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ABSTRACT

Large models have shown strong open-world generalization to complex problems
in vision and language, but they have been relatively more difficult to deploy in
robotics. This challenge stems primarily from the lack of scalable robotic training
data since this requires expensive on-robot collection. For scalable training, these
models must show considerable transfer across domains, to make use of cheaply
available “off-domain” data such as videos, hand-drawn sketches, or data from
simulation. In this work, we posit that hierarchical vision-language-action mod-
els can be more effective at transferring behavior across domains than standard
monolithic vision-language-action models. In particular, we study a class of hier-
archical vision-language-action models, where high-level vision-language models
(VLMs) are trained on relatively cheap data to produce semantically meaningful
intermediate predictions such as 2D paths indicating desired behavior. These pre-
dicted 2D paths serve as guidance for low-level control policies that are 3D-aware
and capable of precise manipulation. In this work, we show that separating pre-
diction into semantic high-level predictions, and 3D-aware low-level predictions
allows such hierarchical VLA policies to transfer across significant domain gaps,
from simulation to the real world or across scenes with widely varying visual ap-
pearance. Doing so allows for the usage of cheap, abundant data sources beyond
teleoperated on-robot data thereby enabling broad semantic and visual general-
ization. We demonstrate how hierarchical architectures trained on such cheap off-
domain data can enable robotic manipulation with semantic, visual, and geometric
generalization through experiments in simulation and the real world.

1 INTRODUCTION

Developing general robot manipulation policies has been notoriously difficult. With the advent of
large vision-language models (VLMs) that display compelling generalizations, there is an optimism
that similar techniques can be helpful for robotic manipulation. Several prior works (Team et al.,
2024; Kim et al., 2024; Gu et al., 2023) build open-world vision-language-action models (VLAs)
by finetuning off-the-shelf, pretrained VLMs. The recipe for training many of these VLA mod-
els has been to collect and curate a large-scale robotics-specific dataset, complete with images and
corresponding on-robot actions, and then finetune a VLM to directly produce actions (Kim et al.,
2024; Brohan et al., 2023a). Such VLAs have shown robustness on simple tasks and controlled
environmental variations. However, these models display limited generalization in terms of environ-
ment, object, task, and semantic variation. This issue could be attributed to the scarcity of diverse,
in-domain training data. The data needed to train these models is expensive since it requires end-
to-end image-action pairs that must all be collected directly on-robot. A solution for training VLA
models must be developed to instead learn from easy-to-collect “cheap” sources of data.

On the other hand, relatively “small” imitation learning models have shown impressive dexterity
and geometric robustness. Such models have demonstrated promise across a range of complex
tasks involving contact-rich manipulation and 3D reasoning, spanning domains from tabletop ma-
nipulation (Shridhar et al., 2023; Goyal et al., 2023) to fine dexterous manipulation (Zhao et al.,
2023). Trained on relatively small datasets, these models show local robustness and stable control
but typically lack semantic or visual generalization. They are often brittle to changes in the envi-
ronment, semantic description of the tasks, or changes in the objects being manipulated (Pumacay
et al., 2024). This fragility can also be boiled down to scarce in-domain data collected on a robot.
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Figure 1: Overview of HAMSTER, VLAs and “smaller” imitation learning methods. HAMSTER’s hierarchi-
cal design results in better generalization with a small amount of in-domain data. HAMSTER is able to utilize
cheap training sources such as videos or simulations for enhanced generalization.

Reliable, generalizable robotic learning techniques must marry the generalization benefits of large
VLMs, with the efficiency, local robustness and dexterity of small imitation learning policies, all
while being able to train from abundant and cheap sources of data. In this work, we ask – can we de-
sign VLA models that train on relatively abundant and cheap data sources, showing broad visual and
semantic generalization, while capturing the low-level geometric and 3D understanding displayed
by small imitation learning models?

We propose that a hierarchical architecture for vision-language-actions models, HAMSTER
(Hierarchical Action Models with SeparaTEd Path Representations), can serve as an effective way
to learn from abundant and cheap sources of data such as videos or simulation. We study a family
of HAMSTERs, where finetuned VLMs are connected to low-level 3D policy learning methods via
intermediate 2D path representations. Since these 2D paths can easily be obtained in abundance
from data sources such as videos or simulations (either with point tracking, hand-sketching, or pro-
prioceptive projection), these can be used to finetune the larger higher-level VLM in HAMSTER.
These 2D paths can then serve as guidance for a low-level policy that operates on rich 3D and pro-
prioceptive inputs, alleviating the burden of long-horizon planning and semantic reasoning, allowing
low-level policies to focus on robustly generating precise, spatially-aware actions.

Representations similar to 2D paths has been explored in the robot learning literature (Gu et al.,
2023), primarily as a technique for flexible task specification. However, the key hypothesis explored
in this paper is distinct – we posit that using cheap data such as videos or simulation to finetune
hierarchical path generating VLMs can enable a surprising degree of cross-domain transfer as com-
pared to the direct transfer of monolithic vision-language-action models (Brohan et al., 2022; Kim
et al., 2024). Here the focus is less on using paths as a scalable technique for task specification,
and more on using hierarchy as a mechanism for robust cross-domain transfer across settings with
considerable visual and semantic differences. Specifically, we find that VLMs trained to predict 2D
path representation can transfer to the real world from simulations that look very different from the
real world, or across real-world scenarios with widely varying appearance. Hence, the hierarchical
design of HAMSTER provides a way to utilize cheaper, but perceptually varying sources of “off-
domain” data (such as simulation or cross-embodiment data) to benefit real-world control policies.

The hierarchical design presented in HAMSTER can also offer additional advantages through the
decoupling of VLM training and low-level action prediction. Specifically, since the higher-level
VLM is predicting semantically meaningful trajectories from monocular RGB camera inputs, the
lower-level control policies can operate from rich 3D and proprioceptive inputs. In doing so, HAM-
STER inherits the semantic reasoning benefits of VLMs along with the 3D reasoning and spatial
awareness benefits of 3D imitation learning policies (Goyal et al., 2024; Ke et al., 2024). Finally,
since HAMSTER is built on both open-source VLMs and low-level policies, it can serve as a fully
open-sourced enabler for the community-building vision-language-action models.
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2 RELATED WORK

LLMs and VLMs for robotics. Early attempts in leveraging LLMs and VLMs for robotics are
through pretrained language (Jang et al., 2022; Shridhar et al., 2023; Singh et al., 2023) and vi-
sual (Shah & Kumar, 2021; Parisi et al., 2022; Nair et al., 2023; Ma et al., 2023) models. However,
these are not sufficient for complex semantic reasoning and generalization to the open world (Bro-
han et al., 2022; Zitkovich et al., 2023). Recent research has focused on directly leveraging open
world reasoning and generalization capability of LLMs and VLMs, by prompting or fine-tuning
them to, e.g., generate plans (Huang et al., 2022; 2023b; Lin et al., 2023; Liang et al., 2023; Singh
et al., 2023; Brohan et al., 2023b), construct value (Huang et al., 2023a) and reward functions (Kwon
et al., 2023; Sontakke et al., 2023; Yu et al., 2023; Ma et al., 2024; Wang et al., 2024). Our work is
more closely related to the literature on VLA models, summarized below.

Monolithic VLA models as language-conditioned robot policies. Monolithic VLA models have
been proposed to produce robot actions given task description and image observations directly (Bro-
han et al., 2022; Jiang et al., 2023; Zitkovich et al., 2023; Team et al., 2024; Kim et al., 2024;
Radosavovic et al., 2023). Monolithic VLA models are often constructed from VLMs (Liu et al.,
2024b; Bai et al., 2023; Driess et al., 2023; Lin et al., 2024), and are trained on large-scale robot
teleoperation data (Brohan et al., 2022; Collaboration et al., 2023; Khazatsky et al., 2024) to predict
actions as text or special tokens. However, due to the lack of coverage in existing robotics datasets,
they must be finetuned in-domain on expensive teleoperated data. The most relevant monolithic
VLA model is LLARVA (Niu et al., 2024), which predicts end-effector trajectories in addition to
robot actions. However, LLARVA does not use trajectory prediction to control the robot; rather,
it uses it as an auxiliary task to improve action prediction. Therefore, LLARVA still suffers from
the limitations of monolithic VLA models. In contrast, our work takes a hierarchical approach,
enabling us to use specialist lower-level policies that take in additional inputs the VLMs cannot sup-
port, such as 3D pointclouds, to enable better imitation learning. Our predicted paths then enable
these lower-level policies to generalize more effectively.

VLMs for predicting intermediate representations. Our work bears connections to prior methods
using vision-language models for intermediate prediction. These methods can be categorized by the
choice of predicted representation:

Point-based predictions: A common intermediate prediction interface has been keypoint affor-
dances (Stone et al., 2023; Sundaresan et al., 2023; Nasiriany et al., 2024; Yuan et al., 2024). Some
examples include using open-vocabulary detectors (Minderer et al., 2022), iterative prompting of
VLMs (Nasiriany et al., 2024), or fine-tuning detectors to identify certain parts of an object by se-
mantics (Sundaresan et al., 2023). Perhaps most related, Yuan et al. (2024) finetunes a VLM to
predict objects of interest as well as free space for placing an object, and Liu et al. (2024a) propose
a mark-based visual prompting procedure to predict keypoint affordances as well as a fixed number
of waypoints. As opposed to these, our work finetunes a VLM model to not just predict points but
rather entire 2D paths, making it more broadly applicable across robotic tasks.

Trajectory-based predictions: The idea of using trajectory-based task specifications to condition
low-level policies was proposed in RT-trajectory (Gu et al., 2023), largely from the perspective
of flexible task specification. This work also briefly discusses the possibility of combining RT-
Trajectory with trajectory sketches generated from prompting a pre-trained vision language model.
Complementary to RT-Trajectory, the focus of this work is less on the use of trajectory sketches for
task specification, but rather on the abilities of a hierarchical VLA model to finetune the high-level
VLM on cheap and abundant sources. This could include training data such as videos or simu-
lation data, and show transfer to test scenarios of interest with considerable visual and semantic
variation. While RT-trajectory uses human effort or off-the-shelf pre-trained models to generate
trajectories, we show that finetuning VLM models on cheap data sources can generate more accu-
rate and generalizable trajectories (see Table. 5). Moreover, our instantiation of this architecture
enables the incorporation of rich 3D and proprioceptive information, as compared to monocular 2D
policies (Gu et al., 2023).

Leveraging simulation data for training robot policies. There has been extensive work on lever-
aging simulation for robot learning. Simulation data is popular in reinforcement learning (RL),
as RL on real robotic systems is often impractical due to high sample complexity and safety con-
cerns (Lee et al., 2020; Handa et al., 2023; Torne et al., 2024). Recently, simulation has been also
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exploited to directly generate (Fishman et al., 2022) or bootstrap (Mandlekar et al., 2023) large-scale
datasets for imitation learning, to reduce the amount of expensive robot teleoperation data needed.
Our work takes a different approach - using simulation data to finetune a VLM, and showing that
VLM is able to transfer the knowledge learned from simulation data to real robot systems, despite
considerable visual differences. A related observation is recently made by (Yuan et al., 2024), but
they use keypoint affordances as the interface between the VLM and the low-level policy as opposed
to more general expressive 2D path representations.

3 BACKGROUND

Imitation Learning via Supervised Learning. The goal of imitation learning is to train a prob-
abilistic policy πθ(a | s, o, z) from an expert-provided dataset. This policy πθ outputs the prob-
ability of producing action a conditioned on proprioceptive states s, perceptual observations o,
and language instructions z that specify the task. In the typical imitation learning setting, a
dataset of expert in-domain trajectories is provided, consisting of observation-action-language tu-
ples D = {(si, ai, oi, zi)}Ni=1. This dataset can be utilized to learn the parameters of the policy πθ.
While π can take on a variety of architectures with various training objectives (Goyal et al., 2023; Ke
et al., 2024; Zhao et al., 2023; Chi et al., 2023), most imitation learning algorithms are trained via
supervised learning to maximize the objective: E(si,ai,oi,zi)∼D [log πθ (ai | si, oi, zi)] . This core
objective can be modified with rich architectural choices such as 3D policy architectures (Goyal
et al., 2023; Ke et al., 2024) or more expressive policy distribution classes (Zhao et al., 2023; Chi
et al., 2023), but generalization to out-of-domain to settings with semantic or visual variations is still
challenging. We study how vision-language models can be used to aid the generalization of such
low-level imitation learning-based policies, discussed in Section 4.1.

Vision Language Models. Typical vision language models (VLMs) (Lin et al., 2024; Liu et al.,
2024b) are large transformers (Vaswani et al., 2023) that take vision & text tokens as input and
produce text responses. These models are pre-trained on large multimodal datasets (Zhu et al.,
2023; Byeon et al., 2022), and then finetuned on targeted high-quality datasets (Shen et al., 2021;
Lu et al., 2022). These models tokenize each modality into a shared space to produce a sequence of
output tokens corresponding to text or other output modalities. In this work, we assume access to
a pre-trained, text and image input VLM (Lin et al., 2024; Liu et al., 2024b), that autoregressively
outputs a sequence of text tokens conditioned on an image and previous text tokens. These pretrained
VLMs can typically be finetuned using a supervised prediction loss that minimizes the negative log-
likelihood of the answer text tokens.

4 HAMSTER: HIERARCHICAL ACTION MODELS FOR ROBOTIC LEARNING

In this work, we examine how VLA models can be trained on relatively abundant data to demonstrate
cross-domain transfer capabilities, as opposed to training on expensive image-action data collected
on a robot. HAMSTER is a family of hierarchical action models designed for this purpose, ex-
hibiting generalizable and robust manipulation. It consists of two interconnected models: first, a
higher-level VLM that is fine-tuned on large-scale, cross-modal data to produce intermediate guid-
ance (detailed in Section 4.1), and second, a low-level policy that produces actions conditioned on
the VLM’s predicted guidance (detailed in Section 4.2). The finetuned VLM and the low-level pol-
icy communicate using a 2D path representation. Figure 2 provides an overview of HAMSTER’s
design. Crucially, we study the ability of such a hierarchical design to enable training on cheap,
abundantly available data such as simulation and videos.

Problem Definition. Rather than operating in the pure imitation learning setting as described in
Section 3, we study a scenario where cross-domain data is utilized to train VLA models. While
the typical imitation learning setting uses a dataset of optimal in-domain, on-robot tuples D =
{(st, at, ot, zt)}Nt=1 to learn a near-optimal policy πθ, in this setting we additionally assume access
to a much larger dataset(s) of “off-domain” approximately optimal data Doff = {(ooi , zoi )}Mi=1, where
M ≫ N , such as video or simulation data. This “off-domain” data Doff is different from in-domain
data D in several important ways: 1) Off-domain perceptual observations ooi may be considerably
different than in-domain perceptual observations oi, even when the underlying physical state of the
system is similar. An illustrative example of this is the marked difference between simulation and
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(a) VLM Path Prediction (b) Low-Level Action Execution

Policy Input
Instruction: ￼ "Put 

the object in the bowl."
z =

 Proprio + sensors: ￼st

VLM response: 
[(0.25, 0.1, 0), 
 (0.29, 0.3, 0), 
 (0.31, 0.4, 1), 
(0.33, 0.5, 1)]

Prompt: Please execute the 
command described in 
{instruction}...

￼o1

VLM Input

Draw 
2D Path 
✍

￼̃ot

Instruction: "Put the spicy 
food in the left bowl."

HAMSTER 
VLM

Low-Level 
3D Policy

￼at

￼ot

Figure 2: Depiction of HAMSTER’s execution. The high-level VLM is called once to generate the 2D path.
The low-level policy is conditioned on the 2D path and interacts with the environment sequentially to execute
low-level actions. The path predicted by the VLM enhances the low-level policy generalization capability.

real-world scene appearance (see Figure 6). 2) The underlying physical dynamics of the system can
be potentially different, i.e., the transition dynamics may be different between off-domain sources
such as video or simulation than the test-time deployment setting. While the dynamics may show
level differences, we assume the higher-level coarse strategies to solve the task remain invariant. 3)
Off-domain data may not have access directly to actions a or proprioception state s, for instance
in video based datasets. This poses challenges to directly applying the standard imitation learning
paradigm for these datasets.

The goal is to leverage the combination of a small amount of “expensive” in-domain data D and a
large amount of relatively “cheap” off-domain data Doff to obtain a generalizable policy πθ that can
be successfully deployed over various initial conditions, task variations, and visual variations in the
in-domain robot environment. Without additional assumptions, this problem is arduous due to the
lack of alignment between the in-domain and off-domain settings. In this work, we assume access
to an intermediate path-labeler pi = h(oi, zi) at training time, that accepts an observation oi and a
language instruction zi from either the off-domain or in-domain datasets, to produce an intermediate
path label pi that indicates how to optimally perform the task zi from the observation oi. In this work,
we choose this intermediate path label pi to be a sequence of points, a 2D path, on the image that
indicates coarse end-effector motion to solve the designated task. This path-labeler at training time
can come from different sources – a projection of known proprioception if available, human-drawn
trajectory annotations on images, point-tracked end-effector or hand positions from video, and so
on. Applying such a path labeler to the off-domain dataset yields D̃off = {(ooi , zoi , poi )}Mi=1.

4.1 HAMSTER’S VLM FOR PRODUCING 2D PATHS TRAINED FROM OFF-DOMAIN DATA

The first stage of building a HAMSTER VLA model is finetuning a high-level VLM that predicts
coarse 2D paths p given a language instruction z and observation o. This path represents the approx-
imate trajectory of the robot end-effector on the input camera image. It also contains information
about the gripper state (where to open the gripper and where to close it) as subsequently explained.

Although, conceptually, any VLM can be used to predict such a 2D path by casting an appropriate
prompt, we find that standard pre-trained VLMs struggle with predicting such a path in a zero-shot
manner (see Table 5). Therefore, we finetune pre-trained VLMs on datasets that ground VLMs
to robot scenes and path predictions collected from easier-to-obtain sources, i.e., internet visual-
question-answering data, robot data from other modalities, and simulation data. The primary advan-
tages of finetuning such a hierarchical VLM that produces intermediate representations as opposed
to directly producing actions a with a monolithic model (Kim et al., 2024; Zitkovich et al., 2023)
are twofold: 1) the lack of actions in certain off-domain datasets (such as videos) makes it impossi-
ble to even train monolithic pixel-to-action models, 2) we find empirically that hierarchical VLMs
producing intermediate cross-domain predictions generalize more effectively than monolithic VLA
models.

Finetuning Objective and Datasets. We use VILA-1.5-13b (Lin et al., 2024), a 13-billion-
parameter vision language model trained on interleaved image-text datasets and video captioning
data, as our base VLM. We then curate a multi-domain dataset to finetune this model for effective
2D path prediction. Predicting the 2D path of the end-effector requires understanding what objects
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to manipulate in a given task in terms of their pixel positions, but also reasoning about how a robot
should perform the task. To enable this understanding, we collate a diverse off-domain dataset Doff
from a wide range of modalities, including real-world data, visual question-answering data, and
simulation data. Importantly, none of this off-domain data used to train the VLM comes from the
deployment environment, thereby emphasizing generalizability. However, as outlined in Section 4.2,
the predictions of this trained VLM are used to guide a low-level policy at inference time.

We assemble a dataset D̃off = {(ooi , zoi , poi )}Mi=1 of image inputs ooi , language prompts zoi , and path
labels poi consisting of three types of data: (1) pixel point prediction tasks (what); (2) simulated
robotics tasks (what and how); (3) a real robot dataset consisting of trajectories (what and how). We
detail each dataset below; see Figure 7 for visualization of each dataset’s prompts and labels.

Pixel Point Prediction. For pixel point prediction, we use the dataset released by Robo-
Point (Yuan et al., 2024) with 1.4 million VQA tasks, with most answers represented as a
list of 2D points corresponding to locations on the image. A sample consists of a prompt
zo like Find all instances of cushions, an input image oo and labels po like
[(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)].1 This dataset consists of data automatically generated in
simulation and collected from existing real-world datasets; its diversity and tasks enable the HAM-
STER VLM to reason about pixel-object relationships across diverse scenes while retaining its se-
mantic generalization capabilities.

Robot Simulation Data. We additionally generate a dataset of simulated robotics tasks from RL-
Bench (James et al., 2020), a simulator of a Franka robot performing tabletop manipulation for a
wide array of both prehensile and non-prehensile tasks. We use the simulator’s built-in planning al-
gorithms to automatically generate successful manipulation trajectories and construct ground-truth
2D path labels po. Each trajectory contains a sequence of 3D coordinates of the robot’s gripper
in world space, as well as whether the gripper is open or closed at a given time step. We use
known camera intrinsics and extrinsics to project these points on the front image and construct
labels po = [(ximage, yimage,gripper open), . . .] where ximage, yimage ∈ [0, 1] are relative pixel
locations of the end effector’s position on the image. The front camera image of the initial state
forms the image input oo and the prompt zo for the VLM is to provide a sequence of points denot-
ing the trajectory of the robot gripper to achieve the given instruction (see Figure 2) We generate
1000 episodes for each of 79 robot manipulation tasks in RLBench, each episode with ∼4 language
instructions, for a total of ∼300k (oo, zo, po) tuples for D̃off.

Real Robot Data. Using real robot data allows us to ensure the VLM can reason about objects
and robot gripper paths when conditioned on scenes, including real robot arms. We use existing,
online robot datasets not from the deployment environment to enable this VLM ability. We source
10k trajectories from the Bridge dataset (Walke et al., 2023; Collaboration et al., 2023) consisting of
a WidowX arm performing manipulation tasks and 4̃5k trajectories from DROID (Khazatsky et al.,
2024). For both datasets, we use the given end-effector trajectories and given (or estimated) camera
matrices to convert robot gripper trajectories to 2D paths po. We use a camera image from the first
timestep of each robot trajectory as oo and a similar text prompt zo as the simulation dataset. Note
that we essentially utilize the robot data as video data, where the end effector is tracked over time.
In principle, this could be done with any number of point-tracking methods (Doersch et al., 2023)
on raw video as well, with no action or proprioceptive labels.

VLM Training. We finetune the HAMSTER VLM on all three datasets by randomly sampling from
all samples in the entire dataset with equal weight. One problem with directly training on the path
labels po is that many paths may be extremely long, e.g., exceeding one hundred points. Since we
want the HAMSTER VLM to reason at a high level instead of on the same scale as the low-level con-
trol policy. Therefore, we simplify the paths po with the Ramer-Douglas-Peucker algorithm (Ramer,
1972; Douglas & Peucker, 1973) that reduces curves composed of line segments to similar curves
composed of fewer points. We train with the standardized supervised prediction loss to maximize
the log-likelihood of the language labels po: E(ooi ,z

o
i ,p

o
i )∼D̃off

logVLM (poi | zoi , ooi ) .

1Note that this is not a temporally ordered path, but rather simply a set of unordered points of interest in an
image. We overload notation here for the sake of notational convenience.
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4.2 PATH GUIDED LOW-LEVEL POLICY LEARNING

After training the HAMSTER VLM to predict paths, we train a low-level policy to utilize these paths
to predict actions. While a low-level control policy can learn to solve the task without access to 2D
path predictions, providing it with 2D paths can make the task easier. The paths allow the low-level
policy to forgo long-horizon and semantic reasoning and focus on local and geometric predictions to
produce low-level actions. As we find empirically (see Figure. 3), 2D paths allow for considerably
improved visual and semantic generalization of low-level policies. We train low-level policies based
on rich 3-D perceptual information, available at test time on a robotic platform with standard depth
cameras. Then the question becomes—how do we incorporate 2D path information p̂ produced by
the VLM in Section 4.1 onto the 3D inputs to enable generalizable robot manipulation?

Conditioning on Paths. We convert 2D paths of the form p = {(xi, yi,gripper open)}Lt=1
into a format that is easy to incorporate into any language (z), proprioception (s), and image (o)
conditioned policy πθ(a | s, o, z). While one could concatenate the path with the proprioception or
language input, paths are of varied lengths, and this could prevent the integration of such paths into
existing policy architectures that cannot take in varied proprioceptive or language inputs. Instead, we
directly draw the 2D path points onto the image input to the policy, which is not only generalizable
across policy architectures but also may provide easier-to-follow path guidance as the policy does
not have to learn how to associate path points with their corresponding image locations (Gu et al.,
2023). During training, we use oracle paths constructed by projecting end-effector points to the
camera plane as described for simulation and real robot data in Section 4.1.

Formally, we iterate through each trajectory τi = {sti, ati, oti, zi)}Tt=1 on the in-domain dataset D to
obtain the path pi. Gu et al. (2023) proposed using colored trajectories to guide a policy’s actions,
and we largely follow their method of coloring trajectories to indicate gripper status and progression
through time. These paths are drawn onto all images in the trajectory o1i ...o

T
i by drawing points

at each (x, y) and connecting them with line segments to obtain {õti}Tt=1. We use a color gradient
to indicate progression through time (see Figure 2(b) for an example). We plot circles for change
in gripper status: e.g., green for closing the gripper and blue for opening. This constructs the final
in-domain path-labeled dataset Dpath = {(si, ai, õi, zi)}Ni=1.

Imitation Learning. Finally, we train a policy πθ(a | s, õ, z) conditioned on proprioception and
other sensor information s, path-annotated image observations õ, and a task language instruction z
on Dpath. HAMSTER’s general path-conditioning framework allows for using arbitrary lower-level
control policies as they do not need to condition on the same inputs as the VLM. Therefore, we
train 3D low-level policies, such as RVT-2 (Goyal et al., 2024) and 3D-DA (Ke et al., 2024), for
low-level control. Here, we assume s includes additional sensor information (i.e., depth), which
3D-DA and RVT-2 utilize to construct point clouds and virtual camera renderings, respectively, for
more accurate control and data-efficient imitation learning. We directly train these policies, with
no necessary major architectural modifications,with their supervised imitation learning objectives
on Dpath to maximize log-likelihoods of the dataset actions: E(st,at,õt,zt)∼Dpath log πθ(a | st, õt, zt).
For further implementation details, see Appendix B.

Online Evaluation. Standard VLA architectures query the VLM for every low-level action (Kim
et al., 2024; Brohan et al., 2023a), which can be very expensive with large VLMs—for example,
OpenVLA’s 7B param VLA only runs at 6Hz on an RTX 4090 (Kim et al., 2024). Instead, HAM-
STER’s hierarchical design allows us to query the VLM just once at the beginning of the episode
to generate a 2D path l̂ that we draw onto every subsequent image.2 Therefore, HAMSTER can be
scaled to large VLM backbones without needing end-users to be concerned about inference speed.

5 EXPERIMENTAL EVALUATION

To test the hypotheses proposed in Section 4, we perform empirical evaluations in both simulation
and the real world. The experiments primarily aim to answer the following questions: (1) do hierar-
chical VLA models enable behavioral generalization to unseen scenarios? (2) do hierarchical VLA
models show more effective cross-domain generalization than monolithic VLA models or low-level

2HAMSTER is not inherently limited to being queried once per episode, but for simplicity and computa-
tional efficiency we query just once per episode in our experiments.
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pick up the green pepper 
and put it in  
the red bowl

pick up the banana and 
put it in the black bowl

push down the object  
with feather

pick up the smiley face 
and put it in the  

red bowl
pick up the garlic and  

put it in the panpress down the left button
push down the 
green bottle

Figure 3: Depiction of quantitative real-world policy execution results on a real-world robot, evaluated across
different axes of generalization and across both prehensile and non-prehensile tasks. Across all generalization
axes, HAMSTER outperforms monolithic VLAs and the base 3D imitation learning policies.

imitation learning methods? (3) is behavior learned by hierarchical VLA models robust to signifi-
cant degrees of visual and semantic variations? (4) does including cross-domain data from settings
like simulation really help with model generalization? (5) does explicitly finetuning the high-level
VLM yield benefits in terms of spatial and semantic reasoning?

5.1 REAL WORLD EVALUATION ON TABLETOP MANIPULATION

Our real-world evaluation experiments aim to test the generalization capability of hierarchical VLA
models across significant semantic and visual variations. In particular, we consider a variant of
HAMSTER that uses a VLM (VILA-1.5-13b) finetuned on the data mixture in Section 4.1 as the
high-level predictor, with two 3D policy architectures - RVT-2 (Goyal et al., 2024) and 3D Diffuser
Actor (3D-DA) (Ke et al., 2024) as the choice of low-level policy, as described in Section 4.2.
The low-level 3D policies are trained with 320 episodes collected via teleoperation directly on the
table-top manipulation setup shown in Fig. 7. Importantly, the high-level VLM in HAMSTER is
not finetuned on any in-domain data and is directly transferred only from the cheap data sources
described in Section 4.1. This suggests that any generalization that the VLM sees does not result
from in-domain training data rather than from cross-domain transfer.

Baseline comparisons. We compare HAMSTER to a state-of-the-art monolithic VLA, Open-
VLA (Kim et al., 2024), as well as a non-VLM 3D imitation learning policies. For fair comparison,
we finetune OpenVLA on the collected in-domain trajectory data described above since OpenVLA
showed poor zero-shot generalization. The 3D imitation learning policy (RVT-2, 3D-DA) baselines
are trained with the same teleoperation data used to train the low-level policy in HAMSTER but
without the intermediate 2D path representation from HAMSTER’s VLM.

Results. Figure 3 summarizes our real-world results. We compile results for multiple task types,
including ‘pick and place,’ and nonprehensile tasks such as ‘push buttons’ and ‘knock down objects.’
Similar to prior work (Kim et al., 2024), we test generalization across various axes: obj and goal:
unseen object-goal combinations; visual: visual changes in table texture, lighting, distractor objects;
language: unseen language instructions (e.g., candy → sweet object); spatial: unseen spatial object
relationships in the instruction; novel object: unseen objects; and lastly, multiple: a combination of
multiple variations. In total, we evaluate each model on 74 tasks for 222 total evaluations.

We find that HAMSTER significantly outperforms monolithic VLA models and 3D imitation learn-
ing methods by over 2x and 3x, respectively, on average. This is significant because this improved
performance is in the face of considerable visual and semantic changes in the test setting, showing
the ability of HAMSTER to transfer much more effectively than monolithic VLA models or non-
VLM base models. We further group results by task type in Table 6, where we see HAMSTER
outperforms OpenVLA across all task types (pick and place, press button, and knock down). See
Appendix C for evaluation conditions, a task list, and other experiment details, and Appendix E for
failure modes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

pick up the garlic and  
put it in the pan

HAMSTER Low-Level Policy 

pick up the green 
pepper and put it in the 

red bowl

pick up the sweet object 
and put it into  
the red bowl

Figure 4: Example real-world HAMSTER rollouts demonstrate its strong performance in novel scenes
achieved by leveraging VLMs’ generalization capabilities and the robust execution of low-level 3D policies.

Avg. no var bac tex cam pos distractor lig col man obj col man obj siz

3D-DA[ Ke et al.] 0.35± 0.04 0.43± 0.06 0.34± 0.07 0.35± 0.11 0.39± 0.11 0.44± 0.13 0.41± 0.04 0.41± 0.11
HAMSTER (w 3D-DA) 0.46 ± 0.04 0.57 ± 0.03 0.48 ± 0.08 0.39 ± 0.06 0.41 ± 0.05 0.59 ± 0.04 0.57 ± 0.08 0.51 ± 0.10

man obj tex rec obj col rec obj siz rec obj tex rlb and col rlb var tab col tab tex

3D-DA[ Ke et al.] 0.27± 0.04 0.34± 0.10 0.36± 0.05 0.36± 0.12 0.07± 0.03 0.45± 0.12 0.42± 0.06 0.23± 0.04
HAMSTER (w 3D-DA) 0.48 ± 0.06 0.48 ± 0.05 0.40 ± 0.05 0.56 ± 0.09 0.11 ± 0.10 0.58 ± 0.04 0.56 ± 0.03 0.35 ± 0.07

Table 1: Simulation evaluation of HAMSTER across different visual variations. We test vanilla 3D Diffuser
Actor and HAMSTER across variations in Colosseum (Pumacay et al., 2024) and find that HAMSTER gener-
alizes more effectively than 3D Diffuser Actor. Avg. indicates mean across variations, including no variation.

5.2 SIMULATION EVALUATION

We also perform controlled experiments in simulation. We use Colosseum (Pumacay et al., 2024) as
the benchmark as it displays considerable visual and semantic variations. In simulation, we paired
our high-level VLM with 3D Diffuser Actor (Ke et al., 2024) as the low-level policy, since this is
one of the state-of-the-art models on RLBench. We compare HAMSTER with a vanilla 3D Diffuser
Actor implementation without path guidance. Table 1 summarizes our results in simulation across 5
seeds. HAMSTER significantly outperforms vanilla 3D-DA by 31%. This shows that the 2D paths
produced by the VLM in HAMSTER can help low-level policies to generalize better to novel unseen
variations. We refer readers to Pumacay et al. (2024) for details on the variations and Appendix F
for further simulation experiment details.

5.3 GENERALIZATION AND ABLATION STUDIES

Figure 5: The camera angle
invariance setup: old camera
on the right, new camera an-
gle on the left.

Finally, we perform additional experiments testing HAMSTER’s
ability to generalize to novel views, various ways to represent the
paths, and finally, the demonstration efficiency of HAMSTER.

View Invariance and Path Representation. We test camera view
invariance with a new camera angle, as pictured in Figure 5, by
evaluating HAMSTER+RVT2 against OpenVLA on the new cam-
era angle across 10 separate pick and place task trials with 6 training
objects and 3 training containers. Additionally, we also compare
HAMSTER+RVT2 (Concat), where instead of drawing the path
onto the RGB image given as input to RVT2, we modify RVT2
to accept a 6-channel input image consisting of the original RGB
image concatenated with a second RGB image that only contains
the drawn path. This approach is less easily applied to arbitrary
imitation learning policies (for example, it cannot be easily applied
to 3D-DA as it uses a pre-trained CLIP image encoder expecting 3
input channels), but allows us to represent paths in a different way.
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Method Original Camera Novel Camera
Cumulative Score # Success Cumulative Score # Success

OpenVLA 6 3 2.25 0
HAMSTER+RVT2 8.25 7 7.25 4
HAMSTER+RVT2 (Concat) 10 10 9.75 9

Table 2: Real world results comparing HAMSTER, HAMSTER where paths are concatenated with RGB
instead of drawn onto the image, and OpenVLA on a setup with the new camera angle as shown in Figure 5.
We report cumulative completion scores out of 10 (10 trials) and total number of fully successful executions.
HAMSTER performs better with both path drawing settings.

Move the toy car  
to the bowl with 'x'

Move the pencil  
to the cup

Move the tennis ball 
to the bowl with 'y'

Move the toy car 
to the bowl with x

Move the toy car  
to the bowl with 'x'

Move the pencil  
to the cup

Move the tennis ball 
to the bowl with 'y'

Screw the light bulb 
to the lamp

Place the cup  
on the cupholder Open the microwave

Place the cup on 
the cup holder

Move the left block to 
Jensen Huang

Screw the light bulb in 
the lamp

Push the button with color of cucumber, 
then press the button with color of fire

(a) (b) (c)

Figure 6: HAMSTER’s VLM demonstrates considerable generalization and cross-domain learning to scenar-
ios not encountered in the training set. From left to right: (a) it can effectively utilize world knowledge to
generalize to tasks specified by people; (b) it generalizes to highly out-of-domain input images, such as human-
drawn sketches; (c) when trained on diverse simulated data it shows transfer to related, but visually distinct
tasks in the real world.

The results in Table 2 demonstrate that HAMSTER far outperforms OpenVLA and is generally
robust to a new camera angle. HAMSTERwith concatenated image paths performs the best, which
demonstrates this other path representation can work well with RVT2, although it is less general and
cannot be easily integrated with 3D-DA.

Method Success
3D-DA 0.18 ± 0.10
HAMSTER+3D-DA (50%) 0.36 ± 0.04
HAMSTER+3D-DA 0.43 ± 0.05

Table 3: Colosseum results demon-
strate that HAMSTER is demo-
efficient, doubling 3D-DA’s success
rate even with just 50% of the data.

HAMSTER with Fewer Demonstrations. Finally,
we also test HAMSTER’s ability to work well with
limited demonstrations. We test on a subset of 5
Colosseum tasks, namely, SLIDE BLOCK TO TARGET,
PLACE WINE AT RACK LOCATION, IN-
SERT ONTO SQUARE PEG, STACK CUPS, SETUP CHESS.
Results in Table 3 demonstrate that HAMSTER+3D-DA with
just 50% of the data still achieves 2x the success rate of standard 3D-DA, demonstrating that
HAMSTER is demonstration-efficient for the demonstream imitation learning tasks.

Finally, we visualize example HAMSTER path drawings in Figure 6, demonstrating HAMSTER
effectively generalizes to new tasks. We further investigate design decisions on VLM performance
in Appendix D.1, where we find that (1) HAMSTER outperforms zero-shot path generation from
closed-source VLMs (Gu et al., 2023; Liang et al., 2023) and (2) that inclusion of simulation data
improves HAMSTER’s real-world performance. See Appendix D.1 for further details.

6 CONCLUSION AND LIMITATIONS

In summary, HAMSTER studies the potential of hierarchical VLA models, achieving robust gener-
alization in robotic manipulation. It consists of a finetuned VLM that accurately predicts 2D paths
for robotic manipulation and a low-level policy that learns to generate actions using the 2D paths.
This two-step architecture enables visual generalization and semantic reasoning across considerable
domain shifts, while enabling data-efficient specialist policies, like ones conditioned on 3D inputs,
to perform low-level action execution.

This work represents an initial step towards developing versatile, hierarchical VLA methods, with
numerous opportunities for future improvement and expansion. The proposed work only generates
points in 2D space, without making native 3D predictions. This prevents the VLM from having true
spatial 3D understanding. Moreover, the interface of just using 2D paths is a bandwidth limited one,
which cannot communicate nuances such as force or rotation. In the future, investigating learnable
intermediate interfaces is a promising direction. Moreover, training these VLMs directly from large-
scale human video datasets would also be promising.
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Sumedh Anand Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Biyik, Dorsa Sadigh,
Chelsea Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. In
NeurIPS, 2023.

Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei Lee, Quan Vuong, Paul
Wohlhart, Sean Kirmani, Brianna Zitkovich, Fei Xia, et al. Open-world object manipulation using
pre-trained vision-language models. In Conference on Robot Learning, pp. 3397–3417. PMLR,
2023.

Priya Sundaresan, Suneel Belkhale, Dorsa Sadigh, and Jeannette Bohg. Kite: Keypoint-conditioned
policies for semantic manipulation. In Conference on Robot Learning, pp. 1006–1021. PMLR,
2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
nipulation. Robotics: Science and Systems, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and
Sergey Levine. Bridgedata v2: A dataset for robot learning at scale. In Conference on Robot
Learning (CoRL), 2023.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. In
International Conference on Machine Learning, 2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR,
2023.

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction in robotics. In 8th Annual Conference on Robot Learning, 2024. URL https:
//openreview.net/forum?id=GVX6jpZOhU.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Kostas E. Bekris, Kris Hauser, Sylvia L. Herbert, and
Jingjin Yu (eds.), Robotics: Science and Systems XIX, Daegu, Republic of Korea, July 10-14,
2023, 2023. doi: 10.15607/RSS.2023.XIX.016. URL https://doi.org/10.15607/RSS.
2023.XIX.016.

16

https://arxiv.org/abs/2106.00676
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=GVX6jpZOhU
https://openreview.net/forum?id=GVX6jpZOhU
https://doi.org/10.15607/RSS.2023.XIX.016
https://doi.org/10.15607/RSS.2023.XIX.016


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Young-
jae Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal C4: An open, billion-
scale corpus of images interleaved with text. arXiv preprint arXiv:2304.06939, 2023.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For extended supplementary details and results, please see https://sites.google.com/
view/hamster-iclr.

A VLM FINETUNING DATASET DETAILS

Pixel Point Pred Data. Our point prediction dataset comes from Robopoint (Yuan et al., 2024).
Most data in our point prediction dataset contains labels given as a set of unordered points such as
po = [(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)]. However, data in RoboPoint also contains answers
that are instead in natural language for VQA queries such as “what is the person feeding the cat?” We
keep these data as is because these VQA queries are likely to benefit a VLM’s semantic reasoning an
visual generalization capabilities; we fine-tune HAMSTER’s VLM on the entire Robopoint dataset
as given.

Simulation Data. We selected 79 RLBench tasks out of 100 to generate data by removing the tasks
with poor visibility on the front cam view in RLBench. We use the first image in each episode
combined with each language instruction. The final dataset contains around 320k trajectories.

Real Robot Data. For the Bridge (Walke et al., 2023) dataset, which only provides RGB images,
we extract trajectories by iteratively estimating the extrinsic matrix for each episode. In each scene,
we randomly sample a few frames and manually label the center of the gripper fingers. Using the
corresponding end-effector poses, we compute the 3D-2D projection matrix with a PnP (Perspective-
n-Point) approach. We then apply this projection matrix to the episodes and manually check for any
misalignments between the projected gripper and the actual gripper. Episodes exhibiting significant
deviations are filtered out, and a new round is started to estimate their extrinsic matrix.

For DROID (Khazatsky et al., 2024), a large portion of the dataset contains noisy camera extrinsics
information that do not result in good depth alignment. Therefore, we filter out trajectories with
poor-quality extrinsics as measured by the alignment between the projected depth images and the
RGB images. This results in ∼45k trajectories (∼22k unique trajectories as trajectories each have
2 different camera viewpoints) which we use for constructing the VLM dataset Doff as described in
Section 4.1.

B IMPLEMENTATION AND ARCHITECTURE DETAILS

Hamster VLM: VILA-1.5-13b

(a) VLM Training on 𝒟̃off (b) Low-level Policy Training on 𝒟path
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Figure 7: (a): Examples of training data in D̃off used to train HAMSTER’s VLM. (b): The data used
to train HAMSTER’s low-level policies.

B.1 VLM IMPLEMENTATION DETAILS

VLM Prompt. We list the prompt for both fine-tuning on sim and real robot data and evaluation in
Figure 8. We condition the model on an image and the prompt, except when training on Pixel Point
Prediction data (i.e., from Robopoint (Yuan et al., 2024)) where we used the given prompts from
the dataset. Note that we ask the model to output gripper changes as separate language tokens, i.e.,
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HAMSTER Prompt

In the image, please execute the command described in ⟨quest⟩{quest}⟨/quest⟩.
Provide a sequence of points denoting the trajectory of a robot gripper to achieve the goal.
Format your answer as a list of tuples enclosed by ⟨ans⟩ and ⟨/ans⟩ tags. For example:
⟨ans⟩[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), ⟨action⟩Open

Gripper⟨/action⟩, (0.74, 0.21), ⟨action⟩Close Gripper⟨/action⟩,
...]⟨/ans⟩
The tuple denotes the x and y location of the end effector of the gripper in the image. The action tags
indicate the gripper action.
The coordinates should be floats ranging between 0 and 1, indicating the relative locations of the points
in the image.

Figure 8: The full text prompt we use to train HAMSTER with on simulation and real robot data
(Section 4.1). We also use this prompt for inference.

Open Gripper/Close Gripper, as opposed to as a numerical value as shown in simplified
depictions like Figure 2.

VLM Trajectory Processing. As mentioned in Section 4.1, one problem with directly training on
the path labels po is that many paths may be extremely long. Therefore, we simplify the paths po with
the Ramer-Douglas-Peucker algorithm (Ramer, 1972; Douglas & Peucker, 1973) that reduces curves
composed of line segments to similar curves composed of fewer points. We run this algorithm on
paths produced by simulation and real robot data to generate the labels po for Doff. We use tolerance
ϵ = 0.05, resulting in paths that are around 2-5 points for each short horizon task.

VLM Training Details. We train our VLM, VILA1.5-13B Lin et al. (2024), on a node equipped
with eight NVIDIA A100 GPUs, each utilizing approximately 65 GB of memory. The training
process takes about 30 hours to complete. We use an effective batch size of 256 and a learning rate
of 1× 10−5. During fine-tuning, the entire model—including the vision encoder—is updated.

B.2 LOW-LEVEL POLICY TRAINING DETAILS

We train RVT2 (Goyal et al., 2024) and 3D-DA (Ke et al., 2024) as our lower-level policies. We
keep overall architecture and training hyperparameters the same as paper settings. Specific details
about how the inputs were modified other than the 2D path projection follow.

For low-level policy training, we train the policies on ground truth paths constructed by projecting
trajectory end-effector points to the camera image. In order to also ensure the policies are robust
to possible error introduced by HAMSTER VLM predictions during evaluation, we add a small
amount of random noise (N(0, 0.01)) to the 2D path (x, y) image points during training to obtain
slightly noisy path drawings. No noise was added to the gripper opening/closing indicator values.

RVT2 (Goyal et al., 2024). We remove the language instruction for RVT-2 when conditioning on
HAMSTER 2D paths.

3D-DA (Ke et al., 2024). In simulated experiments in Colosseum, no changes were needed. In
fact, we saw a performance drop for HAMSTER+3D-DA when removing language for Colosseum
tasks and a small drop in performance when using simplified language instructions. This is likely
due to 3D-DA’s visual attention mechanism which cross attends CLIP language token embeddings
with CLIP visual features, therefore detailed language instructions are beneficial.

In real-world experiments, we simplify the language instruction in the same way as for RVT2 when
conditioning on HAMSTER 2D paths to encourage following the trajectory more closely with lim-
ited data. In addition, we reduced the embedding dimension of the transformer to 60 from 120,
removed proprioception information from past timesteps, and reduced the number of transformer
heads to 6 from 12 in order to prevent overfitting.
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RT-Trajectory GPT-4o Prompt

In the image, please execute the command described in ’{quest}’.
Provide a sequence of keypoints denoting a trajectory of a robot gripper to achieve the goal. Keep in mind
these are keypoints, so you do not need to provide too many points.
Format your answer as a list of tuples enclosed by <ans> and </ans> tags. For example:
<ans>[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), <action>Open
Gripper</action>, (0.74, 0.21), <action>Close Gripper</action>,
...]</ans>
The tuple denotes point x and y location of the end effector of the gripper in the image. The action tags
indicate the gripper action.
The coordinates should be floats ranging between 0 and 1, indicating the relative locations of the points
in the image.
The current position of the robot gripper is: {current position}. Do not include this point in your answer.

Figure 9: The full text prompt we use to prompt RT-Trajectory with GPT4-o.

RT-Trajectory Code as Policies Prompt

Task Instruction: {task instruction}
Robot Constraints:

• The robot arm takes as input 2D poses with gripper open/closing status of the form
(x, y, gripper open == 1)

• The gripper can open and close with only binary values

• The workspace is a 1× 1 square centered at (0.5, 0.5)

• The x-axis points rightward and y-axis points downward.

Please write Python code that generates a list of 2D poses and gripper statuses for the robot to follow.
Include Python comments explaining each step. Assume you can use numpy or standard Python libraries,
just make sure to import them.
Enclose the start and end of the code block with <code> and </code> so that it can be parsed. Make
sure that it is a self-contained script such that when executing the code string, there is a variable named
robot poses which is a list of poses of the form: [(x, y, gripper), (x, y, gripper),
...].
Scene Description:

<code>
{scene_description}
</code>

Figure 10: The full text prompt we use for RT-Trajectory with Code-as-Policies on top of GPT4-o.
The scene description at the bottom comes from an open-vocabulary object detector describing each
detected object and its bounding box in the image based on the task instruction.

C REAL WORLD EXPERIMENT DETAILS

C.1 TRAINING TASKS AND DATA COLLECTION

For our real-world experiments, we collected all data using a Franka Panda arm through human
teleoperation, following the setup described in Khazatsky et al. (2024). Below, we describe the
training tasks:

Pick and place. We collected 220 episodes using 10 toy objects. In most of the training data, 2
bowls were placed closer to the robot base, while 3 objects were positioned nearer to the camera.
The language goal for training consistently followed the format: pick up the {object} and
put it in the {container}.
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Knock down objects. We collected 50 episodes with various objects of different sizes. Typically,
3 objects were arranged in a row, and one was knocked down. The language goal for training
followed the format: push down the {object}.

Press button. We collected 50 episodes with 4 colored buttons. In each episode, the gripper was
teleoperated to press one of the buttons. The language goal followed the format: press the
{color} button.

When training RVT2, which requires keyframes as labels, in addition to labeling frames where the
gripper performs the open gripper and close gripper actions, we also included frames
that capture the intermediate motion as the gripper moves toward these keyframes.

C.2 BASELINE TRAINING DETAILS

OpenVLA (Kim et al., 2024). Following Kim et al. (2024), we only utilize parameter efficient
fine-tuning (LoRA) for all of our experiments, since they showed that it matches full fine-tuning
performance while being much more efficient. We follow the recommended default rank of r=32.
We opt for the resolution of 360 x 360 to match all of the baseline model’s resolutions. We also
follow the recommended practice of training the model until it surpasses 95% token accuracy. How-
ever, for some fine-tuning datasets, token accuracy converged near 90%. We selected the model
checkpoints when we observed that the token accuracy converged, which usually required 3,000
to 10,000 steps using a global batch size of either 16 or 32. Training was conducted with 1 or 2
A6000 gpus (which determined the global batch size of 16 or 32). Emprically, we observed that
checkpoints that have converged showed very similar performance in the real world. For example,
when we evaluate checkpoint that was trained for 3,000 steps and showed convergence, evaluating
on a checkpoint trained for 5,000 steps of the same run resulted in a very similar performance.

RT-Trajectory (Gu et al., 2023). We implement two versions of RT-Trajectory for the comparison
in Table 5. The first (0-shot GPT-4o) directly uses GPT-4o to generate 2D paths with a prompt very
similar to the one we use for HAMSTER, displayed in Figure 9.

The second version implements RT-Trajectory on top of a Code-as-Policies (Liang et al., 2023), as
described in RT-Trajectory. We use OWLv2 (Minderer et al., 2023) to perform open-vocabulary
object detection on the image to generate a list of objects as the scene description and then prompt
RT-Trajectory with the prompt shown in Figure 10. We also use GPT-4o as the backbone for this
method.

C.3 EVALUATION TASKS

We evaluate our method on the tasks of pick and place, knock down object, and press
button across various generalization challenges, as illustrated in Figure 3. Detailed results are
available in Appendix C.3. Following (Kim et al., 2024), we assign points for each successful sub-
action. For VLM, human experts are employed to assess the correctness of the predicted trajectories.

D EXTENDED RESULTS

D.1 IMPACT OF DESIGN DECISIONS ON VLM PERFORMANCE

To better understand the transfer and generalization performance of the proposed hierarchical VLA
model, we analyze the impact of various decisions involved in training the high-level VLM. We con-
duct a human evaluation of different variants of a trained high-level VLM on a randomly collected
dataset of real-world test images, as shown in Figure 6. We ask each model to generate 2D path
traces corresponding to instructions such as “move the block on the right to Taylor Swift” or “screw
the light bulb in the lamp” (the full set is in Appendix D.2). We then provide the paths generated by
each method to human evaluators who have not previously seen any of the models’ predictions. The
human evaluators then rank the predictions for each method; we report the average rank across the
samples in Table 5.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Category Task OpenVLA RVT2 RVT2+Sketch 3DDA 3DDA+Sketch
Basic pick up the corn and put it in the black bowl 1 1 1 0 0.25
Basic pick up the grape and put it in the white bowl 1 0.75 1 0 1
Basic pick up the milk and put it in the white bowl 0 1 1 0 0.25
Basic pick up the salt bottle and put it in the white bowl 0.75 0.5 1 0 0
Basic pick up the shrimp and put it in the red bowl 0.75 0.5 1 0 1
Basic pick up the cupcake and put it in the red bowl 0 0.5 0.5 0.25 1
Basic press down the red button 0.5 0 1 0 1
Basic press down the green button 0 1 0 0 0.25
Basic press down the yellow button 0 0 1 0 1
Basic press down the blue button 0.5 0 1 0 0.5
Basic push down the green bottle 0.5 0 0.5 0 1
Basic push down the pocky 0 1 1 0 0.5
Basic push down the red bag 0.5 0.5 0 0 0.5
Basic push down the bird toy 0 0 0 0 0.5
Basic push down the yellow box 1 0 1 0 0.5

Object and Goal pick up the salt bottle and put it in the white bowl 1 1 1 0.5 1
Object and Goal pick up the banana and put it in the black bowl 0.25 0.25 1 0.5 1
Object and Goal pick up the grape and put it in the black bowl 1 0.25 0.5 1 1
Object and Goal pick up the carrot and put it in the red bowl 0.75 0 1 0.5 1
Object and Goal pick up the milk and put it in the white bowl 0.25 0 1 0 0.25
Object and Goal pick up the shrimp and put it in the white bowl 0.25 0.75 0.5 0.25 1
Object and Goal pick up the cupcake and put it in the black bowl 0.25 0 1 0.5 0.75
Object and Goal pick up the icecream and put it in the black bowl 0.25 0 0.5 0.5 1
Object and Goal pick up the corn and put it in the red bowl 1 0 1 1 1
Object and Goal pick up the green pepper and put it in the red bowl 0.75 0 0.5 0 0.25
Object and Goal pick up the orange and put it in the white bowl 0.25 0 0 0 0

Visual(Table Texture) pick up the salt bottle and put it in the white bowl 1 1 1 0 1
Visual(Table Texture) pick up the banana and put it in the black bowl 0.25 0.25 0.75 0.5 0.75

Visual(lighting) pick up the grape and put it in the black bowl 0.25 0 0.5 0.25 0
Visual(lighting) pick up the carrot and put it in the red bowl 0.75 0 1 0 0.75
VIsual(clutter) pick up the milk and put it in the white bowl 0.75 0.25 1 0.25 1
VIsual(clutter) pick up the shrimp and put it in the red bowl 0.75 0.5 0 0 0.5

Visual(mix) pick up the green pepper and put it in the red bowl 0.25 0 1 0 0.25
Visual(mix) pick up the salt bottle and put it in the white bowl 0.25 0 0.25 0.25 1

Visual(appearance change) pick up the green pepper and put it in the black bowl 1 0 0.5 0 1
Visual(appearance change) pick up the salt bottle and put it in the black bowl 1 1 1 0 1

Visual(Table Texture) press down the red button 1 1 0 0 0.5
Visual(lighting) press down the green button 1 0 0.5 0 0.5
VIsual(clutter) press down the yellow button 0 0 0.5 0 0.5

Visual(mix) press down the blue button 0 0 0 0 0.5
Visual(Table Texture) push down the pocky 0 1 0 0 0

VIsual(clutter) push down the green bottle 1 0.5 1 0 1
VIsual(clutter) push down the chocolate box 1 0 0 0 1

Visual(mix) push down the green bottle 0 0 0.5 0 1
Language pick up the sweet object and put it in the red bowl 1 1 1 0 1
Language pick up the spicy object and put it in the red bowl 1 0 1 0 0.75
Language pick up the salty object and put it in the red bowl 0 0 1 0 1
Language pick up the object with color of cucumber and put it in the red bowl 0 0 1 0.25 0.75
Language pick up the object with color of lavender and put it in the black bowl 0 0 1 0 1

Language pick up the object with the color of sky
and and put it in the container with the color of coal 1 0 0 0.25 1

Language pick up the block with the color of sunflower
and put it in the container with the color of enthusiasm 0 0.25 1 0 1

Language press the button with the color of fire 0.5 0 1 0 0.5
Language press the button with the color of cucumber 0 0 1 0 0.5
Language press the button with the color of sky 0 0 0 0.5 1
Language press the button with the color of banana 0 0 0 0 0.5
Language push down the object with color of leaf 0 1 1 0 0
Language push down the box contains cruchy biscuit 0 0 0 0 1
Language push down the bag with color of fire 0 0 1 0 0.5
Language push down the object with feather 0.5 0 1 0 1

Spatial pick up the left object and put it in the left bowl 0 1 1 0.25 1
Spatial pick up the middle object and put it in the left bowl 0 0 1 0 1
Spatial pick up the right object and put it in the left bowl 1 0 0.5 0.25 0.5
Spatial pick up the left object and put it in the right bowl 0.25 0.25 1 0.25 1
Spatial pick up the middle object and put it in the right bowl 0 0 1 0 1
Spatial pick up the right object and put it in the right bowl 0.5 0 1 0 1
Spatial press down the left button 0.5 0 0 0 0.5
Spatial press down the middle button 0 0 1 1 0.5
Spatial press down the right button 0 0 1 1 1
Spatial push down the left object 0.5 0 0 0 0
Spatial push down the middle object 1 0.5 0 0 1
Spatial push down the right object 0.5 0 0.5 0.5 1

Novel Object pick up the ”R” and put it in the red bowl 0 0 1 0 1
Novel Object pick up the boxed juice and put it in the red bowl 0 0.75 0.75 1 1
Novel Object pick up the cholate bar and put it in the white bowl 0.25 0 0.5 0.5 1
Novel Object pick up the smile face and put it in the red bowl 1 0 1 0 1
Novel Object pick up the mouse and put it in the red bowl 0 0.25 1 0 1
Novel Object pick up the 5 and put it in the white bowl 0 0 0 0 0.25

Multiple pick up the lays chip and put it in the pan 0.25 0.25 0.75 0 1
Multiple pick up the garlic and put it in then pan 0.25 0 1 0 0.25
Multiple pick up the ”K” and put it in the pan 0.25 0 0.5 0 1
Multiple pick up the pocky and put it in the pan 0 0.25 0 0.25 0.25

Table 4: Detailed results of real-world evaluation. The first column indicates the variation category,
while the second column presents the language instruction. For the pick and place task, 0.25
points are awarded for each successful action: reaching the object, picking it up, moving it to the
target container, and placing it inside. For the knock down task, 0.5 points are awarded for touch-
ing the correct object and successfully knocking it down. For the press button task, 0.5 points
are awarded for positioning the gripper above the correct button and successfully pressing it.
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Original Image Hamster w/o Sim Data Hamster RT-Trajectory (CaP) RT-Trajectory (GPT4-o)

Instr: Screw in the 
light bulb on the 

lamp

Instr: Move the 
block on the right 

to Taylor Swift

Instr: Press the 
button with color of 
leaf, then press the 
button with color of 

banana

Figure 11: Human VLM evaluation example images and instructions along with corresponding
trajectories from HAMSTER without any finetuning on (RLBench) simulation data, HAMSTER
finetuned on all the data in Section 4.1, RT-Trajectory (Gu et al., 2023) with Code-as-Policies (Liang
et al., 2023) powered by GPT-4o (Achiam et al., 2023), and RT-Trjaectory powered by GPT-4o
directly.

We evaluate the following VLM models: (1) zero-shot state-of-the-art closed-source models such
as GPT-4o using a similar prompt to ours (shown in Figure 9), (2) zero-shot state-of-the-art closed-
source models such as GPT-4o but using Code-as-Policies (Liang et al., 2023) to generate paths as
described in Gu et al. (2023) (prompt in Figure 10), (3) finetuned open-source models (VILA-1.5-
13b) on the data sources described in Section 4.1, but excluding the simulation trajectories from the
RLBench dataset, (4) finetuned open-source models (VILA-1.5-13b) on the data sources described
in Section 4.1, including path sketches from the RLBench dataset. The purpose of these evaluations
is to first compare with closely related work that generates 2D trajectories using pretrained closed
source VLMs Gu et al. (2023) (Comparison (1) and (2)). The comparison between (3) and (4) (our
complete method) is meant to isolate the impact of including the simulation path sketches from the
RLBench dataset. In doing so, we analyze the ability of the VLM to predict intermediate paths to
transfer across significantly varying domains (from RLBench to the real world).

The results suggest that: (1) zero-shot path generation, even from closed-source VLMs Gu et al.
(2023) such as GPT-4o with additional help through Code-as-Policies (Liang et al., 2023), under-
performs VLMs finetuned on cross-domain data as in HAMSTER; (2) inclusion of significantly
different training data such as low-fidelity simulation during finetuning improves the real-world per-
formance of the VLM. This highlights the transferability displayed by HAMSTER across widely
varying domains. These results emphasize that the hierarchical VLA approach described in HAM-
STER can effectively utilize diverse sources of cheap prior data for 2D path predictions, despite
considerable perceptual differences.

D.2 VLM REAL WORLD GENERALIZATION STUDY

The full list of task descriptions for this study is below (see Appendix D.1 for the main experiment
details). Duplicates indicate different images for the same task. We plot some additional comparison
examples in Figure 11. Note that the path drawing convention in images for this experiment differ
from what is given to the lower-level policies as described in Section 4.2 as this multi-colored line
is easier for human evaluators to see.

1. screw in the light bulb on the lamp
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Method VLM Finetuning Rank Rank Rank
Data Exc. Real RLB. Real RLB. All

RT-Traj. 0-shot GPT-4o - 3.40 3.63 3.47
RT-Traj. CaP GPT-4o - 3.57 3.36 3.41
HAMSTER VILA Our Exc. Sim RLB. 1.78 2.39 2.13
HAMSTER VILA Our 1.59 1.28 1.40

Table 5: Ranking-based human evaluation of different VLMs, averaged across various real-world evaluation
tasks. Results indicate that HAMSTER including simulation data is most effective since it captures both spatial
and semantic information across diverse tasks from RLBench. This significantly outperforms zero-shot VLM-
based trajectory generation, as described in Gu et al. (2023)

2. screw in the light bulb on the lamp
3. screw in the light bulb on the lamp
4. screw out the light bulb and place it on the holder
5. screw out the light bulb and place it on the holder
6. screw in the light bulb
7. screw in the light bulb on the lamp
8. move the blue block on Taylor Swift
9. pick up the left block and put it on Jensen Huang

10. move the block on the right to Taylor Swift
11. place the yellow block on Kobe
12. pick up the blue block and place it on Jensen Huang
13. move the red block to Kobe
14. press the button on the wall
15. press the button to open the left door
16. press the button to open the right door
17. open the middle drawer
18. open the bottom drawer
19. open the top drawer
20. open the middle drawer
21. open the bottom drawer
22. press the button
23. press the button
24. press the orange button
25. press the orange button with black base
26. press the button
27. pick up the SPAM and put it into the drawer
28. pick up the orange juice and put it behind the red box
29. pick up the tomato soup and put it into the drawer
30. pick up the peach and put it into the drawer
31. move the mayo to the drawer
32. move the dessert to the drawer
33. pick up the object on the left and place it on the left
34. pick up the fruit on the left and put it on the plate
35. pick up the milk and put it on the plate
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36. press the button with the color of cucumber, then press the button with color of fire
37. press the button with color of banana
38. press the button with color of leaf
39. press the button with color of leaf, then press the one with color of banana
40. press left button
41. pick up the left block on the bottom and stack it on the middle block on top
42. make I on top of C
43. put number 2 over number 5
44. stack block with lion over block with earth
45. pick up the left block on the bottom and stack it on the middle block on top
46. stack the leftest block on the rightest block
47. stack the block 25 over block L
48. put the left block on first stair

D.3 HUMAN RANKING

Figure 12: An example of results for human ranking. The trajectory is from blue to red with blue
circle and red circle denotes gripper close point and open point respectively. The grader is asked to
provide a rank to these trajectory about which trajectory has highest chance to succeed.

Due to the variety of possible trajectories that accomplish the same task, we use human rankings
to compare how likely produced trajectories are to solve the task instead of quantitative metrics
such as MSE. To do that, we generate trajectories for 48 image-question pairs with HAMSTER w/o
RLBench, HAMSTER, Code-as-Policy (Liang et al., 2023), and GPT4o (Achiam et al., 2023). See
Figure 12 for an example.

We recruit 5 human evaluators, who are robot learning researchers that have not seen the path outputs
of HAMSTER, to grade these 4 VLMs based on the instruction: “Provide a rank for each method (1
for best and 4 for worst). In your opinion, which robot trajectory is most likely to succeed. Traj goes
from blue to red, blue circle means close gripper, red circle means open gripper.” The evaluators
are allowed to give multiple trajectories the same score if they believe those trajectories are tied.
As they are robot learning researchers, they are familiar with the types of trajectories that are more
likely to succeed. Therefore, these rankings act as a meaningful trajectory quality metric.

E FAILURE ANALYSIS

This section outlines the failure modes observed during our experiments and provides a detailed
breakdown of the causes. Failures can be attributed to issues in trajectory prediction, trajectory
adherence, and action execution.

E.1 DIFFERENT FAILURE MODES

Trajectory Prediction Failures The Vision-Language Model (VLM) may fail to predict the cor-
rect trajectory due to several factors:
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Figure 13: Performance Distribution of RVT2+Sketch and 3DDA+Sketch

- Failure to understand the language goal: Although the VLM demonstrates strong capabilities in
handling diverse task descriptions, it struggles when the training set lacks similar tasks. This can
cause the model to misunderstand the goal and make inaccurate predictions.

- Incorrect trajectory prediction: In some cases, the VLM predicts an incorrect trajectory, either by
interacting with the wrong objects or misinterpreting the direction of the affordance.

- Dynamic changes in the environment: Since trajectories are generated at the beginning of a task,
significant environmental changes during execution can lead to failure. The model lacks the ability
to dynamically adjust the trajectory or reidentify the object initially referenced.

Trajectory Adherence Failures Failures in adhering to the predicted trajectory arise primarily
due to:

- 3D ambiguity: The use of 2D trajectory predictions introduces ambiguities, such as determining
whether a point is positioned above or behind an object, leading to execution errors.

- Incorrect object interaction: The low-level action model is not explicitly constrained to strictly
follow the predicted trajectory. As a result, it may deviate, interacting with the wrong object and
causing task failures.

Action Execution Failures Even when the trajectory is correctly predicted and adhered to, action
execution may still fail due to:

- Execution-specific issues: Despite training on a diverse set of actions, the model may fail during
execution. For example, in grasping tasks, an incorrect grasp angle can cause the object to slip,
resulting in a failed grasp.

E.2 FAILURE ANALYSIS

Our analysis in Figure 13 reveals distinct failure tendencies across methods.

For RVT, 72% of failures stemmed from the low-level model failing to follow the trajectory, while
28% were due to execution failures. In contrast, for 3DDA, only 10% of failures were related to
trajectory adherence, with 90% attributed to execution failures.

We hypothesize that this discrepancy arises because RVT incorporates a re-projection step, compli-
cating trajectory adherence. In contrast, 3DDA leverages a vision tower that processes the original
2D image, simplifying trajectory interpretation.

F SIMULATION EXPERIMENT DETAILS
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Figure 14: Colosseum benchmark vari-
ations. Figure from Pumacay et al.
(2024), taken with permission.

Our simulation experiments are performed on Colos-
seum (Pumacay et al., 2024), a simulator built upon
RLBench (James et al., 2020) containing a large number
of visual and task variations to test the generalization
performance of robot manipulation policies (see Fig-
ure 14 for a visualization of a subset of the variations).
We use the front camera and remove all tasks in
which the camera does not provide a clear view of the
objects in the task, resulting in 14 out of 20 colos-
seum tasks (we remove basketball in hoop,
empty drawer, get ice from fridge,
move hanger, open drawer, turn oven on).

Colosseum contains 100 training episodes for each task,
without any visual variations, and evaluates on 25 eval-
uation episodes for each variation. We follow the same
procedure other than using just the front camera in-
stead of multiple cameras. We report results in Table 1
after removing variations with no visual variations (e.g.,
object friction).

Task openvla HAMSTER+RVT2 HAMSTER+3DDA
pick and place 0.46 0.79 0.78
press button 0.25 0.50 0.63
knock down 0.41 0.47 0.66

Table 6: Real world average success rates grouped by task type.
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