
Design-Bench: Benchmarks for Data-Driven Offline
Model-Based Optimization

Brandon Trabucco, Xinyang Geng, Aviral Kumar, Sergey Levine
Electrical Engineering and Computer Sciences, University of California Berkeley.

Abstract

Black-box model-based optimization (MBO) problems, where the goal is to find1

a design input that maximizes an unknown objective function, are ubiquitous2

in a wide range of domains, such as the design of proteins, DNA sequences,3

aircraft, and robots. Solving model-based optimization problems typically requires4

actively querying the unknown objective function on design proposals, which5

means physically building the candidate molecule, aircraft, or robot, testing it,6

and storing the result. This process can be expensive and time consuming, and7

one might instead prefer to optimize for the best design using only the data one8

already has. This setting—called offline MBO—poses substantial and different9

algorithmic challenges than more commonly studied online techniques. A number10

of recent works have demonstrated success with offline MBO for high-dimensional11

optimization problems using high-capacity deep neural networks. However, the12

lack of standardized benchmarks in this emerging field is making progress difficult13

to track. To address this, we present Design-Bench, a benchmark for offline MBO14

with a unified evaluation protocol and reference implementations of recent methods.15

Our benchmark includes a suite of diverse and realistic tasks derived from real-16

world optimization problems in biology, materials science, and robotics that present17

distinct challenges for offline MBO. Our benchmark and reference implementations18

are publicly available at: github.com/brandontrabucco/design-bench19

1 Introduction20

Automatically synthesizing designs that maximize a desired objective function is one of the most21

important challenges in scientific and engineering disciplines. From protein design in molecular22

biology [33] to superconducting material discovery in physics [16], researchers have made significant23

progress in applying machine learning to optimization problems over structured design spaces.24

Commonly, the exact form of the objective function is unknown, and the objective value for a novel25

design can only be found by either running computer simulations or real world experiments. This26

process of optimizing an unknown function by only observing samples from this function is known as27

black-box optimization, and is typically solved in an online iterative manner, where in each iteration28

the solver proposes new designs and queries the objective function for feedback in order to inform29

better design proposals at the next iteration [42]. In many domains however, the objective function is30

prohibitively expensive to evaluate because it requires manually conducting experiments in the real31

world. In this setting, one cannot query the true objective function, and cannot receive feedback on32

design proposals. Instead, a collection of past records of designs and corresponding objective values33

might be available, and the optimization method must instead leverage existing data to synthesize the34

most optimal designs. This is the setting of offline model-based optimization (offline MBO).35

Although online black-box optimization has been studied extensively, offline MBO has received36

comparatively less attention, and only a small number of recent works study offline MBO in the setting37

with high-dimensional design spaces [7, 22, 10, 11, 38]. This is partly because online techniques38

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/brandontrabucco/design-bench

cannot be directly applied in settings where offline MBO is used, especially in high-dimensional39

settings. Online techniques, such as Bayesian optimization [35], often require iterative feedback40

via queries to the objective function. Such online optimizers exhibit optimistic behavior: they rely41

on active queries at completely unseen designs irrespective of whether such a design is good or42

not. When access to these queries is removed, certain considerations change: optimism is no longer43

desirable and distribution shift becomes a major challenge [22].44

Even with only a few existing offline MBO methods, it is hard to compare and track progress, as45

methods are typically proposed and evaluated on different tasks with distinct evaluation protocols. To46

the best of our knowledge, there is no commonly adopted benchmark for offline MBO. To address,47

we introduce a suite of tasks for offline MBO with a standardized evaluation protocol. We include48

a diverse set of tasks that span a wide range of application domains—from synthetic biology to49

robotics–that aims at representing the core challenges in real-world offline MBO. While the tasks are50

not intended to directly enable solving the corresponding real-world problems, which would require51

a lot of machinery in real hardware setup (e.g., a real robot or access to a wetlab for molecule design),52

they are intended to provide algorithm designers with a representative sampling of challenges that53

reflect the difficulties with real-world MBO. That is to say, the tasks are not intended to be real,54

but are intended to be realistically challenging. Further, the diversity of the tasks measures how55

they generalize across multiple domains and verifies they are not specialized to a single task. Our56

benchmark incorporates a variety of challenging factors, such as high dimensionality and sensitive57

discontinuous objective functions, which help identify the strengths and weaknesses of MBO methods.58

Along with this benchmark suite, we present reference implementations of a number of existing59

offline MBO and baseline optimization methods. We systematically evaluate them on all of the60

proposed benchmark tasks and report results. We hope that our work can provide insight into the61

progress of offline MBO methods and serve as a meaningful metric to galvanize research in this area.62

2 Offline Model-Based Optimization Problem Statement63

In online model-based optimization, the goal is to optimize a (possibly stochastic) black-box objective64

function f(x) with respect to its input. The objective can be written as arg maxx f(x). Methods65

for online MBO typically optimize the objective iteratively, proposing design xk at the kth iteration66

and query the objective function to obtain f(xk). Unlike its online counterpart, access to the true67

objective f is not available in offline MBO. Instead, the algorithm A is provided access to a static68

datasetD = {(xi, yi)} of designs xi and a corresponding measurement of the objective value yi. The69

algorithm consumes this dataset and produces an optimized candidate design x∗ which is evaluated70

against the true objective function. Abstractly, the objective for offline MBO is:71

arg max
A

f(x∗) where x∗ = A(D). (1)

In practice, producing a single optimal design entirely from offline data is very difficult, so offline72

MBO methods are more commonly evaluated [22] in terms of “P percentile of top K” performance,73

where the algorithm produces K candidates and the P percentile objective value determines final74

performance. Next we discuss two important aspects pertaining to offline MBO, namely, why offline75

MBO algorithms can improve beyond the best design observed in the offline dataset despite no active76

queries, and the associated challenges with devising offline MBO algorithms.77

1.0 0.6 0.2 0.2 0.6 1.0
1.0

0.6

0.2

0.2

0.6

1.0
Dataset and MBO Found Design

2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0
Objective value

0

5

10

15

20

25

Nu
m

be
r o

f d
at

as
et

 d
es

ig
ns

Histogram of Objective Values
Dataset
Offline MBO

Figure 1: Offline MBO finds designs better than the
best in the observed dataset by exploiting compositional
structure of the objective function. Left: datapoints in
a toy quadratic function MBO task over 2D space with
optimum at (0.0, 0.0) in blue, MBO found design in
red. Right: Objective value for optimal design is much
higher than that observed in the dataset.

Would offline MBO even produce designs78

better than the best observed design in the79

dataset? A natural question to ask is whether80

it is even reasonable to expect offline MBO al-81

gorithms to improve over the performance of82

the best design seen in the dataset. As we will83

show in our benchmark results, many of the84

tasks that we propose do already admit solu-85

tions from existing algorithms that exceed the86

performance of the best sample in the dataset.87

To provide some intuition for how this can be88

possible, consider a simple example of offline89

MBO problems, where the objective function90

f(x) can be represented as a sum of functions91

of independent partitions of the design variables,92

2

Dataset Name Size Cardinality Categories Type Oracle

TF Bind 8 65792 8 4 Discrete Exact
GFP 56086 237 20 Discrete Transformer
UTR 280000 50 4 Discrete Transformer
ChEMBL 40516 425 591 Discrete CNN

Superconductor 21263 86 N/A Continuous Random Forest
Hopper Controller 3200 5126 N/A Continuous Exact
Ant Morphology 25009 60 N/A Continuous Exact
D’Kitty Morphology 25009 56 N/A Continuous Exact

Table 1: Overview of the tasks in our benchmark suite. Design-Bench includes a variety of tasks from
different domains with both discrete and continuous design spaces and 3 high-dimensional tasks with > 200
design dimensions, making it suitable for benchmarking offline MBO methods.

i.e., f(x) = f1(x[1]) + f2(x[2]) + · · ·+ fN (x[N])), where x[1], · · · ,x[N] denotes disjoint subsets93

of design variables x. The dataset of the offline MBO problem contains optimal design variable for94

each partition, but not the combination. If an offline MBO algorithm can identify the compositional95

structure of independent partitions, it would be able to combine the optimal design variable for each96

partition together to form the overall optimal design and therefore improving the performance over97

the best design in the dataset. To better demonstrate this idea, we created a toy problem in two98

dimensions, where the objective function is simply f(x, y) = −x2 − y2. We collect a dataset of99

uniformly sampled x and y from −1 to 1, but discard the samples that have the combination of best100

x and y. We then run a naïve gradient ascent algorithm, as we will describe later in this paper. In101

Figure 1, we can clearly see that our offline MBO algorithm is able to learn to combine the best x102

and y and produce designs significantly better than the best sample in the dataset. Such a condition103

appears in a number of scenarios in practice e.g., in reinforcement learning (RL), where the Markov104

structure provides a natural decomposition satisfying this composition criterion [12] and effective105

offline RL algorithms are known to exploit this structure [12] or in protein design, where objective106

such as fluorescence naturally decompose into functions of neighboring Amino acids [7].107

What makes offline MBO especially challenging? The offline nature of the problem prevents108

the algorithm A from querying the ground truth objective f with its proposed design candidates,109

and this makes the offline MBO problem much more difficult than the online design optimization110

problem. One naïve approach to tackle this problem is to learn a model of the objective function111

using the dataset, which we can denote f̂(x), and then convert this offline MBO problem into a112

regular online MBO problem by treating the learned objective model as the true objective. However,113

this generally does not work: optimizing the design x with respect to a learned proxy f̂(x) will114

produce out-of-distribution designs that “fool” f̂(x) into outputting a high value, analogously to115

adversarial examples. Indeed, it is well known that optimizing naïvely with respect to model inputs116

to obtain a desired output will usually simply “fool” the model [22]. A naïve strategy to address this117

out-of-distribution issue is to constrain the design to stay close to the data, but this is also problematic,118

since in order to produce a design that is better than the best training point, it is usually necessary119

to deviate from the training data at least somewhat. In almost all practical MBO problems, such as120

optimization over proteins or robot morphologies as we discuss in section 5, designs with the highest121

objective values typically lie on the tail of the dataset distribution and we may not find them by122

staying extremely close to the data distribution. This conflict between the need to remain close to the123

data to avoid out-of-distribution inputs and the need to deviate from the data to produce better designs124

is one of the core challenges of offline MBO. This challenge is often exacerbated in real-world125

settings by the high dimensionality of the design space and the sparsity of the available data, as we126

will show in our benchmark. A good offline MBO method needs to carefully balance these two sides,127

producing optimized designs that are good, but not too far from the data distribution.128

3 Related Work129

Prior work has extensively focused on online or active MBO which requries active querying on130

the ground truth function, including algorithms using Bayesian optimization and their scalable131

variants [23, 35, 36, 32, 26], direct search [21], genetic or evolutionary algorithms [41, 25, 45],132

cross-entropy method [28], simulated annealing [39], etc. While efficient in solving the optimization133

problem if the ground truth function can be easily evaluated, these methods are not well suited for134

real-world problems where the ground truth function is expensive to evaluate and therefore prohibitive135

for active querying. On the other hand, offline MBO that only utilizes an already existing database136

of designs and objective values, for example, those obtained via previous experiments, presents an137

3

attractive algorithmic paradigm towards approaching such scenarios. Since offline MBO prohibits138

any ability to query the groundtruth objective actively, offline MBO presents different challenges139

from the typically studied online MBO problem as we discuss in Section 5. We believe that these140

challenges push the need for a new set of benchmarks to properly evaluate offline MBO methods.141

The most important components for a good offline MBO benchmark are datasets that capture142

the challenges of real-world problems. Fortunately, researchers working on a wide variety of143

scientific fields have already collected many datasets of designs which we can use for training offline144

MBO algorithms. Sarkisyan et al. [30] analyze the fluorescence of GFP proteins under blue and145

ultraviolet light, and Brookes et al. [7] use this dataset for optimization to find the protein with the146

highest fluorescence value. ChEMBL [13] provides a dataset for drug discovery, where molecule147

activities are measured against a target assay. Hamidieh [16] analyze the critical temperatures for148

superconductors and provide a dataset to search for room-temperature superconductors with potential149

in the construction of quantum computers. Some of these datasets have already been employed in the150

study of offline MBO methods [22, 7, 10]. However, these studies all use different sets of tasks and151

their evaluation protocols are highly domain-specific, making it difficult to compare across methods.152

In our benchmark, we incorporate modified variants of some of these datasets along with our own153

tasks and provide a standardized evaluation protocol. We hope that these tasks can represent realistic154

MBO problems across a wide range of domains and that the standardized evaluation protocol can155

facilitate development of new and more powerful offline MBO algorithms.156

Recently, several methods have been proposed for specifically addressing the offline MBO problem.157

These methods [22, 7, 10] typically learn models of the objective function and optionally, a generative158

model [20, 14, 24] of the design manifold and use them for optimization. We discuss these methods159

in detail in Section 6 and benchmark their performance in Section 7.160

4 Design-Bench Benchmark Tasks161

In this section, we describe the set of tasks included in our benchmark. An overview of the tasks is162

provided in Table 1. Each task in our benchmark suite comes with a dataset D = {(xi, yi)}, along163

with a ground-truth oracle objective function f that can be used for evaluation. An offline MBO164

algorithm should not query the ground-truth oracle function during training, even for hyperparameter165

tuning. We first discuss the nature of oracles used in Design-Bench.166

Expert model as oracle function. While in some of the tasks in our benchmark, such as tasks167

pertaining to robotics (Hopper Controller, D’Kitty Morphology, and Ant Morphology), the oracle168

functions are evaluated by running computer simulations to obtain the true objective values, in169

the other tasks, the true objective values can only be obtained by conducting expensive physical170

experiments. While the eventual aim of offline MBO is to make it possible to optimize designs in171

precisely such settings, requiring real physical experiments for evaluation makes the design and172

benchmarking of new algorithms difficult and time consuming. Therefore, to facilitate benchmarking,173

we follow the evaluation methodology in prior work [7, 10] and use models built by domain experts as174

our ground-truth oracle functions. Note, however, that the training data provided for offline MBO is175

still real data – the domain expert model is used only to evaluate the result for benchmarking purposes.176

In many cases, these expert models are also learned, but with representations that are hand-designed,177

with built-in domain-specific inductive biases. The ground-truth oracle models are also trained on178

much more data than is made available for solving the offline MBO problem, which increases the179

likelihood that this expert model can provide an accurate evaluation of solutions found by offline180

MBO, even if they lie outside the training distribution. While this approach to evaluation diminishes181

the realism of our benchmark since these proxy “true functions” may not always be accurate, we182

believe that this trade off is worthwhile to make benchmarking practical. The main purpose of our183

benchmark is to facilitate the evaluation and development of offline MBO algorithms, and we believe184

that it is important to include tasks in domains where the true objective values can only be obtained185

via physical experiments, which make up a large portion of the real-world MBO problems. We186

provide further analysis of the fidelity of our expert model oracles in Appendix F.187

We now provide a detailed description of the tasks in our benchmark. A description of the data188

collection strategy and the data pre-processing strategy can be found in Appendix A.189

GFP: protein fluorescence maximization. The goal of this task is to design a derivative protein190

from the Aequorea victoria green fluorescent protein (GFP) that has maximum fluorescence, using191

a real-world dataset mapping proteins to fluorescence collected by Sarkisyan et al. [30]. While we192

4

cannot precisely evaluate any novel protein, we employ an expert Transformer regression model [27]193

as the oracle function, following the convention in prior work [7, 10]. Our Transformer is trained194

on the complete GFP dataset containing 56,086 proteins and corresponding fluorescence values.195

The model achieves a final Spearman’s rank-correlation coefficient with a held-out validation set of196

0.8497. The design space is discrete, consisting of sequences of 237 categorical variables that take197

one of 20 options, which corresponds to a sequence of amino acids.198

TF Bind 8 and UTR: DNA sequence optimization. The goal of TF Bind 8 is to find the length-8199

DNA sequence with maximum binding affinity with a particular transcription factor (SIX6_REF_R1200

by default). The ground truth binding affinities for all 65,792 designs are available [5]. The goal of201

the UTR task is to find a human length-50 5’UTR DNA sequence that maximizes the expression level202

of its corresponding gene. Following Sample et al. [29], we train a Transformer oracle to predict203

ribosome load from length-50 DNA sequences. The Transformer is trained on the entire UTR dataset204

used in Sample et al. [29], consisting of 280,000 DNA sequences and measured ribosome loads. The205

oracle achieves a final Spearman’s rank-correlation with a held-out validation set of 0.8617. The206

design space consists of sequences of one of four categorical variables, one for each nucleotide.207

ChEMBL: molecule design via SMILES [40] strings. This task is taken from the domain of drug208

discovery with the goal to design the SMILES [40] string of a molecule that exhibits high activity209

with a target assay. We adapt the ChEMBL [13] dataset and choose the standard type GI50 and210

ASSAY_ChEMBL_ID CHEMBL1964047, resulting in a dataset of 40,516 pairs of SMILES strings211

and GI50 values. The true GI50 value can only be determined by physical experiments, so we train a212

convnet oracle to predict GI50 values from SMILES on all 40,516 examples, which achieves a final213

Spearman’s rank-correlation on a held-out validation set of 0.3208. The design space is a sequence of214

425 categorical variables that take any of 591 options, representing tokenized SMILES strings.215

Superconductor: critical temperature maximization. The Superconductor task is taken from the216

domain of materials science, where the goal is to design the chemical formula for a superconducting217

material that has a high critical temperature. We adapt a real-world dataset proposed by Hamidieh218

[16]. The dataset contains 21263 superconductors annotated with critical temperatures. Prior work219

has employed this dataset for the study of offline MBO methods [10], and we follow their convention220

using a random forest regression model, detailed in [16], for our oracle. The model achieves a final221

Spearman’s rank-correlation coefficient with a held-out validation set of 0.9210. The design space222

for Superconductor is a vector with 86 real-valued components representing the mixture of elements223

by number of atoms in the chemical formula of each superconductor.224

Ant and D’Kitty Morphology: robot morphology optimization. The goal225

is to optimize the morphological structure of two simulated robots: Ant from226

OpenAI Gym [6] and D’Kitty from ROBEL [1]. For Ant Morphology, the227

we need to optimize the morphology of a quadruped robot, to run as fast as228

possible, with a pre-trained neural network controller. For D’Kitty Morphology,229

the goal is to optimize the morphology of D’Kitty robot (shown on the right),230

such that a pre-trained neural network controller can navigate the robot to a231

fixed location. Thus the goal is to find morphologies optimal for the pre-trained controller. The232

pre-trained neural network controller is a morphology conditioned action predictor trained to work233

well on a large rage of morphologies. The morphology parameters of both robots include size,234

orientation, and location of the limbs, giving us 60 continuous values in total for Ant and 56 for235

D’Kitty. To evaluate a given design, we run robotic simulation in MuJoCo [37] for 100 time steps,236

averaging 16 independent trials giving us reliable but cheap to compute estimates.237

Hopper Controller: robot neural network controller optimization. The goal in238

this task is to optimize the weights of a neural network policy so as to maximize the239

expected discounted return on the Hopper-v2 locomotion task in OpenAI Gym [6].240

While this might appear similar to reinforcement learning (RL), our formulation is241

distinct: unlike RL, we don’t have access to any form of trajectory data in the dataset.242

Instead, our dataset only comprises of neural network controller weights and the corresponding return243

values, which invalidates the applicability of conventional RL methods. We evaluate the true objective244

value of any design by running 1000 steps of simulation in the MuJoCo simulator conventionally245

ussed with this environment. The design space of this task is high-dimensional with 5126 continuous246

variables corresponding to the flattened weights of a neural network controller. The dataset is collected247

by training a PPO [31] and recording the agent’s weights every 10,000 samples.248

5

5 Task Properties, Challenges, and Considerations249

The primary goal of our proposed benchmark is to provide a general test bench for developing,250

evaluating, and comparing algorithms for offline MBO. While in principle any online active black-251

box optimization problem can be formulated into an offline MBO problem by collecting a dataset252

of designs and corresponding objective measurements, it is important to pick a subset of tasks253

that represent the challenges of real-world problems in order to convincingly evaluate algorithms254

and obtain insights about algorithm behavior. Therefore, several factors must be considered when255

choosing the tasks, which we discuss next.256

2 3

Fluorescence

0

100

200

300

400

N
u

m
b

e
r

o
f

sa
m

p
le

s

GFP-Transformer-v0

0 20000 40000 60000

Gi50

0

200

400

600

800

N
u

m
b

e
r

o
f

sa
m

p
le

s

ChEMBL-ResNet-v0

0 50 100

Critical Temperature

0

50

100

150

200

250

N
u

m
b

e
r

o
f

sa
m

p
le

s

Superconductor-RandomForest-v0

0 500 1000

Average Return

0

200

400

600

800

N
u

m
b

e
r

o
f

sa
m

p
le

s

HopperController-Exact-v0

Sampled uniformly Original

Figure 2: Histogram (frequency distribution) of objective values in the dataset compared to a uniform
re-sampling of the dataset from the design space. In every case, re-sampling skews the distribution of values
to the left, suggesting that there exists a thin manifold of valid designs in the high-dimensional design space, and
most of the volume in this space is occupied by low-scoring designs. The distribution of objective values in the
dataset are often heavy-tailed, for instance, in the case of ChEMBL and Superconductor.

Diversity and realistically challenging. First of all, the tasks need to be diverse and realistically257

challenging in order to prevent offline MBO algorithms from overfitting to a particular problem258

domain and to expect that methods performing well on this benchmark suite would also perform259

well on real-world offline MBO problems. Design-Bench consists of tasks that are diverse in many260

respects. It includes both tasks with discrete and with continuous design spaces. Continuous design261

spaces, equipped with metric space and ordering structures, could make the problem easier to solve262

than discrete design spaces. However, discrete design spaces are finite and therefore might enjoy263

better dataset coverage than some continuous tasks. A strong offline MBO algorithm needs to be264

able to handle both cases. Further, our tasks have varying dimensionality, ranging from 56 to 5126265

dimensions. While our tasks are not intended to directly solve real-world problems (e.g., we don’t266

actually expect the best robot morphology in our benchmark to actually correspond to the best267

possible real robot morphology), they are intended to provide method designers with a representative268

sampling of challenges that reflect the kinds of difficulties they would face with real-world datasets,269

making them realistically challenging.270

High-dimensional design spaces. In many real-world offline MBO problems, such as drug discov-271

ery [13], the design space is high-dimensional and the valid designs sprasely lie on a thin manifold in272

this high-dimensional space. This property poses a unique challenge for many MBO methods: to be273

effective on such problem domains, MBO methods need to capture the thin manifold of the design274

space to be able to produce valid designs. Prior work [22] has noted that this can be very hard in275

practice. In our benchmark, we include GFP, ChEMBL and HopperController tasks with up to 5000276

dimensional design spaces to capture this challenge. To intuitively understand this challenge, we277

performed a study on some tasks in Figure 2, where we sampled 3200 designs uniformly at random278

from the design space and plotted a histogram of the objective values against those in the dataset we279

provide, which only consists of valid designs. Observe the discrepancy in objective values, where280

randomly sampled designs generally attain objective values much lower than the dataset average.281

This indicates that valid designs only lie on a thin manifold in the design space and therefore we are282

very unlikely to hit a valid design by random sampling.283

Highly sensitive objective function. Another important challenge that should be taken into con-284

sideration is the high sensitivity of objective functions, where closeness of two designs in design285

space need not correspond to closeness in their objective values, which may differ drastically. This286

challenge is naturally present in practical problems like protein synthesis [33], where the change287

of a single amino acid could significantly alter the property of the protein. The DKittyMorphology288

and AntMorphology tasks in our benchmark suite are also particularly challenging in this direction.289

To visualize the high sensitivity of the objective function, we plot a one dimensional slice of the290

objective function around a single sample in our dataset in Figure 3. Observe that with other variables291

kept the same, slightly altering one variable can significantly reduce the objective value, making it292

hard for offline MBO methods to produce the optimal design.293

6

Succeeds : θ = π 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

Leg orientation θ

−400

−200

0

200

A
v
e
ra

g
e

re
tu

rn

DKittyMorphology-v0

Fails : θ = 3
4π

Figure 3: Highly sensitive landscape of the ground truth objective function in DKittyMorphology. A
small change in a single dimension of the design space, for instance changing the orientation θ (x-axis) of the
base of the robot’s front right leg, critically impacts the performance value (y-axis). The robot’s design is the
original D’Kitty design and is held constant while varying θ uniformly from 3

4
π to π.

Heavy-tailed data distributions. Finally, another challenging property for offline MBO methods is294

the shape of the data distribution. Learning algorithms are likely to exhibit poor learning behavior295

when the distribution of objective values in the dataset is heavy-tailed. This challenge is often present296

in black-box optimization [8] and can hurt the performance of MBO algorithms that use a generative297

model as well as those that use a learned model of the objective function. As shown in Figure 2 tasks298

in our benchmark exhibit this heavy-tailed structure.299

6 Algorithm Implementations In Design-Bench300

To provide a baseline for comparisons in future work, we benchmark a number of recently proposed301

offline MBO algorithms on each of our tasks. Since the dimensionality of our tasks ranges from 56 to302

5126, we chose prior methods that can handle both the case of offline training data (i.e., no active303

interaction) and high-dimensional inputs. Thus, we include MINs [22], CbAS [7], autofocusing304

CbAS [10] and REINFORCE/CMA-ES [43] in our comparisons, along with a baseline naïve “gradient305

ascent” method that approximates the true function f(x) with a deep neural network and then performs306

gradient ascent on the output of this model. In this section, we briefly discuss these algorithms, before307

performing a comparative evaluation in the next section. Our implementation of these algorithms are308

open sourced and can be found at github.com/brandontrabucco/design-baselines.309

Gradient ascent (Grad). This is a simple baseline that learns a model of the objective function,310

f̂(x), and optimizes x against this learned model via gradient ascent. Formally, the optimal solution311

x∗ generated by this method can be computed as a fixed point of the following update: xt+1 ←312

xt + α∇xf̂(x)|x=xt . In practice we perform T = 200 gradient steps, and report xT as the final313

solution. Such methods are susceptible to producing invalid solutions, since the learned model does314

not capture the manifold of valid-designs and hence cannot constrain the resulting xT to be on the315

manifold. We additionally evaluate a variant (Grad. Min) optimizing over the minimum prediction316

of N = 5 learned objective functions in an ensemble of learned objective functions and (Grad.317

Mean) that optimizes the mean ensemble prediction. We discuss additional tricks (e.g., normalization318

of inputs and outputs) that we found beneficial with this baseline in Appendix D.319

Covariance matrix adaptation (CMA-ES). CMA-ES Hansen [17] is a simple optimization algo-320

rithm that maintains a belief distribution over the optimal design, and gradually refines this distribution321

by adapting the covariance matrix using feedback from a (learned) objective function, f̂(x). Formally,322

let xt ∼ N (µt,Σt) be the samples obtained from the distribution at an iteration t, then CMA-ES323

computes the value of learned f̂(xt) on samples xt, and fits Σt+1 to the highest scoring fraction of324

these samples and repeats this multiple times. The learned f̂(x) is trained via supervised regression.325

REINFORCE [43]. We also evaluated a method that optimizes a learned objective function, f̂(x),326

using the REINFORCE-style policy-gradient estimator. REINFORCE is capable of handling non-327

smooth and highly stochastic objectives, making it an effective choice. This method parameterizes328

a distribution πθ(x) over the design space and then updates the parameters θ of this distribution329

towards the design that maximizes f̂(x), using the gradient, Ex∼πθ(x)[∇θ log πθ(x) · f̂(x)]. We train330

an ensemble of f̂(x) models and pick the subset of models that satisfy a validation loss threshold τ .331

This threshold is task-specific; for example, τ ≤ 0.25 is sufficient for Superconductor-v0.332

Conditioning by adaptive sampling (CbAS) [7]. CbAS learns a density model in the space of333

design inputs, p0(x) that approximates the data distribution and gradually adapts it towards the334

optimized solution x∗. In a particular iteration t, CbAS alternates between (1) training a variational335

auto-encoder (VAE) [20] on a set of samples generated from the previous model Dt = {xi}mi=1;xi ∼336

7

https://github.com/brandontrabucco/design-baselines

pt−1(·) using a weighted version of the standard ELBO objective biased towards estimated better337

designs and (2) generating new design samples from the autoencoder to serve as Dt+1 = {xi|xi ∼338

pt(·)}. In order to estimate the objective values for designs sampled from the learned density model339

pt(x), CbAS utilizes separately trained models of the objective function, f̂(x) trained via supervised340

regression. This training process, at a given iteration t, is:341

pt+1(x) := arg min
p

1

m

m∑
i=1

p0(xi)

pt(xi)
P (f̂(xi) ≥ τ) log pt(xi)

where {xi}mi=1 ∼ pt(·). (2)
Autofocused CbAS (Auto. CbAS) [10]. Since CbAS uses a learned model of the objective function342

f̂(x) to iteratively adapt the generative model p(x) towards the optimized design, the functionf̂(x)343

will inevitably be required to make predictions on shifting design distributions pt(x). Hence, any344

inaccuracy in these values can adversely affect the optimization procedure. Autofocused CbAS aims345

to correct for this shift by re-training f̂(x) (now denoted f̂t(x)) under the design distribution given346

by the current model, pt(x) via importance sampling, which is then fed into CbAS.347

f̂t+1 := arg min
f̂

1

|D|

|D|∑
i=1

pt(xi)

p0(xi)
·
(
f̂(xi)− yi

)2
,

Model inversion networks (MINs) [22]. MINs learn an inverse map from the objective value to348

a design, f̂−1 : Y → X by using objective-conditioned inverse maps, search for optimal y values349

during optimization and finally query the learned inverse map to produce the corresponding optimal350

design. MIN minimizes a divergence measure Lp(D) := Ey∼pD(y)

[
D(pD(x|y), f̂−1(x|y))

]
to train351

such an inverse map. During optimization, MINs obtain the optimal y-value that is used to query the352

inverse map, and obtains the optimized design by sampling form the inverse map.353

Bayesian optimization (BO-qEI). We perform offline Bayesian optimization to maximize the value354

of a learned objective function, f̂(x), by fitting a Gaussian Process, proposing candidate solutions,355

and labeling these candidates using f̂(x). To improve efficiency, we choose the quasi-Expected-356

Improvement acquisition function [44], and the implementation from the BoTorch framework [4].357

7 Benchmarking Prior Methods358

In this section, we provide a comparison of prior algorithms discussed in Section 6 on our proposed359

tasks. For purposes of standardization, easy benchmarking, and future algorithm development,360

we present results for all Design-Bench tasks in Table 2. As discussed in Section 2, we provide361

each method with a dataset, and allow it to produce K = 128 optimized design candidates. These362

K = 128 candidates are then evaluated with the oracle function, and we report the 100th percentile363

performance among them averaged over 8 independent runs, following convention in prior offline364

MBO work [10, 7, 22]. We also provide unofmralized and 50th%ile results in Appendices C.3, C.2.365

Algorithm setup and hyperparameter tuning. Since our goal is to generate high-performing366

solutions without any knowledge of the ground truth function, any form of hyperparameter tuning367

on the parameters of the learned model should crucially respect this evaluation boundary and tuning368

must be performed completely offline, agnostic of the objective function. We provide a recommended369

method for tuning each algorithm described in Section 6 in Appendix E, which also serves as a set of370

guidelines for tuning future methods with similar components.371

To briefly summarize, for CbAS, hyperparameter tuning amounts to finding a stable configuration for372

a VAE, such that samples from the prior distribution map to on-manifold designs after reconstruction.373

We empirically found that a β-VAE was essential for stability of CbAS—and high values of β > 1374

are especially important for modelling high-dimensional spaces like that of HopperController. As a375

general task-agnostic principle for selecting β, we choose the smallest β such that the VAE’s latent376

space does not collapse during importance sampling. Collapsing latent-spaces seem to coincide with377

diverging importance sampling, and the VAE’s reconstructions collapsing to a single mode. For378

MINs, hyperparameter tuning amounts to fitting a good generative model. We observe that MINs379

is particularly sensitive to the scale of yi when conditioning, which we resolve by normalizing the380

objective values. We implement MINs using WGAN-GP, and find that similar hyperparameters work381

well-across domains. For Gradient Ascent, while prior work has generally obtained extremely poor382

performance for naïve gradient ascent based optimization procedures on top of learned models of383

8

the objective function, we find that by normalizing the designs x and objective values y to have unit384

Gaussian statistics, and by multiplying the learning rate α← α
√
d where d is the dimension of the385

design space (discussed in Appendix D), a naïve gradient ascent based procedure performs reasonably386

well on most tasks without task-specific tuning. For discrete tasks, only the objective values are387

normalized, and optimization is performed over log-probabilities of designs. We then uniformly388

evaluate samples obtained by running 200 steps of gradient ascent starting from the top scoring 128389

samples in each dataset. Tuning instructions for each baseline are available in Appendix E.390

GFP TF Bind 8 UTR ChEMBL

Auto. CbAS 0.865 ± 0.000 0.910 ± 0.044 0.650 ± 0.006 0.470 ± 0.000
CbAS 0.865 ± 0.000 0.927 ± 0.051 0.650 ± 0.002 0.517 ± 0.055
BO-qEI 0.254 ± 0.352 0.798 ± 0.083 0.659 ± 0.000 0.333 ± 0.035
CMA-ES 0.054 ± 0.002 0.953 ± 0.022 0.666 ± 0.004 0.350 ± 0.017
Grad. 0.864 ± 0.001 0.977 ± 0.025 0.639 ± 0.009 0.360 ± 0.029
Grad. Min 0.864 ± 0.000 0.984 ± 0.012 0.647 ± 0.007 0.361 ± 0.004
Grad. Mean 0.864 ± 0.000 0.986 ± 0.012 0.647 ± 0.005 0.373 ± 0.013
MINs 0.865 ± 0.001 0.905 ± 0.052 0.649 ± 0.004 0.473 ± 0.057
REINFORCE 0.865 ± 0.000 0.948 ± 0.028 0.646 ± 0.005 0.459 ± 0.036

Superconductor Ant Morphology DKitty Morphology Hopper Controller

Auto. CbAS 0.421 ± 0.045 0.884 ± 0.046 0.906 ± 0.006 0.137 ± 0.005
CbAS 0.503 ± 0.069 0.879 ± 0.032 0.892 ± 0.008 0.141 ± 0.012
BO-qEI 0.402 ± 0.034 0.820 ± 0.000 0.896 ± 0.000 0.550 ± 0.118
CMA-ES 0.465 ± 0.024 1.219 ± 0.738 0.724 ± 0.001 0.604 ± 0.215
Grad. 0.518 ± 0.024 0.291 ± 0.023 0.874 ± 0.022 1.035 ± 0.482
Grad. Min 0.506 ± 0.009 0.478 ± 0.064 0.889 ± 0.011 1.391 ± 0.589
Grad. Mean 0.499 ± 0.017 0.444 ± 0.081 0.892 ± 0.011 1.586 ± 0.454
MINs 0.469 ± 0.023 0.916 ± 0.036 0.945 ± 0.012 0.424 ± 0.166
REINFORCE 0.481 ± 0.013 0.263 ± 0.032 0.562 ± 0.196 -0.020 ± 0.067

Table 2: 100th percentile evaluations. Results are averaged over 8 trials, and ±
indicates the standard deviation of the reported objective value. For a description of
the objective normalization methodology, please refer to Appendix C.1. *The MINs
result for ChEMBL is missing because the MINs architecture does not fit into our
computational budget. We will update our GitHub when the result is ready.

Results. The results391

for all tasks are392

provided in Table 2.393

There are several394

takeaways from these395

results. First, these re-396

sults indicate that there397

is no clear winner398

between the three prior399

offline MBO methods400

(MINs, CbAS, and401

Autofocused CbAS),402

provided they are all403

trained offline with404

no access to ground405

truth evaluation for406

any form of hyper-407

parameter tuning.408

Furthermore, perhaps409

somewhat surprisingly,410

a naïve gradient ascent411

baseline is competitive412

with several highly sophisticated MBO methods in 4 out of 8 tasks (Table 2), especially on413

high-dimensional tasks (e.g., HopperController). This result suggests that it might be difficult for414

generative models to capture high-dimensional task distributions with enough precision to be used415

for optimization, and in a number of tasks, these components might be unnecessary. However,416

on the other hand, as described in Appendix D and E.4, this simple baseline is also sensitive to417

certain design choices such as input normalization schemes and the number of optimization steps T .418

Therefore, while not a full-fledged offline MBO method, we believe that gradient ascent has potential419

to form a fundamental building block for future offline MBO methods. Finally, we remark that the420

performance of methods in Table 2 differ from the those reported by prior works. This difference421

stems from the standardization procedure employed in dataset generation (which we discuss in422

Appendix A), and the use of task-agnostic, uniform hyperparameter tuning.423

8 Discussion and Conclusion424

Offline MBO carries the promise to convert existing databases of designs into powerful optimizers,425

without the need for expensive real-world experiments for actively querying the ground truth objective426

function. However, due to the lack of standardized benchmarks and evaluation protocols, it has427

been difficult to accurately track the progress of offline MBO methods. To address this problem,428

we introduce Design-Bench, a benchmark suite of offline MBO tasks that covers a wide variety of429

domains, and both continuous and discrete, low and high dimensional design spaces. We provide a430

comprehensive evaluation of existing methods under identical assumptions. The comparatively high431

efficacy of even simple baselines such as naïve gradient ascent suggests the need for careful tuning432

and standardization of methods in this area. An interesting avenue for future work in offline MBO is433

to devise methods that can be used to perform model-selection and hyperparameter selection. One434

approach to address this problem is to devise methods for offline evaluation of produced solutions,435

which is also an interesting topic for future work. We hope that our benchmark will be adopted as436

the standard metric in evaluating offline MBO algorithms and provides insight in future algorithm437

development. Since our benchmark aims to standardize the evaluation of offline MBO, we note that438

while it may have both positive (e.g., enhancing human life quality via automation) and negative439

(e.g., loss of jobs) impact on society, all these impacts are more broadly applicable to offline MBO440

algorithms in general and not specifically to this work.441

9

References442

[1] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine,443

and Vikash Kumar. ROBEL: RObotics BEnchmarks for Learning with low-cost robots. In444

Conference on Robot Learning (CoRL), 2019.445

[2] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy,446

and Lucy Colwell. Model-based reinforcement learning for biological sequence design. In447

International Conference on Learning Representations, 2020. URL https://openreview.448

net/forum?id=HklxbgBKvr.449

[3] Christof Angermüller, David Belanger, Andreea Gane, Zelda Mariet, David Dohan, Kevin450

Murphy, Lucy Colwell, and D. Sculley. Population-based black-box optimization for biological451

sequence design. In Proceedings of the 37th International Conference on Machine Learning,452

ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning453

Research, pages 324–334. PMLR, 2020. URL http://proceedings.mlr.press/v119/454

angermueller20a.html.455

[4] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,456

Andrew Gordon Wilson, and Eytan Bakshy. Botorch: Programmable bayesian optimization in457

pytorch. CoRR, abs/1910.06403, 2019. URL http://arxiv.org/abs/1910.06403.458

[5] Luis A Barrera, Anastasia Vedenko, Jesse V Kurland, Julia M Rogers, Stephen S Gisselbrecht,459

Elizabeth J Rossin, Jaie Woodard, Luca Mariani, Kian Hong Kock, Sachi Inukai, et al. Survey460

of variation in human transcription factors reveals prevalent dna binding changes. Science, 351461

(6280):1450–1454, 2016.462

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,463

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.464

[7] David H Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling465

for robust design. arXiv preprint arXiv:1901.10060, 2019.466

[8] Sayak Ray Chowdhury and Aditya Gopalan. Bayesian optimization under heavy-tailed payoffs.467

In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.468

Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32:469

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14470

December 2019, Vancouver, BC, Canada, pages 13790–13801, 2019. URL http://papers.471

nips.cc/paper/9531-bayesian-optimization-under-heavy-tailed-payoffs.472

[9] Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show473

your work: Improved reporting of experimental results. In Kentaro Inui, Jing Jiang, Vincent474

Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in475

Natural Language Processing and the 9th International Joint Conference on Natural Language476

Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 2185–477

2194. Association for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1224. URL478

https://doi.org/10.18653/v1/D19-1224.479

[10] Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. arXiv480

preprint arXiv:2006.08052, 2020.481

[11] Justin Fu and Sergey Levine. Offline model-based optimization via normalized maximum482

likelihood estimation. In International Conference on Learning Representations, 2021. URL483

https://openreview.net/forum?id=FmMKSO4e8JK.484

[12] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for485

deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.486

[13] Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey,487

Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P. Over-488

ington. Chembl: a large-scale bioactivity database for drug discovery. Nucleic acids research,489

40(Database issue):D1100–D1107, Jan 2012. ISSN 1362-4962. doi: 10.1093/nar/gkr777. URL490

https://pubmed.ncbi.nlm.nih.gov/21948594. 21948594[pmid].491

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil492

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural493

information processing systems, pages 2672–2680, 2014.494

10

https://openreview.net/forum?id=HklxbgBKvr
https://openreview.net/forum?id=HklxbgBKvr
https://openreview.net/forum?id=HklxbgBKvr
http://proceedings.mlr.press/v119/angermueller20a.html
http://proceedings.mlr.press/v119/angermueller20a.html
http://proceedings.mlr.press/v119/angermueller20a.html
http://arxiv.org/abs/1910.06403
http://papers.nips.cc/paper/9531-bayesian-optimization-under-heavy-tailed-payoffs
http://papers.nips.cc/paper/9531-bayesian-optimization-under-heavy-tailed-payoffs
http://papers.nips.cc/paper/9531-bayesian-optimization-under-heavy-tailed-payoffs
https://doi.org/10.18653/v1/D19-1224
https://openreview.net/forum?id=FmMKSO4e8JK
https://pubmed.ncbi.nlm.nih.gov/21948594

[15] T. Haarnoja, Aurick Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum495

entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.496

[16] Kam Hamidieh. A data-driven statistical model for predicting the critical temperature of a497

superconductor. Computational Materials Science, 154:346 – 354, 2018. ISSN 0927-0256. doi:498

https://doi.org/10.1016/j.commatsci.2018.07.052. URL http://www.sciencedirect.com/499

science/article/pii/S0927025618304877.500

[17] Nikolaus Hansen. The CMA evolution strategy: A comparing review. In José Antonio Lozano,501

Pedro Larrañaga, Iñaki Inza, and Endika Bengoetxea, editors, Towards a New Evolutionary502

Computation - Advances in the Estimation of Distribution Algorithms, volume 192 of Studies in503

Fuzziness and Soft Computing, pages 75–102. Springer, 2006. doi: 10.1007/3-540-32494-1_4.504

URL https://doi.org/10.1007/3-540-32494-1_4.505

[18] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene506

Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,507

Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:508

//github.com/hill-a/stable-baselines, 2018.509

[19] Scott M. Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, and Philip S. Thomas. Eval-510

uating the performance of reinforcement learning algorithms. CoRR, abs/2006.16958, 2020.511

URL https://arxiv.org/abs/2006.16958.512

[20] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint513

arXiv:1312.6114, 2013.514

[21] Tamara G Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search:515

New perspectives on some classical and modern methods. SIAM review, 45(3):385–482, 2003.516

[22] Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization.517

arXiv preprint arXiv:1912.13464, 2019.518

[23] Daniel James Lizotte. Practical bayesian optimization. University of Alberta, 2008.519

[24] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint520

arXiv:1411.1784, 2014.521

[25] Saibal K Pal, CS Rai, and Amrit Pal Singh. Comparative study of firefly algorithm and particle522

swarm optimization for noisy non-linear optimization problems. International Journal of523

intelligent systems and applications, 4(10):50, 2012.524

[26] Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, and Cedric Archambeau. Multiple525

adaptive bayesian linear regression for scalable bayesian optimization with warm start. arXiv526

preprint arXiv:1712.02902, 2017.527

[27] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John F. Canny,528

Pieter Abbeel, and Yun S. Song. Evaluating protein transfer learning with TAPE. In Hanna M.529

Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and530

Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual531

Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December532

2019, Vancouver, BC, Canada, pages 9686–9698, 2019. URL http://papers.nips.cc/533

paper/9163-evaluating-protein-transfer-learning-with-tape.534

[28] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to535

combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science536

& Business Media, 2013.537

[29] Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris,538

and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel539

translation assay. Nature biotechnology, 37(7):803–809, 2019.540

[30] Karen S. Sarkisyan, Dmitry A. Bolotin, Margarita V. Meer, Dinara R. Usmanova, Alexander S.541

Mishin, George V. Sharonov, Dmitry N. Ivankov, Nina G. Bozhanova, Mikhail S. Baranov,542

Onuralp Soylemez, Natalya S. Bogatyreva, Peter K. Vlasov, Evgeny S. Egorov, Maria D.543

Logacheva, Alexey S. Kondrashov, Dmitry M. Chudakov, Ekaterina V. Putintseva, Ilgar Z.544

Mamedov, Dan S. Tawfik, Konstantin A. Lukyanov, and Fyodor A. Kondrashov. Local fitness545

landscape of the green fluorescent protein. Nature, 533(7603):397–401, May 2016. ISSN546

1476-4687. doi: 10.1038/nature17995. URL https://doi.org/10.1038/nature17995.547

11

http://www.sciencedirect.com/science/article/pii/S0927025618304877
http://www.sciencedirect.com/science/article/pii/S0927025618304877
http://www.sciencedirect.com/science/article/pii/S0927025618304877
https://doi.org/10.1007/3-540-32494-1_4
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://arxiv.org/abs/2006.16958
http://papers.nips.cc/paper/9163-evaluating-protein-transfer-learning-with-tape
http://papers.nips.cc/paper/9163-evaluating-protein-transfer-learning-with-tape
http://papers.nips.cc/paper/9163-evaluating-protein-transfer-learning-with-tape
https://doi.org/10.1038/nature17995

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal548

policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/549

abs/1707.06347.550

[32] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking551

the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104552

(1):148–175, 2015.553

[33] Wen-Jun Shen, Hau-San Wong, Quan-Wu Xiao, Xin Guo, and Stephen Smale. Introduction554

to the peptide binding problem of computational immunology: New results. Foundations555

of Computational Mathematics, 14(5):951–984, Oct 2014. ISSN 1615-3383. doi: 10.1007/556

s10208-013-9173-9. URL https://doi.org/10.1007/s10208-013-9173-9.557

[34] Prabhu Teja Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and François Fleuret. On558

the tunability of optimizers in deep learning. CoRR, abs/1910.11758, 2019. URL http:559

//arxiv.org/abs/1910.11758.560

[35] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine561

learning algorithms. In Advances in neural information processing systems, pages 2951–2959,562

2012.563

[36] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,564

Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep565

neural networks. In International conference on machine learning, pages 2171–2180, 2015.566

[37] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based567

control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages568

5026–5033. IEEE, 2012.569

[38] Brandon Trabucco, Aviral Kumar, Young Geng, and Sergey Levine. Conservative objective570

models. Machine Learning for Structural Biology Workshop, NeurIPS, 2020.571

[39] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated annealing:572

Theory and applications, pages 7–15. Springer, 1987.573

[40] David Weininger. Smiles, a chemical language and information system. 1. introduction to574

methodology and encoding rules. Journal of chemical information and computer sciences, 28575

(1):31–36, 1988.576

[41] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.577

[42] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,578

volume 2. MIT press Cambridge, MA, 2006.579

[43] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist re-580

inforcement learning. Mach. Learn., 8:229–256, 1992. doi: 10.1007/BF00992696. URL581

https://doi.org/10.1007/BF00992696.582

[44] James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. The583

reparameterization trick for acquisition functions. CoRR, abs/1712.00424, 2017. URL584

http://arxiv.org/abs/1712.00424.585

[45] Xin-She Yang and Adam Slowik. Firefly algorithm. In Swarm Intelligence Algorithms, pages586

163–174. CRC Press, 2020.587

12

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/s10208-013-9173-9
http://arxiv.org/abs/1910.11758
http://arxiv.org/abs/1910.11758
http://arxiv.org/abs/1910.11758
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1712.00424

Checklist588

1. For all authors...589

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s590

contributions and scope? [Yes]591

(b) Did you describe the limitations of your work? [Yes] See Section 8.592

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See593

Section 8.594

(d) Have you read the ethics review guidelines and ensured that your paper conforms to595

them? [Yes]596

2. If you are including theoretical results...597

(a) Did you state the full set of assumptions of all theoretical results? [N/A]598

(b) Did you include complete proofs of all theoretical results? [N/A]599

3. If you ran experiments (e.g. for benchmarks)...600

(a) Did you include the code, data, and instructions needed to reproduce the main ex-601

perimental results (either in the supplemental material or as a URL)? [Yes] See602

github.com/brandontrabucco/design-bench and github.com/brandontrabucco/design-603

baselines.604

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they605

were chosen)? [Yes] See Appendix E606

(c) Did you report error bars (e.g., with respect to the random seed after running experi-607

ments multiple times)? [Yes]608

(d) Did you include the total amount of compute and the type of resources used (e.g., type609

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.4.610

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...611

(a) If your work uses existing assets, did you cite the creators? [Yes]612

(b) Did you mention the license of the assets? [Yes] The license is included in the GitHub613

repository for our benchmark.614

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]615

All materials we use are open sourced in our GitHub repository.616

(d) Did you discuss whether and how consent was obtained from people whose data you’re617

using/curating? [Yes] All the data we use are open source and we do not include any618

data collected from human experiment.619

(e) Did you discuss whether the data you are using/curating contains personally identifiable620

information or offensive content? [N/A] All the data we use are collected from natural621

science experiments without any human data.622

5. If you used crowdsourcing or conducted research with human subjects...623

(a) Did you include the full text of instructions given to participants and screenshots, if624

applicable? [N/A]625

(b) Did you describe any potential participant risks, with links to Institutional Review626

Board (IRB) approvals, if applicable? [N/A]627

(c) Did you include the estimated hourly wage paid to participants and the total amount628

spent on participant compensation? [N/A]629

13

https://github.com/brandontrabucco/design-bench
https://github.com/brandontrabucco/design-baselines
https://github.com/brandontrabucco/design-baselines
https://github.com/brandontrabucco/design-baselines
https://github.com/brandontrabucco/design-bench
https://github.com/brandontrabucco/design-bench
https://github.com/brandontrabucco/design-bench
https://github.com/brandontrabucco/design-bench

	Introduction
	Offline Model-Based Optimization Problem Statement
	Related Work
	Design-Bench Benchmark Tasks
	Task Properties, Challenges, and Considerations
	Algorithm Implementations In Design-Bench
	Benchmarking Prior Methods
	Discussion and Conclusion
	Appendices
	Data Collection
	TF Bind 8
	GFP
	UTR
	ChEMBL
	Superconductor
	Hopper Controller
	Ant & D'Kitty Morphology

	Oracle Functions
	TF Bind 8
	GFP
	UTR
	ChEMBL
	Superconductor
	HopperController
	Ant & D'Kitty Morphology

	Experimental Details
	Score Normalization
	50th Percentile Experiment Results
	Unnormalized Experimental Results
	Computation Resources

	Normalization Of Inputs and Outputs For Gradient Ascent Baseline
	Hyperparameter Selection Workflow
	Strategy For Autofocused CbAS
	Strategy For CbAS
	Strategy For MINs
	Strategy For Gradient Ascent
	Strategy For REINFORCE
	Strategy For Bayesian Optimization
	Strategy For Covariance Matrix Adaptation (CMA-ES)

	Fidelity of Expert Model Oracle Functions

