002

004

010 011

012

013

014

015

016

017

018

019

021

Anonymous authors

Paper under double-blind review

ABSTRACT

EFFICIENT VISUALIZATION OF IMPLICIT NEURAL

REPRESENTATIONS VIA WEIGHT MATRIX ANALYSIS

An implicit neural representation (INR) is a neural network that approximates a function over space and possibly time. Memory-intensive visualization tasks, including modern 4D CT scanning methods, represent data natively as INRs. While such INRs are prized for being more memory-efficient than traditional data on a lattice, discretization to a regular grid is still required for many visualization tasks. We present an algorithm to store high-resolution voxel data only for regions with significant detail, reducing memory requirements. To identify these high-detail areas, we use an interpolative decomposition pruning method on the weight matrices of the INR. The information from pruning is used to guide adaptive mesh refinement, allowing automatic mesh generation, tailored to the underlying resolution of the function. From a pre-trained INR with no access to its training data, we produce a variable resolution visualization with significant memory savings.

023 024

025

1 INTRODUCTION AND MOTIVATION

026 Implicit neural representations (INRs) have gained traction in recent years for their ability to repre-027 sent spatial and time-varying spatial data efficiently. While INRs are best known for their fast and ac-028 curate visualization applications, these methods only apply to specific neural graphics primitives— 029 such as signed distance functions-and require training routines and data structures-such as hashing techniques-to realize interactive visualization. For INRs encoding data not derived from graphics primitives, the recourse for visual analysis is to discretize the INR to a uniform grid, thereby 031 enabling traditional techniques, but eliminating any computational savings afforded by the INR encoding. This presents an open challenge to communities using INRs in new contexts: given a 033 pre-trained INR, how can the information encoded be visualized efficiently? 034

The need for efficient visualization of INR data is evidenced by emergent "dynamic micro-CT" 035 technology for additive manufacturing. Recently developed methodologies are capable of storing 036 time-varying volumetric data of materials undergoing physical changes as an INR with (x, y, z, t)037 inputs. In one example, the size of an INR checkpoint file is on the order a few megabytes, but the potential resolution of the time-varying volume is $1024 \times 1024 \times 1024 \times 700$, roughly 3.6 terabytes 039 worth of data in a uniform discretization, well beyond the capabilities of common visualization 040 software. By visual inspection of time slices, many regions of the domain are of low variation while 041 some regions require maximum resolution for subject matter expert evaluation. Hence, an approach 042 to adaptively sample the INR in a way that preserves fine-grained details of the function is of real 043 interest to practitioners with immediate benefits to dynamic micro-CT technology. 044

In this paper, we present an algorithm that visualizes a pre-trained INR on an adaptive mesh, achieving accuracy comparable to a uniform mesh while using less memory. The algorithm begins with 046 a coarse uniform mesh of the domain and iteratively refines elements in which the INR is expected 047 to encode finer-scale information. We assume knowledge of the INR architecture, as would be en-048 coded in a standard checkpoint file, but we do not assume access to any training data; the algorithm 049 determines where to refine based solely on the weight matrices of the INR. The refinement decision 050 for a given element is based on a "pruning" method applied on the INR, restricted to the element's 051 domain. Elements for which significant pruning is possible with small loss in accuracy are presumed to have low-rank representations and therefore deemed sufficiently refined. Conversely, elements for 052 which significant pruning is not possible, or for which pruning causes significant information loss, are flagged for refinement.

054 2 BACKGROUND AND LITERATURE COMPARISON

2.1 IMPLICIT NEURAL REPRESENTATIONS

An implicit neural representation (INR) is a type of neural network that approximates a scalar- or vector-valued field with inputs representing physical space or spacetime coordinates. The original use of INRs in the context of visualization was to efficiently store an implicit representation of an image (Sitzmann et al., 2020), but interest in the technique quickly grew to include volumetric visualizations as well (Mildenhall et al., 2021). The output of the popular physically-informed neural network (PINN) technique for approximating solutions to partial differential equations is a coordinate-valued, multi-layer perceptron (typically), and hence could also be called an INR (Karniadakis et al., 2021).

066 The appeal of INRs over traditional discretization is, to quote Sitzmann et al. (2020), the network's "ability to model fine detail that is not limited by the grid resolution but by the capacity of the 067 underlying network architecture." Only the weights and biases of the INR need to be stored in order 068 to recover the value of the field at the highest level of detail anywhere in the represented domain. 069 Accordingly, the INR data structure takes up orders of magnitude less storage than an equivalent 070 standard representation. Still, the savings in data storage come with a tradeoff: evaluating the INR 071 can only be done "pointwise", meaning discretization and interpolation over a fixed grid of some 072 type is required to employ standard visualization software for all but very speficic types of INR data. 073

074 075

056

057

2.2 VISUALIZATION AND DISCRETIZATION

076 While our work is related to both visualization using INRs and traditional data discretization meth-077 ods, neither of the associated research communities offers a solution to the problem we are addressing. Much of the visualization work on INRs focuses on methods to train INRs more efficiently, 079 such as ACORN (Martel et al., 2021), scene representation networks (Wurster et al., 2023), and Instant-NGP (Wurster et al., 2023). None of these works, however, addresses the question of how 081 to process, analyze, or efficiently visualize a pre-trained INR. A separate body of work looks at efficient management and visualization of data stored on adaptive meshes, such as multi-functional approximation (Peterka et al., 2023), CPU ray tracing (Wang et al., 2020), and p4est (Burstedde 083 et al., 2011). These works presume data is provided on an adaptive mesh as input to their use cases, 084 rather than as a pre-trained INR. 085

We treat INRs as a native data format, akin to a compressed version of a much larger dataset. The input to our method is a user-provided INR, with no access to the training data. As output, we produce an adaptive mesh on which the INR has been sampled at vertices, allowing subsequent visualization and analysis via established techniques. To the best of our knowledge, there is no prior work considering this problem, other than sampling to a uniform grid.

091 092

105

106

2.3 PRUNING VIA INTERPOLATIVE DECOMPOSITION OF WEIGHT MATRICES

"Pruning" refers to the process of selectively removing weights and biases from a trained neural network in a way that preserves its mapping from inputs to outputs; see, e.g. (Li et al., 2016; Lee et al., 2018; Liu et al., 2018; Liebenwein et al., 2019; Mussay et al., 2019). We use the pruning method of Chee et al. (2022), which merges neurons in each layer whose contributions to the output are close to a linear combination. The method for detection of such neurons employs a structured low-rank approximation called an "interpolative decomposition" (ID). We selected this pruning method due to its theoretical guarantees, ease of implementation, and few number of hyperparameters.

We fix notation before describing the ID pruning method. In this work, we only consider INRs that consist of fully-connected linear layers. Hence, each layer takes as input $x \in \mathbb{R}^n$, provides an output $y \in \mathbb{R}^m$ and has corresponding weight matrix $W \in \mathbb{R}^{m \times n}$ and bias vector $b \in \mathbb{R}^m$. We treat the inputs x and outputs y as row vectors and assume that the output of the layer is computed as

$$y = g(xW^T + b),$$

107 where g is the activation function used for the layer. If a collection of ℓ inputs is provided, we still use x to denote the $\ell \times n$ matrix of inputs yielding an output $y \in \mathbb{R}^{\ell}$.

An ID of W is a decomposition of the form $W \approx W_{:,\mathcal{I}}T$, where $\mathcal{I} \subseteq \{1, 2, ..., m\}$, $|\mathcal{I}| = k$, and $T \in \mathbb{R}^{k \times n}$ is called the "interpolation matrix." For the ease of exposition, suppose the neural network has a single hidden layer with output layer weight matrix U and output layer bias vector c. Then, the output of the network with input x is $NN(x) := Z(x)U^T + c$, where $Z(x) = g(xW^T + b)$ is the output of the hidden layer.

Let $Z(x) \approx Z_{:,\mathcal{I}}T$ be an ID of Z(x). We then have

$$Z(x) \approx Z_{:,\mathcal{I}}T$$

$$= g(xW^T + b)_{:,\mathcal{I}}T$$

$$= g(x(W_{\mathcal{I},:})^T + b_{\mathcal{I}})T$$

119 Thus, the output of the full network with pruned hidden layer is

$$NN(x) = g(x(W_{\mathcal{I},:})^T + b_{\mathcal{I}})TU^T + c$$
$$= g(x\bar{W}^T + \bar{b})\bar{U}^T + c,$$

where we define $\overline{W} := W_{\mathcal{I},:}$, $\overline{b} := b_{\mathcal{I}}$, and $\overline{U} := UT^T$ to be the new weights and biases of the pruned network. Thus, pruning a layer not only affects the weights and bias of that layer, but also the weights of the following layer. The result of pruning a given layer to rank k is that the resulting pruned layer has k neurons. The following layer's weights are updated to accept the new, smaller number of inputs coming from the previous layer.

Given $\varepsilon > 0$, the goal of pruning is to find \mathcal{I} and T such that $||W - W_{:,\mathcal{I}}T||_2 \le \varepsilon ||W||_2$, with $|\mathcal{I}|$ as small as possible. We use the rank-revealing QR factorization approach from Chee et al. (2022) to carry this out. For neural networks with more than one hidden layer, IDs for each layer's weight matrix can be computed in parallel, but the final weights of the pruned network must be determined sequentially from the ID of the first layer forward.

133 134

135

113

114 115 116

117 118

120 121 122

3 Algorithm

The goal of our algorithm is to visualize an INR without computing and storing the complete finescale voxel data necessary to see high resolution details. By finding a suitable adaptive mesh for visualization, we avoid expending compute time and memory evaluating regions of the INR domain that are less *detailed*. We use the word *detailed* to describe a region of the domain where the function has large variation, which would be harder to fit accurately with a neural network of few parameters.

141 Since we only presume access to the weights and biases of the INR, we cannot easily determine 142 regions of high variation. Instead, we rely on the hypothesis that the less detailed a function is on 143 a region of the domain, the smaller an INR needs to be to accurately describe the function in that 144 region. If this hypothesis holds true, a less-detailed region of the INR should admit more pruning 145 with minimal loss in accuracy over that region . Furthermore, we observed that an INR evaluated 146 on small subsets of a domain can generally be pruned much more than for the whole domain. Thus, if a region of the domain is not very prunable, then by splitting it into more, smaller regions, the 147 sub-regions are more likely to be prunable. This also makes sense because we are asking the INR 148 to describe less information if we restrict it to a smaller domain, so we expect to be able to use a 149 smaller network to do so. This is the motivation for our algorithm. 150

To decide which regions to check for prunability (i.e., the proportion of neurons that can be pruned while maintaining an accuracy threshold), we start with an initial mesh on the INR's domain and use adaptive mesh refinement (AMR) to subdivide some elements into smaller ones. We keep refining elements until the proportion of neurons left after pruning is below a threshold, which we denote P, and the relative error of the pruned INR is less than a desired value, which we denote T. We check both of these thresholds to ensure that a small network can accurately represent the INR on that domain.

Let prune (INR, domain, ε , ID_samples) be a function that prunes an INR using an ID method. The "domain" input is the region of the domain considered for pruing, ε is the maximum relative error we allow for the ID used in pruning, and ID_samples is the number of samples we use to compute the ID. See Table 3 for more information about these hyperparameters. Furthermore, let error_samples denote the number of samples used to compute the error estimate that we compare

1	63
1	64

hyperparameter	description	heuristic
ID_samples	Number of samples of a given do-	This can be set to the width of the
_	main to take when computing the ID	INR layers
ε	The relative error achieved by the ID;	10^{-3}
	this affects how many neurons get	
	pruned	

Table 1: Descriptions for hyperparameters used in ID pruning.

hyperparameter	description	heuristic
error_samples	Number of samples of a given do-	32
	main to take when computing the ap- proximate error of the pruned INR	
Т	The relative error below which a	The main hyperparameter to decide
	pruned INR must be to not refine the	how high of resolution you want to
	corresponding element	see
Р	The proportion of neurons relative to	0.15
	the full INR that a pruned INR must	
	have less than to not refine the corre-	
	sponding element	
max_it	The maximum number of iterations	Set based on limits of your machine
	to refine for	

Table 2: Descriptions for hyperparameters used in Pruning AMR.

against the error threshold T to decide if we need to refine. We refine for up to max_it iterations. A second table summarizing all of the AMR hyperparameters along with some helpful heuristics is shown in Table 3.

For notational simplicity, assume that Mesh is a class that has a member for each element in the corresponding mesh. Each element has an attribute for its domain and another to specify whether it is done being refined or not; there is also a function random (n, domain) that can sample npoints from a uniform distribution on a domain. Given this notation, our algorithm for performing refinement using a pruning-based error estimate is given in Algorithm 1.

> Algorithm 1: Algorithm Pruning AMR: using adaptive mesh refinement to find a memoryefficient visualization of an INR.

200	input : INR, initial mesh M, error threshold T, proportion threshold P, interpolative
201	decomposition error limit ε , maximum number of iterations max_it, number of samples
202	for error check error_samples, number of samples ot use for ID ID_samples.
203	for $it = 1$ to max_it do
204	for each element E in M with $M.E.done_refining == False$ do
205	INR_pruned = prune(INR, E , ε , ID_samples) // prune INR on element E;
206	proportion = INR_pruned.num_neuron / INR.num_neurons // compute proportion of
207	neurons remaining after pruning;
208	// compute error of pruned INR on element E;
200	$X = random(error_samples, M.E.domain) // sample random points;$
209	error = mean($ INR(X) - INR_{pruned}(X) / INR(X) $) // compute mean relative error;
210	// Refine all elements that don't meet error or proportion threshold;
211	if $error > T$ or proportion $> P$ then
212	M.E.refine();
213	
214	output: Refined mesh M
215	

- ²¹⁶ 4 RESULTS
- 218 219

238

239 240

241 242

249

250 251

4.1 2D VALIDATION EXAMPLE: ANALYTICAL OSCILLATION AT A CORNER

220 We verify and validate Algorithm 1 by testing on an INR fit to a benchmark function from the 221 adaptive mesh refinement community (Mitchell, 2013, Section 2.8). Drawing samples of the func-222 tion $f(r) := \sin(1/(\alpha + r))$ on $[0, 1]^2$, where r is the radius and $\alpha = 1/50$, we train a simple 223 ReLU feed-forward network with 4 layers of width 32. Sampled to the vertices of a regular mesh of 224 512×512 square elements, and visualized with bilinear interpolation, it is evident that the oscilla-225 tions of the function have been captured to a fine resolution by the trained INR; see Figure 2 (left column). We use the open source software MFEM to manage the adaptive meshing and GLVis to 226 generate the 2D figures. 227

228 We consider two alternatives to Algorithm 1 for comparison: Uniform refinement and Basic 229 adaptive refinement. The Uniform method carries out refinement on every element until a maxi-230 mum number of iterations are reached. The Basic method takes in an integer error_samples and 231 a threshold τ . The inner loop of Algorithm 1 is replaced by drawing *error_samples* random points in E, computing the mean relative error of the INR with respect to the bilinear interpolant on E at 232 those points, and refining if the relative error is larger than τ . Note that the relative error computed 233 in Basic is distinct from the relative error of the pruned INR computed in Algorithm 1, hence, τ 234 should not be equated with T. 235

Figure 1: Total error versus number of degrees of freedom plots are shown for Uniform, and the best-tuned instances of Basic ($\tau = 0.1$) and Pruning (T = 0.1, P = 0.09, and $\varepsilon = 10^{-3}$). The Pruning method—i.e. Algorithm 1—drives down error at a faster rate than the Uniform approach and terminates with a lower error for an equivalent number of DOFs than either Basic or Uniform.

256

257 To assess the effectiveness of a refinement method quantitatively, we record the number of degrees 258 of freedom (DOFs)-equivalently, the number of vertices in the mesh-and an approximation of the 259 total error at each iteration. The total error at a given iteration is approximated as follows: First we 260 sample a large number of points uniformly randomly across the entire domain. For this example, we used 262,144 points. At each point, we compute the value of the true INR and the bilinear interpolant 261 of the mesh element containing that point, using the true INR values at the element corners. The 262 root mean squared error across all sample points is then recorded as the total error. Plotting error 263 versus DOFs is standard practice in analysis of adaptive mesh refinement schemes. 264

We carried out experiments to study the effect of the key parameters for Algorithm 1 and Basic, namely, P, T, and τ . The goal was to find parameters that minimize both total error and degrees of freedom at the termination of the algorithm. At a high level, the findings are consistent with what we expected. If P, T or τ are too low, too many elements are refined and the result is similar to that of Uniform. If P or τ is too high, too few elements are refined and Algorithm 1 stops after a few iterations. For the 2D example with a maximum of 9 iterations and a dof threshold of 10,000,

Figure 2: We compare three approaches to mesh refinement of the 2D benchmark example INR. The
bottom row shows the mesh at the final state of the refinement method. The top row shows a bilinear
interpolant of the INR data evaluated at vertices of the mesh. Treating Uniform as "ground truth,"
observe that Basic AMR has multiple level sets with inaccurate variations, whereas Pruning
AMR is visibly more similar.

we found that for pruning we needed P > 0.05 and T > 1e-5, while for the basic method we needed 1e-3< $\tau < 0.2$. These choices of parameters are specific to the 2D example.

298 The best results for both Algorithm 1 and Basic are shown in Figures 1 and 2. The Uniform 299 method drives error down linearly (in log scale) with respect to DOFs, as is expected. The Basic 300 method (with optimal parameters) makes fewer refinements than Uniform in the first iteration, but 301 drives down error at a similar rate to Uniform, until eventually leveling out. The Pruning method (with optimal parameters)—i.e. Algorithm 1—refines nearly all elements in the first iteration, but 302 then drives down error at a *faster* rate than Uniform, ultimately terminating at a lower error but 303 equivalent DOF count as the Basic method. Furthermore, we show in Figure 2 that the final mesh 304 produced by Pruning produces a qualitatively more accurate approximation to the INR than the 305 final mesh produced by Basic. We contend this validates the effectiveness of Algorithm 1 as 306 a means for adaptive mesh refinement as the need to tune parameters is a challenge affecting all 307 adaptive refinement schemes. 308

309 310

311

4.2 EXAMPLE 1: SIMULATED DYNAMIC CT INR

312 We now consider an INR from a simulated CT scan of a 3D object being compressed in time. 313 The object is a cube with a cylindrical hole missing from its center. At time t = -1 the cube is 314 uncompressed, but as time passes the cube is compressed on four sides by rectangular prisms. See the leftmost image in Figure 5 for an overhead view. More information about the pre-trained INR 315 can be found in Mohan et al. (2024). The architecture of the INR consists of a Gaussian random 316 Fourier feature encoding layer (see Tancik et al. (2020)), five fully-connected layers, each with a 317 width of 256 neurons, swish activation functions, and a linear output layer with scalar output. The 318 inputs to the INR are x, y, z, t, each in the range [-1, 1]. 319

We applied Algorithm 1 ("Pruning") to the simulated CT INR and compared it to Uniform
refinement and Basic AMR, as described in Section 4.1. All results for this example use the
hyperparameters: T = τ = 0.0001, P = 0.075, ε = 0.001, max_it = 5, and ID_samples = 256.
We use error_samples = 32 for Pruning and error_samples = 256 for Basic AMR. We found
these hyperparameters empirically, by keeping error_samples and ε fixed and varying the accuracy

339 Figure 3: (a) Simulated CT-INR example. Total error versus number of degrees of freedom are 340 shown for Uniform, Basic ($\tau = 10^{-4}$), and Pruning ($T = 10^{-4}$, P = 0.075, $\varepsilon = 10^{-3}$) re-341 finement visualization of a simulated CT scan of a 3D object being compressed over time. Pruning 342 achieves the same accuracy as the other two methods with significantly fewer DOFs. The gap in 343 DOFs increases with each iteration. (b) Experimental CT-INR example. Total error versus number of degrees of freedom are shown for Uniform, Basic ($\tau = 10^{-3}$), and Pruning ($T = 10^{-3}$, 344 $P = 0.1, \varepsilon = 10^{-2}$) refinement visualization of a real CT scan of a log pile. All three refine-345 ment techniques perform close to uniform refinement until the last iteration, when Pruning does 346 marginally better. This example is highly-detailed and needs more iterations to show significant 347 benefit from adaptive refinement. 348

324

325

326 327 328

329

330 331

332 333

334 335

336

337

338

thresholds (T, τ, P) to target maximal accuracy within five iterations. We use 1048576 randomly sampled points to compute the root mean squared error for all methods.

353 The error and DOFs for each method across five iterations are shown in Figure 3a. We require all methods to perform three uniform refinements first, since we start with a single element mesh. After 354 these uniform refinements, we see that the Pruning AMR curve achieves lower DOFs for a similar 355 level of error to both Basic and Uniform. This difference is reaffirmed in Figure 4, which shows 356 slices of the simulated CT INR visualization for each of the three refinement methods. The top row 357 shows slices for x = 0; the bottom row shows slices for y = 0. Both are taken at the final time, 358 t = 1. For each row, the visualizations from each method appear similar. However, Pruning uses 359 fewer elements (and thus, DOFs) than either Basic or Uniform. Pruning also seems to do a 360 better job than Basic at deciding where extra elements are required. We also expect that the DOFs 361 savings would only further improve with more iterations.

To demonstrate the utility of our algorithm in 4D, we also show the Pruning AMR meshes for three time slices (with y = 0) in Figure 5. Note that the algorithm chooses a different mesh for each time slice because the object is changing in time, even though the slices are all taken at y = 0.

365 366 367

4.3 EXAMPLE 2: EXPERIMENTAL DYNAMIC CT INR

Finally, we consider an INR trained on CT scans from a physical experiment. This example is much more detailed than the one in the previous section and features noise in the region surrounding the object of interest. Hence, there are fewer low-detail regions in the INR's domain.

The object of interest in this CT scan is a "log pile," which consists of many layers of strands, or "logs." Each layer has many parallel logs. The layers are rotated 90 degrees relative to each other, so that the logs in one layer are perpendicular to all of the logs in an adjacent layer. The INR used for this example has the same architecture and domain as the INR in Section 4.2. For more information about the experimental set-up and architecture, see Mohan et al. (2024).

377 We applied our Pruning AMR algorithm to the CT INR and compared it to Uniform refinement and Basic AMR, as described in Section 4.1. The results are shown in Figure Fig. 3b. For all log

Figure 4: Comparison between meshes created by Uniform, Basic ($\tau = 10^{-4}$), and Pruning ($T = 10^{-4}$, P = 0.075, $\varepsilon = 10^{-3}$) refinement for the simulated CT INR. Top row: x-slice. Bottom row: y-slice. Each figure shows the result of five iterations of refinement. For each row, the images are visually similar, but the Pruning algorithm uses fewer elements than the other two methods.

400

411 412

413

414 415

Figure 5: Multiple time slices of simulated CT INR visualized using Pruning ($T = 10^{-4}$, P = 0.075, $\varepsilon = 10^{-2}$) AMR. Notice that the mesh changes with time as the object changes shape.

416 pile results, we use the hyperparameters: $T = \tau = 0.001$, P = 0.1, $\varepsilon = 0.01$, max_it = 5, and 417 ID_samples = 256. We use error_samples = 32 for Pruning AMR and error_samples = 256 for 418 Basic AMR. We use 1048576 randomly sampled points to compute the root mean squared error 419 for all methods.

The error and DOFs for each of the three algorithms across iterations 2-5 are shown in Figure 3b.
Unlike in Figure 3a, Pruning only does marginally better than Basic and Uniform. We believe this reflects the sparsity of low-detail regions in the dataset on which the INR was trained. Thus, both Pruning and Basic require many more iterations to get to a small enough scale to take advantage of variable detail across the domain.

Still, minor differences become apparent in the fifth iteration. For instance, consider Figure 6, which shows the log pile visualization sliced in the x and z direction at t = 1 for each of the three algorithms. On the top row (x = 0) we see that the Pruning mesh saves some DOFs in the red region of the figure where there is less variation. In the bottom row (z = 0), Pruning also saves some DOFs in the blue regions around the circular log pile. At iteration 5, these savings are minimal compared to the savings observed in the simulated CT data from Section 4.2. Thus, from this example, we confirm that AMR is only useful for INR visualization if detail is required at a scale for which there are some low-detail regions. As with the simulated data, we expect the DOFs

Figure 6: Comparison between meshes created by Uniform, Basic ($\tau = 10^{-3}$), and Pruning ($T = 10^{-3}$, P = 0.1, $\varepsilon = 10^{-2}$) refinement on log pile CT scan. Top row: x-slice, bottom row: z-slice. Each figure is after five iterations of refinement. For each row, the images look similar but the Pruning algorithm uses fewer elements in the less-detailed lower red and circular blue regions, for each row respectively.

Figure 7: Multiple time slices of the log pile CT INR visualized using Pruning ($T = 10^{-3}$, P = 0.1, $\varepsilon = 10^{-2}$) AMR. From left to right, t = -1, t = 0, t = 1. Notice that the mesh changes with time as the object changes shape.

savings will further improve with more iterations, however, due to computation time constraints, we were not able to investigate this further.

Finally, we demonstrate that the mesh changes with time for the experimental INR data. Figure 7 shows slices of the log pile at z = 0 for three different times. The mesh adapts to the shape of the object as it deforms in time.

5 CONCLUSION

In this paper we presented an algorithm for finding a variable-resolution visualization of pre-trained implicit neural representations (INRs) with significant memory savings over existing methods. The algorithm uses neural network pruning to determine which regions of the INR's domain require higher resolution, then uses adaptive mesh refinement to split up the domain into regions of higher and lower resolution. We compared our algorithm to uniform resolution and a simpler variable resolution algorithm; we demonstrated that our Pruning AMR algorithm achieves similar error tolerances to these other methods despite using many fewer degrees of freedom. However, we

also observed that our algorithm is less beneficial for INRs that are detailed throughout their entire domain, unless they are refined for many iterations. In the future, we wish to explore this direction by testing our algorithm using GPUs so that we have the capacity to run for more iterations (and thus DOFs). We also plan to test the algorithm on larger examples, such as INRs trained on full videos.

490 491

492 493

494

495

496

497

498 499

500

526

527

528

532

533

534

6 REPRODUCIBILITY STATEMENT

We will release our code if the paper is accepted for publication, but unfortunately cannot release it in an anonymized version for review. However, the algorithm presented in Section 3 gives sufficient detail to recreate our code. The software MFEM or other open source mesh refinement packages can be used to manage the AMR routines. The code provided in the original ID pruning paper (Chee et al., 2022) can be used to guide implementation of the Prune function in the algorithm.

References

- Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. *SIAM Journal on Scientific Computing*, 33(3): 1103–1133, 2011.
- Jerry Chee, Megan Flynn, Anil Damle, and Christopher M De Sa. Model preserving compression for neural networks. *Advances in Neural Information Processing Systems*, 35:38060–38074, 2022.
- 507 GLVis. GLVis: OpenGL Finite Element Visualization Tool. glvis.org.
- George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.
- Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
 based on connection sensitivity. *arXiv preprint arXiv:1810.02340*, 2018.
- Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets. *arXiv preprint arXiv:1608.08710*, 2016.
- Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter
 pruning for efficient neural networks. *arXiv preprint arXiv:1911.07412*, 2019.
- ⁵¹⁸ Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network pruning. *arXiv preprint arXiv:1810.05270*, 2018.
- Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon
 Wetzstein. ACORN: Adaptive coordinate networks for neural representation. *ACM Trans. Graph.* (*SIGGRAPH*), 2021.
- 524 MFEM. MFEM: Modular Finite Element Methods [Software]. mfem.org.
 - Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications* of the ACM, 65(1):99–106, 2021.
- William F Mitchell. A collection of 2D elliptic problems for testing adaptive grid refinement algorithms. *Applied mathematics and computation*, 220:350–364, 2013.
 - K Aditya Mohan, Massimiliano Ferrucci, Chuck Divin, Garrett A Stevenson, and Hyojin Kim. Distributed stochastic optimization of a neural representation network for time-space tomography reconstruction. *arXiv preprint arXiv:2404.19075*, 2024.
- Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman. Data independent neural pruning via coresets. *arXiv preprint arXiv:1907.04018*, 2019.
- Tom Peterka, David Lenz, Iulian Grindeanu, and Vijay S Mahadevan. Towards adaptive refinement
 for multivariate functional approximation of scientific data. In 2023 IEEE 13th Symposium on
 Large Data Analysis and Visualization (LDAV), pp. 32–41. IEEE, 2023.

Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. Advances in neural information processing systems, 33:7537-7547, 2020. Feng Wang, Nathan Marshak, Will Usher, Carsten Burstedde, Aaron Knoll, Timo Heister, and Chris R Johnson. CPU ray tracing of tree-based adaptive mesh refinement data. In Computer graphics forum, volume 39, pp. 1–12. Wiley Online Library, 2020. Skylar W Wurster, Tianyu Xiong, Han-Wei Shen, Hanqi Guo, and Tom Peterka. Adaptively placed multi-grid scene representation networks for large-scale data visualization. IEEE Transactions on Visualization and Computer Graphics, 2023.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh

processing systems, 33:7462-7473, 2020.

plicit neural representations with periodic activation functions. Advances in neural information