), which measures whether the edited fact is predicted correctly; Generality (Gen.*), which as-
sesses robustness to input paraphrases; and Specificity (Spe.*), which evaluates the preservation of unrelated
knowledge. On CounterFact, we additionally report probability-based variants of these metrics—denoted
Eff., Gen., and Spe.—following prior work (Meng et al., 2023; Fang et al., 2025). To further evaluate the
locality, we assess models’ general capabilities on the Stanford Sentiment Treebank (SST) (Socher et al.,
2013), a binary sentiment classification task from the GLUE benchmark. Performance on this task is re-
ported as accuracy, denoted by SST. For editing efficiency, the reported editing time spans from the first to
the last edit, excluding data and model loading as well as post-editing performance evaluation.

6

https://anonymous.4open.science/r/FastEdit-SME
https://anonymous.4open.science/r/FastEdit-SME

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

5.2 EDITING EFFICACY WITH LOW-RANK REGULARIZATION

To isolate the impact of our low-rank regularization—which applies regularization only to the primary se-
mantic subspace U while leaving the remaining directions freely editable—we adopt a controlled experi-
mental setup that disables all fast-editing optimizations. Specifically, we use a large pre-edit key sample
(4 × 107 keys per layer, matching prior work (Meng et al., 2022; Fang et al., 2025)), set the prior fusion
coefficient to α = 0, and impose no rank constraint on accumulated edits. Under this configuration, the only
difference between each baseline and its variant is whether low-rank regularization is applied to the pre-edit
knowledge. The hyperparameter setting for the rank r0 of U ∈ Rd×r0 is provided in Appendix B.

Table 1: Editing performance of full-rank versus low-rank regularized variants on CounterFact and ZsRE
(2,000 sequential edits). The symbol ↑ indicates that higher values are better (edit efficacy), while ↕ denotes
that metrics closer to the pre-edit values are preferable (edit locality). Boldface numbers highlight superior
performance relative to their full-rank or low-rank counterparts.

Method CounterFact ZsRE

SST↕ Eff.↑ Gen.↑ Spe.↑ Eff*.↑ Gen*.↑ Spe*.↕ SST↕ Eff*.↑ Gen*.↑ Spe*.↕
Pre-edited 77.0 15.4 18.0 83.3 0.40 0.60 13.7 77.0 27.7 27.1 27.4

PMET

G
PT

-J

81.5 99.7 95.0 73.3 98.0 69.9 10.6 72.5 99.7 97.8 28.4
RECT 80.5 99.2 89.0 77.5 95.2 49.1 9.30 74.0 98.7 92.9 27.6
PRUNE 82.0 99.4 96.1 73.2 98.4 74.4 12.5 73.5 99.3 95.9 30.9
AdaEdit 81.5 99.7 96.0 72.7 98.5 71.5 10.6 73.5 99.5 94.6 26.4

MEMIT 80.5 99.2 89.9 77.5 96.4 51.3 9.90 72.0 98.8 93.3 27.5
MEMIT-F 81.5 99.8 93.4 76.9 98.8 61.4 11.8 73.0 99.8 96.2 28.2
EMMET 83.0 99.6 94.4 75.3 98.1 60.6 10.4 75.0 99.8 97.2 28.6
EMMET-F 81.5 99.7 95.6 75.8 98.4 65.8 10.4 76.5 99.8 97.7 28.9
AlphaEdit 78.0 99.8 93.8 76.6 99.0 61.2 9.90 72.5 99.8 97.8 28.7
AlphaEdit-F 81.5 99.8 94.6 77.8 99.4 65.4 10.8 76.0 99.8 97.9 28.9

Pre-edited 96.5 7.80 10.4 89.3 0.30 0.50 21.3 96.5 38.2 37.6 38.6

PMET

L
L

aM
A

3

93.0 99.2 95.7 66.2 97.0 75.6 16.5 97.0 99.1 96.5 45.4
RECT 95.0 99.0 93.0 71.0 96.8 71.6 18.5 96.0 99.1 96.0 44.0
PRUNE 77.0 85.2 77.0 64.6 39.9 33.3 7.40 94.0 94.3 91.3 46.8
AdaEdit 63.5 77.6 70.3 56.1 36.8 27.7 0.07 92.5 93.2 90.6 46.6

MEMIT 94.5 99.0 92.9 71.5 97.0 71.3 18.4 97.0 99.2 95.4 43.9
MEMIT-F 96.0 99.6 93.0 78.1 98.4 68.4 20.6 97.0 99.5 96.0 43.4
EMMET 49.0 51.1 50.8 48.9 0.00 0.00 0.00 93.0 97.3 93.9 46.0
EMMET-F 93.0 98.7 93.9 68.6 94.2 69.3 15.6 94.5 99.4 96.2 44.6
AlphaEdit 42.5 56.1 53.9 48.5 2.90 1.80 0.60 95.5 98.0 94.2 45.7
AlphaEdit-F 94.0 98.0 91.5 66.5 92.8 69.2 16.8 96.0 98.8 95.0 43.5

Table 1 and Table 2 report editing performance under 2,000 and 5,000 sequential edits on COUNTERFACT
and ZSRE, respectively. Results on GPT-2-XL and comparisons with additional baselines are included in
Appendix C. Across all settings, the {◦}-F variants consistently outperform their full-rank counterparts, with
performance gains becoming more pronounced under 5,000 edits. Notably, both EMMET and ALPHAEDIT
fail to complete 2,000 sequential edits on COUNTERFACT using LLaMA3—a model collapse phenomenon
observed in prior work (Gu et al., 2024b; Gupta et al., 2024a; Fang et al., 2025; Thede et al., 2025)—whereas
their low-rank regularized versions succeed. We attribute this improved stability to better preservation of
the primary semantic subspace U, quantified by the subspace interference metric st = ∥∆tU∥F , which
measures the extent to which the weight update ∆t perturbs the dominant semantic directions. Lower st

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 2: Editing performance of full-rank vs. low-rank regularized variants under 5,000 sequential edits.

Method CounterFact ZsRE

SST↕ Eff.↑ Gen.↑ Spe.↑ Eff*.↑ Gen*.↑ Spe*.↕ SST↕ Eff*.↑ Gen*.↑ Spe*.↕
Pre-edited 77.0 14.7 17.2 83.5 0.40 0.50 14.3 77.0 27.0 26.2 27.0

MEMIT
G

PT
-J

55.0 95.8 86.0 66.1 71.5 37.7 6.60 67.0 86.8 80.4 23.1
MEMIT-F 74.0 99.2 89.9 73.5 94.9 52.6 9.00 76.0 96.6 90.5 26.6
EMMET 49.5 52.0 51.3 51.2 0.50 0.30 0.50 79.0 97.3 93.1 26.0
EMMET-F 79.5 99.4 92.6 71.5 95.5 55.4 7.60 74.5 98.9 96.2 27.9
AlphaEdit 79.0 99.3 90.2 71.9 95.7 51.9 7.10 76.0 99.1 95.0 27.0
AlphaEdit-F 81.0 99.6 91.8 72.4 98.1 57.9 8.20 79.0 99.6 96.6 27.3

Pre-edited 96.5 7.00 9.60 89.6 0.30 0.30 21.6 96.5 37.2 36.6 38.5

MEMIT

L
L

aM
A

3

54.0 95.8 86.0 66.1 71.5 37.7 6.60 95.5 86.8 80.4 23.1
MEMIT-F 94.0 99.3 92.3 66.5 96.4 67.8 15.0 96.0 99.1 95.2 44.0
EMMET 50.0 51.1 50.7 50.0 0.00 0.00 0.00 47.5 1.10 1.10 0.80
EMMET-F 50.0 52.2 51.8 48.9 0.40 0.40 0.10 60.5 75.3 68.7 23.6
AlphaEdit 50.5 69.0 62.6 47.5 4.70 1.20 0.20 90.5 84.2 79.0 39.3
AlphaEdit-F 50.0 73.4 65.2 55.0 34.2 22.6 6.80 95.5 97.8 93.7 44.2

0 1000 2000 3000 4000 5000
Edit Step

0.0000

0.0005
MEMIT
MEMIT-F

0 1000 2000 3000 4000 5000
Edit Step

0.0000

0.0001
MEMIT
MEMIT-F

0 1000 2000 3000 4000 5000
Edit Step

0

20 EMMET
EMMET-F

0 1000 2000 3000 4000 5000
Edit Step

0

100

200 EMMET
EMMET-F

0 1000 2000 3000 4000 5000
Edit Step

0.0

0.5

1.0 AlphaEdit
AlphaEdit-F

0 1000 2000 3000 4000 5000
Edit Step

0.00

0.01

0.02 AlphaEdit
AlphaEdit-F

Figure 1: Temporal evolution of the edit safety metric st = ∥∆tU∥F over 5,000 sequential edits on COUN-
TERFACT (left) and ZSRE (right) using LLaMA3. Lower st indicates better preservation of the primary
semantic subspace U during editing.

indicates reduced risk of corrupting existing knowledge. We evaluate st over 5,000 sequential edits on
COUNTERFACT and ZSRE using LLaMA3. As shown in Figure 1, our low-rank regularized method con-
sistently achieves lower st values than all baselines, demonstrating superior protection of U during editing.
Moreover, the slower growth of st over time reflects greater stability in the model’s core knowledge repre-
sentation, serving as a strong indicator of long-term editing safety. A comparison of editing mechanisms
across different methods, with respect to pre-edit knowledge preservation, is provided in Appendix E.

Going further, we study the scalability of our low-rank regularization under massive sequential editing—up
to 10,000 edits—on the COUNTERFACT dataset. Figure 2 shows the scaling behavior of editing methods in
terms of the average of six evaluation metrics (Eff., Gen., Spe., Eff*., Gen*., and Spe*.) as the number of
edits increases from 2,000 to 10,000. The results confirm that regularized variants consistently outperform
their full-rank counterparts across the entire range. However, as the edit count approaches 10,000, all meth-
ods exhibit significant degradation—likely due to over-editing-induced model collapse (Gu et al., 2024b;

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Edits

20

30

40

50

60

70

Av
g.

 P
er

fo
rm

an
ce

GPT2-XL

2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Edits

20

30

40

50

60

70

Av
g.

 P
er

fo
rm

an
ce

GPT-J

2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Edits

20

30

40

50

60

70

80

Av
g.

 P
er

fo
rm

an
ce

LLaMA3

MEMIT MEMIT-F EMMET EMMET-F AlphaEdit AlphaEdit-F Random

Figure 2: Editing performance on the COUNTERFACT dataset as the number of edits increases from 2k
to 10k. The low-rank regularized methods consistently maintain higher performance than their full-rank
counterparts.

MEM
IT

MEM
IT-F

EM
MET

EM
MET-

F

ALPH
AED

IT

ALPH
AED

IT-F
0

1

2

3

4

Ed
iti

ng
 T

im
e

(H
ou

rs
)

4.11

3.21

3.98

3.44

4.45

3.78

GPT2-XL (1.5B, 6400)

MEM
IT

MEM
IT-F

EM
MET

EM
MET-

F

ALPH
AED

IT

ALPH
AED

IT-F
0

2

4

6

8

10

12

14

Ed
iti

ng
 T

im
e

(H
ou

rs
)

13.35

3.68

12.93

3.91

14.18

4.47

GPT-J (6B, 16384)

MEM
IT

MEM
IT-F

EM
MET

EM
MET-

F

ALPH
AED

IT

ALPH
AED

IT-F
0

2

4

6

8

10

12

14

16

Ed
iti

ng
 T

im
e

(H
ou

rs
)

15.70

3.94

15.02

4.54

16.92

5.11

LLaMA-3 (8B, 14336)

Figure 3: Editing time comparison for 5,000 sequential edits on the COUNTERFACT dataset across different
models. Each subplot is labeled with the model name, parameter count, and key space dimension d.

Gupta et al., 2024a; Fang et al., 2025). Notably, EMMET shows the earliest performance drop, possibly
because its equality constraint on edit key-value pairs introduces stronger interference into model weights;
in contrast, MEMIT and ALPHAEDIT employ a squared Frobenius norm penalty, yielding smoother and
more stable updates.

5.3 EDITING EFFICIENCY VIA LOW-RANK STRUCTURE

Editing time. Our method achieves substantial computational speedups by leveraging the Sher-
man–Morrison–Woodbury (SMW) identity to replace the expensive O(d3) matrix inversion in FFN editing
with an O(dr0rmax) operation. This optimization is particularly impactful for large models and multi-
layer editing. Following prior work (Fang et al., 2025), we edit layers {13, 14, 15, 16, 17} in GPT2-XL,
{3, 4, 5, 6, 7, 8} in GPT-J, and {4, 5, 6, 7, 8} in LLaMA3. Figure 3 quantifies this speedup: on LLaMA3,
FastEdit completes 5,000 sequential edits within 4 hours, compared to over 15 hours for full-rank base-
lines—a 4× reduction in runtime. During sequential editing, the rank of the accumulated edits would naively
be expected to grow linearly with the number of edits, eventually becoming the computational bottleneck.
However, we show that the edited keys also exhibit a strong low-rank structure (see Appendix C) since both
the pre-edit and edited keys are drawn from the same input key space. Figure 4 provides a fine-grained
examination of how the maximum allowable rank rmax of the edited knowledge affects both editing perfor-

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

100 500 1000 2000 3000 5000
rmax

57.5

60.0

62.5

65.0

67.5

70.0

Av
g.

 P
er

fo
rm

an
ce

100 500 1000 2000 3000 5000 10000
rmax

27

28

29

30

31

32

2.5

3.0

3.5

4.0

4.5

6

8

10

12

Ed
it

Ti
m

e
(h

ou
rs

)

GPT2-XL GPT-J LLaMA3

Figure 4: MEMIT-F performance (left axis, dashed lines) and editing time (right axis, solid lines) versus
maximum allowable editing rank rmax on COUNTERFACT with 5000 edits (left) and 10000 edits (right).

mance and computational cost. We find that setting rmax ≈ 2000 is sufficient to achieve near-optimal editing
accuracy for 5,000 edits. Remarkably, when scaling to 10,000 edits—where all methods exhibit significant
performance degradation, as shown in Figure 2—using a smaller rank (rmax < 5000) surprisingly yields
better results than larger values such as rmax = 10,000. As a result, the editing process remains highly
efficient—typically completing in just a few hours for 10,000 sequential edits with small rmax.

Pre-computation time. Locate-then-edit methods typically require extensive sampling of pre-editing keys
(e.g., ∼4 × 107 in prior work (Meng et al., 2022; 2023)) to estimate the pretrained knowledge, taking over
24 hours for LLaMA3. In contrast, FastEdit requires only ∼ 4 × 104 samples, reducing pre-computation
time to a few minutes. This efficiency is enabled by our robust covariance estimation procedure (detailed in
Section 4), which fuses data-driven statistics with a structural prior from the MLP down-projection weights.
This allows stable estimation of U and D even with limited samples, eliminating the need for massive key
collection and enabling rapid deployment on new large language models. The trade-off between sample size
and the fusion coefficient α—and how the fusion improves robustness under limited sampling—is illustrated
in the performance heatmaps in Appendix C.

6 CONCLUSION AND FUTURE WORK

We presented FastEdit, a model editing framework that exploits the intrinsic low-rank structure of FFN key
spaces to improve both efficiency and editing quality. By applying regularization only to the primary seman-
tic subspace and leaving the complementary directions unregularized, FastEdit channels edits into flexible
dimensions while effectively preserving core pretrained knowledge. FastEdit admits a closed-form solution
for weight updates and enables the use of the Sherman–Morrison–Woodbury identity to accelerate com-
putation. On LLaMA-3-8B, FastEdit completes 5,000 sequential edits within 4 hours—compared to over
15 hours for full-rank baselines—while maintaining superior editing performance under massive sequential
editing. Furthermore, by fusing pre-edit statistics with structural priors derived from MLP down-projection
weights, FastEdit requires orders of magnitude fewer pre-edit samples, enabling precomputation in minutes
rather than days.

Limitations and Future Work. FastEdit’s speed advantage stems from low-rank optimization of matrix
inversion in sequential editing task and thus diminishes in batch settings, where inversion is performed
per batch. Nevertheless, given that sequential editing is increasingly a focus of model editing research and
highly relevant to real-world applications (Thede et al., 2025; Guo et al., 2025), we believe FastEdit provides
a strong and efficient baseline for this important regime. We also observe that all baseline methods, includ-
ing ours, degrade beyond 10,000 sequential edits due to over-editing-induced model collapse. Sustaining
performance at such scales remains a key challenge for future work.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effective-
ness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 7319–7328, 2021.

Baolong Bi, Shenghua Liu, Lingrui Mei, Yiwei Wang, Junfeng Fang, Pengliang Ji, and Xueqi Cheng. De-
coding by contrasting knowledge: Enhancing large language model confidence on edited facts. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 17198–17208, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language models are few-shot learners.
NeurIPS, 2020.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects of knowl-
edge editing in language models. Transactions of the Association for Computational Linguistics, 12:
283–298, 2024.

Yanbo Dai, Zhenlan Ji, Zongjie Li, and Shuai Wang. Namet: Robust massive model editing via noise-aware
memory optimization. arXiv preprint arXiv:2505.11876, 2025.

Nicola De Cao, Tejas Kipf, Patrick Lewis, et al. Editing large language models: Problems, methods, and
opportunities. In EMNLP, 2021.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating factual knowledge
in pretrained language models. In Findings of the Association for Computational Linguistics: EMNLP
2022, pp. 5937–5947, 2022.

Jianqing Fan, Yuan Liao, and Marine Mincheva. High-dimensional covariance matrix estimation in approx-
imate factor models. The Annals of Statistics, 39(6):3320–3356, 2013.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-Seng
Chua. Alphaedit: Null-space constrained knowledge editing for language models. In The Thirteenth
International Conference on Learning Representations, 2025.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2021.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, and Xin Wang. Pokemqa: Pro-
grammable knowledge editing for multi-hop question answering. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8069–8083,
2024a.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun Peng.
Model editing harms general abilities of large language models: Regularization to the rescue. In Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 16801–16819,
2024b.

Yaming Guo, Siyang Guo, Hengshu Zhu, and Ying Sun. Towards lifelong model editing via simulating ideal
editor. In Forty-second International Conference on Machine Learning, 2025.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. Model editing at scale leads to gradual and catas-
trophic forgetting. In Findings of the Association for Computational Linguistics ACL 2024, pp. 15202–
15232, 2024a.

Akshat Gupta, Dev Sajnani, and Gopala Anumanchipalli. A unified framework for model editing. In Find-
ings of the Association for Computational Linguistics: EMNLP 2024, pp. 15403–15418, 2024b.

Akshat Gupta, Maochuan Lu, Thomas Hartvigsen, and Gopala Anumanchipalli. Efficient knowledge editing
via minimal precomputation. arXiv preprint arXiv:2506.04226, 2025.

Anshita Gupta, Debanjan Mondal, Akshay Sheshadri, Wenlong Zhao, Xiang Li, Sarah Wiegreffe, and Niket
Tandon. Editing common sense in transformers. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 8214–8232, 2023.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging
with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural Information
Processing Systems, 36:47934–47959, 2023.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Knowledge in superposition: Unveiling the
failures of lifelong knowledge editing for large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 24086–24094, 2025.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong. Transformer-
patcher: One mistake worth one neuron. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, et al. Learning to edit: Aligning llms with knowledge editing. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4689–4705, 2024.

Serge Lang. Introduction to linear algebra. Springer Science & Business Media, 2012.

Jan Leike, Jonathan Uesato, Natasha Monga, et al. Towards long-term safety for reinforcement learning
agents, 2023. Anthropic Blog.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading
comprehension. In 21st Conference on Computational Natural Language Learning, CoNLL 2017, pp.
333–342. Association for Computational Linguistics (ACL), 2017.

Qi Li and Xiaowen Chu. Can we continually edit language models? on the knowledge attenuation in
sequential model editing. In Findings of the Association for Computational Linguistics: ACL 2024, pp.
5438–5455, 2024.

Qi Li and Xiaowen Chu. Adaedit: Advancing continuous knowledge editing for large language models.
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 4127–4149, 2025.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model editing in
a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18564–
18572, 2024a.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the pitfalls
of knowledge editing for large language models. In The Twelfth International Conference on Learning
Representations, 2024b.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained sequen-
tial model editing. In The Thirteenth International Conference on Learning Representations, 2025.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations
in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing memory
in a transformer. In The Eleventh International Conference on Learning Representations, 2023.

Meta. Llama 3. Large language model release, 2024. URL https://llama.meta.com/llama3/.
Accessed: 2025-09-20.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing
at scale. In International Conference on Learning Representations, 2022a.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-based
model editing at scale. In International Conference on Machine Learning, pp. 15817–15831. PMLR,
2022b.

Haewon Park, Gyubin Choi, Minjun Kim, and Yohan Jo. Context robust knowledge editing for language
models. arXiv preprint arXiv:2505.23026, 2025.

Aditya Ramesh, Prafulla Dhariwal, Nick Lourie, et al. Knowledge neurons in pretrained transformers. arXiv
preprint arXiv:2204.07705, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
EMNLP, 2013.

Lukas Thede, Karsten Roth, Matthias Bethge, Zeynep Akata, and Thomas Hartvigsen. Wikibigedit: Under-
standing the limits of lifelong knowledge editing in llms. In Forty-second International Conference on
Machine Learning, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Akshay Vellal, Xiang Li, Christopher Mitchell, et al. Temporal knowledge in language models: A survey.
In ICLR, 2024.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang, and
Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large language
models. Advances in Neural Information Processing Systems, 37:53764–53797, 2024.

Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not! In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11007–11015, 2023.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed dynamic
lora. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 19449–19457,
2024.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Shu Wu, Pengjie Ren, and Zhumin Chen. Uncovering overfitting in
large language model editing. In The Thirteenth International Conference on Learning Representations,
2025.

13

https://llama.meta.com/llama3/

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou, Xi Chen,
and Huajun Chen. Instructedit: instruction-based knowledge editing for large language models. In Pro-
ceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 6633–6641,
2024.

Shuning Zhao, Anna Roberts, Frank Li, et al. Do llms really separate knowledge from inference? In ACL,
2023.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we edit
factual knowledge by in-context learning? In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 4862–4876, 2023.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen. Mquake:
Assessing knowledge editing in language models via multi-hop questions. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 15686–15702, 2023.

A ADAPTATION TO LOW-RANK REGULARIZATION AND SEQUENTIAL EDITING

A.1 ADAPTATION TO LOW-RANK REGULARIZATION

In the main text, we described how MEMIT is adapted to our low-rank regularization framework. Here, we
extend this adaptation to other editing methods. Specifically, EMMET and AlphaEdit employ update rules
that differ fundamentally from MEMIT’s, necessitating separate derivations under the low-rank setting. In
contrast, the remaining baselines—PMET, RECT, PRUNE, and AdaEdit—share the same parameter update
formulation as MEMIT; consequently, their low-rank variants follow directly from the MEMIT-based adap-
tation and require no additional derivation. Let K0 and K1 ∈ Rd×r denote the key matrices corresponding
to the knowledge to be preserved and the knowledge to be edited, respectively.

EMMET. EMMET minimizes the Frobenius norm of the key perturbation subject to an exact output con-
straint:

L = ∥∆K0∥2F s.t. (W +∆)K1 = V1. (14)
By modeling the pre-editing key matrix as a low-rank plus diagonal structure (as introduced in Section 4.1),
the optimal update can be derived in closed form:

∆EMMET = R1

(
K⊤

1 A
−1K1

)−1
K⊤

1 A
−1, (15)

where R1 = V1 −WK1 and A = UU⊤ +D. The matrix inversion A−1 can be computed efficiently via
the Sherman–Morrison–Woodbury (SMW) identity, and the inner matrix K⊤

1 A
−1K1 is of size r × r (with

r ≪ d), making the overall computation scalable and enabling fast editing.

AlphaEdit. AlphaEdit optimizes a regularized objective that balances edit accuracy, preservation of pre-
editing knowledge, and weight sparsity:

L = ∥(W +∆P)K1 −V1∥2F + ∥∆PK0∥2F + ∥∆∥2F , (16)

Again, modeling the pre-editing key matrix as a low-rank plus diagonal structure, the optimal update can be
derived in closed form:

∆AlphaEdit = R1K
T
1 PU

(
Id +K1K

T
1 PU

)−1
, (17)

where Id ∈ Rd×d is the identity matrix and PU is a symmetric idempotent projection matrix (PU
⊤ = PU,

PU
2 = PU) that projects onto the null space of U. This design fully protects the subspace spanned by

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

U while allowing free updates in its orthogonal complement. Leveraging the low-rank structure of the edit
keys and the idempotency of PU, the update rule can be rewritten using the SMW identity to avoid inverting
large d× d matrices:

∆AlphaEdit = R1K
⊤
1 PU −R1

(
K⊤

1 PUK1

) (
Ir +K⊤

1 PUK1

)−1
K⊤

1 PU, (18)

where Ir ∈ Rr×r is the identity matrix. The critical inversion is now reduced to an r × r system,
significantly improving computational efficiency. This reformulation follows directly from the Sher-
man–Morrison–Woodbury identity and the projection property of PU.

A.2 ADAPTATION TO SEQUENTIAL EDITING

To enable fair comparison in sequential editing scenarios, we adapt all baseline methods to preserve previ-
ously edited knowledge. Let:

• K0: initial model keys (pre-editing),

• Kt: current batch of edit keys,

• K1:t−1 = [K1, . . . ,Kt−1]: keys from all previous edits.

Below we describe the adapted update rules.

MEMIT and MEMIT-based Methods (PMET, RECT, PRUNE, AdaEdit): The original MEMIT up-
date is:

∆MEMIT = RKT
t

(
K0K

T
0 +KtK

T
t

)−1
. (19)

To protect previously edited knowledge, we extend the regularization term:

∆MEMIT = RKT
t

(
K0K

T
0 +K1:t−1K

T
1:t−1 +KtK

T
t

)−1
. (20)

This adaptation is also applied to PMET, RECT, PRUNE, and AdaEdit, as they are built upon the MEMIT
framework.

EMMET: The original update rule is:

∆EMMET = Rt

(
KT

t (K0K
T
0)

−1Kt

)−1
KT

t (K0K
T
0)

−1. (21)

We adapt it by updating the inverse covariance estimate to include prior edits:

∆EMMET = Rt

(
KT

t (K0K
T
0 +K1:t−1K

T
1:t−1)

−1Kt

)−1
KT

t (K0K
T
0 +K1:t−1K

T
1:t−1)

−1. (22)

AlphaEdit: AlphaEdit inherently supports sequential editing by design. Its update already includes pro-
tection for previously edited knowledge:

∆AlphaEdit = RKT
t P

(
I+K1:t−1K

T
1:t−1P+KtK

T
t P

)−1
, (23)

where P is a projection matrix onto the null space of preserved knowledge. Hence, no further adaptation is
required.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL SETUP

B.1 BASELINE MODEL EDITING METHODS

We summarize the core ideas of the following seven representative methods:

• MEMIT (Meng et al., 2023): Extends single-fact editing (e.g., ROME (Meng et al., 2022)) to
batched updates via a least-squares optimization, enabling efficient integration of multiple facts
through direct weight modification.

• PMET (Li et al., 2024a): Improves editing precision by analyzing information flow in Transformer
layers. It observes that Multi-Head Self-Attention (MHSA) encodes general reasoning patterns and
should remain unaltered. PMET optimizes hidden states of both MHSA and FFN but only uses
FFN states to update weights for more targeted edits.

• EMMET (Gupta et al., 2024b): Unifies ROME and MEMIT under a common preservation-
memorization objective. While ROME uses equality constraints for single edits, EMMET supports
batched editing with the same constraint type, achieving comparable performance with theoretical
consistency.

• AlphaEdit (Fang et al., 2025): Addresses knowledge disruption in sequential editing by projecting
perturbations into the null space of preserved knowledge. This ensures that outputs on unedited
facts remain unchanged, significantly improving edit retention with minimal overhead.

• RECT (Gu et al., 2024b): Highlights that excessive weight changes during editing degrade gen-
eral capabilities (e.g., reasoning, inference). It regularizes updates based on the relative change in
weights to preserve model functionality while maintaining edit success.

• PRUNE (Ma et al., 2025): Identifies the condition number of the edit matrix as a key factor affect-
ing stability in sequential editing. By constraining this value, PRUNE limits parameter perturbation
and preserves general knowledge over many edits.

• AdaEdit (Li & Chu, 2025): Tackles performance decay in continuous editing by promoting disen-
tangled and sparse representations of edited knowledge, enabling robust performance in large-scale
editing scenarios.

B.2 EDITING DATASETS & EVALUATION METRICS.

We evaluate on two standard factual editing benchmarks: ZsRE (Levy et al., 2017) and CounterFact (Meng
et al., 2022). Each edit is defined by an input-output pair (x, y). In ZsRE, x is a question (e.g., What
university did Watts Humphrey attend?) and y is the target answer (e.g., Illinois Institute of Technology).
In CounterFact, x is a cloze prompt (e.g., The mother tongue of Danielle Darrieux is) and y is the new
fact (e.g., English), with the original fact yo (e.g., French) provided. We assess performance using three
primary metrics: Efficacy (Eff*) measures whether the model generates y as the top prediction given x,
i.e., y = argmaxy′ P (y′ | x). Generality (Gen*) evaluates robustness to input variation by measuring
success on paraphrased inputs xg , i.e., y = argmaxy′ P (y′ | xg). Specificity (Spe*) measures locality by
the percentage of unrelated fact pairs (xs, ys) that remain correctly predicted after editing. For CounterFact,
since the original fact yo is provided, we additionally report probability-increase-based metrics, where an
edit is considered successful if P (y | x) > P (yo | x), following prior work (Meng et al., 2023; Fang et al.,
2025). The corresponding metrics are denoted as Eff., Gen., and Spe..

Following prior work (Fang et al., 2025), we also evaluate the model’s general capabilities on a GLUE bench-
mark task to assess whether its performance degrades after editing—effectively serving as an additional test
of locality. Specifically, we select the Stanford Sentiment Treebank (SST) (Socher et al., 2013) as a represen-
tative task. SST is a binary sentiment classification dataset comprising sentences from movie reviews, where

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

each input must be classified as either positive (label = 1) or negative (label = 0). For example, the sentence
“What better message than ‘love thyself’ could young women of any size receive?” is annotated with label
1 (positive). Performance on this task is reported as accuracy, denoted by SST. We evaluate the model in
a zero-shot prompting setting using the prompt template Review:{input}\nSentiment:, where the
model’s prediction is based on the probabilities of the tokens “positive” and “negative”. The evaluation is
conducted on 200 SST samples.

B.3 IMPLEMENTATION DETAILS

All experiments are conducted on an NVIDIA A6000 GPU with 48 GB of memory, using bfloat16 preci-
sion for all models. Our implementation is built upon the official codebase of AlphaEdit (Fang et al., 2025)1.
Specifically, we reuse their implementations for key and value computation and only modify the parameter
update rule as defined in Equation 7. When evaluating the efficiency of our proposed low-rank structured
regularization, the reported editing time corresponds to the duration from the first to the last edit, excluding
data and model loading as well as post-editing performance evaluation.

Regarding hyperparameters, our method introduces three main components: the prior rank r0 used in the
low-rank regularization and the maximum rank rmax of the accumulated editing keys K[1:t], and the prior
fusion coefficient α.2 The regularization strength λ is shared with baseline methods; thus, we adopt their
standard setting. Specifically, λ is uniformly set to 15,000 across all datasets and editing models (Meng
et al., 2023; Fang et al., 2025). Two implementation settings are fixed: (i) periodic compression of K[1:t]

with energy retention ratio γ = 0.99 every τ = 500 edits (Section 4.2), and (ii) using 4 × 104 pre-editing
knowledge samples for fast precomputation. The values of r0, rmax, and α are set as follows: r0 is specified
in Table 3, while rmax = 3000 and α = 0.05.

Table 3: Rank r0 of the primary semantic subspace U, selected per method, dataset, and model, where
r0 = min

{
k :

∑k
i=1 σ2

i∑r′
i=1 σ2

i

≥ γ
}

with σi denoting the singular values of Cfused (Eq. 11). The corresponding

energy retention ratio γ is shown in parentheses. Our O(dr0rmax) edit complexity enables fast editing.

Model CounterFact ZsRE
MEMIT-F EMMET-F AlphaEdit-F MEMIT-F EMMET-F AlphaEdit-F

GPT2-XL (6400) 1852 (0.7) 1852 (0.7) 1852 (0.7) 1852 (0.7) 1852 (0.7) 2820 (0.8)
GPT-J (16384) 5911 (0.8) 5911 (0.8) 5911 (0.8) 3326 (0.7) 3326 (0.7) 5911 (0.8)
LLaMA3 (14336) 5958 (0.8) 9104 (0.9) 1472 (0.5) 3875 (0.7) 3875 (0.7) 1472 (0.5)

B.4 HYPERPARAMETER INVESTIGATION

In the main text, we have already analyzed the impact of the maximum editing rank rmax (see Figure 4).
Therefore, this subsection focuses exclusively on the hyperparameters r0 and α, which govern the low-rank
primary semantic subspace and its fusion with the prior covariance matrix Cfused under limited pre-editing
knowledge samples.

1https://github.com/jianghoucheng/AlphaEdit
2Note that α is only used when pre-editing knowledge samples are limited (e.g., 4 × 104 per layer). In our main

experiments, we follow prior work and use abundant sampling (∼ 4× 107), where α = 0 is optimal. The α > 0 setting
is intended solely for scenarios requiring fast precomputation to enable rapid editing on a new model.

17

https://github.com/jianghoucheng/AlphaEdit

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

21(0.1) 375(0.3) 1472(0.5) 3875(0.7) 5958(0.8) 9104(0.9) 11314(0.95) 14336(1.0)
r0

0.3

0.4

0.5

0.6

0.7
Av

g.
 P

er
fo

rm
an

ce

MEMIT-F
EMMET-F
AlphaEdit-F

21(0.1) 375(0.3) 1472(0.5) 3875(0.7) 5958(0.8) 9104(0.9) 11314(0.95) 14336(1.0)
r0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MEMIT-F
EMMET-F
AlphaEdit-F

Figure 5: The impact of the rank of U ∈ Rd×r0 , using LLaMA3 on CounterFact (left) and ZsRE (right).
Each tick on the x-axis shows the selected rank r0 together with its corresponding energy retention ratio γ
(in parentheses), where higher γ indicates that more pre-editing knowledge is regularized. The performance
of the full-rank regularization counterparts are shown with dashed lines.

1(0.1) 9(0.3) 639(0.5) 3326(0.7) 5911(0.8) 9773(0.9) 12453(0.95) 16384(1.0)
r0

0.2

0.3

0.4

0.5

0.6

0.7

Av
g.

 P
er

fo
rm

an
ce

MEMIT-F
EMMET-F
AlphaEdit-F

1(0.1) 9(0.3) 639(0.5) 3326(0.7) 5911(0.8) 9773(0.9) 12453(0.95) 16384(1.0)
r0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MEMIT-F
EMMET-F
AlphaEdit-F

Figure 6: The impact of the rank of U ∈ Rd×r0 , using GPT-J on CounterFact (left) and ZsRE (right).

The impact of r0. Regarding the parameter r0, the rank of the primary semantic subspace U is selected
using the energy-based criterion introduced in Section 4.2. Specifically, we choose the smallest rank that
retains at least a fraction γ of the total energy in the fused covariance matrix Cfused. Consequently, the only
tunable hyperparameter in this procedure is the energy retention threshold γ ∈ [0, 1]. Figure 5 presents an ab-
lation study of the three low-rank regularization variants (MEMIT-F, EMMET-F, and AlphaEdit-F) with re-
spect to the regularization rank r0—equivalently, the energy retention ratio γ—on the CounterFact and ZsRE
datasets using Llama-3 under 2,000 sequential edits. The results show that MEMIT-F and EMMET-F achieve
their best performance when γ ∈ [0.7, 1.0], whereas AlphaEdit-F performs optimally for γ ∈ [0.3, 0.9]. This
difference arises because AlphaEdit-F relies on null-space projection; setting γ = 1 (i.e., retaining full rank)
eliminates the null space, rendering the editing mechanism ineffective. As a result, AlphaEdit-F exhibits
a distinct performance landscape compared to the other methods. Notably, the original EMMET and Al-
phaEdit fail to sustain 2,000 sequential edits on CounterFact, while their low-rank regularization variants
(EMMET-F and AlphaEdit-F) succeed when equipped with an appropriate choice of r0 (or equivalently, γ).
Results on GPT-J and GPT2-XL are shown in Figures 6 and 7, where similar conclusion holds.

The impact of α. Pre-editing knowledge sampling is computationally demanding: prior work typically
collects around 4 × 107 FFN keys per edited layer (Meng et al., 2022). Although this precomputation is
performed only once per LLM, it impedes rapid adaptation to new models. To mitigate this, we reduce the
sample size by up to three orders of magnitude (down to 4× 104 keys per layer) and introduce a sensitivity-
aware prior derived from the down-projection matrix of the FFN module, whose leading right singular vector
identifies the most editing-sensitive direction in the input space—this direction should be preserved during
updates. To balance the empirical covariance (from limited samples) and this sensitivity-based prior, we fuse

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

1(0.1) 95(0.3) 629(0.5) 1852(0.7) 2820(0.8) 4154(0.9) 5047(0.95) 6400(1.0)
r0

0.3

0.4

0.5

0.6

0.7
Av

g.
 P

er
fo

rm
an

ce

MEMIT-F
EMMET-F
AlphaEdit-F

1(0.1) 95(0.3) 629(0.5) 1852(0.7) 2820(0.8) 4154(0.9) 5047(0.95) 6400(1.0)
r0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MEMIT-F
EMMET-F
AlphaEdit-F

Figure 7: The impact of the rank of U ∈ Rd×r0 , using GPT2-XL on CounterFact (left) and ZsRE (right).

0 1 2 3 4 5 6 7
Samples (log10 scale)

0

0.01

0.05

0.1

0.2

0.5

1

0 1 2 3 4 5 6 7
Samples (log10 scale)

0

0.01

0.05

0.1

0.2

0.5

1

30

40

50

60

70

0

10

20

30

40

50

60

70

Av
g.

 P
er

fo
rm

an
ce

Figure 8: Heatmap of editing performance across varying sample sizes (x-axis: 0, 10, 102, . . . , 107) and α
values (y-axis), using MEMIT-F under 2,000 sequential edits on LLaMA3. Results are shown for Coun-
terFact (left) and ZsRE (right). Here, α = 0 corresponds to using only the empirical covariance estimated
from samples, while α = 1 relies exclusively on the sensitivity direction derived from the down-projection
matrix. Intermediate values (α ∈ [0, 0.2]) interpolate between these two priors and yield improved editing
performance when pre-edit sampling is limited.

them via the coefficient α, where α = 0 uses only sampled statistics and α = 1 relies solely on the prior.
Figure 8 presents a heatmap of editing performance across varying sample sizes (x-axis: 0, 10, 102, . . . , 107)
and α values (y-axis). The results reveal a clear trade-off: (1) under limited sampling (e.g., ≤ 102 keys), in-
corporating the prior consistently improves the editing performance, as the empirical covariance is too noisy
to guide editing reliably; (2) under abundant sampling (e.g.,≥ 106 keys), the best performance is achieved at
α ≈ 0, and larger α values may degrade results—indicating that the data-driven estimate becomes sufficient
and the fixed prior introduces bias. In view of this, we set α = 0.01 and use 4× 104 pre-editing samples per
layer for fast precomputation and effective editing.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EDITING PERFORMANCE ON GPT2-XL

Table 4 presents the results for GPT2-XL on the CounterFact and ZsRE datasets under 2,000 and 5,000
sequential edits. The low-rank regularized versions generally outperform their full-rank counterparts, with
boldface values indicating superior performance.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Table 4: Editing performance of full-rank versus low-rank regularized variants on GPT-2-XL under 2,000
and 5,000 sequential edits, evaluated on the CounterFact and ZsRE datasets.

Method CounterFact ZsRE

Eff.↑ Gen.↑ Spe.↑ Eff*.↑ Gen*.↑ Spe*.↕ Eff*.↑ Gen*.↑ Spe*.↕
Pre-edited 22.1 24.4 78.0 0.10 0.40 10.6 23.7 22.8 25.0

MEMIT
20

00
98.0 88.6 65.7 91.4 58.4 10.6 94.7 88.4 26.9

MEMIT-F 98.0 89.4 65.5 92.5 60.8 10.1 95.4 89.2 26.8
EMMET 92.4 85.6 57.1 71.1 49.9 5.50 85.0 77.8 24.3
EMMET-F 93.4 85.7 58.2 75.6 48.7 5.90 91.1 85.8 25.5
AlphaEdit 99.6 94.0 65.7 97.3 65.3 6.40 96.0 88.8 26.8
AlphaEdit-F 99.6 94.0 65.6 96.8 65.6 6.40 95.2 88.0 26.4

Pre-edited 21.4 23.8 78.2 0.20 0.40 10.6 22.8 21.8 24.3

MEMIT

50
00

89.6 76.2 58.0 60.9 34.1 6.30 92.3 84.6 25.3
MEMIT-F 96.7 85.5 60.5 85.7 51.4 7.60 93.2 85.5 25.5
EMMET 87.4 76.3 55.5 54.6 30.6 3.70 82.1 76.0 21.8
EMMET-F 88.2 79.2 56.2 55.6 31.5 4.10 84.7 79.9 21.0
AlphaEdit 98.0 88.3 60.8 88.7 52.9 4.70 91.2 84.3 23.6
AlphaEdit-F 97.8 87.7 61.0 85.4 50.1 4.90 90.6 83.3 23.2

0 1000 2000 3000 4000 5000 6000
Index

0

1

2

3

4

Si
ng

ul
ar

 V
al

ue

0 2500 5000 7500 10000 12500 15000
Index

0

1

2

3

4

5

6

7

8

0 2000 4000 6000 8000 10000 12000 14000
Index

0.0

0.1

0.2

0.3

0.4

0.5

Figure 9: Singular value distribution of the accumulated editing keys K[1:5000] for GPT-2-XL, GPT-J, and
LLaMA3 (from left to right), using the CounterFact dataset and the MEMIT-F editing method.

C.2 THE LOW-RANK STRUCTURE OF THE EDITING KEYS

We perform 5,000 sequential edits on the CounterFact dataset using MEMIT-F with GPT2-XL, GPT-J, and
LLaMA3, collecting the resulting editing keys into matrices K[1:5000] ∈ Rd×5000. We plot the singular value
spectra and observe a long-tailed distribution: most of the energy is concentrated in the leading singular val-
ues, while the rest decay rapidly. As shown in Figure 9, all three key matrices exhibit a pronounced low-rank
structure. This is expected: both pre-editing and post-editing keys are derived from intermediate activations
of Transformer MLP layers, which are known to reside in low-dimensional subspaces (Aghajanyan et al.,
2021; Yu & Wu, 2023). Consequently, even after extensive editing, the accumulated keys remain approxi-
mately low-rank—providing empirical justification for our low-rank modeling assumption and the use of a
maximum allowable rank rmax to cap the rank of the accumulated editing keys K[1:t].

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

MEM
IT

PM
ET

EM
MET

Alph
aE

dit
REC

T
PR

UNE

Ad
aE

dit

MEM
IT-F

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ed

iti
ng

 T
im

e
(H

ou
rs

)

1.58

2.10

1.52
1.67 1.60

3.51
3.37

0.96

GPT2-XL(1.5B, 6400)

MEM
IT

PM
ET

EM
MET

Alph
aE

dit
REC

T
PR

UNE

Ad
aE

dit

MEM
IT-F

0

2

4

6

8

10

12

Ed
iti

ng
 T

im
e

(H
ou

rs
)

6.12

8.50

6.03

7.26

6.32

12.40

11.00

1.14

GPT-J(6B, 16384)

MEM
IT

PM
ET

EM
MET

Alph
aE

dit
REC

T
PR

UNE

Ad
aE

dit

MEM
IT-F

0

2

4

6

8

10

12

Ed
iti

ng
 T

im
e

(H
ou

rs
)

6.67

9.83

6.58
7.45

6.88

13.20
12.80

1.45

LLaMA-3(8B, 14336)

Figure 10: Editing time comparison for 2,000 sequential edits on the COUNTERFACT dataset across different
models. Each subplot is labeled with the model name, parameter count, and key space dimension d.

SE
RA

C
GRA

CE
MELO WISE

Sim
IE

MEM
IT-F

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ed
iti

ng
 T

im
e

(H
ou

rs
) 1.48

1.25
1.33

2.05 2.10

1.06

GPT2-XL(1.5B, 6400)

SE
RA

C
GRA

CE
MELO WISE

Sim
IE

MEM
IT-F

0

1

2

3

4

5

6

7

8

Ed
iti

ng
 T

im
e

(H
ou

rs
)

1.67 1.59 1.77

2.67

8.22

1.30

GPT-J(6B, 16384)

SE
RA

C
GRA

CE
MELO WISE

Sim
IE

MEM
IT-F

0

2

4

6

8

Ed
iti

ng
 T

im
e

(H
ou

rs
)

1.78 1.96 2.07

2.88

9.42

1.65

LLaMA-3(8B, 14336)

Figure 11: Editing time comparison for 2,000 sequential edits on the COUNTERFACT dataset across different
models. Each subplot is labeled with the model name, parameter count, and key space dimension d. Timing
includes all 2000 edits and the post-editing performance evaluation.

C.3 EDITING TIME UNDER 2,000 SEQUENTIAL EDITS

Figure 10 shows the total time required to perform 2,000 sequential edits on the CounterFact dataset. Bene-
fiting from low-rank modeling and the use of the Sherman–Morrison–Woodbury (SMW) identity, MEMIT-F
achieves the fastest editing across all models—GPT2-XL (1.5B), GPT-J (6B), and LLaMA3 (8B)—with
only 0.96, 1.14, and 1.45 hours, respectively. It is approximately 5× faster than the next-fastest baseline on
larger models and up to 10× faster than PRUNE and AdaEdit.

C.4 EDITING PERFORMANCE COMPARISON WITH MORE BASELINES

Our low-rank regularization method is grounded in a key-value modification and preservation objective
(Equation 3). In this section, we compare it against baselines that do not follow this line of research. Specif-
ically, we select SERAC (Mitchell et al., 2022b), GRACE (Hartvigsen et al., 2023), MELO (Yu et al., 2024),
WISE (Wang et al., 2024), and SimIE (Guo et al., 2025) as representative baselines. SERAC, GRACE,
MELO, and WISE are memory-based editing methods that employ external memory modules to store (or
learn) edited facts. At inference time, they determine whether to retrieve and apply a stored (or learned)
fact based on the similarity between the input query and memorized entries. SimIE is a recently proposed

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

method specifically designed for sequential editing. It maps the update matrix of the current edit to a new
update matrix that also protects previous edits—a protection strategy distinct from ours (Appendix A).

Table 5 summarizes the editing performance of various methods under 2,000 sequential edits on the Coun-
terFact and ZsRE benchmarks, while Figure 11 reports the end-to-end editing time (from edit request to
final evaluation). Among the baselines, GRACE achieves the strongest locality—i.e., it minimally affects
model predictions on unrelated inputs—yet suffers from poor generalization to paraphrased queries. This
limitation stems from its memory-based design: GRACE stores key-value (KV) pairs for edited facts and,
during inference, retrieves and replaces the corresponding forward activations whenever a match is detected.
Although it avoids computing an explicit weight update, the retrieval and dynamic hidden activations sub-
stitution process introduces non-negligible overhead at inference time. MELO, like GRACE, is based on
query-key matching, but instead of storing raw activations, it dynamically selects a learned LoRA adapter
at inference time to apply the edit. In contrast, SERAC suffers from catastrophic forgetting and is there-
fore unsuitable for sequential editing. Both SERAC and WISE rely on trainable external modules—such
as adapters or memory networks—that require additional training data for optimization. This not only in-
creases the editing cost but also introduces computational latency during inference due to the extra forward
pass through the auxiliary module. SimIE addresses sequential editing by learning a mapping from the cur-
rent update matrix to a modified one that protects previous edits. While effective, this mapping operation
incurs additional computation per edit.

Table 5: Performance comparison of various model editing methods across three base models (GPT2-XL,
GPT-J, and LLaMA3) on the CounterFact and ZsRE datasets under 2,000 sequential edits. GRACE achieves
the best locality but suffers from poor generalization. WISE, SimIE, and FastEdit offer more balanced
performance, with FastEdit consistently outperforming the others while enabling the fastest editing.

Method CounterFact ZsRE

Eff.↑ Gen.↑ Spe.↑ Eff*.↑ Gen*.↑ Spe*.↕ Eff*.↑ Gen*.↑ Spe*.↕
Pre-edited 22.1 24.4 78.0 0.10 0.40 10.6 23.7 22.8 25.0

SERAC

G
PT

2-
X

L

65.2 48.8 66.4 61.8 19.1 10.1 72.7 38.2 26.7
GRACE 98.8 53.4 73.9 96.7 21.8 10.4 94.8 26.9 25.5
MELO 95.2 66.3 63.5 91.9 41.6 9.80 93.5 65.2 27.2
WISE 94.0 72.4 70.0 89.5 49.4 10.2 91.0 72.4 25.9
SimIE 96.5 86.0 68.0 90.1 58.4 10.0 92.3 86.6 27.2
MEMIT-F 98.0 89.4 65.5 92.5 60.8 10.1 95.4 89.2 26.8

Pre-edited 15.4 18.0 83.3 0.40 0.60 13.7 27.7 27.1 27.4

SERAC

G
PT

-J

75.5 49.4 69.1 71.5 35.4 12.1 72.0 38.7 26.5
GRACE 98.5 55.6 74.0 95.0 22.5 13.1 96.8 31.5 27.0
MELO 94.9 76.8 67.0 91.7 42.4 11.1 93.2 42.3 25.8
WISE 96.0 81.2 72.0 93.6 61.6 12.5 97.6 73.4 28.0
SimIE 98.9 94.0 70.1 97.5 68.0 11.8 98.2 95.0 28.5
MEMIT-F 99.8 96.3 71.4 98.6 71.6 12.2 99.6 96.5 28.2

Pre-edited 7.80 10.4 89.3 0.30 0.50 21.3 38.2 37.6 38.6

SERAC

L
L

aM
A

3

63.4 53.5 69.0 60.2 18.4 19.1 60.5 37.8 36.7
GRACE 97.0 52.3 79.3 96.2 10.3 20.5 93.5 40.5 37.9
MELO 94.9 59.5 64.8 92.4 17.4 15.2 94.1 40.7 43.6
WISE 95.8 78.4 76.2 82.3 47.4 20.1 95.4 71.2 39.8
SimIE 93.4 87.2 69.9 90.8 62.4 17.9 96.3 92.2 46.3
MEMIT-F 99.6 93.6 74.4 98.4 70.5 19.8 99.0 95.1 45.3

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

In contrast, MEMIT-F achieves the best overall performance across reliability, generalization, and locality,
while requiring the least computational time. By incorporating structured low-rank regularization, MEMIT-
F streamlines the weight update process of locate-then-edit approaches yet significantly outperforms them
in both editing quality (Tables 1, 2, 4) and editing speed (Figures 3, 4, 10). This combination of high fidelity
and efficiency makes MEMIT-F uniquely well-suited for large-scale, sequential model editing scenarios.

D EDIT COMPLEXITY DERIVATION

Recall that M0 = λ(UU⊤ +D), where D ∈ Rd×d is diagonal and U ∈ Rd×r0 . By the SMW identity,

M−1
0 = (λD)−1 − (λD)−1U

(
λ−1Ir0 +U⊤(λD)−1U

)−1
U⊤(λD)−1.

Although M−1
0 is dense, it can be applied to any matrix X ∈ Rd×b1 without forming it explicitly:

M−1
0 X = (λD)−1X− (λD)−1U

(
λ−1Ir0 +U⊤(λD)−1U

)−1︸ ︷︷ ︸
O(r30)

(
U⊤(λD)−1X

)︸ ︷︷ ︸
O(dr0b1)

.

Where the O(r30) operation can be precomputed and hence the dominant cost is computing (λD)−1U and
(λD)−1X, each O(dr0) and O(db1), respectively, followed by matrix multiplications costing O(dr0b1).
Thus, evaluating M−1

0 K1 costs O(dr0b1).

Given M−1
0 K1, the remaining terms in M−1 involve:

• Forming K⊤
1 M

−1
0 K1: O(db21),

• Inverting the b1 × b1 matrix I+K⊤
1 M

−1
0 K1: O(b31),

• Final multiplication to apply M−1 to RK⊤
1 : absorbed in O(db21).

Summing these, the total per-edit time complexity is O(dr0b1 + db21 + b31), and memory usage is O(d(r0 +
b1)), avoiding any O(d2) or O(d3) operations.

E COMPARISON BETWEEN OUR LOW-RANK REGULARIZATION AND EXISTING
EDITING METHODS

We decompose the input key space Rd into two orthogonal subspaces: the primary semantic subspace U ∈
Rd×r0 , where most pre-edit keys reside, and the remaining subspace V. Table 6 compares the editing
mechanism of different editing methods in terms of pre-edit knowledge preservation. AlphaEdit is not
included, as it restricts updates to the null space of K0, thereby avoiding any regularization loss on pre-
edit knowledge. Although this strategy theoretically preserves K0, in practice the computed ”null space”
is only approximate due to numerical and optimization constraints. Consequently, after 2,000 sequential
edits on COUNTERFACT with LLaMA3, AlphaEdit still causes significant degradation in general language
modeling performance—as evidenced by the SST metric in Table 1. As Table 6 shows, our method explicitly
regularizes only the primary semantic subspace U while leaving the remaining subspace V unregularized.
This design encourages edits to be channeled into V, thereby better preserving the core pretrained knowledge
in U. To quantify this effect, we measure the interference of the update matrix ∆t with each subspace via
the Frobenius norms:

st = ∥∆tU∥F , s̄t = ∥∆tV∥F , s∗t = st + s̄t.

Figures 1, 12, and 13 illustrate these quantities over 5,000 edits. We observe that our method consistently
suppresses updates in U (i.e., smaller st), confirming better protection of the primary semantic directions.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Edit Step

0.0000

0.0005

0.0010 MEMIT
MEMIT-F

0 1000 2000 3000 4000 5000
Edit Step

0.00000

0.00005

0.00010 MEMIT
MEMIT-F

0 1000 2000 3000 4000 5000
Edit Step

0

20

40 EMMET
EMMET-F

0 1000 2000 3000 4000 5000
Edit Step

0

200
EMMET
EMMET-F

0 1000 2000 3000 4000 5000
Edit Step

0.0

0.1
AlphaEdit
AlphaEdit-F

0 1000 2000 3000 4000 5000
Edit Step

0.000

0.001

0.002
AlphaEdit
AlphaEdit-F

Figure 12: Temporal evolution of the edit safety metric s̄t = ∥∆tV∥F over 5,000 sequential edits on
COUNTERFACT (left) and ZSRE (right) using LLaMA3.

0 1000 2000 3000 4000 5000
Edit Step

0.000

0.001
MEMIT
MEMIT-F

0 1000 2000 3000 4000 5000
Edit Step

0.0000

0.0002
MEMIT
MEMIT-F

0 1000 2000 3000 4000 5000
Edit Step

0

25

50 EMMET
EMMET-F

0 1000 2000 3000 4000 5000
Edit Step

0

250

500 EMMET
EMMET-F

0 1000 2000 3000 4000 5000
Edit Step

0

1 AlphaEdit
AlphaEdit-F

0 1000 2000 3000 4000 5000
Edit Step

0.00

0.01

0.02 AlphaEdit
AlphaEdit-F

Figure 13: Temporal evolution of the edit safety metric s∗t = st + s̄t over 5,000 sequential edits on COUN-
TERFACT (left) and ZSRE (right) using LLaMA3.

Crucially, preserving U is more important than preserving V: since U captures the bulk of pretrained
knowledge, its stability delays overall model collapse, which in turn indirectly helps maintain the integrity
of V as well.

F MODELING THE PRE-EDITING KEYS VIA LR+D FACTOR MODEL

F.1 RANK ANALYSIS OF THE SECOND LINEAR LAYER INPUT

In this section, we provide a mathematical justification for the low-rank structure observed in the input to
the second linear layer of the Feed-Forward Network (FFN) in Transformers. Specifically, we show that due
to architectural constraints, the effective dimensionality of these activations is inherently limited.

Consider a single token’s hidden representation x ∈ Rd as input to the FFN block. The FFN applies the
following transformation:

FFN(x) = W2 · ReLU(W1x+ b1) + b2, (24)

where W1 ∈ R4d×d and W2 ∈ Rd×4d are weight matrices, and b1,b2 are biases (we omit biases for
simplicity in the analysis below).

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Table 6: Editability and edit loss in the input key space, split into primary (U) and remaining (V) directions.
AlphaEdit is omitted as it edits only in the (approximate) null space of K0, avoiding regularization in theory
but not in practice; MEMIT-based baselines (e.g., RECT) are also excluded.

Method Editable? Edit Loss

U V U V

MEMIT Yes Yes ∥∆U∥ ∥∆V∥
EMMET Yes Yes ∥∆U∥ ∥∆V∥
Ours Yes Yes ∥∆U∥ 0

Let a = ReLU(W1x) ∈ R4d denote the activation vector that serves as input to the second linear layer
(W2). We analyze the rank properties of the set of all possible such activations.

Linear Transformation Stage. The first stage computes z = W1x. Since W1 ∈ R4d×d, its column
space (image) satisfies:

dim (Im(W1)) = rank(W1) ≤ d. (25)

Thus, z = W1x lies in a subspace of R4d with dimension at most d, regardless of the specific x ∈ Rd.

Nonlinear Activation Stage. The ReLU function ReLU(·) = max(·, 0) is applied element-wise to z,
yielding a = ReLU(z). While ReLU is nonlinear and breaks the linear subspace structure, it does not
increase the intrinsic dimensionality of the mapping. Specifically:

The image of the map f : Rd → R4d, defined by f(x) = ReLU(W1x), has topological dimension at most
d.

Proof. Since W1 is a linear map from Rd to R4d, it is continuous and its image is contained in a d-
dimensional subspace. The ReLU function is continuous and piecewise linear. The composition f =
ReLU ◦W1 is therefore a continuous map from a d-dimensional domain to R4d. By standard results in
topology, the image of a d-dimensional manifold under a continuous map cannot exceed d in topologi-
cal dimension. Hence, the set {f(x) | x ∈ Rd} forms a d-dimensional (or lower) subset of R4d, i.e., a
d-dimensional manifold.

Implication for Batched Inputs. Now consider a batch of n inputs {x1, . . . ,xn}, and let A =
[a1, . . . ,an] ∈ R4d×n be the matrix of activations, where ai = ReLU(W1xi). Then:

rank(A) ≤ d, (26)

since each column ai is determined by xi ∈ Rd, and the mapping is deterministic. Even if n > d, the rank
cannot exceed d due to the bottleneck imposed by the input dimension and the fixed W1.

Conclusion. This analysis shows that the input to the second linear layer, a, is constrained to a low-
dimensional manifold in R4d, with intrinsic dimension at most d≪ 4d. This structural property justifies our
use of a low-rank plus diagonal (LR+D) model for the covariance of these activations in Section 4, as the
full 4d-dimensional space is not fully utilized.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

F.2 EXPECTED REGULARIZATION TERM: DETAILED DERIVATION

In this section, we derive the expected value of the empirical regularization term ∥∆K0∥2F under the as-
sumption that the pre-edit keys K0 ∈ Rd×b0 are independently sampled from a zero-mean distribution with
covariance structure Σ = UU⊤ +D, as defined in the LR+D model (Equation equation 5).

Let K0 = [k1, . . . ,kb0], where each ki ∈ Rd is an i.i.d. sample satisfying:

E[ki] = 0, E[kik
⊤
i] = Σ = UU⊤ +D.

We aim to compute:
EK0

[
∥∆K0∥2F

]
,

where ∆ ∈ Rd×d is a fixed update matrix.

The squared Frobenius norm can be expanded column-wise:

∥∆K0∥2F =

b0∑
i=1

∥∆ki∥22.

Taking expectation over K0 (which is equivalent to taking expectation over each ki due to independence):

EK0

[
∥∆K0∥2F

]
= EK0

[
b0∑
i=1

∥∆ki∥22

]
=

b0∑
i=1

Eki

[
∥∆ki∥22

]
.

Since all ki are identically distributed, we denote k ∼ p(k) as a generic key vector, and write:

EK0

[
∥∆K0∥2F

]
= b0 · Ek

[
∥∆k∥22

]
.

Now, observe that:
∥∆k∥22 = (∆k)⊤(∆k) = k⊤∆⊤∆k.

Thus,
Ek

[
∥∆k∥22

]
= Ek

[
k⊤∆⊤∆k

]
.

We now apply the following standard result for the expectation of a quadratic form:

[Expectation of Quadratic Form] For a random vector x ∈ Rd with mean µ and covariance Σ, and a fixed
symmetric matrix A ∈ Rd×d, we have:

E[x⊤Ax] = Tr(AΣ) + µ⊤Aµ.

In our case: - x = k, - A = ∆⊤∆ (symmetric and positive semi-definite), - µ = E[k] = 0, - Σ =
UU⊤ +D.

Therefore,

Ek

[
k⊤∆⊤∆k

]
= Tr

(
∆⊤∆ · (UU⊤ +D)

)
+ 0⊤(· · ·)0 = Tr

(
∆⊤∆(UU⊤ +D)

)
.

Substituting back, we obtain:

EK0

[
∥∆K0∥2F

]
= b0 · Tr

(
∆⊤∆(UU⊤ +D)

)
.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

This shows that the expected regularization term is proportional to the trace expression, with proportionality
constant b0 (the number of pre-edit keys). In practice, this constant is absorbed into the regularization
coefficient λ when forming the final objective, yielding the effective regularizer:

Tr
(
∆⊤∆(UU⊤ +D)

)
.

This derivation justifies replacing the empirical term ∥∆K0∥2F with the expected regularizer in the main
optimization objective.

F.3 DERIVATION OF THE COVARIANCE STRUCTURE

Under the factor model k = µ+Uz+ ε equation 5, with E[z] = 0, Cov(z) = I, ε ∼ N (0,D), and z ⊥ ε,
the centered key vector is k− µ = Uz+ ε. The covariance is:

Cov(k) = E
[
(Uz+ ε)(Uz+ ε)⊤

]
(27)

= E
[
Uzz⊤U⊤]+ E

[
Uzε⊤

]
+ E

[
εz⊤U⊤]+ E

[
εε⊤

]
. (28)

Using independence and zero means:

• E[Uzz⊤U⊤] = UE[zz⊤]U⊤ = UU⊤,
• E[Uzε⊤] = UE[z]E[ε⊤] = 0,
• E[εz⊤U⊤] = E[ε]E[z⊤]U⊤ = 0,
• E[εε⊤] = D.

Summing the terms yields:
Cov(k) = UU⊤ +D, (29)

as desired.

G ALGORITHMIC DETAILS OF PERIODIC SPECTRAL COMPRESSION

We provide the full algorithmic description of the periodic spectral compression method used in our se-
quential knowledge editing framework. This procedure maintains an efficient low-rank approximation of
accumulated edit keys by periodically compressing them via truncated singular value decomposition (SVD).
Specifically, incoming key vectors are accumulated until their total dimension reaches a threshold τ (e.g.,
500), at which point a global SVD is performed and only the top singular components—preserving at least
a fraction γ (e.g., 0.99) of the total energy—are retained, up to a maximum rank rmax (e.g., 3000). The
compressed key matrix is then used in subsequent Sherman–Morrison–Woodbury (SMW) updates to ensure
that each editing step remains computationally efficient, with cost bounded by O(dr0rmax). The complete
procedure is summarized in Algorithm 1.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Algorithm 1 Efficient Sequential Editing with Periodic Spectral Compression

Require: Initial weight matrix W0; prior low-rank basis U ∈ Rd×r0 and diagonal D ∈ Rd×d; regulariza-
tion λ > 0; compression interval τ ; energy retention threshold γ ∈ (0, 1]; maximum rank rmax.

Ensure: Updated weights WT after T sequential edits.
1: Precompute static prior matrix M0 = λ(UU⊤ +D) and its structured inverse M−1

0 .
2: Initialize Kcomp ← [], Kbuff ← [], and t← 0.
3: for t = 1 to T do
4: Receive edit batch (Kt,Vt).
5: Append to buffer: Kbuff ← [Kbuff , Kt].
6: Form active key matrix:

Kall ←
{
Kbuff if Kcomp is empty,
[Kcomp, Kbuff] otherwise.

7: Compute M−1 via SMW identity (Eq. equation 8):

M−1 = M−1
0 −M−1

0 Kall

(
I+K⊤

allM
−1
0 Kall

)−1
K⊤

allM
−1
0 .

8: Compute update: ∆t = (Vt −Wt−1Kt)K
⊤
t M

−1.
9: Update model: Wt ←Wt−1 +∆t.

10: if t mod τ = 0 or t = T then
11: Perform spectral compression on Kall:
12: Compute thin SVD: Kall = UsSsV

⊤
s .

13: Determine retained rank:

r = min

{
k :

∑k
i=1 σ

2
i∑r′

i=1 σ
2
i

≥ γ, k ≤ rmax

}
,

where r′ = rank(Kall) and σi are singular values.
14: Update compressed keys: Kcomp ← Us,:,1:rSs,1:r,1:r.
15: Reset buffer: Kbuff ← [].
16: end if
17: end for
18: return WT

28

	Introduction
	Related Work
	PRELIMINARIES
	Method
	Efficient Regularization via Latent Structure Modeling
	Efficient Sequential Editing via Periodic Spectral Compression

	Experiments
	Experimental Setup
	 Editing Efficacy with Low-Rank Regularization
	Editing Efficiency via Low-Rank Structure

	Conclusion and Future Work
	Adaptation to Low-Rank Regularization and Sequential Editing
	Adaptation to Low-Rank Regularization
	Adaptation to Sequential Editing

	Experimental Setup
	Baseline Model Editing Methods
	Editing Datasets & Evaluation Metrics.
	Implementation Details
	Hyperparameter Investigation

	 Additional Experimental Results
	Editing Performance on GPT2-XL
	The Low-Rank Structure of the Editing Keys
	Editing Time under 2,000 Sequential Edits
	Editing Performance Comparison with More Baselines

	Edit Complexity Derivation
	Comparison between Our Low-Rank Regularization and Existing Editing Methods
	Modeling the pre-editing keys via LR+D factor model
	Rank Analysis of the Second Linear Layer Input
	Expected Regularization Term: Detailed Derivation
	Derivation of the Covariance Structure

	Algorithmic Details of Periodic Spectral Compression

