
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EFFICIENT VISUALIZATION OF IMPLICIT NEURAL
REPRESENTATIONS VIA WEIGHT MATRIX ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

An implicit neural representation (INR) is a neural network that approximates a
function over space and possibly time. Memory-intensive visualization tasks, in-
cluding modern 4D CT scanning methods, represent data natively as INRs. While
such INRs are prized for being more memory-efficient than traditional data on a
lattice, discretization to a regular grid is still required for many visualization tasks.
We present an algorithm to store high-resolution voxel data only for regions with
significant detail, reducing memory requirements. To identify these high-detail
areas, we use an interpolative decomposition pruning method on the weight ma-
trices of the INR. The information from pruning is used to guide adaptive mesh
refinement, allowing automatic mesh generation, tailored to the underlying reso-
lution of the function. From a pre-trained INR with no access to its training data,
we produce a variable resolution visualization with significant memory savings.

1 INTRODUCTION AND MOTIVATION

Implicit neural representations (INRs) have gained traction in recent years for their ability to repre-
sent spatial and time-varying spatial data efficiently. While INRs are best known for their fast and ac-
curate visualization applications, these methods only apply to specific neural graphics primitives—
such as signed distance functions—and require training routines and data structures—such as hash-
ing techniques—to realize interactive visualization. For INRs encoding data not derived from graph-
ics primitives, the recourse for visual analysis is to discretize the INR to a uniform grid, thereby
enabling traditional techniques, but eliminating any computational savings afforded by the INR
encoding. This presents an open challenge to communities using INRs in new contexts: given a
pre-trained INR, how can the information encoded be visualized efficiently?

The need for efficient visualization of INR data is evidenced by emergent “dynamic micro-CT”
technology for additive manufacturing. Recently developed methodologies are capable of storing
time-varying volumetric data of materials undergoing physical changes as an INR with (x, y, z, t)
inputs. In one example, the size of an INR checkpoint file is on the order a few megabytes, but the
potential resolution of the time-varying volume is 1024× 1024× 1024× 700, roughly 3.6 terabytes
worth of data in a uniform discretization, well beyond the capabilities of common visualization
software. By visual inspection of time slices, many regions of the domain are of low variation while
some regions require maximum resolution for subject matter expert evaluation. Hence, an approach
to adaptively sample the INR in a way that preserves fine-grained details of the function is of real
interest to practitioners with immediate benefits to dynamic micro-CT technology.

In this paper, we present an algorithm that visualizes a pre-trained INR on an adaptive mesh, achiev-
ing accuracy comparable to a uniform mesh while using less memory. The algorithm begins with
a coarse uniform mesh of the domain and iteratively refines elements in which the INR is expected
to encode finer-scale information. We assume knowledge of the INR architecture, as would be en-
coded in a standard checkpoint file, but we do not assume access to any training data; the algorithm
determines where to refine based solely on the weight matrices of the INR. The refinement decision
for a given element is based on a “pruning” method applied on the INR, restricted to the element’s
domain. Elements for which significant pruning is possible with small loss in accuracy are presumed
to have low-rank representations and therefore deemed sufficiently refined. Conversely, elements for
which significant pruning is not possible, or for which pruning causes significant information loss,
are flagged for refinement.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

2 BACKGROUND AND LITERATURE COMPARISON

2.1 IMPLICIT NEURAL REPRESENTATIONS

An implicit neural representation (INR) is a type of neural network that approximates a scalar- or
vector-valued field with inputs representing physical space or spacetime coordinates. The origi-
nal use of INRs in the context of visualization was to efficiently store an implicit representation of
an image (Sitzmann et al., 2020), but interest in the technique quickly grew to include volumet-
ric visualizations as well (Mildenhall et al., 2021). The output of the popular physically-informed
neural network (PINN) technique for approximating solutions to partial differential equations is a
coordinate-valued, multi-layer perceptron (typically), and hence could also be called an INR (Kar-
niadakis et al., 2021).

The appeal of INRs over traditional discretization is, to quote Sitzmann et al. (2020), the network’s
“ability to model fine detail that is not limited by the grid resolution but by the capacity of the
underlying network architecture.” Only the weights and biases of the INR need to be stored in order
to recover the value of the field at the highest level of detail anywhere in the represented domain.
Accordingly, the INR data structure takes up orders of magnitude less storage than an equivalent
standard representation. Still, the savings in data storage come with a tradeoff: evaluating the INR
can only be done “pointwise”, meaning discretization and interpolation over a fixed grid of some
type is required to employ standard visualization software for all but very speficic types of INR data.

2.2 VISUALIZATION AND DISCRETIZATION

While our work is related to both visualization using INRs and traditional data discretization meth-
ods, neither of the associated research communities offers a solution to the problem we are address-
ing. Much of the visualization work on INRs focuses on methods to train INRs more efficiently,
such as ACORN (Martel et al., 2021), scene representation networks (Wurster et al., 2023), and
Instant-NGP (Wurster et al., 2023). None of these works, however, addresses the question of how
to process, analyze, or efficiently visualize a pre-trained INR. A separate body of work looks at
efficient management and visualization of data stored on adaptive meshes, such as multi-functional
approximation (Peterka et al., 2023), CPU ray tracing (Wang et al., 2020), and p4est (Burstedde
et al., 2011). These works presume data is provided on an adaptive mesh as input to their use cases,
rather than as a pre-trained INR.

We treat INRs as a native data format, akin to a compressed version of a much larger dataset. The
input to our method is a user-provided INR, with no access to the training data. As output, we
produce an adaptive mesh on which the INR has been sampled at vertices, allowing subsequent
visualization and analysis via established techniques. To the best of our knowledge, there is no prior
work considering this problem, other than sampling to a uniform grid.

2.3 PRUNING VIA INTERPOLATIVE DECOMPOSITION OF WEIGHT MATRICES

“Pruning” refers to the process of selectively removing weights and biases from a trained neural net-
work in a way that preserves its mapping from inputs to outputs; see, e.g. (Li et al., 2016; Lee et al.,
2018; Liu et al., 2018; Liebenwein et al., 2019; Mussay et al., 2019). We use the pruning method
of Chee et al. (2022), which merges neurons in each layer whose contributions to the output are close
to a linear combination. The method for detection of such neurons employs a structured low-rank
approximation called an “interpolative decomposition” (ID). We selected this pruning method due
to its theoretical guarantees, ease of implementation, and few number of hyperparameters.

We fix notation before describing the ID pruning method. In this work, we only consider INRs that
consist of fully-connected linear layers. Hence, each layer takes as input x ∈ Rn, provides an output
y ∈ Rm and has corresponding weight matrix W ∈ Rm×n and bias vector b ∈ Rm. We treat the
inputs x and outputs y as row vectors and assume that the output of the layer is computed as

y = g(xWT + b),

where g is the activation function used for the layer. If a collection of ℓ inputs is provided, we still
use x to denote the ℓ× n matrix of inputs yielding an output y ∈ Rℓ.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

An ID of W is a decomposition of the form W ≈ W:,IT , where I ⊆ {1, 2, ...,m}, |I| = k,
and T ∈ Rk×n is called the “interpolation matrix.” For the ease of exposition, suppose the neural
network has a single hidden layer with output layer weight matrix U and output layer bias vector c.
Then, the output of the network with input x is NN(x) := Z(x)UT +c, where Z(x) = g(xWT +b)
is the output of the hidden layer.

Let Z(x) ≈ Z:,IT be an ID of Z(x). We then have

Z(x) ≈ Z:,IT

= g(xWT + b):,IT

= g(x(WI,:)
T + bI)T.

Thus, the output of the full network with pruned hidden layer is

NN(x) = g(x(WI,:)
T + bI)TU

T + c

= g(xW̄T + b̄)ŪT + c,

where we define W̄ := WI,:, b̄ := bI , and Ū := UTT to be the new weights and biases of the
pruned network. Thus, pruning a layer not only affects the weights and bias of that layer, but also
the weights of the following layer. The result of pruning a given layer to rank k is that the resulting
pruned layer has k neurons. The following layer’s weights are updated to accept the new, smaller
number of inputs coming from the previous layer.

Given ε > 0, the goal of pruning is to find I and T such that ∥W −W:,IT∥2 ≤ ε∥W∥2, with |I|
as small as possible. We use the rank-revealing QR factorization approach from Chee et al. (2022)
to carry this out. For neural networks with more than one hidden layer, IDs for each layer’s weight
matrix can be computed in parallel, but the final weights of the pruned network must be determined
sequentially from the ID of the first layer forward.

3 ALGORITHM

The goal of our algorithm is to visualize an INR without computing and storing the complete fine-
scale voxel data necessary to see high resolution details. By finding a suitable adaptive mesh for
visualization, we avoid expending compute time and memory evaluating regions of the INR domain
that are less detailed. We use the word detailed to describe a region of the domain where the function
has large variation, which would be harder to fit accurately with a neural network of few parameters.

Since we only presume access to the weights and biases of the INR, we cannot easily determine
regions of high variation. Instead, we rely on the hypothesis that the less detailed a function is on
a region of the domain, the smaller an INR needs to be to accurately describe the function in that
region. If this hypothesis holds true, a less-detailed region of the INR should admit more pruning
with minimal loss in accuracy over that region . Furthermore, we observed that an INR evaluated
on small subsets of a domain can generally be pruned much more than for the whole domain. Thus,
if a region of the domain is not very prunable, then by splitting it into more, smaller regions, the
sub-regions are more likely to be prunable. This also makes sense because we are asking the INR
to describe less information if we restrict it to a smaller domain, so we expect to be able to use a
smaller network to do so. This is the motivation for our algorithm.

To decide which regions to check for prunability (i.e., the proportion of neurons that can be pruned
while maintaining an accuracy threshold), we start with an initial mesh on the INR’s domain and use
adaptive mesh refinement (AMR) to subdivide some elements into smaller ones. We keep refining
elements until the proportion of neurons left after pruning is below a threshold, which we denote
P , and the relative error of the pruned INR is less than a desired value, which we denote T . We
check both of these thresholds to ensure that a small network can accurately represent the INR on
that domain.

Let prune(INR, domain, ε, ID samples) be a function that prunes an INR using an ID
method. The “domain” input is the region of the domain considered for pruing, ε is the maximum
relative error we allow for the ID used in pruning, and ID samples is the number of samples we use
to compute the ID. See Table 3 for more information about these hyperparameters. Furthermore, let
error samples denote the number of samples used to compute the error estimate that we compare

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

hyperparameter description heuristic
ID samples Number of samples of a given do-

main to take when computing the ID
This can be set to the width of the
INR layers

ε The relative error achieved by the ID;
this affects how many neurons get
pruned

10−3

Table 1: Descriptions for hyperparameters used in ID pruning.

hyperparameter description heuristic
error samples Number of samples of a given do-

main to take when computing the ap-
proximate error of the pruned INR

32

T The relative error below which a
pruned INR must be to not refine the
corresponding element

The main hyperparameter to decide
how high of resolution you want to
see

P The proportion of neurons relative to
the full INR that a pruned INR must
have less than to not refine the corre-
sponding element

0.15

max it The maximum number of iterations
to refine for

Set based on limits of your machine

Table 2: Descriptions for hyperparameters used in Pruning AMR.

against the error threshold T to decide if we need to refine. We refine for up to max it iterations.
A second table summarizing all of the AMR hyperparameters along with some helpful heuristics is
shown in Table 3.

For notational simplicity, assume that Mesh is a class that has a member for each element in the
corresponding mesh. Each element has an attribute for its domain and another to specify whether
it is done being refined or not; there is also a function random(n, domain) that can sample n
points from a uniform distribution on a domain. Given this notation, our algorithm for performing
refinement using a pruning-based error estimate is given in Algorithm 1.

Algorithm 1: Algorithm Pruning AMR: using adaptive mesh refinement to find a memory-
efficient visualization of an INR.
input : INR, inital mesh M , error threshold T , proportion threshold P , interpolative

decomposition error limit ε, maximum number of iterations max it, number of samples
for error check error samples, number of samples ot use for ID ID samples.

for it = 1 to max it do
for each element E in M with M.E.done refining == False do

INR pruned = prune(INR, E, ε, ID samples) // prune INR on element E;
proportion = INR pruned.num neuron / INR.num neurons // compute proportion of
neurons remaining after pruning;

// compute error of pruned INR on element E;
X = random(error samples, M.E.domain) // sample random points;
error = mean(|INR(X) - INR pruned(X)| / |INR(X)|) // compute mean relative error;
// Refine all elements that don’t meet error or proportion threshold;
if error > T or proportion > P then

M.E.refine();

output: Refined mesh M

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4 RESULTS

4.1 2D VALIDATION EXAMPLE: ANALYTICAL OSCILLATION AT A CORNER

We verify and validate Algorithm 1 by testing on an INR fit to a benchmark function from the
adaptive mesh refinement community (Mitchell, 2013, Section 2.8). Drawing samples of the func-
tion f(r) := sin(1/(α + r)) on [0, 1]2, where r is the radius and α = 1/50, we train a simple
ReLU feed-forward network with 4 layers of width 32. Sampled to the vertices of a regular mesh of
512 × 512 square elements, and visualized with bilinear interpolation, it is evident that the oscilla-
tions of the function have been captured to a fine resolution by the trained INR; see Figure 2 (left
column). We use the open source software MFEM to manage the adaptive meshing and GLVis to
generate the 2D figures.

We consider two alternatives to Algorithm 1 for comparison: Uniform refinement and Basic
adaptive refinement. The Uniform method carries out refinement on every element until a maxi-
mum number of iterations are reached. The Basic method takes in an integer error samples and
a threshold τ . The inner loop of Algorithm 1 is replaced by drawing error samples random points
in E, computing the mean relative error of the INR with respect to the bilinear interpolant on E at
those points, and refining if the relative error is larger than τ . Note that the relative error computed
in Basic is distinct from the relative error of the pruned INR computed in Algorithm 1, hence, τ
should not be equated with T .

Figure 1: Total error versus number of degrees of freedom plots are shown for Uniform, and the
best-tuned instances of Basic (τ = 0.1) and Pruning (T = 0.1, P = 0.09, and ε = 10−3).
The Pruning method—i.e. Algorithm 1—drives down error at a faster rate than the Uniform
approach and terminates with a lower error for an equivalent number of DOFs than either Basic or
Uniform.

To assess the effectiveness of a refinement method quantitatively, we record the number of degrees
of freedom (DOFs)—equivalently, the number of vertices in the mesh—and an approximation of the
total error at each iteration. The total error at a given iteration is approximated as follows: First we
sample a large number of points uniformly randomly across the entire domain. For this example, we
used 262,144 points. At each point, we compute the value of the true INR and the bilinear interpolant
of the mesh element containing that point, using the true INR values at the element corners. The
root mean squared error across all sample points is then recorded as the total error. Plotting error
versus DOFs is standard practice in analysis of adaptive mesh refinement schemes.

We carried out experiments to study the effect of the key parameters for Algorithm 1 and Basic,
namely, P , T , and τ . The goal was to find parameters that minimize both total error and degrees of
freedom at the termination of the algorithm. At a high level, the findings are consistent with what
we expected. If P , T or τ are too low , too many elements are refined and the result is similar to
that of Uniform. If P or τ is too high, too few elements are refined and Algorithm 1 stops after a
few iterations. For the 2D example with a maximum of 9 iterations and a dof threshold of 10,000,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Uniform Basic AMR Pruning AMR

Figure 2: We compare three approaches to mesh refinement of the 2D benchmark example INR. The
bottom row shows the mesh at the final state of the refinement method. The top row shows a bilinear
interpolant of the INR data evaluated at vertices of the mesh. Treating Uniform as “ground truth,”
observe that Basic AMR has multiple level sets with inaccurate variations, whereas Pruning
AMR is visibly more similar.

we found that for pruning we needed P > 0.05 and T >1e-5, while for the basic method we needed
1e-3< τ <0.2. These choices of parameters are specific to the 2D example.

The best results for both Algorithm 1 and Basic are shown in Figures 1 and 2 . The Uniform
method drives error down linearly (in log scale) with respect to DOFs, as is expected. The Basic
method (with optimal parameters) makes fewer refinements than Uniform in the first iteration, but
drives down error at a similar rate to Uniform, until eventually leveling out. The Pruningmethod
(with optimal parameters)—i.e. Algorithm 1—refines nearly all elements in the first iteration, but
then drives down error at a faster rate than Uniform, ultimately terminating at a lower error but
equivalent DOF count as the Basic method. Furthermore, we show in Figure 2 that the final mesh
produced by Pruning produces a qualitatively more accurate approximation to the INR than the
final mesh produced by Basic. We contend this validates the effectiveness of Algorithm 1 as
a means for adaptive mesh refinement as the need to tune parameters is a challenge affecting all
adaptive refinement schemes.

4.2 EXAMPLE 1: SIMULATED DYNAMIC CT INR

We now consider an INR from a simulated CT scan of a 3D object being compressed in time.
The object is a cube with a cylindrical hole missing from its center. At time t = −1 the cube is
uncompressed, but as time passes the cube is compressed on four sides by rectangular prisms. See
the leftmost image in Figure 5 for an overhead view. More information about the pre-trained INR
can be found in Mohan et al. (2024). The architecture of the INR consists of a Gaussian random
Fourier feature encoding layer (see Tancik et al. (2020)), five fully-connected layers, each with a
width of 256 neurons, swish activation functions, and a linear output layer with scalar output. The
inputs to the INR are x, y, z, t, each in the range [−1, 1].

We applied Algorithm 1 (“Pruning”) to the simulated CT INR and compared it to Uniform
refinement and Basic AMR, as described in Section 4.1. All results for this example use the
hyperparameters: T = τ = 0.0001, P = 0.075, ε = 0.001, max it = 5, and ID samples = 256.
We use error samples = 32 for Pruning and error samples = 256 for Basic AMR. We found
these hyperparameters empirically, by keeping error samples and ε fixed and varying the accuracy

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(a) (b)

Figure 3: (a) Simulated CT-INR example. Total error versus number of degrees of freedom are
shown for Uniform, Basic (τ = 10−4), and Pruning (T = 10−4, P = 0.075, ε = 10−3) re-
finement visualization of a simulated CT scan of a 3D object being compressed over time. Pruning
achieves the same accuracy as the other two methods with significantly fewer DOFs. The gap in
DOFs increases with each iteration. (b) Experimental CT-INR example. Total error versus num-
ber of degrees of freedom are shown for Uniform, Basic (τ = 10−3), and Pruning (T = 10−3,
P = 0.1,ε = 10−2) refinement visualization of a real CT scan of a log pile. All three refine-
ment techniques perform close to uniform refinement until the last iteration, when Pruning does
marginally better. This example is highly-detailed and needs more iterations to show significant
benefit from adaptive refinement.

thresholds (T, τ, P) to target maximal accuracy within five iterations. We use 1048576 randomly
sampled points to compute the root mean squared error for all methods.

The error and DOFs for each method across five iterations are shown in Figure 3a. We require all
methods to perform three uniform refinements first, since we start with a single element mesh. After
these uniform refinements, we see that the Pruning AMR curve achieves lower DOFs for a similar
level of error to both Basic and Uniform. This difference is reaffirmed in Figure 4, which shows
slices of the simulated CT INR visualization for each of the three refinement methods. The top row
shows slices for x = 0; the bottom row shows slices for y = 0. Both are taken at the final time,
t = 1. For each row, the visualizations from each method appear similar. However, Pruning uses
fewer elements (and thus, DOFs) than either Basic or Uniform. Pruning also seems to do a
better job than Basic at deciding where extra elements are required. We also expect that the DOFs
savings would only further improve with more iterations.

To demonstrate the utility of our algorithm in 4D, we also show the Pruning AMR meshes for
three time slices (with y = 0) in Figure 5. Note that the algorithm chooses a different mesh for each
time slice because the object is changing in time, even though the slices are all taken at y = 0.

4.3 EXAMPLE 2: EXPERIMENTAL DYNAMIC CT INR

Finally, we consider an INR trained on CT scans from a physical experiment. This example is much
more detailed than the one in the previous section and features noise in the region surrounding the
object of interest. Hence, there are fewer low-detail regions in the INR’s domain.

The object of interest in this CT scan is a “log pile,” which consists of many layers of strands, or
“logs.” Each layer has many parallel logs. The layers are rotated 90 degrees relative to each other, so
that the logs in one layer are perpendicular to all of the logs in an adjacent layer. The INR used for
this example has the same architecture and domain as the INR in Section 4.2. For more information
about the experimental set-up and architecture, see Mohan et al. (2024).

We applied our Pruning AMR algorithm to the CT INR and compared it to Uniform refinement
and Basic AMR, as described in Section 4.1. The results are shown in Figure Fig. 3b. For all log

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Uniform Basic AMR Pruning AMR

Figure 4: Comparison between meshes created by Uniform, Basic (τ = 10−4), and Pruning
(T = 10−4, P = 0.075, ε = 10−3) refinement for the simulated CT INR. Top row: x-slice. Bottom
row: y-slice. Each figure shows the result of five iterations of refinement. For each row, the images
are visually similar, but the Pruning algorithm uses fewer elements than the other two methods.

t = −1 t = 0 t = 1

Figure 5: Multiple time slices of simulated CT INR visualized using Pruning (T = 10−4, P =
0.075, ε = 10−2) AMR. Notice that the mesh changes with time as the object changes shape.

pile results, we use the hyperparameters: T = τ = 0.001, P = 0.1, ε = 0.01, max it = 5, and
ID samples = 256. We use error samples = 32 for Pruning AMR and error samples = 256 for
Basic AMR. We use 1048576 randomly sampled points to compute the root mean squared error
for all methods.

The error and DOFs for each of the three algorithms across iterations 2-5 are shown in Figure 3b.
Unlike in Figure 3a, Pruning only does marginally better than Basic and Uniform. We believe
this reflects the sparsity of low-detail regions in the dataset on which the INR was trained. Thus,
both Pruning and Basic require many more iterations to get to a small enough scale to take
advantage of variable detail across the domain.

Still, minor differences become apparent in the fifth iteration. For instance, consider Figure 6,
which shows the log pile visualization sliced in the x and z direction at t = 1 for each of the three
algorithms. On the top row (x = 0) we see that the Pruning mesh saves some DOFs in the
red region of the figure where there is less variation. In the bottom row (z = 0), Pruning also
saves some DOFs in the blue regions around the circular log pile. At iteration 5, these savings are
minimal compared to the savings observed in the simulated CT data from Section 4.2. Thus, from
this example, we confirm that AMR is only useful for INR visualization if detail is required at a
scale for which there are some low-detail regions. As with the simulated data, we expect the DOFs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Uniform Basic AMR Pruning AMR

Figure 6: Comparison between meshes created by Uniform, Basic (τ = 10−3), and Pruning
(T = 10−3, P = 0.1, ε = 10−2) refinement on log pile CT scan. Top row: x-slice, bottom row:
z-slice. Each figure is after five iterations of refinement. For each row, the images look similar but
the Pruning algorithm uses fewer elements in the less-detailed lower red and circular blue regions,
for each row respectively.

t = −1 t = 0 t = 1

Figure 7: Multiple time slices of the log pile CT INR visualized using Pruning (T = 10−3,
P = 0.1, ε = 10−2) AMR. From left to right, t = −1, t = 0, t = 1. Notice that the mesh changes
with time as the object changes shape.

savings will further improve with more iterations, however, due to computation time constraints, we
were not able to investigate this further.

Finally, we demonstrate that the mesh changes with time for the experimental INR data. Figure 7
shows slices of the log pile at z = 0 for three different times. The mesh adapts to the shape of the
object as it deforms in time.

5 CONCLUSION

In this paper we presented an algorithm for finding a variable-resolution visualization of pre-trained
implicit neural representations (INRs) with significant memory savings over existing methods. The
algorithm uses neural network pruning to determine which regions of the INR’s domain require
higher resolution, then uses adaptive mesh refinement to split up the domain into regions of higher
and lower resolution. We compared our algorithm to uniform resolution and a simpler variable
resolution algorithm; we demonstrated that our Pruning AMR algorithm achieves similar error
tolerances to these other methods despite using many fewer degrees of freedom. However, we

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

also observed that our algorithm is less beneficial for INRs that are detailed throughout their entire
domain, unless they are refined for many iterations. In the future, we wish to explore this direction
by testing our algorithm using GPUs so that we have the capacity to run for more iterations (and thus
DOFs). We also plan to test the algorithm on larger examples, such as INRs trained on full videos.

6 REPRODUCIBILITY STATEMENT

We will release our code if the paper is accepted for publication, but unfortunately cannot release it
in an anonymized version for review. However, the algorithm presented in Section 3 gives sufficient
detail to recreate our code. The software MFEM or other open source mesh refinement packages
can be used to manage the AMR routines. The code provided in the original ID pruning paper (Chee
et al., 2022) can be used to guide implementation of the Prune function in the algorithm.

REFERENCES

Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):
1103–1133, 2011.

Jerry Chee, Megan Flynn, Anil Damle, and Christopher M De Sa. Model preserving compression for
neural networks. Advances in Neural Information Processing Systems, 35:38060–38074, 2022.

GLVis. GLVis: OpenGL Finite Element Visualization Tool. glvis.org.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter
pruning for efficient neural networks. arXiv preprint arXiv:1911.07412, 2019.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon
Wetzstein. ACORN: Adaptive coordinate networks for neural representation. ACM Trans. Graph.
(SIGGRAPH), 2021.

MFEM. MFEM: Modular Finite Element Methods [Software]. mfem.org.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

William F Mitchell. A collection of 2D elliptic problems for testing adaptive grid refinement algo-
rithms. Applied mathematics and computation, 220:350–364, 2013.

K Aditya Mohan, Massimiliano Ferrucci, Chuck Divin, Garrett A Stevenson, and Hyojin Kim.
Distributed stochastic optimization of a neural representation network for time-space tomography
reconstruction. arXiv preprint arXiv:2404.19075, 2024.

Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman. Data-
independent neural pruning via coresets. arXiv preprint arXiv:1907.04018, 2019.

Tom Peterka, David Lenz, Iulian Grindeanu, and Vijay S Mahadevan. Towards adaptive refinement
for multivariate functional approximation of scientific data. In 2023 IEEE 13th Symposium on
Large Data Analysis and Visualization (LDAV), pp. 32–41. IEEE, 2023.

10

glvis.org
mfem.org

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Feng Wang, Nathan Marshak, Will Usher, Carsten Burstedde, Aaron Knoll, Timo Heister, and
Chris R Johnson. CPU ray tracing of tree-based adaptive mesh refinement data. In Computer
graphics forum, volume 39, pp. 1–12. Wiley Online Library, 2020.

Skylar W Wurster, Tianyu Xiong, Han-Wei Shen, Hanqi Guo, and Tom Peterka. Adaptively placed
multi-grid scene representation networks for large-scale data visualization. IEEE Transactions on
Visualization and Computer Graphics, 2023.

11

	Introduction and motivation
	Background and Literature Comparison
	Implicit Neural Representations
	Visualization and discretization
	Pruning via interpolative decomposition of weight matrices

	Algorithm
	Results
	2D Validation Example: Analytical oscillation at a corner
	Example 1: Simulated dynamic CT INR
	Example 2: Experimental dynamic CT INR

	Conclusion
	Reproducibility Statement

