
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HAMSTER: HIERARCHICAL ACTION MODELS FOR
OPEN-WORLD ROBOT MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large models have shown strong open-world generalization to complex problems
in vision and language, but they have been relatively more difficult to deploy in
robotics. This challenge stems primarily from the lack of scalable robotic training
data since this requires expensive on-robot collection. For scalable training, these
models must show considerable transfer across domains, to make use of cheaply
available “off-domain” data such as videos, hand-drawn sketches, or data from
simulation. In this work, we posit that hierarchical vision-language-action mod-
els can be more effective at transferring behavior across domains than standard
monolithic vision-language-action models. In particular, we study a class of hier-
archical vision-language-action models, where high-level vision-language models
(VLMs) are trained on relatively cheap data to produce semantically meaningful
intermediate predictions such as 2D paths indicating desired behavior. These pre-
dicted 2D paths serve as guidance for low-level control policies that are 3D-aware
and capable of precise manipulation. In this work, we show that separating pre-
diction into semantic high-level predictions, and 3D-aware low-level predictions
allows such hierarchical VLA policies to transfer across significant domain gaps,
from simulation to the real world or across scenes with widely varying visual ap-
pearance. Doing so allows for the usage of cheap, abundant data sources beyond
teleoperated on-robot data thereby enabling broad semantic and visual general-
ization. We demonstrate how hierarchical architectures trained on such cheap off-
domain data can enable robotic manipulation with semantic, visual, and geometric
generalization through experiments in simulation and the real world.

1 INTRODUCTION

Developing general robot manipulation policies has been notoriously difficult. With the advent of
large vision-language models (VLMs) that display compelling generalizations, there is an optimism
that similar techniques can be helpful for robotic manipulation. Several prior works (Team et al.,
2024; Kim et al., 2024; Gu et al., 2023) build open-world vision-language-action models (VLAs)
by finetuning off-the-shelf, pretrained VLMs. The recipe for training many of these VLA mod-
els has been to collect and curate a large-scale robotics-specific dataset, complete with images and
corresponding on-robot actions, and then finetune a VLM to directly produce actions (Kim et al.,
2024; Brohan et al., 2023a). Such VLAs have shown robustness on simple tasks and controlled
environmental variations. However, these models display limited generalization in terms of environ-
ment, object, task, and semantic variation. This issue could be attributed to the scarcity of diverse,
in-domain training data. The data needed to train these models is expensive since it requires end-
to-end image-action pairs that must all be collected directly on-robot. A solution for training VLA
models must be developed to instead learn from easy-to-collect “cheap” sources of data.

On the other hand, relatively “small” imitation learning models have shown impressive dexterity
and geometric robustness. Such models have demonstrated promise across a range of complex
tasks involving contact-rich manipulation and 3D reasoning, spanning domains from tabletop ma-
nipulation (Shridhar et al., 2023; Goyal et al., 2023) to fine dexterous manipulation (Zhao et al.,
2023). Trained on relatively small datasets, these models show local robustness and stable control
but typically lack semantic or visual generalization. They are often brittle to changes in the envi-
ronment, semantic description of the tasks, or changes in the objects being manipulated (Pumacay
et al., 2024). This fragility can also be boiled down to scarce in-domain data collected on a robot.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Data: Robot
Teleoperation

Imitation Learning

Low-Level Policy

VLA Models HAMSTER: VLM +
Imitation Learning

￼a1, a2, a3, …

Data: Large-Scale Robot Teleoperation

Generalization: Low
In-Domain Data: Few

...
...

VLA

￼a1, a2, a3, …

Data: Easy to Obtain, Cross-Modal Data

HAMSTER

Low-Level
Policy

Simulators

Draw 2D Path

￼a1, …

In-domain
demos

Generalization: Medium
In-Domain Data: Lots

Generalization: High
In-Domain Data: Few

Figure 1: Overview of HAMSTER, VLAs and “smaller” imitation learning methods. HAMSTER’s hierarchi-
cal design results in better generalization with a small amount of in-domain data. HAMSTER is able to utilize
cheap training sources such as videos or simulations for enhanced generalization.

Reliable, generalizable robotic learning techniques must marry the generalization benefits of large
VLMs, with the efficiency, local robustness and dexterity of small imitation learning policies, all
while being able to train from abundant and cheap sources of data. In this work, we ask – can we de-
sign VLA models that train on relatively abundant and cheap data sources, showing broad visual and
semantic generalization, while capturing the low-level geometric and 3D understanding displayed
by small imitation learning models?

We propose that a hierarchical architecture for vision-language-actions models, HAMSTER
(Hierarchical Action Models with SeparaTEd Path Representations), can serve as an effective way
to learn from abundant and cheap sources of data such as videos or simulation. We study a family
of HAMSTERs, where finetuned VLMs are connected to low-level 3D policy learning methods via
intermediate 2D path representations. Since these 2D paths can easily be obtained in abundance
from data sources such as videos or simulations (either with point tracking, hand-sketching, or pro-
prioceptive projection), these can be used to finetune the larger higher-level VLM in HAMSTER.
These 2D paths can then serve as guidance for a low-level policy that operates on rich 3D and pro-
prioceptive inputs, alleviating the burden of long-horizon planning and semantic reasoning, allowing
low-level policies to focus on robustly generating precise, spatially-aware actions.

Representations similar to 2D paths has been explored in the robot learning literature (Gu et al.,
2023), primarily as a technique for flexible task specification. However, the key hypothesis explored
in this paper is distinct – we posit that using cheap data such as videos or simulation to finetune
hierarchical path generating VLMs can enable a surprising degree of cross-domain transfer as com-
pared to the direct transfer of monolithic vision-language-action models (Brohan et al., 2022; Kim
et al., 2024). Here the focus is less on using paths as a scalable technique for task specification,
and more on using hierarchy as a mechanism for robust cross-domain transfer across settings with
considerable visual and semantic differences. Specifically, we find that VLMs trained to predict 2D
path representation can transfer to the real world from simulations that look very different from the
real world, or across real-world scenarios with widely varying appearance. Hence, the hierarchical
design of HAMSTER provides a way to utilize cheaper, but perceptually varying sources of “off-
domain” data (such as simulation or cross-embodiment data) to benefit real-world control policies.

The hierarchical design presented in HAMSTER can also offer additional advantages through the
decoupling of VLM training and low-level action prediction. Specifically, since the higher-level
VLM is predicting semantically meaningful trajectories from monocular RGB camera inputs, the
lower-level control policies can operate from rich 3D and proprioceptive inputs. In doing so, HAM-
STER inherits the semantic reasoning benefits of VLMs along with the 3D reasoning and spatial
awareness benefits of 3D imitation learning policies (Goyal et al., 2024; Ke et al., 2024). Finally,
since HAMSTER is built on both open-source VLMs and low-level policies, it can serve as a fully
open-sourced enabler for the community-building vision-language-action models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

LLMs and VLMs for robotics. Early attempts in leveraging LLMs and VLMs for robotics are
through pretrained language (Jang et al., 2022; Shridhar et al., 2023; Singh et al., 2023) and vi-
sual (Shah & Kumar, 2021; Parisi et al., 2022; Nair et al., 2023; Ma et al., 2023) models. However,
these are not sufficient for complex semantic reasoning and generalization to the open world (Bro-
han et al., 2022; Zitkovich et al., 2023). Recent research has focused on directly leveraging open
world reasoning and generalization capability of LLMs and VLMs, by prompting or fine-tuning
them to, e.g., generate plans (Huang et al., 2022; 2023b; Lin et al., 2023; Liang et al., 2023; Singh
et al., 2023; Brohan et al., 2023b), construct value (Huang et al., 2023a) and reward functions (Kwon
et al., 2023; Sontakke et al., 2023; Yu et al., 2023; Ma et al., 2024; Wang et al., 2024). Our work is
more closely related to the literature on VLA models, summarized below.

Monolithic VLA models as language-conditioned robot policies. Monolithic VLA models have
been proposed to produce robot actions given task description and image observations directly (Bro-
han et al., 2022; Jiang et al., 2023; Zitkovich et al., 2023; Team et al., 2024; Kim et al., 2024;
Radosavovic et al., 2023). Monolithic VLA models are often constructed from VLMs (Liu et al.,
2024b; Bai et al., 2023; Driess et al., 2023; Lin et al., 2024), and are trained on large-scale robot
teleoperation data (Brohan et al., 2022; Collaboration et al., 2023; Khazatsky et al., 2024) to predict
actions as text or special tokens. However, due to the lack of coverage in existing robotics datasets,
they must be finetuned in-domain on expensive teleoperated data. The most relevant monolithic
VLA model is LLARVA (Niu et al., 2024), which predicts end-effector trajectories in addition to
robot actions. However, LLARVA does not use trajectory prediction to control the robot; rather,
it uses it as an auxiliary task to improve action prediction. Therefore, LLARVA still suffers from
the limitations of monolithic VLA models. In contrast, our work takes a hierarchical approach,
enabling us to use specialist lower-level policies that take in additional inputs the VLMs cannot sup-
port, such as 3D pointclouds, to enable better imitation learning. Our predicted paths then enable
these lower-level policies to generalize more effectively.

VLMs for predicting intermediate representations. Our work bears connections to prior methods
using vision-language models for intermediate prediction. These methods can be categorized by the
choice of predicted representation:

Point-based predictions: A common intermediate prediction interface has been keypoint affor-
dances (Stone et al., 2023; Sundaresan et al., 2023; Nasiriany et al., 2024; Yuan et al., 2024). Some
examples include using open-vocabulary detectors (Minderer et al., 2022), iterative prompting of
VLMs (Nasiriany et al., 2024), or fine-tuning detectors to identify certain parts of an object by se-
mantics (Sundaresan et al., 2023). Perhaps most related, Yuan et al. (2024) finetunes a VLM to
predict objects of interest as well as free space for placing an object, and Liu et al. (2024a) propose
a mark-based visual prompting procedure to predict keypoint affordances as well as a fixed number
of waypoints. As opposed to these, our work finetunes a VLM model to not just predict points but
rather entire 2D paths, making it more broadly applicable across robotic tasks.

Trajectory-based predictions: The idea of using trajectory-based task specifications to condition
low-level policies was proposed in RT-trajectory (Gu et al., 2023), largely from the perspective
of flexible task specification. This work also briefly discusses the possibility of combining RT-
Trajectory with trajectory sketches generated from prompting a pre-trained vision language model.
Complementary to RT-Trajectory, the focus of this work is less on the use of trajectory sketches for
task specification, but rather on the abilities of a hierarchical VLA model to finetune the high-level
VLM on cheap and abundant sources. This could include training data such as videos or simu-
lation data, and show transfer to test scenarios of interest with considerable visual and semantic
variation. While RT-trajectory uses human effort or off-the-shelf pre-trained models to generate
trajectories, we show that finetuning VLM models on cheap data sources can generate more accu-
rate and generalizable trajectories (see Table. 5). Moreover, our instantiation of this architecture
enables the incorporation of rich 3D and proprioceptive information, as compared to monocular 2D
policies (Gu et al., 2023).

Leveraging simulation data for training robot policies. There has been extensive work on lever-
aging simulation for robot learning. Simulation data is popular in reinforcement learning (RL),
as RL on real robotic systems is often impractical due to high sample complexity and safety con-
cerns (Lee et al., 2020; Handa et al., 2023; Torne et al., 2024). Recently, simulation has been also

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

exploited to directly generate (Fishman et al., 2022) or bootstrap (Mandlekar et al., 2023) large-scale
datasets for imitation learning, to reduce the amount of expensive robot teleoperation data needed.
Our work takes a different approach - using simulation data to finetune a VLM, and showing that
VLM is able to transfer the knowledge learned from simulation data to real robot systems, despite
considerable visual differences. A related observation is recently made by (Yuan et al., 2024), but
they use keypoint affordances as the interface between the VLM and the low-level policy as opposed
to more general expressive 2D path representations.

3 BACKGROUND

Imitation Learning via Supervised Learning. The goal of imitation learning is to train a prob-
abilistic policy πθ(a | s, o, z) from an expert-provided dataset. This policy πθ outputs the prob-
ability of producing action a conditioned on proprioceptive states s, perceptual observations o,
and language instructions z that specify the task. In the typical imitation learning setting, a
dataset of expert in-domain trajectories is provided, consisting of observation-action-language tu-
ples D = {(si, ai, oi, zi)}Ni=1. This dataset can be utilized to learn the parameters of the policy πθ.
While π can take on a variety of architectures with various training objectives (Goyal et al., 2023; Ke
et al., 2024; Zhao et al., 2023; Chi et al., 2023), most imitation learning algorithms are trained via
supervised learning to maximize the objective: E(si,ai,oi,zi)∼D [log πθ (ai | si, oi, zi)] . This core
objective can be modified with rich architectural choices such as 3D policy architectures (Goyal
et al., 2023; Ke et al., 2024) or more expressive policy distribution classes (Zhao et al., 2023; Chi
et al., 2023), but generalization to out-of-domain to settings with semantic or visual variations is still
challenging. We study how vision-language models can be used to aid the generalization of such
low-level imitation learning-based policies, discussed in Section 4.1.

Vision Language Models. Typical vision language models (VLMs) (Lin et al., 2024; Liu et al.,
2024b) are large transformers (Vaswani et al., 2023) that take vision & text tokens as input and
produce text responses. These models are pre-trained on large multimodal datasets (Zhu et al.,
2023; Byeon et al., 2022), and then finetuned on targeted high-quality datasets (Shen et al., 2021;
Lu et al., 2022). These models tokenize each modality into a shared space to produce a sequence of
output tokens corresponding to text or other output modalities. In this work, we assume access to
a pre-trained, text and image input VLM (Lin et al., 2024; Liu et al., 2024b), that autoregressively
outputs a sequence of text tokens conditioned on an image and previous text tokens. These pretrained
VLMs can typically be finetuned using a supervised prediction loss that minimizes the negative log-
likelihood of the answer text tokens.

4 HAMSTER: HIERARCHICAL ACTION MODELS FOR ROBOTIC LEARNING

In this work, we examine how VLA models can be trained on relatively abundant data to demonstrate
cross-domain transfer capabilities, as opposed to training on expensive image-action data collected
on a robot. HAMSTER is a family of hierarchical action models designed for this purpose, ex-
hibiting generalizable and robust manipulation. It consists of two interconnected models: first, a
higher-level VLM that is fine-tuned on large-scale, cross-modal data to produce intermediate guid-
ance (detailed in Section 4.1), and second, a low-level policy that produces actions conditioned on
the VLM’s predicted guidance (detailed in Section 4.2). The finetuned VLM and the low-level pol-
icy communicate using a 2D path representation. Figure 2 provides an overview of HAMSTER’s
design. Crucially, we study the ability of such a hierarchical design to enable training on cheap,
abundantly available data such as simulation and videos.

Problem Definition. Rather than operating in the pure imitation learning setting as described in
Section 3, we study a scenario where cross-domain data is utilized to train VLA models. While
the typical imitation learning setting uses a dataset of optimal in-domain, on-robot tuples D =
{(st, at, ot, zt)}Nt=1 to learn a near-optimal policy πθ, in this setting we additionally assume access
to a much larger dataset(s) of “off-domain” approximately optimal data Doff = {(ooi , zoi)}Mi=1, where
M ≫ N , such as video or simulation data. This “off-domain” data Doff is different from in-domain
data D in several important ways: 1) Off-domain perceptual observations ooi may be considerably
different than in-domain perceptual observations oi, even when the underlying physical state of the
system is similar. An illustrative example of this is the marked difference between simulation and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) VLM Path Prediction (b) Low-Level Action Execution

Policy Input
Instruction: ￼ "Put

the object in the bowl."
z =

 Proprio + sensors: ￼st

VLM response:
[(0.25, 0.1, 0),
 (0.29, 0.3, 0),
 (0.31, 0.4, 1),
(0.33, 0.5, 1)]

Prompt: Please execute the
command described in
{instruction}...

￼o1

VLM Input

Draw
2D Path
✍

￼̃ot

Instruction: "Put the spicy
food in the left bowl."

HAMSTER
VLM

Low-Level
3D Policy

￼at

￼ot

Figure 2: Depiction of HAMSTER’s execution. The high-level VLM is called once to generate the 2D path.
The low-level policy is conditioned on the 2D path and interacts with the environment sequentially to execute
low-level actions. The path predicted by the VLM enhances the low-level policy generalization capability.

real-world scene appearance (see Figure 6). 2) The underlying physical dynamics of the system can
be potentially different, i.e., the transition dynamics may be different between off-domain sources
such as video or simulation than the test-time deployment setting. While the dynamics may show
level differences, we assume the higher-level coarse strategies to solve the task remain invariant. 3)
Off-domain data may not have access directly to actions a or proprioception state s, for instance
in video based datasets. This poses challenges to directly applying the standard imitation learning
paradigm for these datasets.

The goal is to leverage the combination of a small amount of “expensive” in-domain data D and a
large amount of relatively “cheap” off-domain data Doff to obtain a generalizable policy πθ that can
be successfully deployed over various initial conditions, task variations, and visual variations in the
in-domain robot environment. Without additional assumptions, this problem is arduous due to the
lack of alignment between the in-domain and off-domain settings. In this work, we assume access
to an intermediate path-labeler pi = h(oi, zi) at training time, that accepts an observation oi and a
language instruction zi from either the off-domain or in-domain datasets, to produce an intermediate
path label pi that indicates how to optimally perform the task zi from the observation oi. In this work,
we choose this intermediate path label pi to be a sequence of points, a 2D path, on the image that
indicates coarse end-effector motion to solve the designated task. This path-labeler at training time
can come from different sources – a projection of known proprioception if available, human-drawn
trajectory annotations on images, point-tracked end-effector or hand positions from video, and so
on. Applying such a path labeler to the off-domain dataset yields D̃off = {(ooi , zoi , poi)}Mi=1.

4.1 HAMSTER’S VLM FOR PRODUCING 2D PATHS TRAINED FROM OFF-DOMAIN DATA

The first stage of building a HAMSTER VLA model is finetuning a high-level VLM that predicts
coarse 2D paths p given a language instruction z and observation o. This path represents the approx-
imate trajectory of the robot end-effector on the input camera image. It also contains information
about the gripper state (where to open the gripper and where to close it) as subsequently explained.

Although, conceptually, any VLM can be used to predict such a 2D path by casting an appropriate
prompt, we find that standard pre-trained VLMs struggle with predicting such a path in a zero-shot
manner (see Table 5). Therefore, we finetune pre-trained VLMs on datasets that ground VLMs
to robot scenes and path predictions collected from easier-to-obtain sources, i.e., internet visual-
question-answering data, robot data from other modalities, and simulation data. The primary advan-
tages of finetuning such a hierarchical VLM that produces intermediate representations as opposed
to directly producing actions a with a monolithic model (Kim et al., 2024; Zitkovich et al., 2023)
are twofold: 1) the lack of actions in certain off-domain datasets (such as videos) makes it impossi-
ble to even train monolithic pixel-to-action models, 2) we find empirically that hierarchical VLMs
producing intermediate cross-domain predictions generalize more effectively than monolithic VLA
models.

Finetuning Objective and Datasets. We use VILA-1.5-13b (Lin et al., 2024), a 13-billion-
parameter vision language model trained on interleaved image-text datasets and video captioning
data, as our base VLM. We then curate a multi-domain dataset to finetune this model for effective
2D path prediction. Predicting the 2D path of the end-effector requires understanding what objects

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to manipulate in a given task in terms of their pixel positions, but also reasoning about how a robot
should perform the task. To enable this understanding, we collate a diverse off-domain dataset Doff
from a wide range of modalities, including real-world data, visual question-answering data, and
simulation data. Importantly, none of this off-domain data used to train the VLM comes from the
deployment environment, thereby emphasizing generalizability. However, as outlined in Section 4.2,
the predictions of this trained VLM are used to guide a low-level policy at inference time.

We assemble a dataset D̃off = {(ooi , zoi , poi)}Mi=1 of image inputs ooi , language prompts zoi , and path
labels poi consisting of three types of data: (1) pixel point prediction tasks (what); (2) simulated
robotics tasks (what and how); (3) a real robot dataset consisting of trajectories (what and how). We
detail each dataset below; see Figure 7 for visualization of each dataset’s prompts and labels.

Pixel Point Prediction. For pixel point prediction, we use the dataset released by Robo-
Point (Yuan et al., 2024) with 1.4 million VQA tasks, with most answers represented as a
list of 2D points corresponding to locations on the image. A sample consists of a prompt
zo like Find all instances of cushions, an input image oo and labels po like
[(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)].1 This dataset consists of data automatically generated in
simulation and collected from existing real-world datasets; its diversity and tasks enable the HAM-
STER VLM to reason about pixel-object relationships across diverse scenes while retaining its se-
mantic generalization capabilities.

Robot Simulation Data. We additionally generate a dataset of simulated robotics tasks from RL-
Bench (James et al., 2020), a simulator of a Franka robot performing tabletop manipulation for a
wide array of both prehensile and non-prehensile tasks. We use the simulator’s built-in planning al-
gorithms to automatically generate successful manipulation trajectories and construct ground-truth
2D path labels po. Each trajectory contains a sequence of 3D coordinates of the robot’s gripper
in world space, as well as whether the gripper is open or closed at a given time step. We use
known camera intrinsics and extrinsics to project these points on the front image and construct
labels po = [(ximage, yimage,gripper open), . . .] where ximage, yimage ∈ [0, 1] are relative pixel
locations of the end effector’s position on the image. The front camera image of the initial state
forms the image input oo and the prompt zo for the VLM is to provide a sequence of points denot-
ing the trajectory of the robot gripper to achieve the given instruction (see Figure 2) We generate
1000 episodes for each of 79 robot manipulation tasks in RLBench, each episode with ∼4 language
instructions, for a total of ∼300k (oo, zo, po) tuples for D̃off.

Real Robot Data. Using real robot data allows us to ensure the VLM can reason about objects
and robot gripper paths when conditioned on scenes, including real robot arms. We use existing,
online robot datasets not from the deployment environment to enable this VLM ability. We source
10k trajectories from the Bridge dataset (Walke et al., 2023; Collaboration et al., 2023) consisting of
a WidowX arm performing manipulation tasks and 4̃5k trajectories from DROID (Khazatsky et al.,
2024). For both datasets, we use the given end-effector trajectories and given (or estimated) camera
matrices to convert robot gripper trajectories to 2D paths po. We use a camera image from the first
timestep of each robot trajectory as oo and a similar text prompt zo as the simulation dataset. Note
that we essentially utilize the robot data as video data, where the end effector is tracked over time.
In principle, this could be done with any number of point-tracking methods (Doersch et al., 2023)
on raw video as well, with no action or proprioceptive labels.

VLM Training. We finetune the HAMSTER VLM on all three datasets by randomly sampling from
all samples in the entire dataset with equal weight. One problem with directly training on the path
labels po is that many paths may be extremely long, e.g., exceeding one hundred points. Since we
want the HAMSTER VLM to reason at a high level instead of on the same scale as the low-level con-
trol policy. Therefore, we simplify the paths po with the Ramer-Douglas-Peucker algorithm (Ramer,
1972; Douglas & Peucker, 1973) that reduces curves composed of line segments to similar curves
composed of fewer points. We train with the standardized supervised prediction loss to maximize
the log-likelihood of the language labels po: E(ooi ,z

o
i ,p

o
i)∼D̃off

logVLM (poi | zoi , ooi) .

1Note that this is not a temporally ordered path, but rather simply a set of unordered points of interest in an
image. We overload notation here for the sake of notational convenience.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 PATH GUIDED LOW-LEVEL POLICY LEARNING

After training the HAMSTER VLM to predict paths, we train a low-level policy to utilize these paths
to predict actions. While a low-level control policy can learn to solve the task without access to 2D
path predictions, providing it with 2D paths can make the task easier. The paths allow the low-level
policy to forgo long-horizon and semantic reasoning and focus on local and geometric predictions to
produce low-level actions. As we find empirically (see Figure. 3), 2D paths allow for considerably
improved visual and semantic generalization of low-level policies. We train low-level policies based
on rich 3-D perceptual information, available at test time on a robotic platform with standard depth
cameras. Then the question becomes—how do we incorporate 2D path information p̂ produced by
the VLM in Section 4.1 onto the 3D inputs to enable generalizable robot manipulation?

Conditioning on Paths. We convert 2D paths of the form p = {(xi, yi,gripper open)}Lt=1
into a format that is easy to incorporate into any language (z), proprioception (s), and image (o)
conditioned policy πθ(a | s, o, z). While one could concatenate the path with the proprioception or
language input, paths are of varied lengths, and this could prevent the integration of such paths into
existing policy architectures that cannot take in varied proprioceptive or language inputs. Instead, we
directly draw the 2D path points onto the image input to the policy, which is not only generalizable
across policy architectures but also may provide easier-to-follow path guidance as the policy does
not have to learn how to associate path points with their corresponding image locations (Gu et al.,
2023). During training, we use oracle paths constructed by projecting end-effector points to the
camera plane as described for simulation and real robot data in Section 4.1.

Formally, we iterate through each trajectory τi = {sti, ati, oti, zi)}Tt=1 on the in-domain dataset D to
obtain the path pi. Gu et al. (2023) proposed using colored trajectories to guide a policy’s actions,
and we largely follow their method of coloring trajectories to indicate gripper status and progression
through time. These paths are drawn onto all images in the trajectory o1i ...o

T
i by drawing points

at each (x, y) and connecting them with line segments to obtain {õti}Tt=1. We use a color gradient
to indicate progression through time (see Figure 2(b) for an example). We plot circles for change
in gripper status: e.g., green for closing the gripper and blue for opening. This constructs the final
in-domain path-labeled dataset Dpath = {(si, ai, õi, zi)}Ni=1.

Imitation Learning. Finally, we train a policy πθ(a | s, õ, z) conditioned on proprioception and
other sensor information s, path-annotated image observations õ, and a task language instruction z
on Dpath. HAMSTER’s general path-conditioning framework allows for using arbitrary lower-level
control policies as they do not need to condition on the same inputs as the VLM. Therefore, we
train 3D low-level policies, such as RVT-2 (Goyal et al., 2024) and 3D-DA (Ke et al., 2024), for
low-level control. Here, we assume s includes additional sensor information (i.e., depth), which
3D-DA and RVT-2 utilize to construct point clouds and virtual camera renderings, respectively, for
more accurate control and data-efficient imitation learning. We directly train these policies, with
no necessary major architectural modifications,with their supervised imitation learning objectives
on Dpath to maximize log-likelihoods of the dataset actions: E(st,at,õt,zt)∼Dpath log πθ(a | st, õt, zt).
For further implementation details, see Appendix B.

Online Evaluation. Standard VLA architectures query the VLM for every low-level action (Kim
et al., 2024; Brohan et al., 2023a), which can be very expensive with large VLMs—for example,
OpenVLA’s 7B param VLA only runs at 6Hz on an RTX 4090 (Kim et al., 2024). Instead, HAM-
STER’s hierarchical design allows us to query the VLM just once at the beginning of the episode
to generate a 2D path l̂ that we draw onto every subsequent image.2 Therefore, HAMSTER can be
scaled to large VLM backbones without needing end-users to be concerned about inference speed.

5 EXPERIMENTAL EVALUATION

To test the hypotheses proposed in Section 4, we perform empirical evaluations in both simulation
and the real world. The experiments primarily aim to answer the following questions: (1) do hierar-
chical VLA models enable behavioral generalization to unseen scenarios? (2) do hierarchical VLA
models show more effective cross-domain generalization than monolithic VLA models or low-level

2HAMSTER is not inherently limited to being queried once per episode, but for simplicity and computa-
tional efficiency we query just once per episode in our experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

pick up the green pepper
and put it in
the red bowl

pick up the banana and
put it in the black bowl

push down the object
with feather

pick up the smiley face
and put it in the

red bowl
pick up the garlic and

put it in the panpress down the left button
push down the
green bottle

Figure 3: Depiction of quantitative real-world policy execution results on a real-world robot, evaluated across
different axes of generalization and across both prehensile and non-prehensile tasks. Across all generalization
axes, HAMSTER outperforms monolithic VLAs and the base 3D imitation learning policies.

imitation learning methods? (3) is behavior learned by hierarchical VLA models robust to signifi-
cant degrees of visual and semantic variations? (4) does including cross-domain data from settings
like simulation really help with model generalization? (5) does explicitly finetuning the high-level
VLM yield benefits in terms of spatial and semantic reasoning?

5.1 REAL WORLD EVALUATION ON TABLETOP MANIPULATION

Our real-world evaluation experiments aim to test the generalization capability of hierarchical VLA
models across significant semantic and visual variations. In particular, we consider a variant of
HAMSTER that uses a VLM (VILA-1.5-13b) finetuned on the data mixture in Section 4.1 as the
high-level predictor, with two 3D policy architectures - RVT-2 (Goyal et al., 2024) and 3D Diffuser
Actor (3D-DA) (Ke et al., 2024) as the choice of low-level policy, as described in Section 4.2.
The low-level 3D policies are trained with 320 episodes collected via teleoperation directly on the
table-top manipulation setup shown in Fig. 7. Importantly, the high-level VLM in HAMSTER is
not finetuned on any in-domain data and is directly transferred only from the cheap data sources
described in Section 4.1. This suggests that any generalization that the VLM sees does not result
from in-domain training data rather than from cross-domain transfer.

Baseline comparisons. We compare HAMSTER to a state-of-the-art monolithic VLA, Open-
VLA (Kim et al., 2024), as well as a non-VLM 3D imitation learning policies. For fair comparison,
we finetune OpenVLA on the collected in-domain trajectory data described above since OpenVLA
showed poor zero-shot generalization. The 3D imitation learning policy (RVT-2, 3D-DA) baselines
are trained with the same teleoperation data used to train the low-level policy in HAMSTER but
without the intermediate 2D path representation from HAMSTER’s VLM.

Results. Figure 3 summarizes our real-world results. We compile results for multiple task types,
including ‘pick and place,’ and nonprehensile tasks such as ‘push buttons’ and ‘knock down objects.’
Similar to prior work (Kim et al., 2024), we test generalization across various axes: obj and goal:
unseen object-goal combinations; visual: visual changes in table texture, lighting, distractor objects;
language: unseen language instructions (e.g., candy → sweet object); spatial: unseen spatial object
relationships in the instruction; novel object: unseen objects; and lastly, multiple: a combination of
multiple variations. In total, we evaluate each model on 74 tasks for 222 total evaluations.

We find that HAMSTER significantly outperforms monolithic VLA models and 3D imitation learn-
ing methods by over 2x and 3x, respectively, on average. This is significant because this improved
performance is in the face of considerable visual and semantic changes in the test setting, showing
the ability of HAMSTER to transfer much more effectively than monolithic VLA models or non-
VLM base models. We further group results by task type in Table 6, where we see HAMSTER
outperforms OpenVLA across all task types (pick and place, press button, and knock down). See
Appendix C for evaluation conditions, a task list, and other experiment details, and Appendix E for
failure modes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

pick up the garlic and
put it in the pan

HAMSTER Low-Level Policy

pick up the green
pepper and put it in the

red bowl

pick up the sweet object
and put it into
the red bowl

Figure 4: Example real-world HAMSTER rollouts demonstrate its strong performance in novel scenes
achieved by leveraging VLMs’ generalization capabilities and the robust execution of low-level 3D policies.

Avg. no var bac tex cam pos distractor lig col man obj col man obj siz

3D-DA[Ke et al.] 0.35± 0.04 0.43± 0.06 0.34± 0.07 0.35± 0.11 0.39± 0.11 0.44± 0.13 0.41± 0.04 0.41± 0.11
HAMSTER (w 3D-DA) 0.46 ± 0.04 0.57 ± 0.03 0.48 ± 0.08 0.39 ± 0.06 0.41 ± 0.05 0.59 ± 0.04 0.57 ± 0.08 0.51 ± 0.10

man obj tex rec obj col rec obj siz rec obj tex rlb and col rlb var tab col tab tex

3D-DA[Ke et al.] 0.27± 0.04 0.34± 0.10 0.36± 0.05 0.36± 0.12 0.07± 0.03 0.45± 0.12 0.42± 0.06 0.23± 0.04
HAMSTER (w 3D-DA) 0.48 ± 0.06 0.48 ± 0.05 0.40 ± 0.05 0.56 ± 0.09 0.11 ± 0.10 0.58 ± 0.04 0.56 ± 0.03 0.35 ± 0.07

Table 1: Simulation evaluation of HAMSTER across different visual variations. We test vanilla 3D Diffuser
Actor and HAMSTER across variations in Colosseum (Pumacay et al., 2024) and find that HAMSTER gener-
alizes more effectively than 3D Diffuser Actor. Avg. indicates mean across variations, including no variation.

5.2 SIMULATION EVALUATION

We also perform controlled experiments in simulation. We use Colosseum (Pumacay et al., 2024) as
the benchmark as it displays considerable visual and semantic variations. In simulation, we paired
our high-level VLM with 3D Diffuser Actor (Ke et al., 2024) as the low-level policy, since this is
one of the state-of-the-art models on RLBench. We compare HAMSTER with a vanilla 3D Diffuser
Actor implementation without path guidance. Table 1 summarizes our results in simulation across 5
seeds. HAMSTER significantly outperforms vanilla 3D-DA by 31%. This shows that the 2D paths
produced by the VLM in HAMSTER can help low-level policies to generalize better to novel unseen
variations. We refer readers to Pumacay et al. (2024) for details on the variations and Appendix F
for further simulation experiment details.

5.3 GENERALIZATION AND ABLATION STUDIES

Figure 5: The camera angle
invariance setup: old camera
on the right, new camera an-
gle on the left.

Finally, we perform additional experiments testing HAMSTER’s
ability to generalize to novel views, various ways to represent the
paths, and finally, the demonstration efficiency of HAMSTER.

View Invariance and Path Representation. We test camera view
invariance with a new camera angle, as pictured in Figure 5, by
evaluating HAMSTER+RVT2 against OpenVLA on the new cam-
era angle across 10 separate pick and place task trials with 6 training
objects and 3 training containers. Additionally, we also compare
HAMSTER+RVT2 (Concat), where instead of drawing the path
onto the RGB image given as input to RVT2, we modify RVT2
to accept a 6-channel input image consisting of the original RGB
image concatenated with a second RGB image that only contains
the drawn path. This approach is less easily applied to arbitrary
imitation learning policies (for example, it cannot be easily applied
to 3D-DA as it uses a pre-trained CLIP image encoder expecting 3
input channels), but allows us to represent paths in a different way.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method Original Camera Novel Camera
Cumulative Score # Success Cumulative Score # Success

OpenVLA 6 3 2.25 0
HAMSTER+RVT2 8.25 7 7.25 4
HAMSTER+RVT2 (Concat) 10 10 9.75 9

Table 2: Real world results comparing HAMSTER, HAMSTER where paths are concatenated with RGB
instead of drawn onto the image, and OpenVLA on a setup with the new camera angle as shown in Figure 5.
We report cumulative completion scores out of 10 (10 trials) and total number of fully successful executions.
HAMSTER performs better with both path drawing settings.

Move the toy car
to the bowl with 'x'

Move the pencil
to the cup

Move the tennis ball
to the bowl with 'y'

Move the toy car
to the bowl with x

Move the toy car
to the bowl with 'x'

Move the pencil
to the cup

Move the tennis ball
to the bowl with 'y'

Screw the light bulb
to the lamp

Place the cup
on the cupholder Open the microwave

Place the cup on
the cup holder

Move the left block to
Jensen Huang

Screw the light bulb in
the lamp

Push the button with color of cucumber,
then press the button with color of fire

(a) (b) (c)

Figure 6: HAMSTER’s VLM demonstrates considerable generalization and cross-domain learning to scenar-
ios not encountered in the training set. From left to right: (a) it can effectively utilize world knowledge to
generalize to tasks specified by people; (b) it generalizes to highly out-of-domain input images, such as human-
drawn sketches; (c) when trained on diverse simulated data it shows transfer to related, but visually distinct
tasks in the real world.

The results in Table 2 demonstrate that HAMSTER far outperforms OpenVLA and is generally
robust to a new camera angle. HAMSTERwith concatenated image paths performs the best, which
demonstrates this other path representation can work well with RVT2, although it is less general and
cannot be easily integrated with 3D-DA.

Method Success
3D-DA 0.18 ± 0.10
HAMSTER+3D-DA (50%) 0.36 ± 0.04
HAMSTER+3D-DA 0.43 ± 0.05

Table 3: Colosseum results demon-
strate that HAMSTER is demo-
efficient, doubling 3D-DA’s success
rate even with just 50% of the data.

HAMSTER with Fewer Demonstrations. Finally,
we also test HAMSTER’s ability to work well with
limited demonstrations. We test on a subset of 5
Colosseum tasks, namely, SLIDE BLOCK TO TARGET,
PLACE WINE AT RACK LOCATION, IN-
SERT ONTO SQUARE PEG, STACK CUPS, SETUP CHESS.
Results in Table 3 demonstrate that HAMSTER+3D-DA with
just 50% of the data still achieves 2x the success rate of standard 3D-DA, demonstrating that
HAMSTER is demonstration-efficient for the demonstream imitation learning tasks.

Finally, we visualize example HAMSTER path drawings in Figure 6, demonstrating HAMSTER
effectively generalizes to new tasks. We further investigate design decisions on VLM performance
in Appendix D.1, where we find that (1) HAMSTER outperforms zero-shot path generation from
closed-source VLMs (Gu et al., 2023; Liang et al., 2023) and (2) that inclusion of simulation data
improves HAMSTER’s real-world performance. See Appendix D.1 for further details.

6 CONCLUSION AND LIMITATIONS

In summary, HAMSTER studies the potential of hierarchical VLA models, achieving robust gener-
alization in robotic manipulation. It consists of a finetuned VLM that accurately predicts 2D paths
for robotic manipulation and a low-level policy that learns to generate actions using the 2D paths.
This two-step architecture enables visual generalization and semantic reasoning across considerable
domain shifts, while enabling data-efficient specialist policies, like ones conditioned on 3D inputs,
to perform low-level action execution.

This work represents an initial step towards developing versatile, hierarchical VLA methods, with
numerous opportunities for future improvement and expansion. The proposed work only generates
points in 2D space, without making native 3D predictions. This prevents the VLM from having true
spatial 3D understanding. Moreover, the interface of just using 2D paths is a bandwidth limited one,
which cannot communicate nuances such as force or rotation. In the future, investigating learnable
intermediate interfaces is a promising direction. Moreover, training these VLMs directly from large-
scale human video datasets would also be promising.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff Bel-
gum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim’on Posada Fish-
man, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Har-
ris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter
Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain,
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto,
Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Ni-
tish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik
Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz Kon-
draciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo,
Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia
Lue, Anna Adeola Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke
Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing,
Tong Mu, Mira Murati, Oleg Murk, David M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O’Keefe, Jakub W.
Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish,
Emy Parparita, Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
Belbute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul
Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rim-
bach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin D. Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer’on Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian-
hao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report. In arxiv
preprint, 2023. URL https://arxiv.org/pdf/2303.08774.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,

11

https://arxiv.org/pdf/2303.08774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023a.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287–318. PMLR, 2023b.

Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon
Kim. Coyo-700m: Image-text pair dataset. https://github.com/kakaobrain/
coyo-dataset, 2022.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Kostas E. Bekris,
Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), Robotics: Science and Systems XIX, Daegu,
Republic of Korea, July 10-14, 2023, 2023. doi: 10.15607/RSS.2023.XIX.026. URL https:
//doi.org/10.15607/RSS.2023.XIX.026.

Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Mad-
dukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
atsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg,
Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov,
Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao,
Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao
Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki
Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Ra-
dosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters,
Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen
Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon
Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey Hejna, Jonathan
Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan
Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken
Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin
Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan
Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yun-
liang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina,
Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong
Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki
Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Nor-
man Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani,
Pannag R Sanketi, Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan
Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario
Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah,
Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry
Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun

12

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset
https://doi.org/10.15607/RSS.2023.XIX.026
https://doi.org/10.15607/RSS.2023.XIX.026

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany,
Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya
Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vin-
cent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao
Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang
Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen
Zhang, Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,
and Andrew Zisserman. Tapir: Tracking any point with per-frame initialization and temporal
refinement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
10061–10072, 2023.

David H Douglas and Thomas K Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica, 10(2):112–
122, 1973. doi: 10.3138/FM57-6770-U75U-7727. URL https://doi.org/10.3138/
FM57-6770-U75U-7727.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied mul-
timodal language model. In International Conference on Machine Learning, pp. 8469–8488.
PMLR, 2023.

Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron Boots, and Dieter
Fox. Motion policy networks. In Karen Liu, Dana Kulic, and Jeffrey Ichnowski (eds.), Conference
on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New Zealand, volume 205
of Proceedings of Machine Learning Research, pp. 967–977. PMLR, 2022. URL https://
proceedings.mlr.press/v205/fishman23a.html.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt2: Learning precise
manipulation from few demonstrations. RSS, 2024.

Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, Priya Sundaresan, Peng Xu,
Hao Su, Karol Hausman, Chelsea Finn, Quan Vuong, and Ted Xiao. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches, 2023.

Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu,
Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5977–5984. IEEE, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. In Conference on
Robot Learning, pp. 540–562. PMLR, 2023a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through

13

https://arxiv.org/abs/2310.08864
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://proceedings.mlr.press/v205/fishman23a.html
https://proceedings.mlr.press/v205/fishman23a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

planning with language models. In Conference on Robot Learning, pp. 1769–1782. PMLR,
2023b.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991–1002. PMLR, 2022.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. In International Conference on Machine Learning, 2023.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations. In First Workshop on Vision-Language Models for Navigation and
Manipulation at ICRA 2024, 2024.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pan-
nag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe,
Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Bai-
jal, Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul
Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon Jack-
son, Charlotte Le, Yunshuang Li, Kevin Lin, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mir-
chandani, Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario Scalise, Derick Seale, Victor
Son, Stephen Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin,
Yunchu Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta,
Abhishek Gupta, Dinesh Jayaraman, Joseph J Lim, Jitendra Malik, Roberto Martı́n-Martı́n, Sub-
ramanian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu,
Thomas Kollar, Sergey Levine, and Chelsea Finn. Droid: A large-scale in-the-wild robot manip-
ulation dataset. 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2023.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-
training for visual language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 26689–26699, June 2024.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365,
2023.

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-vocabulary robotic
manipulation through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024b.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
In The Eleventh International Conference on Learning Representations, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. In Conference on Robot Learning, pp. 1820–1864. PMLR, 2023.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European Conference on Computer Vision, pp. 728–755.
Springer, 2022.

Matthias Minderer, Alexey A. Gritsenko, and Neil Houlsby. Scaling open-vocabulary object de-
tection. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=mQPNcBWjGc.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. In Conference on Robot Learning, pp. 892–909.
PMLR, 2023.

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie, Danny
Driess, Ayzaan Wahid, Zhuo Xu, et al. Pivot: Iterative visual prompting elicits actionable knowl-
edge for vlms. In International Conference on Machine Learning, 2024.

Dantong Niu, Yuvan Sharma, Giscard Biamby, Jerome Quenum, Yutong Bai, Baifeng Shi, Trevor
Darrell, and Roei Herzig. LLARVA: Vision-action instruction tuning enhances robot learning.
In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/
forum?id=Q2lGXMZCv8.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In international conference on machine
learning, pp. 17359–17371. PMLR, 2022.

Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay Krishna, Jesse Thomason, and Dieter Fox. The
colosseum: A benchmark for evaluating generalization for robotic manipulation. arXiv preprint
arXiv:2402.08191, 2024.

Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken Goldberg, Trevor Darrell, and Jitendra Malik. Robot
learning with sensorimotor pre-training. In Conference on Robot Learning, pp. 683–693. PMLR,
2023.

Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer
Graphics and Image Processing, 1(3):244–256, 1972. ISSN 0146-664X. doi: https://doi.org/10.
1016/S0146-664X(72)80017-0. URL https://www.sciencedirect.com/science/
article/pii/S0146664X72800170.

Rutav M Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In
International Conference on Machine Learning, pp. 9465–9476. PMLR, 2021.

15

https://openreview.net/forum?id=mQPNcBWjGc
https://openreview.net/forum?id=Q2lGXMZCv8
https://openreview.net/forum?id=Q2lGXMZCv8
https://www.sciencedirect.com/science/article/pii/S0146664X72800170
https://www.sciencedirect.com/science/article/pii/S0146664X72800170

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zejiang Shen, Kyle Lo, Lucy Lu Wang, Bailey Kuehl, Daniel S. Weld, and Doug Downey. Incor-
porating visual layout structures for scientific text classification. ArXiv, abs/2106.00676, 2021.
URL https://arxiv.org/abs/2106.00676.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785–799. PMLR, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Sumedh Anand Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Biyik, Dorsa Sadigh,
Chelsea Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. In
NeurIPS, 2023.

Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei Lee, Quan Vuong, Paul
Wohlhart, Sean Kirmani, Brianna Zitkovich, Fei Xia, et al. Open-world object manipulation using
pre-trained vision-language models. In Conference on Robot Learning, pp. 3397–3417. PMLR,
2023.

Priya Sundaresan, Suneel Belkhale, Dorsa Sadigh, and Jeannette Bohg. Kite: Keypoint-conditioned
policies for semantic manipulation. In Conference on Robot Learning, pp. 1006–1021. PMLR,
2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
nipulation. Robotics: Science and Systems, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and
Sergey Levine. Bridgedata v2: A dataset for robot learning at scale. In Conference on Robot
Learning (CoRL), 2023.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. In
International Conference on Machine Learning, 2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR,
2023.

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction in robotics. In 8th Annual Conference on Robot Learning, 2024. URL https:
//openreview.net/forum?id=GVX6jpZOhU.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Kostas E. Bekris, Kris Hauser, Sylvia L. Herbert, and
Jingjin Yu (eds.), Robotics: Science and Systems XIX, Daegu, Republic of Korea, July 10-14,
2023, 2023. doi: 10.15607/RSS.2023.XIX.016. URL https://doi.org/10.15607/RSS.
2023.XIX.016.

16

https://arxiv.org/abs/2106.00676
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=GVX6jpZOhU
https://openreview.net/forum?id=GVX6jpZOhU
https://doi.org/10.15607/RSS.2023.XIX.016
https://doi.org/10.15607/RSS.2023.XIX.016

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Young-
jae Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal C4: An open, billion-
scale corpus of images interleaved with text. arXiv preprint arXiv:2304.06939, 2023.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For extended supplementary details and results, please see https://sites.google.com/
view/hamster-iclr.

A VLM FINETUNING DATASET DETAILS

Pixel Point Pred Data. Our point prediction dataset comes from Robopoint (Yuan et al., 2024).
Most data in our point prediction dataset contains labels given as a set of unordered points such as
po = [(0.25, 0.11), (0.22, 0.19), (0.53, 0.23)]. However, data in RoboPoint also contains answers
that are instead in natural language for VQA queries such as “what is the person feeding the cat?” We
keep these data as is because these VQA queries are likely to benefit a VLM’s semantic reasoning an
visual generalization capabilities; we fine-tune HAMSTER’s VLM on the entire Robopoint dataset
as given.

Simulation Data. We selected 79 RLBench tasks out of 100 to generate data by removing the tasks
with poor visibility on the front cam view in RLBench. We use the first image in each episode
combined with each language instruction. The final dataset contains around 320k trajectories.

Real Robot Data. For the Bridge (Walke et al., 2023) dataset, which only provides RGB images,
we extract trajectories by iteratively estimating the extrinsic matrix for each episode. In each scene,
we randomly sample a few frames and manually label the center of the gripper fingers. Using the
corresponding end-effector poses, we compute the 3D-2D projection matrix with a PnP (Perspective-
n-Point) approach. We then apply this projection matrix to the episodes and manually check for any
misalignments between the projected gripper and the actual gripper. Episodes exhibiting significant
deviations are filtered out, and a new round is started to estimate their extrinsic matrix.

For DROID (Khazatsky et al., 2024), a large portion of the dataset contains noisy camera extrinsics
information that do not result in good depth alignment. Therefore, we filter out trajectories with
poor-quality extrinsics as measured by the alignment between the projected depth images and the
RGB images. This results in ∼45k trajectories (∼22k unique trajectories as trajectories each have
2 different camera viewpoints) which we use for constructing the VLM dataset Doff as described in
Section 4.1.

B IMPLEMENTATION AND ARCHITECTURE DETAILS

Hamster VLM: VILA-1.5-13b

(a) VLM Training on 𝒟̃off (b) Low-level Policy Training on 𝒟path

Find all instances
of cushions

[(0.49, 0.38,
0.08, 0.06),
(0.53, 0.42,
0.07, 0.05)]

Im
a
g

e

 o
o

In
st

r.

 z
o

P
a
th

s
 p

o

Put the wine bottle
in the wine rack

[(0.1, 0.5, close),
(0.1, 0.5, clsoe),
(0.7, 0.7, close),
(0.8, 0.7, open)]

[(0.2, 0.2, close),
(0.3, 0.2, close),
(0.1, 0.2, close),
(0.1, 0.3, open)]

Cover the bowl
with the towel

Low-Level 3D Policy

Path image õt Proprio/Sensor st

Put the object in
the bowl

Instr. z

[EEF pos, ,...] +
depth

θ

[x, y, z,]θ1, θ2, …

Lo
w

-l
e
ve

l
 A

ct
io

n
s

Point Data Sim Data Robot Data In-Domain Data

Figure 7: (a): Examples of training data in D̃off used to train HAMSTER’s VLM. (b): The data used
to train HAMSTER’s low-level policies.

B.1 VLM IMPLEMENTATION DETAILS

VLM Prompt. We list the prompt for both fine-tuning on sim and real robot data and evaluation in
Figure 8. We condition the model on an image and the prompt, except when training on Pixel Point
Prediction data (i.e., from Robopoint (Yuan et al., 2024)) where we used the given prompts from
the dataset. Note that we ask the model to output gripper changes as separate language tokens, i.e.,

18

https://sites.google.com/view/hamster-iclr
https://sites.google.com/view/hamster-iclr

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

HAMSTER Prompt

In the image, please execute the command described in ⟨quest⟩{quest}⟨/quest⟩.
Provide a sequence of points denoting the trajectory of a robot gripper to achieve the goal.
Format your answer as a list of tuples enclosed by ⟨ans⟩ and ⟨/ans⟩ tags. For example:
⟨ans⟩[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), ⟨action⟩Open

Gripper⟨/action⟩, (0.74, 0.21), ⟨action⟩Close Gripper⟨/action⟩,
...]⟨/ans⟩
The tuple denotes the x and y location of the end effector of the gripper in the image. The action tags
indicate the gripper action.
The coordinates should be floats ranging between 0 and 1, indicating the relative locations of the points
in the image.

Figure 8: The full text prompt we use to train HAMSTER with on simulation and real robot data
(Section 4.1). We also use this prompt for inference.

Open Gripper/Close Gripper, as opposed to as a numerical value as shown in simplified
depictions like Figure 2.

VLM Trajectory Processing. As mentioned in Section 4.1, one problem with directly training on
the path labels po is that many paths may be extremely long. Therefore, we simplify the paths po with
the Ramer-Douglas-Peucker algorithm (Ramer, 1972; Douglas & Peucker, 1973) that reduces curves
composed of line segments to similar curves composed of fewer points. We run this algorithm on
paths produced by simulation and real robot data to generate the labels po for Doff. We use tolerance
ϵ = 0.05, resulting in paths that are around 2-5 points for each short horizon task.

VLM Training Details. We train our VLM, VILA1.5-13B Lin et al. (2024), on a node equipped
with eight NVIDIA A100 GPUs, each utilizing approximately 65 GB of memory. The training
process takes about 30 hours to complete. We use an effective batch size of 256 and a learning rate
of 1× 10−5. During fine-tuning, the entire model—including the vision encoder—is updated.

B.2 LOW-LEVEL POLICY TRAINING DETAILS

We train RVT2 (Goyal et al., 2024) and 3D-DA (Ke et al., 2024) as our lower-level policies. We
keep overall architecture and training hyperparameters the same as paper settings. Specific details
about how the inputs were modified other than the 2D path projection follow.

For low-level policy training, we train the policies on ground truth paths constructed by projecting
trajectory end-effector points to the camera image. In order to also ensure the policies are robust
to possible error introduced by HAMSTER VLM predictions during evaluation, we add a small
amount of random noise (N(0, 0.01)) to the 2D path (x, y) image points during training to obtain
slightly noisy path drawings. No noise was added to the gripper opening/closing indicator values.

RVT2 (Goyal et al., 2024). We remove the language instruction for RVT-2 when conditioning on
HAMSTER 2D paths.

3D-DA (Ke et al., 2024). In simulated experiments in Colosseum, no changes were needed. In
fact, we saw a performance drop for HAMSTER+3D-DA when removing language for Colosseum
tasks and a small drop in performance when using simplified language instructions. This is likely
due to 3D-DA’s visual attention mechanism which cross attends CLIP language token embeddings
with CLIP visual features, therefore detailed language instructions are beneficial.

In real-world experiments, we simplify the language instruction in the same way as for RVT2 when
conditioning on HAMSTER 2D paths to encourage following the trajectory more closely with lim-
ited data. In addition, we reduced the embedding dimension of the transformer to 60 from 120,
removed proprioception information from past timesteps, and reduced the number of transformer
heads to 6 from 12 in order to prevent overfitting.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

RT-Trajectory GPT-4o Prompt

In the image, please execute the command described in ’{quest}’.
Provide a sequence of keypoints denoting a trajectory of a robot gripper to achieve the goal. Keep in mind
these are keypoints, so you do not need to provide too many points.
Format your answer as a list of tuples enclosed by <ans> and </ans> tags. For example:
<ans>[(0.25, 0.32), (0.32, 0.17), (0.13, 0.24), <action>Open
Gripper</action>, (0.74, 0.21), <action>Close Gripper</action>,
...]</ans>
The tuple denotes point x and y location of the end effector of the gripper in the image. The action tags
indicate the gripper action.
The coordinates should be floats ranging between 0 and 1, indicating the relative locations of the points
in the image.
The current position of the robot gripper is: {current position}. Do not include this point in your answer.

Figure 9: The full text prompt we use to prompt RT-Trajectory with GPT4-o.

RT-Trajectory Code as Policies Prompt

Task Instruction: {task instruction}
Robot Constraints:

• The robot arm takes as input 2D poses with gripper open/closing status of the form
(x, y, gripper open == 1)

• The gripper can open and close with only binary values

• The workspace is a 1× 1 square centered at (0.5, 0.5)

• The x-axis points rightward and y-axis points downward.

Please write Python code that generates a list of 2D poses and gripper statuses for the robot to follow.
Include Python comments explaining each step. Assume you can use numpy or standard Python libraries,
just make sure to import them.
Enclose the start and end of the code block with <code> and </code> so that it can be parsed. Make
sure that it is a self-contained script such that when executing the code string, there is a variable named
robot poses which is a list of poses of the form: [(x, y, gripper), (x, y, gripper),
...].
Scene Description:

<code>
{scene_description}
</code>

Figure 10: The full text prompt we use for RT-Trajectory with Code-as-Policies on top of GPT4-o.
The scene description at the bottom comes from an open-vocabulary object detector describing each
detected object and its bounding box in the image based on the task instruction.

C REAL WORLD EXPERIMENT DETAILS

C.1 TRAINING TASKS AND DATA COLLECTION

For our real-world experiments, we collected all data using a Franka Panda arm through human
teleoperation, following the setup described in Khazatsky et al. (2024). Below, we describe the
training tasks:

Pick and place. We collected 220 episodes using 10 toy objects. In most of the training data, 2
bowls were placed closer to the robot base, while 3 objects were positioned nearer to the camera.
The language goal for training consistently followed the format: pick up the {object} and
put it in the {container}.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Knock down objects. We collected 50 episodes with various objects of different sizes. Typically,
3 objects were arranged in a row, and one was knocked down. The language goal for training
followed the format: push down the {object}.

Press button. We collected 50 episodes with 4 colored buttons. In each episode, the gripper was
teleoperated to press one of the buttons. The language goal followed the format: press the
{color} button.

When training RVT2, which requires keyframes as labels, in addition to labeling frames where the
gripper performs the open gripper and close gripper actions, we also included frames
that capture the intermediate motion as the gripper moves toward these keyframes.

C.2 BASELINE TRAINING DETAILS

OpenVLA (Kim et al., 2024). Following Kim et al. (2024), we only utilize parameter efficient
fine-tuning (LoRA) for all of our experiments, since they showed that it matches full fine-tuning
performance while being much more efficient. We follow the recommended default rank of r=32.
We opt for the resolution of 360 x 360 to match all of the baseline model’s resolutions. We also
follow the recommended practice of training the model until it surpasses 95% token accuracy. How-
ever, for some fine-tuning datasets, token accuracy converged near 90%. We selected the model
checkpoints when we observed that the token accuracy converged, which usually required 3,000
to 10,000 steps using a global batch size of either 16 or 32. Training was conducted with 1 or 2
A6000 gpus (which determined the global batch size of 16 or 32). Emprically, we observed that
checkpoints that have converged showed very similar performance in the real world. For example,
when we evaluate checkpoint that was trained for 3,000 steps and showed convergence, evaluating
on a checkpoint trained for 5,000 steps of the same run resulted in a very similar performance.

RT-Trajectory (Gu et al., 2023). We implement two versions of RT-Trajectory for the comparison
in Table 5. The first (0-shot GPT-4o) directly uses GPT-4o to generate 2D paths with a prompt very
similar to the one we use for HAMSTER, displayed in Figure 9.

The second version implements RT-Trajectory on top of a Code-as-Policies (Liang et al., 2023), as
described in RT-Trajectory. We use OWLv2 (Minderer et al., 2023) to perform open-vocabulary
object detection on the image to generate a list of objects as the scene description and then prompt
RT-Trajectory with the prompt shown in Figure 10. We also use GPT-4o as the backbone for this
method.

C.3 EVALUATION TASKS

We evaluate our method on the tasks of pick and place, knock down object, and press
button across various generalization challenges, as illustrated in Figure 3. Detailed results are
available in Appendix C.3. Following (Kim et al., 2024), we assign points for each successful sub-
action. For VLM, human experts are employed to assess the correctness of the predicted trajectories.

D EXTENDED RESULTS

D.1 IMPACT OF DESIGN DECISIONS ON VLM PERFORMANCE

To better understand the transfer and generalization performance of the proposed hierarchical VLA
model, we analyze the impact of various decisions involved in training the high-level VLM. We con-
duct a human evaluation of different variants of a trained high-level VLM on a randomly collected
dataset of real-world test images, as shown in Figure 6. We ask each model to generate 2D path
traces corresponding to instructions such as “move the block on the right to Taylor Swift” or “screw
the light bulb in the lamp” (the full set is in Appendix D.2). We then provide the paths generated by
each method to human evaluators who have not previously seen any of the models’ predictions. The
human evaluators then rank the predictions for each method; we report the average rank across the
samples in Table 5.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Category Task OpenVLA RVT2 RVT2+Sketch 3DDA 3DDA+Sketch
Basic pick up the corn and put it in the black bowl 1 1 1 0 0.25
Basic pick up the grape and put it in the white bowl 1 0.75 1 0 1
Basic pick up the milk and put it in the white bowl 0 1 1 0 0.25
Basic pick up the salt bottle and put it in the white bowl 0.75 0.5 1 0 0
Basic pick up the shrimp and put it in the red bowl 0.75 0.5 1 0 1
Basic pick up the cupcake and put it in the red bowl 0 0.5 0.5 0.25 1
Basic press down the red button 0.5 0 1 0 1
Basic press down the green button 0 1 0 0 0.25
Basic press down the yellow button 0 0 1 0 1
Basic press down the blue button 0.5 0 1 0 0.5
Basic push down the green bottle 0.5 0 0.5 0 1
Basic push down the pocky 0 1 1 0 0.5
Basic push down the red bag 0.5 0.5 0 0 0.5
Basic push down the bird toy 0 0 0 0 0.5
Basic push down the yellow box 1 0 1 0 0.5

Object and Goal pick up the salt bottle and put it in the white bowl 1 1 1 0.5 1
Object and Goal pick up the banana and put it in the black bowl 0.25 0.25 1 0.5 1
Object and Goal pick up the grape and put it in the black bowl 1 0.25 0.5 1 1
Object and Goal pick up the carrot and put it in the red bowl 0.75 0 1 0.5 1
Object and Goal pick up the milk and put it in the white bowl 0.25 0 1 0 0.25
Object and Goal pick up the shrimp and put it in the white bowl 0.25 0.75 0.5 0.25 1
Object and Goal pick up the cupcake and put it in the black bowl 0.25 0 1 0.5 0.75
Object and Goal pick up the icecream and put it in the black bowl 0.25 0 0.5 0.5 1
Object and Goal pick up the corn and put it in the red bowl 1 0 1 1 1
Object and Goal pick up the green pepper and put it in the red bowl 0.75 0 0.5 0 0.25
Object and Goal pick up the orange and put it in the white bowl 0.25 0 0 0 0

Visual(Table Texture) pick up the salt bottle and put it in the white bowl 1 1 1 0 1
Visual(Table Texture) pick up the banana and put it in the black bowl 0.25 0.25 0.75 0.5 0.75

Visual(lighting) pick up the grape and put it in the black bowl 0.25 0 0.5 0.25 0
Visual(lighting) pick up the carrot and put it in the red bowl 0.75 0 1 0 0.75
VIsual(clutter) pick up the milk and put it in the white bowl 0.75 0.25 1 0.25 1
VIsual(clutter) pick up the shrimp and put it in the red bowl 0.75 0.5 0 0 0.5

Visual(mix) pick up the green pepper and put it in the red bowl 0.25 0 1 0 0.25
Visual(mix) pick up the salt bottle and put it in the white bowl 0.25 0 0.25 0.25 1

Visual(appearance change) pick up the green pepper and put it in the black bowl 1 0 0.5 0 1
Visual(appearance change) pick up the salt bottle and put it in the black bowl 1 1 1 0 1

Visual(Table Texture) press down the red button 1 1 0 0 0.5
Visual(lighting) press down the green button 1 0 0.5 0 0.5
VIsual(clutter) press down the yellow button 0 0 0.5 0 0.5

Visual(mix) press down the blue button 0 0 0 0 0.5
Visual(Table Texture) push down the pocky 0 1 0 0 0

VIsual(clutter) push down the green bottle 1 0.5 1 0 1
VIsual(clutter) push down the chocolate box 1 0 0 0 1

Visual(mix) push down the green bottle 0 0 0.5 0 1
Language pick up the sweet object and put it in the red bowl 1 1 1 0 1
Language pick up the spicy object and put it in the red bowl 1 0 1 0 0.75
Language pick up the salty object and put it in the red bowl 0 0 1 0 1
Language pick up the object with color of cucumber and put it in the red bowl 0 0 1 0.25 0.75
Language pick up the object with color of lavender and put it in the black bowl 0 0 1 0 1

Language pick up the object with the color of sky
and and put it in the container with the color of coal 1 0 0 0.25 1

Language pick up the block with the color of sunflower
and put it in the container with the color of enthusiasm 0 0.25 1 0 1

Language press the button with the color of fire 0.5 0 1 0 0.5
Language press the button with the color of cucumber 0 0 1 0 0.5
Language press the button with the color of sky 0 0 0 0.5 1
Language press the button with the color of banana 0 0 0 0 0.5
Language push down the object with color of leaf 0 1 1 0 0
Language push down the box contains cruchy biscuit 0 0 0 0 1
Language push down the bag with color of fire 0 0 1 0 0.5
Language push down the object with feather 0.5 0 1 0 1

Spatial pick up the left object and put it in the left bowl 0 1 1 0.25 1
Spatial pick up the middle object and put it in the left bowl 0 0 1 0 1
Spatial pick up the right object and put it in the left bowl 1 0 0.5 0.25 0.5
Spatial pick up the left object and put it in the right bowl 0.25 0.25 1 0.25 1
Spatial pick up the middle object and put it in the right bowl 0 0 1 0 1
Spatial pick up the right object and put it in the right bowl 0.5 0 1 0 1
Spatial press down the left button 0.5 0 0 0 0.5
Spatial press down the middle button 0 0 1 1 0.5
Spatial press down the right button 0 0 1 1 1
Spatial push down the left object 0.5 0 0 0 0
Spatial push down the middle object 1 0.5 0 0 1
Spatial push down the right object 0.5 0 0.5 0.5 1

Novel Object pick up the ”R” and put it in the red bowl 0 0 1 0 1
Novel Object pick up the boxed juice and put it in the red bowl 0 0.75 0.75 1 1
Novel Object pick up the cholate bar and put it in the white bowl 0.25 0 0.5 0.5 1
Novel Object pick up the smile face and put it in the red bowl 1 0 1 0 1
Novel Object pick up the mouse and put it in the red bowl 0 0.25 1 0 1
Novel Object pick up the 5 and put it in the white bowl 0 0 0 0 0.25

Multiple pick up the lays chip and put it in the pan 0.25 0.25 0.75 0 1
Multiple pick up the garlic and put it in then pan 0.25 0 1 0 0.25
Multiple pick up the ”K” and put it in the pan 0.25 0 0.5 0 1
Multiple pick up the pocky and put it in the pan 0 0.25 0 0.25 0.25

Table 4: Detailed results of real-world evaluation. The first column indicates the variation category,
while the second column presents the language instruction. For the pick and place task, 0.25
points are awarded for each successful action: reaching the object, picking it up, moving it to the
target container, and placing it inside. For the knock down task, 0.5 points are awarded for touch-
ing the correct object and successfully knocking it down. For the press button task, 0.5 points
are awarded for positioning the gripper above the correct button and successfully pressing it.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Original Image Hamster w/o Sim Data Hamster RT-Trajectory (CaP) RT-Trajectory (GPT4-o)

Instr: Screw in the
light bulb on the

lamp

Instr: Move the
block on the right

to Taylor Swift

Instr: Press the
button with color of
leaf, then press the
button with color of

banana

Figure 11: Human VLM evaluation example images and instructions along with corresponding
trajectories from HAMSTER without any finetuning on (RLBench) simulation data, HAMSTER
finetuned on all the data in Section 4.1, RT-Trajectory (Gu et al., 2023) with Code-as-Policies (Liang
et al., 2023) powered by GPT-4o (Achiam et al., 2023), and RT-Trjaectory powered by GPT-4o
directly.

We evaluate the following VLM models: (1) zero-shot state-of-the-art closed-source models such
as GPT-4o using a similar prompt to ours (shown in Figure 9), (2) zero-shot state-of-the-art closed-
source models such as GPT-4o but using Code-as-Policies (Liang et al., 2023) to generate paths as
described in Gu et al. (2023) (prompt in Figure 10), (3) finetuned open-source models (VILA-1.5-
13b) on the data sources described in Section 4.1, but excluding the simulation trajectories from the
RLBench dataset, (4) finetuned open-source models (VILA-1.5-13b) on the data sources described
in Section 4.1, including path sketches from the RLBench dataset. The purpose of these evaluations
is to first compare with closely related work that generates 2D trajectories using pretrained closed
source VLMs Gu et al. (2023) (Comparison (1) and (2)). The comparison between (3) and (4) (our
complete method) is meant to isolate the impact of including the simulation path sketches from the
RLBench dataset. In doing so, we analyze the ability of the VLM to predict intermediate paths to
transfer across significantly varying domains (from RLBench to the real world).

The results suggest that: (1) zero-shot path generation, even from closed-source VLMs Gu et al.
(2023) such as GPT-4o with additional help through Code-as-Policies (Liang et al., 2023), under-
performs VLMs finetuned on cross-domain data as in HAMSTER; (2) inclusion of significantly
different training data such as low-fidelity simulation during finetuning improves the real-world per-
formance of the VLM. This highlights the transferability displayed by HAMSTER across widely
varying domains. These results emphasize that the hierarchical VLA approach described in HAM-
STER can effectively utilize diverse sources of cheap prior data for 2D path predictions, despite
considerable perceptual differences.

D.2 VLM REAL WORLD GENERALIZATION STUDY

The full list of task descriptions for this study is below (see Appendix D.1 for the main experiment
details). Duplicates indicate different images for the same task. We plot some additional comparison
examples in Figure 11. Note that the path drawing convention in images for this experiment differ
from what is given to the lower-level policies as described in Section 4.2 as this multi-colored line
is easier for human evaluators to see.

1. screw in the light bulb on the lamp

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Method VLM Finetuning Rank Rank Rank
Data Exc. Real RLB. Real RLB. All

RT-Traj. 0-shot GPT-4o - 3.40 3.63 3.47
RT-Traj. CaP GPT-4o - 3.57 3.36 3.41
HAMSTER VILA Our Exc. Sim RLB. 1.78 2.39 2.13
HAMSTER VILA Our 1.59 1.28 1.40

Table 5: Ranking-based human evaluation of different VLMs, averaged across various real-world evaluation
tasks. Results indicate that HAMSTER including simulation data is most effective since it captures both spatial
and semantic information across diverse tasks from RLBench. This significantly outperforms zero-shot VLM-
based trajectory generation, as described in Gu et al. (2023)

2. screw in the light bulb on the lamp
3. screw in the light bulb on the lamp
4. screw out the light bulb and place it on the holder
5. screw out the light bulb and place it on the holder
6. screw in the light bulb
7. screw in the light bulb on the lamp
8. move the blue block on Taylor Swift
9. pick up the left block and put it on Jensen Huang

10. move the block on the right to Taylor Swift
11. place the yellow block on Kobe
12. pick up the blue block and place it on Jensen Huang
13. move the red block to Kobe
14. press the button on the wall
15. press the button to open the left door
16. press the button to open the right door
17. open the middle drawer
18. open the bottom drawer
19. open the top drawer
20. open the middle drawer
21. open the bottom drawer
22. press the button
23. press the button
24. press the orange button
25. press the orange button with black base
26. press the button
27. pick up the SPAM and put it into the drawer
28. pick up the orange juice and put it behind the red box
29. pick up the tomato soup and put it into the drawer
30. pick up the peach and put it into the drawer
31. move the mayo to the drawer
32. move the dessert to the drawer
33. pick up the object on the left and place it on the left
34. pick up the fruit on the left and put it on the plate
35. pick up the milk and put it on the plate

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

36. press the button with the color of cucumber, then press the button with color of fire
37. press the button with color of banana
38. press the button with color of leaf
39. press the button with color of leaf, then press the one with color of banana
40. press left button
41. pick up the left block on the bottom and stack it on the middle block on top
42. make I on top of C
43. put number 2 over number 5
44. stack block with lion over block with earth
45. pick up the left block on the bottom and stack it on the middle block on top
46. stack the leftest block on the rightest block
47. stack the block 25 over block L
48. put the left block on first stair

D.3 HUMAN RANKING

Figure 12: An example of results for human ranking. The trajectory is from blue to red with blue
circle and red circle denotes gripper close point and open point respectively. The grader is asked to
provide a rank to these trajectory about which trajectory has highest chance to succeed.

Due to the variety of possible trajectories that accomplish the same task, we use human rankings
to compare how likely produced trajectories are to solve the task instead of quantitative metrics
such as MSE. To do that, we generate trajectories for 48 image-question pairs with HAMSTER w/o
RLBench, HAMSTER, Code-as-Policy (Liang et al., 2023), and GPT4o (Achiam et al., 2023). See
Figure 12 for an example.

We recruit 5 human evaluators, who are robot learning researchers that have not seen the path outputs
of HAMSTER, to grade these 4 VLMs based on the instruction: “Provide a rank for each method (1
for best and 4 for worst). In your opinion, which robot trajectory is most likely to succeed. Traj goes
from blue to red, blue circle means close gripper, red circle means open gripper.” The evaluators
are allowed to give multiple trajectories the same score if they believe those trajectories are tied.
As they are robot learning researchers, they are familiar with the types of trajectories that are more
likely to succeed. Therefore, these rankings act as a meaningful trajectory quality metric.

E FAILURE ANALYSIS

This section outlines the failure modes observed during our experiments and provides a detailed
breakdown of the causes. Failures can be attributed to issues in trajectory prediction, trajectory
adherence, and action execution.

E.1 DIFFERENT FAILURE MODES

Trajectory Prediction Failures The Vision-Language Model (VLM) may fail to predict the cor-
rect trajectory due to several factors:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 13: Performance Distribution of RVT2+Sketch and 3DDA+Sketch

- Failure to understand the language goal: Although the VLM demonstrates strong capabilities in
handling diverse task descriptions, it struggles when the training set lacks similar tasks. This can
cause the model to misunderstand the goal and make inaccurate predictions.

- Incorrect trajectory prediction: In some cases, the VLM predicts an incorrect trajectory, either by
interacting with the wrong objects or misinterpreting the direction of the affordance.

- Dynamic changes in the environment: Since trajectories are generated at the beginning of a task,
significant environmental changes during execution can lead to failure. The model lacks the ability
to dynamically adjust the trajectory or reidentify the object initially referenced.

Trajectory Adherence Failures Failures in adhering to the predicted trajectory arise primarily
due to:

- 3D ambiguity: The use of 2D trajectory predictions introduces ambiguities, such as determining
whether a point is positioned above or behind an object, leading to execution errors.

- Incorrect object interaction: The low-level action model is not explicitly constrained to strictly
follow the predicted trajectory. As a result, it may deviate, interacting with the wrong object and
causing task failures.

Action Execution Failures Even when the trajectory is correctly predicted and adhered to, action
execution may still fail due to:

- Execution-specific issues: Despite training on a diverse set of actions, the model may fail during
execution. For example, in grasping tasks, an incorrect grasp angle can cause the object to slip,
resulting in a failed grasp.

E.2 FAILURE ANALYSIS

Our analysis in Figure 13 reveals distinct failure tendencies across methods.

For RVT, 72% of failures stemmed from the low-level model failing to follow the trajectory, while
28% were due to execution failures. In contrast, for 3DDA, only 10% of failures were related to
trajectory adherence, with 90% attributed to execution failures.

We hypothesize that this discrepancy arises because RVT incorporates a re-projection step, compli-
cating trajectory adherence. In contrast, 3DDA leverages a vision tower that processes the original
2D image, simplifying trajectory interpretation.

F SIMULATION EXPERIMENT DETAILS

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 14: Colosseum benchmark vari-
ations. Figure from Pumacay et al.
(2024), taken with permission.

Our simulation experiments are performed on Colos-
seum (Pumacay et al., 2024), a simulator built upon
RLBench (James et al., 2020) containing a large number
of visual and task variations to test the generalization
performance of robot manipulation policies (see Fig-
ure 14 for a visualization of a subset of the variations).
We use the front camera and remove all tasks in
which the camera does not provide a clear view of the
objects in the task, resulting in 14 out of 20 colos-
seum tasks (we remove basketball in hoop,
empty drawer, get ice from fridge,
move hanger, open drawer, turn oven on).

Colosseum contains 100 training episodes for each task,
without any visual variations, and evaluates on 25 eval-
uation episodes for each variation. We follow the same
procedure other than using just the front camera in-
stead of multiple cameras. We report results in Table 1
after removing variations with no visual variations (e.g.,
object friction).

Task openvla HAMSTER+RVT2 HAMSTER+3DDA
pick and place 0.46 0.79 0.78
press button 0.25 0.50 0.63
knock down 0.41 0.47 0.66

Table 6: Real world average success rates grouped by task type.

27

	Introduction
	Related Work
	Background
	HAMSTER: Hierarchical Action Models for Robotic Learning
	HAMSTER's VLM for producing 2D Paths Trained from Off-Domain Data
	Path Guided Low-Level Policy Learning

	Experimental Evaluation
	Real World Evaluation on Tabletop Manipulation
	Simulation Evaluation
	Generalization and Ablation Studies

	Conclusion and Limitations
	VLM Finetuning Dataset Details
	Implementation and Architecture Details
	VLM Implementation Details
	Low-level Policy Training Details

	Real World Experiment Details
	Training Tasks and Data Collection
	Baseline Training Details
	Evaluation Tasks

	Extended Results
	Impact of Design Decisions on VLM performance
	VLM Real World Generalization Study
	Human Ranking

	Failure Analysis
	Different Failure Modes
	Failure Analysis

	Simulation Experiment Details

