
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

FASTEDIT: LOW-RANK STRUCTURED REGULARIZATION
FOR EFFICIENT MODEL EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

When new knowledge emerges, it is crucial to efficiently update large language mod-
els (LLMs) to reflect the latest information. However, state-of-the-art methods widely
adopted in the model editing community — such as MEMIT, PRUNE, and AlphaEdit —
suffer from prohibitively slow editing speeds, often taking 6 to 14 hours to sequentially
edit just 2000 facts on models like LLaMA-3-8B, making real-time updates impractical,
especially as model scale increases. Moreover, they require extensive pre-computation to
sample pre-edit knowledge — a step that can take over 24 hours — severely limiting their
deployability. In this paper, we present FastEdit, a highly efficient editing framework
that enables rapid and scalable model updates. Our key insight is to exploit the low-rank
structure inherent in editing updates through a structured regularizer, allowing us to avoid
costly inversions via the Sherman-Morrison-Woodbury (SMW) identity. This drastically
accelerates the computation of update matrices while preserving edit quality. Crucially,
FastEdit requires only a small number of pre-edit samples, reducing both memory and
computational overhead. On 2000 sequential edits, FastEdit completes the process in just
1 hour – an order of magnitude faster than prior work – without sacrificing accuracy. Our
method significantly lowers the barrier to practical model editing, enabling timely and
scalable knowledge updates in large models.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in understanding and generating
human language (Brown et al., 2020; Touvron et al., 2023). Yet, their knowledge remains largely static after
training—updating even a single fact typically requires full retraining or incurs risks of corrupting unrelated
knowledge (De Cao et al., 2021; Mitchell et al., 2022a; Meng et al., 2022; Zhao et al., 2023). This rigidity
poses a fundamental challenge for applications in dynamic domains such as news, medicine, or education,
where models must adapt quickly and precisely to new information (Leike et al., 2023; Vellal et al., 2024).

To enable fine-grained control over model knowledge, recent work has introduced knowledge editing: tech-
niques that modify specific facts through localized weight updates while preserving general behavior (Meng
et al., 2023; Ramesh et al., 2024; Gupta et al., 2024b; Fang et al., 2025). While conceptually appealing,
these methods face two critical bottlenecks: computational inefficiency and practical infeasibility. Most
approaches rely on expensive optimization procedures—such as inverting large d × d matrices (d: hidden
dimension)—leading to O(d3) time complexity per edit (Gupta et al., 2024a; Li & Chu, 2025; Ma et al.,
2025). As a result, updating thousands of facts sequentially becomes impractical, especially for large-scale
models. Moreover, many methods depend on extensive pre-computation using large sets of pre-edit data to
estimate representation statistics. For example, collecting and processing samples for covariance estimation
on LLaMA-3-8B (Meta, 2024) can take over 24 hours, severely limiting deployability (Meng et al., 2022;

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

2023; Ma et al., 2025). These costs stem from treating edits as dense, unstructured operations, without
leveraging the underlying geometry of the model’s latent space (Aghajanyan et al., 2021; Yu & Wu, 2023).

In this work, we ask: Can we design a model editing framework that is both principled and truly effi-
cient—enabling fast updates with low computational and pre-editing overhead?

We propose FastEdit, a structure-aware editing framework that exploits the low-dimensional intrinsic sub-
space of pre-edit representations (Aghajanyan et al., 2021; Yu & Wu, 2023). Rather than performing updates
in the full d-dimensional space, we model the key space with a low-rank plus diagonal structure, leading to
an efficient closed-form update via the Sherman-Morrison-Woodbury (SMW) identity (Golub & Van Loan,
2013). This avoids O(d3) matrix inversion and reduces per-edit complexity toO(dr2) time andO(dr) space,
where r ≪ d. For sequential editing, we further develop an incremental solver that maintains a low-rank
summary of past updates, enabling constant-time updates with respect to the number of edits.

Our approach yields three key advances: (1) a principled alternative to dense update formulations through
structured regularization; (2) a highly efficient closed-form update that drastically reduces computational
overhead; and (3) a scalable, incremental solver for long-term knowledge integration. Experiments on
counterfactual and factual editing benchmarks demonstrate that FastEdit achieves on-par or superior edit
precision and generalization, while reducing the total time for 2000 sequential edits on Llama-3-8B from 6
to 14 hours across existing methods down to just 1 hour. These results highlight that exploiting the latent
low-dimensional structure of neural representations provides a viable pathway toward efficient, reliable, and
scalable model editing in practical settings.

2 RELATED WORK

Knowledge editing aims to update specific factual knowledge in pre-trained language models without full
retraining. Existing methods fall into two main paradigms. Training-based approaches construct tailored
datasets to train auxiliary components for parameter updates. MEND (Mitchell et al., 2022a) and InstructE-
dit (Zhang et al., 2024) employ meta-learning to train hypernetworks that predict localized parameter modifi-
cations. SERAC (Mitchell et al., 2022b) introduces a memory-augmented architecture with a scope classifier
and a counterfactual model to generate corrected outputs. T-Patcher (Huang et al., 2023) and MELO (Yu
et al., 2024) insert feedforward memory modules to store and retrieve new factual associations during in-
ference. Memory-based methods, a category of training-free editing, store edits externally and retrieve
them at inference time via similarity-based lookup (Dong et al., 2022; Zheng et al., 2023; Hartvigsen et al.,
2023; Jiang et al., 2024). These approaches decouple knowledge updates from model parameters, enabling
efficient and reversible edits, where in-context learning is usually utilized (Bi et al., 2025). Another training-
free paradigm is Locate-then-edit, which identifies and directly modifies knowledge-localized components
within the model (Wang et al., 2024; Park et al., 2025; Gupta et al., 2023; Li et al., 2024a; Gupta et al.,
2024b; 2025; Dai et al., 2025). ROME (Meng et al., 2022) pioneers this approach by modeling MLP lay-
ers as associative memory and applying causal tracing to guide rank-one weight updates. Subsequent work
generalizes and improves this framework: MEMIT (Meng et al., 2023) and EMMET (Gupta et al., 2024b)
extends ROME to batched editing for improved scalability, while AlphaEdit (Fang et al., 2025) constrains
edits within the null space of existing knowledge representations to better preserve model integrity.

Several benchmarks have been introduced to assess not only the local correctness of edits but also their
ability to support logical reasoning and generalization (Zhong et al., 2023; Gu et al., 2024a; Cohen et al.,
2024), providing a more comprehensive evaluation of knowledge editing methods. As knowledge editing
techniques advance and are applied in more complex or sequential scenarios, unintended side effects have
increasingly come to light. These include knowledge conflict and distortion (Li et al., 2024b), gradual and
catastrophic forgetting during large-scale editing (Gupta et al., 2024a), attenuation of edited knowledge over
time (Li & Chu, 2024), overfitting (Zhang et al., 2025) and failure in lifelong editing due to knowledge su-

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

perposition in parameter space (Hu et al., 2025). To mitigate such issues, regularization strategies have been
proposed. RECT (Gu et al., 2024b) restricts updates to a sparse subset of parameters, while PRUNE (Ma
et al., 2025) and AdaEdit (Li & Chu, 2025) apply singular value decomposition (SVD) to preserve the
dominant components of parameter changes, thereby enhancing stability and reducing interference.

3 PRELIMINARIES

We focus on the locate-then-edit framework for model editing, which aims to update specific knowledge
in large language models (LLMs) by identifying and modifying relevant parameters. Recent studies have
shown that factual knowledge is primarily stored in the feed-forward network (FFN) modules of Transform-
ers (Geva et al., 2021). Further analysis via causal mediation has revealed that editing the second linear
layer within the FFN of earlier Transformer blocks is particularly effective for knowledge update (Meng
et al., 2022). Concretely, each such linear layer, parameterized by a weight matrix W ∈ Rd̂×d, associates
input representations k ∈ Rd with output vectors v ∈ Rd̂, forming a key-value mapping that encodes
knowledge.

To update a piece of knowledge, we seek a new output vector v′ that produces the desired behavior. While
v′ can be learned via gradient-based optimization, the challenge lies in finding a parameter perturbation ∆
such that the updated layer W +∆ maps k to v′, i.e., (W +∆)k = v′. Crucially, we want this update to
retain the model’s original knowledge. That is, the perturbation ∆ should introduce minimal interference to
the model’s pre-existing behavior on unrelated knowledge.

To formalize this, suppose we have b0 pieces of preserved knowledge, encoded as input-output pairs
(K0,V0), where K0 ∈ Rd×b0 and V0 ∈ Rd̂×b0 satisfy WK0 = V0. Additionally, let b1 new knowl-
edge edits be represented by (K1,V1), with K1 ∈ Rd×b1 and V1 ∈ Rd̂×b1 . We then formulate the update
as an optimization problem that balances faithful editing with knowledge preservation (Meng et al., 2023):

∆ = argmin
∆̃

(∥∥∥(W + ∆̃)K1 −V1

∥∥∥2 + ∥∥∥(W + ∆̃)K0 −V0

∥∥∥2) . (1)

where ∥·∥ is the Frobenius norm. Using the fact that WK0 = V0, the second term simplifies to
∥∥∥∆̃K0

∥∥∥2.
Applying the normal equation (Lang, 2012), the closed-form solution (when the inverse exists) is:

∆ = argmin
∆̃

(∥∥∥(W + ∆̃)K1 −V1

∥∥∥2 + ∥∥∥∆̃K0

∥∥∥2)
= (V1 −WK1)K

⊤
1

(
K0K

⊤
0 +K1K

⊤
1

)−1
.

(2)

This solution provides a principled way to update model parameters while preserving existing knowledge,
forming the foundation of many recent model editing methods. However, the inversion usually takes a lot of
time with a time complexity of O(d3), particularly for large language models (large d).

4 METHOD

4.1 EFFICIENT REGULARIZATION VIA LATENT STRUCTURE MODELING

We build upon the locate-then-edit paradigm (Meng et al., 2022; 2023) and formulate knowledge editing as a
regularized optimization problem: modify the model weights W by an update ∆ to satisfy a new knowledge
constraint (K1,V1), while minimizing interference with existing knowledge K0. The objective is:

L = ∥(W +∆)K1 −V1∥2F + λ ∥∆K0∥2F , (3)

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

where λ > 0 is a regularization coefficient that balances the trade-off between satisfying the new knowledge
and minimizing interference with existing representations. A larger λ enforces stronger invariance over K0,
reducing side effects at the potential cost of underfitting the edit. The term ∥∆K0∥2F measures how the
update ∆ affects existing representations. However, directly using it in optimization can be computationally
expensive. To simplify this, we can naively apply the submultiplicative property:

∥∆K0∥2F ≤ ∥K0∥22∥∆∥2F , (4)

which decouples ∆ from K0 and leads to a scalar-weighted Frobenius norm. While computationally ef-
ficient, this upper bound is structurally blind: it penalizes all directions of ∆ equally, regardless of their
semantic impact on the model’s latent space. To design a semantically aware and efficient regularizer, we
instead consider the expected influence of ∆ under a structured probabilistic model of the key distribution.

Low-Rank Plus Diagonal (LR+D) Factor Model. Specifically, we assume that the pre-editing hidden
representation k follows a low-rank plus diagonal (LR+D) structure (Fan et al., 2013), motivated by empir-
ical findings that Transformer representations often lie in a low-dimensional subspace (Aghajanyan et al.,
2021; Yu & Wu, 2023). We further justify the low-rank nature of these representations from a mathematical
perspective; see Appendix A.1 for a formal analysis. The model is given by:

k = µ+Uz+ ε, (5)

where µ ∈ Rd is the mean (assumed to be 0 after centering), z ∈ Rr0 is a low-dimensional latent variable
(r0 ≪ d) with E[z] = 0 and Cov(z) = I, U ∈ Rd×r0 captures dominant semantic directions (e.g.,
topics or relations), and ε ∼ N (0,D) represents isotropic or anisotropic noise with diagonal covariance
D = diag(d1, . . . , dd), independent of z. This model subsumes several important special cases. When
U = 0, it reduces to a diagonal-covariance Gaussian: k ∼ N (µ,D). Further, if D = σ2I, the covariance
becomes isotropic (C = σ2I), and the expected penalty E

[
∥∆k∥2F

]
becomes σ2∥∆∥2F , recovering the

scalar-scaled Frobenius norm in Equation 4.

Under this model, the expected regularization term in Equation 3 can be derived as:

EK0

[
∥∆K0∥2F

]
∝ Ek

[
∥∆k∥22

]
= Trace

(
∆⊤∆(UU⊤ +D)

)
,

See Appendix A.2 for a detailed derivation. This expectation reveals that the impact of ∆ is governed not
merely by its magnitude, but by its alignment with the underlying structure of the key space. Specifically,
edits that align with the semantic subspace spanned by U—i.e., directions of high data variance—have
greater influence on existing representations and are thus more disruptive. In contrast, perturbations in the
orthogonal complement U⊥—i.e., the null space of U⊤—affect lower-variance directions and incur less
interference. Consequently, the expectation implicitly encodes the geometry of the latent representation
space, assigning higher penalty to changes along semantically salient directions. Replacing the empirical
Frobenius norm ∥∆K0∥2F in Equation 3 with this expected regularizer leads to the modified objective:

∆ = argmin
∆̂

∥∥∥(W + ∆̂)K1 −V1

∥∥∥2
F
+ λ · Trace

(
∆̂⊤∆̂(UU⊤ +D)

)
. (6)

Letting R = V1 −WK1, the closed-form solution is given by:

∆ = RK⊤
1 M

−1, where M = K1K
⊤
1 + λ(UU⊤ +D). (7)

Here lies our core optimization: we exploit low-rank structure in both the pre-editing keys K0 and the
editing keys K1 to achieve dual benefits: semantic-aware regularization and computational efficiency.
U ∈ Rd×r0 captures the dominant semantic directions of K0 with r0 ≪ d, and K1 ∈ Rd×b1 typically has
small batch size b1 ≪ d in sequential editing tasks, so both UU⊤ and K1K

⊤
1 are low-rank.This structure

enables efficient inversion of the matrix M via the Sherman-Morrison-Woodbury (SMW) identity (Golub &

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Van Loan, 2013). Specifically, M can be viewed as a low-rank perturbation (K1K
⊤
1 + λUU⊤) added to a

diagonal matrix λD. Applying the SMW identity, we obtain:

M−1 = (λD)−1 − (λD)−1A
(
I+A⊤(λD)−1A

)−1
A⊤(λD)−1, (8)

where A =
[
K1,

√
λU

]
∈ Rd×(b1+r0) combines the new knowledge and pre-editing knowledge directions.

The application of SMW identity reduces the inversion complexity of M from O(d3) to O(d(b1+ r0)
2) and

the memory from O(d2) to O(d(b1 + r0)), making the method scalable to large models.

Estimation of U and D. Given the low-rank plus diagonal (LR+D) structure in Equation 5, the population
covariance of a pre-editing key vector k is (see Appendix A.3 for a detailed derivation):

Cov(k) = E
[
(k− µ)(k− µ)⊤

]
= UE[zz⊤]U⊤ + E[εε⊤] = UU⊤ +D, (9)

Since the true covariance is unknown, we estimate this structure from the sampled pre-editing keys K0 ∈
Rd×b0 by computing the sample covariance Cdata =

1
b0−1 (K0−µ̂)(K0−µ̂)⊤, where µ̂ denotes the empirical

mean of the pre-editing keys. However, when b0 is small or the sampled keys are noisy, Cdata may provide
a poor estimate of the true latent structure, leading to unstable or semantically misaligned regularization.
To improve robustness, we incorporate a structural prior derived from the MLP down-projection weights
W, whose right singular vectors span the input directions of maximal variance for the MLP output. Let
Wdown = PSQ⊤ be its SVD, and let Vr = Q:,1:r0 ∈ Rd×r0 denote the top-r0 right singular vectors. We
define the prior covariance as:

Cprior = VrΛvV
⊤
r , (10)

where Λv is a diagonal matrix of prior weights (e.g., identity or squared singular values). To ensure numer-
ical compatibility, we normalize Cprior such that ∥Cprior∥F = ∥Cdata∥F . The fused covariance is:

Cfused = (1− α) ·Cdata + α ·Cprior, α ∈ [0, 1], (11)

where α = 0 recovers the data-driven estimate, and α = 1 uses only the prior. Given the fused covariance,
we compute its eigendecomposition Cfused = PΛP⊤, and set:

U = P:,1:r0Λ
1/2
1:r0,1:r0

, (12)

D = diag
(
Cfused −UU⊤) . (13)

Selecting the top-r0 eigenvectors is justified by the Eckart–Young–Mirsky theorem (Golub & Van Loan,
2013), which states that the truncated eigendecomposition provides the best rank-r0 approximation to Cfused
in the Frobenius norm. This ensures that UU⊤ captures the most significant shared variation in the key
space, while the diagonal D absorbs residual noise and idiosyncratic variations.

4.2 EFFICIENT SEQUENTIAL EDITING VIA PERIODIC SPECTRAL COMPRESSION

Real-world knowledge editing often occurs sequentially: new facts arrive in batches, requiring updates
without reprocessing all prior data. Let {(Kt,Vt)}Tt=1 denote a sequence of edit requests. At each step t,
we aim to satisfy (Wt−1 + ∆t)Kt = Vt (with W0 the initial weights), while preserving both previously
edited and pre-editing knowledge. This requires computing the inverse of the following matrix:

Mt =

t∑
i=1

KiK
⊤
i + λ(UU⊤ +D),

which generalizes the single-step matrix M in Equation 7. A straightforward approach would reap-
ply the Sherman–Morrison–Woodbury (SMW) identity using all accumulated keys K1:t = [K1, . . . ,Kt]

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

(K1:tK
⊤
1:t =

∑t
i=1 KiK

⊤
i). This results in a per-step computational cost of O(dr2t), where denotes the

number of column vectors in K1:t. As t increases, rt grows linearly with the number of edits, making the
update progressively more expensive. When rt becomes large—particularly as it approaches the model di-
mension d—the inversion of SMW inner system scales as O(r3t), causing the overall cost to approach O(d3)
and effectively negating the efficiency gains from the low-rank assumption.

To maintain efficiency, we apply periodic low-rank compression: every τ incoming key vectors, we perform
SVD on the accumulated keys and retain only the top singular components that preserve most of the direc-
tional energy. Let Kcomp denote the compressed key matrix from previous cycles (or empty initially), and let
Kall = [Kcomp,Kbuff] be the full set of keys to compress, where Kbuff is the current buffer of unprocessed
keys. We compute the SVD Kall = USV⊤ and retain the largest r components such that

r = min

{
k :

∑k
i=1 σ

2
i∑r′

i=1 σ
2
i

≥ γ, k ≤ rmax

}
,

where σi are the singular values, r′ = rank(Kall), γ ∈ (0, 1] is the energy retention threshold, and rmax caps
the maximum rank to prevent unbounded growth. The compressed key matrix is then updated as Kcomp ←
U:,1:rS1:r,1:r, and the buffer is reset. The accumulated keys Kall is used in the SMW updates at each step,
ensuring per-step computational cost remains bounded at O(dr2). The full procedure is summarized in
Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We outline the experimental setup, including the models, editing methods, datasets, and evaluation metrics
used in our study. Further details—such as hyperparameters and baseline implementations for the sequential
editing task—are provided in Appendix C.

Language Models & Editing Methods. We conduct experiments on three decoder-only language mod-
els: GPT2-XL (1.5B parameters), GPT-J (6B parameters), and Llama-3 (8B parameters). The key vector
dimensionality is 6400, 16384, and 14348, respectively. These models vary in architecture and training data,
allowing us to evaluate the generalization of editing methods across diverse LLMs. We compare against a
range of state-of-the-art locate-then-edit methods: MEMIT (Meng et al., 2023), PMET (Li et al., 2024a),
EMMET (Gupta et al., 2024b), AlphaEdit (Fang et al., 2025), RECT (Gu et al., 2024b), PRUNE (Ma et al.,
2025), and AdaEdit (Li & Chu, 2025). We do not include ROME (Meng et al., 2022) as it is a special case of
EMMET with batch size one. Among these, RECT, PRUNE, and AdaEdit are post-regularization methods
that explicitly constrain updates to preserve behavior on unrelated inputs.

Editing Datasets & Evaluation Metrics. We evaluate on two standard factual editing benchmarks:
ZsRE (Levy et al., 2017) and CounterFact (Meng et al., 2022). Each edit is defined by an input-output
pair (x, y). In ZsRE, x is a question (e.g., What university did Watts Humphrey attend?) and y is the target
answer (e.g., Illinois Institute of Technology). In CounterFact, x is a cloze prompt (e.g., The mother tongue
of Danielle Darrieux is) and y is the new fact (e.g., English), with the original fact yo (e.g., French) provided.
We assess performance using three primary metrics: Efficacy (Eff*) measures whether the model generates
y as the top prediction given x, i.e., y = argmaxy′ P (y′ | x). Generality (Gen*) evaluates robustness to
input variation by measuring success on paraphrased inputs xg , i.e., y = argmaxy′ P (y′ | xg). Specificity
(Spe*) measures locality by the percentage of unrelated fact pairs (xs, ys) that remain correctly predicted
after editing. For CounterFact, since the original fact yo is provided, we additionally report probability-
increase-based metrics, where an edit is considered successful if P (y | x) > P (yo | x), following prior
work (Meng et al., 2023; Fang et al., 2025). The corresponding metrics are denoted as Eff., Gen., and Spe..

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Figure 1: Editing time comparison for 2,000 sequential edits on the COUNTERFACT dataset across different
models. Each subplot is labeled with the model name, parameter count, and key space dimension d.

5.2 EDITING EFFICIENCY & EFFICACY

0 1000 2000 3000 4000 5000 6000
Singular Value Index i

0

1

2

3

4

5

i

i(K0)
i(K[1 : t])

Figure 2: Singular values of the pre-edit
key matrix K0 and the concatenated edited
keys K[1:t] over 2000 sequential edits on
COUNTERFACT using GPT2-XL, illustrat-
ing the inherent low-rank structure.

Editing time. We evaluate computational efficiency by mea-
suring the time to perform 2000 edits on the CounterFact
dataset. The effectiveness of our low-rank update strategy is
empirically supported by the long-tailed singular value dis-
tribution of both the pre-edit keys K0 and the sequence of
edited keys K[1:t], as shown in Figure 2, indicating that the
knowledge dynamics during editing are intrinsically low-rank.
This justifies our use of a rank-r update with r ≪ d, which
avoids costly matrix inversions. As shown in Figure 1, FastE-
dit achieves remarkable speedups across all models—GPT2-
XL (1.5B), GPT-J (6B), and LLaMA-3 (8B)—reducing editing
time to just 0.96 hours on GPT2-XL, 1.14 hours on GPT-J,
and 1.45 hours on LLaMA-3, significantly outperforming all
baselines. It runs approximately 5× faster than the next fastest
method on larger models, and up to 10× faster than PRUNE
and AdaEdit. This dramatic improvement stems from our key
optimization: replacing the O(d3) inverse in FFN editing with an O(dr2) update via the Sherman-Morrison-
Woodbury identity. The results confirm that FastEdit scales efficiently with model size, making it highly
practical for real-world deployment.

Figure 3: GPU memory usage comparison
on LLaMA-3 (bfloat16, bs=1).

Pre-computation time. Locate-then-edit methods typically
require extensive sampling of pre-editing keys (e.g., ∼4×107

in prior work) to estimate the semantic subspace, taking over
24 hours for LLaMA-3. In contrast, FastEdit requires only
∼ 4 × 104 samples, reducing pre-computation time to a few
minutes. This efficiency is enabled by our robust covariance
estimation procedure (detailed in Section 4), which fuses data-
driven statistics with a structural prior from the MLP down-
projection weights. This allows stable estimation of U and D
even with limited samples, eliminating the need for massive
key collection and enabling rapid deployment on new large
language models.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 1: Editing performance on GPT-J and LLaMA-3 across COUNTERFACT and ZSRE datasets. ↑: higher
is better; ↕: closer to pre-edit values is better.

Method CounterFact ZsRE

Eff.↑ Gen.↑ Spe.↑ Eff*.↑ Gen*.↑ Spe*.↕ Eff*.↑ Gen*.↑ Spe*.↕
Pre-edited 15.4 18.0 83.3 0.40 0.60 13.7 27.7 27.1 27.4

MEMIT
G

PT
-J

99.2 89.9 77.5 96.4 51.3 9.90 98.8 93.3 27.5
PMET 99.7 95.0 73.3 98.0 69.9 10.6 99.7 97.8 28.4
EMMET 99.6 94.4 75.3 98.1 60.6 10.4 99.8 97.2 28.6
AlphaEdit 99.8 93.8 76.6 99.0 61.2 9.90 99.8 97.8 28.7
RECT 99.2 89.0 77.5 95.2 49.1 9.30 98.7 92.9 27.6
PRUNE 99.4 96.1 73.2 98.4 74.4 12.5 99.3 95.9 30.9
AdaEdit 99.7 96.0 72.7 98.5 71.5 10.6 99.5 94.6 26.4
FastEdit 99.8 96.3 71.4 98.6 71.6 12.2 99.6 96.5 28.2

Pre-edited 7.80 10.4 89.3 0.30 0.50 21.3 38.2 37.6 38.6

MEMIT

L
L

aM
A

3

99.0 92.9 71.5 97.0 71.3 18.4 99.2 95.4 43.9
PMET 99.2 95.7 66.2 97.0 75.6 16.5 99.1 96.5 45.4
EMMET 51.1 50.8 48.9 0.00 0.00 0.00 97.3 93.9 46.0
AlphaEdit 56.1 53.9 48.5 2.90 1.80 0.60 98.0 94.2 45.7
RECT 99.0 93.0 71.0 96.8 71.6 18.5 99.1 96.0 44.0
PRUNE 85.2 77.0 64.6 39.9 33.3 7.40 94.3 91.3 46.8
AdaEdit 77.6 70.3 56.1 36.8 27.7 0.07 93.2 90.6 46.6
FastEdit 99.6 93.6 74.4 98.4 70.5 19.8 99.0 95.1 45.3

Memory Cost. We measure the peak GPU memory consumption during editing on LLaMA-3 using
bfloat16 precision with a batch size of 1. As shown in Figure 3, FastEdit consumes only 17,724 MiB,
notably lower than MEMIT (21,738 MiB), AlphaEdit (22,522 MiB), and PRUNE (22,770 MiB). This effi-
ciency stems from our O(dr) parameterization of the update, which avoids the O(d2) memory overhead of
dense matrix storage. All measurements were conducted on an NVIDIA A6000 with 48GB GPU memory.
While the memory saving is not critical on such high-end devices, FastEdit’s reduced footprint enhances
feasibility in resource-constrained environments and enables potential extensions to larger models or higher
batch sizes where memory becomes a bottleneck.

Editing Performance. We evaluate editing performance on GPT-J and LLaMA-3 using the CounterFact
and ZsRE datasets, with results for GPT2-XL provided in Appendix E. As shown in Table 1, FastEdit
achieves strong overall performance. On CounterFact, it obtains the highest efficacy (99.6%/98.4%) and
specificity (74.4%/19.8%), outperforming all baseline methods while maintaining competitive generality.
Notably, methods such as EMMET and AlphaEdit exhibit severe performance degradation, achieving the
lowest scores across all metrics, which indicates poor stability under sustained editing pressure. On ZsRE,
FastEdit performs competitively, with minor gaps behind MEMIT and RECT. These results confirms that
high editing efficiency can be achieved without compromising editing performance.

5.3 SAFETY-AWARE EDITING EVALUATION

To evaluate the safety of model edits, we leverage the low-rank semantic subspace U ∈ Rd×r0 (r0 ≪
d) learned from pre-edit FFN key distributions. We introduce two complementary geometric metrics that
assess edit safety from different but consistent perspectives. First, to assess the geometric alignment of
each edit with underutilized regions of the key space, we compute the orthogonal energy of the new key

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0

10

0.0

0.5

0

10

0.0

0.1

0

10

0.0000

0.0001

0 250 500 750 1000 1250 1500 1750 2000
Sample Index

0

10

0 250 500 750 1000 1250 1500 1750 2000
Sample Index

0.0000

0.0001

Figure 4: Temporal evolution of edit safety metrics et (left, higher is better) and st (right, lower is better)
over 2000 sequential edits on COUNTERFACT using LLaMA-3. Each row corresponds to a method, from
top to bottom: ALPHAEDIT, EMMET, MEMIT, FASTEDIT.

et = ∥(I − PU)kt∥2, where PU = U(U⊤U)−1U⊤ is the orthogonal projection onto span(U), and kt

is the new key introduced at the t-th sequential edit. Higher et indicates a safer edit, as it reflects greater
alignment with the “quiet” subspace orthogonal to existing semantic directions—regions where interference
is less likely. Second, we define the subspace interference metric st = ∥∆tU∥F , which measures the
component of the weight update ∆t at step t that lies within the dominant directions of existing knowledge.
A larger st indicates stronger interference with the model’s semantic structure, suggesting a higher risk of
undesirable side effects. More details are provided in Appendix D.

We compute st and et over 2000 sequential edits on the COUNTERFACT dataset using four editing methods:
ALPHAEDIT, EMMET, MEMIT, and FASTEDIT, all applied to LLaMA-3. As shown in Figure 4, during
the initial phase (edits 1–1500), all methods maintain high et and low st, indicating that edits are successfully
confined to orthogonal, low-interference directions. However, after edit #1500, a clear divergence emerges:

• ALPHAEDIT and EMMET exhibit a sharp decline in et and a corresponding rise in st, indicating
that their updates begin to leak into the semantic subspace, increasing the risk of interference.

• In contrast, MEMIT and FASTEDIT continue to maintain high et and low st, suggesting that they
preserve access to orthogonal directions and avoid corrupting existing knowledge.

This stark contrast demonstrates the ability of our metrics to detect potential safety issues in sequential
editing. The concurrent degradation in both et (key space) and st (weight space) provides strong evidence
that U captures meaningful structure in the model’s pre-editing knowledge manifold. These metrics form
a robust diagnostic framework for distinguishing between transiently effective and truly sustainable editing
methods. Crucially, et can be computed before applying the edit and does not require access to the update
matrix ∆t, making it a practical prior for assessing edit safety across diverse editing methods.

6 CONCLUSION

We presented FastEdit, an efficient model editing framework that exploits the low-rank structure of FFN key
spaces to replace costly O(d3) updates with fast O(dr2) revisions, achieving up to 10× speedup over existing
methods while maintaining competitive editing accuracy. To assess editing safety, we introduced a set of
interpretable metrics that capture semantic interference in the model’s pre-editing knowledge space. FastEdit
thus enables efficient, safe, and scalable knowledge editing—bringing continuous model updating one step
closer to reality. Future work may generalize this low-rank approach to other editing frameworks (e.g.,
AlphaEdit (Fang et al., 2025)), study its compositional behavior under long-term massive-scale updates.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effective-
ness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 7319–7328, 2021.

Baolong Bi, Shenghua Liu, Lingrui Mei, Yiwei Wang, Junfeng Fang, Pengliang Ji, and Xueqi Cheng. De-
coding by contrasting knowledge: Enhancing large language model confidence on edited facts. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 17198–17208, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language models are few-shot learners.
NeurIPS, 2020.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects of knowl-
edge editing in language models. Transactions of the Association for Computational Linguistics, 12:
283–298, 2024.

Yanbo Dai, Zhenlan Ji, Zongjie Li, and Shuai Wang. Namet: Robust massive model editing via noise-aware
memory optimization. arXiv preprint arXiv:2505.11876, 2025.

Nicola De Cao, Tejas Kipf, Patrick Lewis, et al. Editing large language models: Problems, methods, and
opportunities. In EMNLP, 2021.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating factual knowledge
in pretrained language models. In Findings of the Association for Computational Linguistics: EMNLP
2022, pp. 5937–5947, 2022.

Jianqing Fan, Yuan Liao, and Marine Mincheva. High-dimensional covariance matrix estimation in approx-
imate factor models. The Annals of Statistics, 39(6):3320–3356, 2013.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-Seng
Chua. Alphaedit: Null-space constrained knowledge editing for language models. In The Thirteenth
International Conference on Learning Representations, 2025.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2021.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, and Xin Wang. Pokemqa: Pro-
grammable knowledge editing for multi-hop question answering. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8069–8083,
2024a.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun Peng.
Model editing harms general abilities of large language models: Regularization to the rescue. In Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 16801–16819,
2024b.

Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. Model editing at scale leads to gradual and catas-
trophic forgetting. In Findings of the Association for Computational Linguistics ACL 2024, pp. 15202–
15232, 2024a.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Akshat Gupta, Dev Sajnani, and Gopala Anumanchipalli. A unified framework for model editing. In Find-
ings of the Association for Computational Linguistics: EMNLP 2024, pp. 15403–15418, 2024b.

Akshat Gupta, Maochuan Lu, Thomas Hartvigsen, and Gopala Anumanchipalli. Efficient knowledge editing
via minimal precomputation. arXiv preprint arXiv:2506.04226, 2025.

Anshita Gupta, Debanjan Mondal, Akshay Sheshadri, Wenlong Zhao, Xiang Li, Sarah Wiegreffe, and Niket
Tandon. Editing common sense in transformers. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 8214–8232, 2023.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging
with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural Information
Processing Systems, 36:47934–47959, 2023.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Knowledge in superposition: Unveiling the
failures of lifelong knowledge editing for large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 24086–24094, 2025.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong. Transformer-
patcher: One mistake worth one neuron. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, et al. Learning to edit: Aligning llms with knowledge editing. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4689–4705, 2024.

Serge Lang. Introduction to linear algebra. Springer Science & Business Media, 2012.

Jan Leike, Jonathan Uesato, Natasha Monga, et al. Towards long-term safety for reinforcement learning
agents, 2023. Anthropic Blog.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading
comprehension. In 21st Conference on Computational Natural Language Learning, CoNLL 2017, pp.
333–342. Association for Computational Linguistics (ACL), 2017.

Qi Li and Xiaowen Chu. Can we continually edit language models? on the knowledge attenuation in
sequential model editing. In Findings of the Association for Computational Linguistics: ACL 2024, pp.
5438–5455, 2024.

Qi Li and Xiaowen Chu. Adaedit: Advancing continuous knowledge editing for large language models.
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 4127–4149, 2025.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model editing in
a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18564–
18572, 2024a.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the pitfalls
of knowledge editing for large language models. In The Twelfth International Conference on Learning
Representations, 2024b.

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained sequen-
tial model editing. In The Thirteenth International Conference on Learning Representations, 2025.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations
in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing memory
in a transformer. In The Eleventh International Conference on Learning Representations, 2023.

Meta. Llama 3. Large language model release, 2024. URL https://llama.meta.com/llama3/.
Accessed: 2025-09-20.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing
at scale. In International Conference on Learning Representations, 2022a.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-based
model editing at scale. In International Conference on Machine Learning, pp. 15817–15831. PMLR,
2022b.

Haewon Park, Gyubin Choi, Minjun Kim, and Yohan Jo. Context robust knowledge editing for language
models. arXiv preprint arXiv:2505.23026, 2025.

Aditya Ramesh, Prafulla Dhariwal, Nick Lourie, et al. Knowledge neurons in pretrained transformers. arXiv
preprint arXiv:2204.07705, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Akshay Vellal, Xiang Li, Christopher Mitchell, et al. Temporal knowledge in language models: A survey.
In ICLR, 2024.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang, and
Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large language
models. Advances in Neural Information Processing Systems, 37:53764–53797, 2024.

Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not! In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11007–11015, 2023.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed dynamic
lora. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 19449–19457,
2024.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Shu Wu, Pengjie Ren, and Zhumin Chen. Uncovering overfitting in
large language model editing. In The Thirteenth International Conference on Learning Representations,
2025.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou, Xi Chen,
and Huajun Chen. Instructedit: instruction-based knowledge editing for large language models. In Pro-
ceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 6633–6641,
2024.

Shuning Zhao, Anna Roberts, Frank Li, et al. Do llms really separate knowledge from inference? In ACL,
2023.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we edit
factual knowledge by in-context learning? In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 4862–4876, 2023.

12

https://llama.meta.com/llama3/

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen. Mquake:
Assessing knowledge editing in language models via multi-hop questions. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 15686–15702, 2023.

A MODELING THE PRE-EDITING KEYS VIA LR+D FACTOR MODEL

A.1 RANK ANALYSIS OF THE SECOND LINEAR LAYER INPUT

In this section, we provide a mathematical justification for the low-rank structure observed in the input to
the second linear layer of the Feed-Forward Network (FFN) in Transformers. Specifically, we show that due
to architectural constraints, the effective dimensionality of these activations is inherently limited.

Consider a single token’s hidden representation x ∈ Rd as input to the FFN block. The FFN applies the
following transformation:

FFN(x) = W2 · ReLU(W1x+ b1) + b2, (14)
where W1 ∈ R4d×d and W2 ∈ Rd×4d are weight matrices, and b1,b2 are biases (we omit biases for
simplicity in the analysis below).

Let a = ReLU(W1x) ∈ R4d denote the activation vector that serves as input to the second linear layer
(W2). We analyze the rank properties of the set of all possible such activations.

Linear Transformation Stage. The first stage computes z = W1x. Since W1 ∈ R4d×d, its column
space (image) satisfies:

dim (Im(W1)) = rank(W1) ≤ d. (15)
Thus, z = W1x lies in a subspace of R4d with dimension at most d, regardless of the specific x ∈ Rd.

Nonlinear Activation Stage. The ReLU function ReLU(·) = max(·, 0) is applied element-wise to z,
yielding a = ReLU(z). While ReLU is nonlinear and breaks the linear subspace structure, it does not
increase the intrinsic dimensionality of the mapping. Specifically:

The image of the map f : Rd → R4d, defined by f(x) = ReLU(W1x), has topological dimension at most
d.

Proof. Since W1 is a linear map from Rd to R4d, it is continuous and its image is contained in a d-
dimensional subspace. The ReLU function is continuous and piecewise linear. The composition f =
ReLU ◦W1 is therefore a continuous map from a d-dimensional domain to R4d. By standard results in
topology, the image of a d-dimensional manifold under a continuous map cannot exceed d in topologi-
cal dimension. Hence, the set {f(x) | x ∈ Rd} forms a d-dimensional (or lower) subset of R4d, i.e., a
d-dimensional manifold.

Implication for Batched Inputs. Now consider a batch of n inputs {x1, . . . ,xn}, and let A =
[a1, . . . ,an] ∈ R4d×n be the matrix of activations, where ai = ReLU(W1xi). Then:

rank(A) ≤ d, (16)
since each column ai is determined by xi ∈ Rd, and the mapping is deterministic. Even if n > d, the rank
cannot exceed d due to the bottleneck imposed by the input dimension and the fixed W1.

Conclusion. This analysis shows that the input to the second linear layer, a, is constrained to a low-
dimensional manifold in R4d, with intrinsic dimension at most d≪ 4d. This structural property justifies our
use of a low-rank plus diagonal (LR+D) model for the covariance of these activations in Section 4, as the
full 4d-dimensional space is not fully utilized.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

A.2 EXPECTED REGULARIZATION TERM: DETAILED DERIVATION

In this section, we derive the expected value of the empirical regularization term ∥∆K0∥2F under the as-
sumption that the pre-edit keys K0 ∈ Rd×b0 are independently sampled from a zero-mean distribution with
covariance structure Σ = UU⊤ +D, as defined in the LR+D model (Equation equation 5).

Let K0 = [k1, . . . ,kb0], where each ki ∈ Rd is an i.i.d. sample satisfying:

E[ki] = 0, E[kik
⊤
i] = Σ = UU⊤ +D.

We aim to compute:
EK0

[
∥∆K0∥2F

]
,

where ∆ ∈ Rd×d is a fixed update matrix.

The squared Frobenius norm can be expanded column-wise:

∥∆K0∥2F =

b0∑
i=1

∥∆ki∥22.

Taking expectation over K0 (which is equivalent to taking expectation over each ki due to independence):

EK0

[
∥∆K0∥2F

]
= EK0

[
b0∑
i=1

∥∆ki∥22

]
=

b0∑
i=1

Eki

[
∥∆ki∥22

]
.

Since all ki are identically distributed, we denote k ∼ p(k) as a generic key vector, and write:

EK0

[
∥∆K0∥2F

]
= b0 · Ek

[
∥∆k∥22

]
.

Now, observe that:
∥∆k∥22 = (∆k)⊤(∆k) = k⊤∆⊤∆k.

Thus,
Ek

[
∥∆k∥22

]
= Ek

[
k⊤∆⊤∆k

]
.

We now apply the following standard result for the expectation of a quadratic form:

[Expectation of Quadratic Form] For a random vector x ∈ Rd with mean µ and covariance Σ, and a fixed
symmetric matrix A ∈ Rd×d, we have:

E[x⊤Ax] = Tr(AΣ) + µ⊤Aµ.

In our case: - x = k, - A = ∆⊤∆ (symmetric and positive semi-definite), - µ = E[k] = 0, - Σ =
UU⊤ +D.

Therefore,

Ek

[
k⊤∆⊤∆k

]
= Tr

(
∆⊤∆ · (UU⊤ +D)

)
+ 0⊤(· · ·)0 = Tr

(
∆⊤∆(UU⊤ +D)

)
.

Substituting back, we obtain:

EK0

[
∥∆K0∥2F

]
= b0 · Tr

(
∆⊤∆(UU⊤ +D)

)
.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

This shows that the expected regularization term is proportional to the trace expression, with proportionality
constant b0 (the number of pre-edit keys). In practice, this constant is absorbed into the regularization
coefficient λ when forming the final objective, yielding the effective regularizer:

Tr
(
∆⊤∆(UU⊤ +D)

)
.

This derivation justifies replacing the empirical term ∥∆K0∥2F with the expected regularizer in the main
optimization objective.

A.3 DERIVATION OF THE COVARIANCE STRUCTURE

Under the factor model k = µ+Uz+ ε equation 5, with E[z] = 0, Cov(z) = I, ε ∼ N (0,D), and z ⊥ ε,
the centered key vector is k− µ = Uz+ ε. The covariance is:

Cov(k) = E
[
(Uz+ ε)(Uz+ ε)⊤

]
(17)

= E
[
Uzz⊤U⊤]+ E

[
Uzε⊤

]
+ E

[
εz⊤U⊤]+ E

[
εε⊤

]
. (18)

Using independence and zero means:

• E[Uzz⊤U⊤] = UE[zz⊤]U⊤ = UU⊤,

• E[Uzε⊤] = UE[z]E[ε⊤] = 0,

• E[εz⊤U⊤] = E[ε]E[z⊤]U⊤ = 0,

• E[εε⊤] = D.

Summing the terms yields:
Cov(k) = UU⊤ +D, (19)

as desired.

B ALGORITHMIC DETAILS OF PERIODIC SPECTRAL COMPRESSION

We provide the full algorithmic description of the periodic spectral compression method used in our se-
quential knowledge editing framework. This procedure maintains an efficient low-rank approximation of
accumulated edit keys by periodically compressing them via truncated singular value decomposition (SVD).
Specifically, incoming key vectors are accumulated until their total dimension reaches a threshold τ , at which
point a global SVD is performed and only the top singular components—preserving at least a fraction γ of
the total energy—are retained, up to a maximum rank rmax. The compressed key matrix is then used in
subsequent Sherman–Morrison–Woodbury (SMW) updates to ensure that each editing step remains com-
putationally efficient, with cost bounded by O(dr2) where r = rank(Kcomp). The complete procedure is
summarized in Algorithm 1.

C EXPERIMENTAL SETUP

In this section, we provide an overview of the key model editing methods used as baselines in our evaluation.
We then describe how these methods are adapted to sequential editing tasks by incorporating mechanisms
to protect previously edited knowledge (Fang et al., 2025), which significantly improves their performance
over long edit sequences.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Algorithm 1 Periodic Spectral Compression with SMW Update

Require: D ∈ Rd, U ∈ Rd×ru , Knew ∈ Rd×b, buffer threshold τ , energy threshold γ, max rank rmax

Ensure: K⊤
new(A+KnewK

⊤
new)

−1, where A = D+UU⊤ +KcompK
⊤
comp

1: Initialize Kcomp ← 0d×0, count← 0
2: Kcomp ← [Kcomp,Knew] ▷ Append new keys
3: count← count + b
4: if count ≥ τ then
5: Compute SVD: Kcomp = UsSsV

⊤
s

6: r ← min
{
k :

∑k
i=1 σ2

i∑rank
i=1 σ2

i

≥ γ, k ≤ rmax

}
7: Kcomp ← Us[:, 1 : r]Ss[1 : r, 1 : r] ▷ Compress and update
8: count← 0
9: end if

10: Form total basis: Utotal ← [U,Kcomp,Knew] ▷ Include protected, compressed, and new keys
11: Compute V← D−1/2Utotal ▷ Element-wise: Utotal/

√
D

12: M← I+V⊤V
13: M−1 ← inv(M)
14: return K⊤

new

(
D−1 −D−1UtotalM

−1U⊤
totalD

−1
)

C.1 BASELINE MODEL EDITING METHODS

We summarize the core ideas of the following seven representative methods:

• MEMIT (Meng et al., 2023): Extends single-fact editing (e.g., ROME (Meng et al., 2022)) to
batched updates via a least-squares optimization, enabling efficient integration of multiple facts
through direct weight modification.

• PMET (Li et al., 2024a): Improves editing precision by analyzing information flow in Transformer
layers. It observes that Multi-Head Self-Attention (MHSA) encodes general reasoning patterns and
should remain unaltered. PMET optimizes hidden states of both MHSA and FFN but only uses
FFN states to update weights for more targeted edits.

• EMMET (Gupta et al., 2024b): Unifies ROME and MEMIT under a common preservation-
memorization objective. While ROME uses equality constraints for single edits, EMMET supports
batched editing with the same constraint type, achieving comparable performance with theoretical
consistency.

• AlphaEdit (Fang et al., 2025): Addresses knowledge disruption in sequential editing by projecting
perturbations into the null space of preserved knowledge. This ensures that outputs on unedited
facts remain unchanged, significantly improving edit retention with minimal overhead.

• RECT (Gu et al., 2024b): Highlights that excessive weight changes during editing degrade gen-
eral capabilities (e.g., reasoning, inference). It regularizes updates based on the relative change in
weights to preserve model functionality while maintaining edit success.

• PRUNE (Ma et al., 2025): Identifies the condition number of the edit matrix as a key factor affect-
ing stability in sequential editing. By constraining this value, PRUNE limits parameter perturbation
and preserves general knowledge over many edits.

• AdaEdit (Li & Chu, 2025): Tackles performance decay in continuous editing by promoting disen-
tangled and sparse representations of edited knowledge, enabling robust performance in large-scale
editing scenarios.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

C.2 ADAPTATION TO SEQUENTIAL EDITING

To enable fair comparison in sequential editing scenarios, we adapt all baseline methods to preserve previ-
ously edited knowledge. Let:

• K0: initial model keys (pre-editing),

• Kt: current batch of edit keys,

• K1:t−1 = [K1, . . . ,Kt−1]: keys from all previous edits.

Below we describe the adapted update rules.

MEMIT and MEMIT-based Methods (PMET, RECT, PRUNE, AdaEdit): The original MEMIT up-
date is:

∆MEMIT = RKT
t

(
K0K

T
0 +KtK

T
t

)−1
. (20)

To protect previously edited knowledge, we extend the regularization term:

∆MEMIT = RKT
t

(
K0K

T
0 +K1:t−1K

T
1:t−1 +KtK

T
t

)−1
. (21)

This adaptation is also applied to PMET, RECT, PRUNE, and AdaEdit, as they are built upon the MEMIT
framework.

EMMET: The original update rule is:

∆EMMET = Rt

(
KT

t (K0K
T
0)

−1Kt

)−1
KT

t (K0K
T
0)

−1. (22)

We adapt it by updating the inverse covariance estimate to include prior edits:

∆EMMET = Rt

(
KT

t (K0K
T
0 +K1:t−1K

T
1:t−1)

−1Kt

)−1
KT

t (K0K
T
0 +K1:t−1K

T
1:t−1)

−1. (23)

AlphaEdit: AlphaEdit inherently supports sequential editing by design. Its update already includes pro-
tection for previously edited knowledge:

∆AlphaEdit = RKT
t P

(
I+K1:t−1K

T
1:t−1P+KtK

T
t P

)−1
, (24)

where P is a projection matrix onto the null space of preserved knowledge. Hence, no further adaptation is
required.

D QUANTIFYING EDIT SAFETY: A GEOMETRIC CRITERION BASED ON KEY SPACE
ALIGNMENT

When performing knowledge editing, it is essential to assess not only whether an edit can be successfully
implemented, but also whether it is likely to interfere with existing knowledge. In this section, we introduce
a principled geometric criterion—the Orthogonal Energy—that quantifies the potential safety of an edit by
measuring how much of the new key’s direction lies in underutilized, orthogonal regions of the model’s key
space.

Recall from Section ?? that the pre-edit keys K0 exhibit a low-rank plus diagonal (LR+D) covariance struc-
ture:

Σ = UU⊤ +D,

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

where U ∈ Rd×r captures the top-r principal directions of variation (i.e., the semantic subspace), and
D ∈ Rd×d is a diagonal matrix representing residual variances. This structure reflects the fact that natural
inputs tend to concentrate in a low-dimensional manifold within the high-dimensional key space.

During editing, we regularize the weight update ∆ ∈ Ro×d via:

λ · Tr
(
∆⊤∆(UU⊤ +D)

)
,

which penalizes changes that act strongly along directions of high variance—i.e., within span(U). Intu-
itively, this means:

• Directions in span(U) are “expensive” to modify, as they are densely populated with existing
knowledge.

• Directions in the orthogonal complement U⊥ are “cheap” to use, as they correspond to underuti-
lized regions of the key space.

Therefore, edits whose keys lie primarily in U⊥ are less disruptive and more likely to preserve existing
behavior.

D.1 ORTHOGONAL ENERGY: MEASURING ALIGNMENT WITH THE QUIET SUBSPACE

Given a new key k
(i)
1 ∈ Rd, we assess its edit safety by measuring how much of its energy lies in the

orthogonal complement U⊥. The core idea is:

The safer a key is, the more of its energy resides in U⊥, the underutilized “quiet” region of the key space.

Let PU = U(U⊤U)−1U⊤ denote the orthogonal projection onto span(U). Then (I −PU) projects onto
U⊥.

[Orthogonal Energy] For a new key k
(i)
1 , its Orthogonal Energy is defined as:

ei = ∥(I−PU)k
(i)
1 ∥2, (25)

with ei = 0 if k(i)
1 = 0.

Interpretation:

• ei ≫ 0: The key has strong components in U⊥. It lies in a “quiet” region of the key space, and the
edit can be implemented with minimal interference. High safety.

• ei ≈ 0: The key is nearly aligned with span(U). Modifying the model to fit it may disturb many
existing representations. Low safety.

• Unlike normalized scores, ei preserves the magnitude of the key, making it sensitive to both di-
rection and scale—critical for detecting whether a large-magnitude edit is forced into the semantic
subspace.

Geometric intuition: The quantity ei measures the squared length of k(i)
1 ’s projection onto the orthogonal

complement of the semantic subspace. Larger values indicate that the edit operates in a region where existing
knowledge is sparse, reducing the risk of interference.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

D.2 SUBSPACE INTERFERENCE: A POST-HOC MEASURE OF UPDATE IMPACT

While the orthogonal energy ei provides a prior assessment of edit safety based on the input key, it is also
valuable to measure the actual impact of an edit on the model’s parameter space. To this end, we introduce
the subspace interference metric:

si = ∥∆iU∥F ,
where ∆i ∈ Ro×d is the weight update applied at the i-th edit, and ∥ · ∥F denotes the Frobenius norm.
This metric quantifies how much of the update ∆i acts along the directions spanned by U—i.e., within the
semantic subspace where existing knowledge is concentrated.

A large si indicates that the edit strongly modifies parameters associated with core semantic directions,
increasing the risk of interference with unrelated facts. In contrast, small si suggests that the update is
confined to orthogonal or residual directions, preserving the integrity of existing representations.

Crucially, si and ei are theoretically connected through the regularization objective. Recall from Section D
that our regularizer penalizes updates via:

λ · Tr
(
∆⊤∆(UU⊤ +D)

)
.

The component Tr(∆⊤∆UU⊤) = ∥∆U∥2F = s2i directly measures the energy of the update in the semantic
subspace. Thus, minimizing the regularized objective encourages both high ei (via key alignment) and low
si (via update sparsity in U).

In practice, si serves as a post-hoc diagnostic: while ei can be computed before applying the edit, si requires
access to ∆i and is used to verify whether the update respected the intended geometric constraints. When
both metrics trend together—e.g., declining ei and rising si over sequential edits—they provide converging
evidence of deteriorating edit safety.

D.3 WHY THIS METRIC WORKS: CONNECTION TO UPDATE COST

To understand why ei predicts edit safety, consider the minimal Frobenius-norm update ∆ that satisfies
∆k

(i)
1 = ri, where ri = v

(i)
1 −Wk

(i)
1 is the residual. This update takes the outer-product form:

∆ = rik
(i)⊤
1 /∥k(i)

1 ∥2.

Each row ∆j is proportional to k
(i)⊤
1 , scaled by (ri)j . The regularizer evaluates:

Tr
(
∆⊤∆(UU⊤ +D)

)
∝

∑
j

(ri)
2
j · k

(i)⊤
1 (UU⊤ +D)k

(i)
1 .

We can decompose the quadratic form:

k
(i)⊤
1 UU⊤k

(i)
1 = ∥PUk

(i)
1 ∥2 = ∥k(i)

1 ∥2 − ∥(I−PU)k
(i)
1 ∥2 = ∥k(i)

1 ∥2 − ei.

Therefore, the regularization cost is:

cost ∝
∑
j

(ri)
2
j ·

(
∥k(i)

1 ∥2 − ei + k
(i)⊤
1 Dk

(i)
1

)
.

For fixed k
(i)
1 and ri, the cost is minimized when ei is maximized. That is: ¿ Higher orthogonal energy

ei leads to lower regularization cost, meaning the edit can be implemented more easily and with less
interference.

Thus, ei serves as a prior indicator: edits with high ei are geometrically favored by the regularization and
are less likely to distort existing representations.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Figure 5: Hyperparameter sensitivity analysis on GPT2-XL (CounterFact).

D.4 PRACTICAL USAGE AND INTERPRETATION

In practice, ei serves as a prior indicator of edit safety:

• High ei: Edit lies in a quiet region. Likely to succeed with minimal interference. Can be prioritized
or applied with lower regularization.

• Low ei: Edit is forced into the semantic subspace. High risk of interference. Should be monitored
or rejected if safety is critical.

We recommend computing ei for all new entries and using it to:

• Rank edits by safety (descending ei).

• Set adaptive regularization (e.g., reduce λ for high-ei edits).

• Diagnose failure cases (e.g., low ei correlates with specificity drop or generalization failure).

E RESULTS

E.1 EDITING PERFORMANCE ON GPT2-XL

Table 2: Editing efficacy.

Method CounterFact ZsRE

Eff.↑ Gen.↑ Spe.↑ Eff*.↑ Gen*.↑ Spe*.↕ Eff*.↑ Gen*.↑ Spe*.↕
Pre-edited 22.1 24.4 78.0 0.10 0.40 10.6 23.7 22.8 25.0

MEMIT

G
PT

2-
X

L

98.0 88.6 65.7 91.4 58.4 10.6 94.7 88.4 26.9
PMET 97.8 90.0 61.3 90.6 62.6 8.80 96.1 91.4 26.1
EMMET 92.4 85.6 57.1 71.1 49.9 5.50 85.0 77.8 24.3
AlphaEdit 99.6 94.0 65.7 97.3 65.3 6.40 96.0 88.8 26.8
RECT 98.0 88.6 65.4 90.9 58.0 10.8 94.8 88.5 26.8
PRUNE 98.0 88.4 65.7 91.5 58.5 10.7 95.3 89.0 26.6
AdaEdit 96.2 87.9 60.8 86.9 60.4 9.20 93.8 88.3 26.0
FastEdit 98.2 91.3 61.4 92.2 64.2 9.10 94.8 89.2 26.0

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

E.2 HYPERPARAMETER INVESTIGATION

We analyze the sensitivity of FastEdit to four key hyperparameters: the subspace rank r0 of U, the maximum
edit rank rmax, the regularization coefficient λ, and the prior fusion coefficient α. As shown in Figure 5,
performance is robust for r0 ≥ 30, indicating that a small-dimensional semantic subspace suffices to capture
essential knowledge structure in GPT2-XL. This validates the low-rank assumption underlying our safety
metric and supports efficient pre-computation. The editing capacity, controlled by rmax, saturates around 600,
beyond which further increases yield diminishing returns. This suggests that the representational complexity
of editing knowledge—across diverse factual updates—is inherently low-rank, justifying our compressed
update design. For regularization strength λ, we observe that when λ is too large (> 1.5× 104), the update
is over-constrained, significantly limiting model adaptability and preventing effective knowledge injection.
Finally, the prior fusion coefficient α controls the trade-off between data-driven covariance and structural
prior Cprior. Performance peaks at α ∈ [0.1, 0.2], confirming that combining empirical statistics with the
MLP down-projection-based prior improves robustness—especially under limited sampling.

21

	Introduction
	Related Work
	PRELIMINARIES
	Method
	Efficient Regularization via Latent Structure Modeling
	Efficient Sequential Editing via Periodic Spectral Compression

	Experiments
	Experimental Setup
	Editing Efficiency & Efficacy
	Safety-Aware Editing Evaluation

	Conclusion
	Modeling the pre-editing keys via LR+D factor model
	Rank Analysis of the Second Linear Layer Input
	Expected Regularization Term: Detailed Derivation
	Derivation of the Covariance Structure

	Algorithmic Details of Periodic Spectral Compression
	Experimental Setup
	Baseline Model Editing Methods
	Adaptation to Sequential Editing

	Quantifying Edit Safety: A Geometric Criterion Based on Key Space Alignment
	Orthogonal Energy: Measuring Alignment with the Quiet Subspace
	Subspace Interference: A Post-hoc Measure of Update Impact
	Why This Metric Works: Connection to Update Cost
	Practical Usage and Interpretation

	Results
	Editing Performance on GPT2-XL
	Hyperparameter Investigation

