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ABSTRACT

As massive well-labeled single-cell RNA-seq (scRNA-seq) data are available
sequentially, automatic cell type annotation systems would require the model
to update to expand their internal cell type library continuously. However, the
model could suffer from the catastrophic forgetting phenomenon, in which the
model’s performance on the old tasks degrades significantly after it learns a new
task. To enable the smooth upgrading of the system, the model must possess the
ability to maintain performance on old tasks (stability) and adapt itself to learn
new tasks (plasticity). We call such an updating process continual compatible
learning. To adapt to this task, we propose a simple yet effective method termed
scROD based on sample replay and objective decomposition. Specifically, we first
maintain a memory buffer to save some cells from the previous tasks and replay
them to learn together with the next incoming tasks. Then we decompose two
training objectives in continual compatible learning, i.e., distinguishing new cell
types from old ones and distinguishing between new ones, to avoid forgetting the
model to varying degrees. Lastly, we assign distinct weights for two objectives to
obtain a better trade-off between model stability and plasticity than the coupled
approach. Comprehensive experiments on various benchmarks show that scROD
can outperform existing scRNA-seq annotation methods and learn many cell types
continually over a long period.

1 INTRODUCTION

The rapid development of single-cell RNA sequencing (scRNA-seq) technologies allows us to study
tissue heterogeneity at the cellular level (Patel et al., 2014). Cell type annotation is one fundamental
step in analyzing scRNA-seq data since many downstream cellular and gene-level analyses, such as
cell-cell interaction and gene network analysis, are often based on specific cell types (Satija et al.,
2015). Initially, single-cell communities annotated cell types through unsupervised cell clustering and
differential gene expression analysis, which was gradually replaced by supervised cell classification
methods as the scale of sequencing data grew larger. This approach is particularly evident and
powerful in the era of deep learning (Cao et al., 2020b). In particular, cell classification in a universal
scenario is often accomplished by mapping each cell onto a vector space using a function (“model”)
implemented by a deep neural network. The outputs of such a function in response to a cell are
often represented as its embedding and prediction, and the prediction is usually calculated by the
transformation of similarity between the cell embedding and cell type embedding (widely called
prototype). A good embedding is expected to cluster cells belonging to the same cell type in the
embedding space.

As cells of a new cell type become available, their embedding vectors are used to spawn a new
cluster in the feature space, possibly modifying its metric to avoid crowding, in the form of lifelong
learning or continual learning (Parisi et al., 2019). As time goes by, the annotation tasks grow, and
the number of learned cell types increases with newly trained models. However, to preserve the
acquired knowledge of old models, one has to train the new models by re-processing all task-related
datasets that we have seen to recreate the clusters. Otherwise, the models would suffer from a
phenomenon called catastrophic forgetting, where the performance of the model on the old tasks
degrades significantly after it learns a new task (De Lange et al., 2021). Therefore, we aim to
design an automatic cell type annotation system that enables new models to be deployed without
forgetting previous knowledge and having to retrain all the tasks/datasets before. We call such a
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process continual compatible training, and the model possesses the ability to maintain performance
on old tasks/datasets (stability) and adapt itself to learn new tasks/datasets (plasticity). Nevertheless,
an excess of stability or plasticity can interfere with the other, and hence the model needs to make a
trade-off between stability and plasticity.

For continual compatible learning of the single-cell annotation system, we need to learn two objectives
for each new dataset or task, including distinguishing new cell types from old cell types (i.e.,
new/old cell type distinction) and distinguishing between different new cell types (i.e., new cell type
distinction). But these two training objectives may cause different degrees of forgetting in continual
compatible learning and thus different trade-off strategies between model stability and plasticity
are required for these two learning objectives. More specifically, if a new learning objective leads
to more forgetting, a good continual compatible learner should pay more attention to the model’s
stability for this objective. On the contrary, if a new learning objective leads to less forgetting, a good
continual compatible learner should pay more attention to the model’s plasticity for this objective.
However, when the annotation model mixes these different learning objectives, adjusting one of
the learning objectives may influence others, inhibiting the model from achieving a good trade-off
between stability and plasticity.

To address these issues, we propose a novel continual compatible annotation framework called scROD
from the perspective of sample replay and objective decomposition. First, to avoid the overwriting
of old cell types’ knowledge in previous tasks by novel information from new tasks, we maintain a
memory buffer to save some samples from the previous tasks and then use them to learn together
with current samples. The exemplar method is a sample selection technique based on the nearest
prototype classification confidence. It is worth noting that our exemplar set approximates the cell
type prototype well and makes it possible to reduce redundant samples during the model’s runtime.
Second, by deeply analyzing the impacts of new/old cell type distinction and new cell type distinction,
we find that these two learning objectives cause different degrees of forgetting. This evidence directly
validates that mixing them is detrimental for the model to make a good trade-off between stability
and plasticity. Third, we separate the two objectives for the new task by decomposing the loss of the
new dataset. As a result, scROD can assign different weights for different objectives, which provides
a way to obtain a better trade-off between stability and plasticity than the approach with coupled loss.
To evaluate the performance of scROD fairly, we select massive large-scale scRNA-seq datasets and
design comprehensive continual compatible annotation benchmarks. Extensive experiments on these
benchmarks show that scROD settles the catastrophic forgetting problem effectively and can learn
many cell types continually over a long period.

2 RELATED WORK

2.1 CELL TYPE ANNOTATION FOR SCRNA-SEQ DATA

Without losing generality, cell type annotations are mainly divided into manual annotation methods
and automatic annotation methods (Pasquini et al., 2021). The former classifies cells by analyzing
the differentially expressed genes of clusters to obtain marker genes with biological functions (Zhang
et al., 2019), while the latter classifies cells by using supervised classification methods based on
gene expression profiles (Alquicira-Hernandez et al., 2019). Considering the heavy workload of
manual annotation methods in large-scale data, this paper focuses on continuous compatible learning
of automated annotation methods. Recently, the single-cell community has seen a large number of
automated annotation methods based on deep learning techniques (Flores et al., 2022). For example,
scNym is a cell type classification model that uses semi-supervised and adversarial representation
learning strategies (Kimmel & Kelley, 2021). scArches uses transfer learning to enable efficient,
iterative reference building and contextualization of new datasets (Lotfollahi et al., 2022). SCALEX
projects cells into a batch-invariant embedding space in a truly online manner without retraining
the model (Xiong et al., 2022). CIForm is a Transformer-based cell-type annotation framework for
scRNA-seq data that introduces the patch concept (Xu et al., 2023). scDOT combines distance metric
learning and optimal transport to create a cell type annotation framework (Xiong & Zhang, 2024).
However, none of these methods are actually suitable for our tasks, and we would demonstrate that
they suffer from severe catastrophic forgetting problems.
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Figure 1: Schematics of scROD. The input of the model in the t-th task includes old samples stored in the
memory buffer and the new data. Three loss function Lcur , Lpre and Lrep are all based on the classifier’s
results. Specifically, Lrep replays the old knowledge by using exemplar sets. Lpre is related to new/old cell type
distinction and Lcur is related to new cell type distinction.

2.2 CONTINUAL LEARNING AND COMPATIBLE LEARNING

Continual learning deals with cases where an existing model evolves over time (Masana et al., 2022).
In (Li & Hoiem, 2017), model distillation is used as a form of regularization when introducing new
classes. In (Rebuffi et al., 2017), old class centers are used to regularize samples from the new classes.
Methods addressing catastrophic forgetting are most closely related to our work, as a common reason
for forgetting is the changing of the embedding feature for the subsequent classifiers. The concept
“compatibility” is a design characteristic considered in software engineering (Nagarakatte et al., 2009).
Forward compatibility allows a system to accept input intended for a later version of itself (Zhou
et al., 2022), and backward compatibility allows for interoperability with an older legacy system
(Srivastava et al., 2020). BCT is an algorithm that allows new embedding models to be compatible
with old models (Shen et al., 2020). Other works attempt to construct a unified representation space
on which models are compatible (Hu et al., 2022). These procedures also modify the training of
individual models to ensure that they are easy to transform into this unified embedding space. In this
paper, our task incrementally trains the new model and allows the old sample to be compatible with
the new sample in the feature space of the new model.

3 METHOD

3.1 PROBLEM FORMULATION

We begin with problem setting and notations. In continual compatible annotation scenarios, scRNA-
seq data are seen in a data stream and are learned by the model in sequential order, i.e., sample sets
{X1,X2, ...} with label sets {Y1,Y2, ...}. They can come from the same or different scRNA-seq
datasets. We use Dt = {xt

i, y
t
i}

Nt
i=1 to denote the training dataset of the t-th task, where Nt is the

number of cells for task t. For convenience, we assume that the specific cell type set of t-th task is
Ct. The label space relationship among datasets seen in the different tasks can be non-overlap or
partial-overlap.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Our model consists of a feature extractor hθ with the parameter set θ and a classifier fϕ with
the parameter set ϕ (see Figure 1). Given a cell x, the model produces the annotation logits
o(x; θ, ϕ) = fϕ(hθ(x)), which is used to calculate the training loss or to predict the cell type
label in testing. Now we introduce the gradient-based analysis on logits in continual comparible
learning. Specifically, for the t-th task, the model is usually learned by minimizing the softmax-based
cross-entropy loss,

Lce = −
∑
i∈Dt

log(pyi), pyi =
exp(oyi)∑|∪t
l=1

Cl|
j=1 exp(oj)

, (1)

where | ∪t
l=1 Cl| is the number of cell types that the model has seen until t-th task. Given a training

sample x of cell type yi, the gradients on logits (yj ̸= yi) are given by,

∂Lce(o(x; θ, ϕ))

∂oyi
= pyi − 1,

∂Lce(o(x; θ, ϕ))

∂oyj
= pyj . (2)

From the above equation, we can see that x gives its true logit oyi
a negative gradient and other logits

oyj
positive gradient. As the gradient update rule for a parameter w is w = w − lr ∗ ∇w, where

lr is the learning rate. The negative gradient pyi − 1 results in an increase in oyi for the true cell
type yi and the positive gradient pyj results in a decrease in oyj for each wrong cell type yj . Thus,
the negative gradient encourages the model to output a larger probability for the true cell type and
positive gradients help output lower probabilities for the wrong cell types. However, as the model has
no access to the training data of previous tasks when it learns a new task continually, all gradients
on previous cell types are positive during the new task training, i.e., an imbalance of positive and
negative gradients. Then the model tends to output smaller probabilities on the previous cell types,
biasing the classification towards the new cell types.

Old cell 
types

New cell types

New cell 
type 1

New cell type 2
New/old cell type distinction New cell type distinction

(a) Different learning objectives

More stability More Plasticity More stability More Plasticity More stability More Plasticity 

Ours

Using ���� as a whole Decoupling  ���� into  ���� and  ����

:Stability :Overall plasticity

:Better trade-off area :Plasticity for new/old 
cell type distinction

:Plasticity for new cell 
type distinction

(b) Stability-plasticity trade-off in different strategies

Figure 2: (a) Two different learning objects with loss funtion Lpre and Lcur . (b) Contrast diagram of using Lnew

as a whole and decomposition of Lnew into Lcur and Lpre. y-axis represents the model’s abilities, including
plasticity and stability.

3.2 CONSTRUCTING MEMORY BUFFER

Based on the above analysis, we can argue that storing some samples that have appeared before is
a necessary step in balancing gradient propagation and thus preventing the catastrophic forgetting
problem. However, two conditions for storing samples should be considered. On the one hand, the
manner of storing all the train samples that have appeared will lead to large memory requirements
as the number of samples previously learned increases. On the other hand, if samples are stored
randomly without regard to their cell types, some cell types may have no samples saved, causing
models to perform poorly on them. Taking these two conditions into account, we need to select a
subset of samples in the current task carefully as exemplar samples saved in a memory buffer M
after finishing every task, and then replay the whole memory buffer M to join the next stage training.
Taking the t-th task as an example, the set of cell types that have been observed before can be denoted
as {C1, C2, ..., Ct−1}, respectively, and the number of cell types newly added at the t-th stage can be
denoted as κt = |Ct \ (∪t−1

k=1Ck)|. Then, the exemplar sample sets at the t-th stage {Et
1, E

t
2, ..., E

t
κt
}

should be constructed dynamically out of the data stream. After the training of t-th task, we can
add these exemplar sample sets into the memory buffer M and update it. To control the size of
memory requirements, we assume that the number of exemplar samples for every cell type is fixed as
a hyperparameter τ . In the process of exemplar selection, it is assumed that the selected exemplars
should be sufficiently close to the corresponding cell type center, thereby creating a representative set
of samples from such a distribution. Specifically, for any cell type yi at the t-stage, we can obtain the
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logit of each sample xi that belongs to this cell type, which can be expressed as o(xi)yi
. Then, we

can select the top τ samples with the largest logit as exemplars for this cell type. Moreover, for those
old cell types that were learned before, the exemplar set is not reselected at the current stage.

3.3 ANALYZING LEARNING OBJECTIVES

After maintaining a memory buffer M with a limited size to store a small portion of old samples, we
can combine them with the new data in the next task to update and upgrade the model. Specifically,
when receiving a mini-batch of new cells Bt from a new task t, the model retrieves a mini-batch
of samples BM from M and replays them with the new samples Bt to achieve a trade-off between
stability and plasticity. The losses used in our model can be written as follows,

Lcls =
1

|Bt|

|Bt|∑
i=1

Lnew(fϕ(hθ(x
t
i)), y

t
i) +

1

|BM|

|BM|∑
i=1

Lrep(fϕ(hθ(x
M
i )), yM

i ). (3)

Here, Lnew is the loss for the new task and is mainly for the plasticity of the model. We can use the
cross-entropy loss like Equation 1 to define it. In contrast, Lrep is the replay loss and is mainly for
the stability of the model. For it, we can use the cross-entropy loss that is only constrained to the
previous cell types before task t, i.e.,

Lrep(fϕ(hθ(x
M
i )), yM

i ) = − log(
exp(oyM

i
)∑|∪t−1

l=1
Cl|

j=1 exp(oj)
). (4)

But one detail to note is that Lnew is not only related to new/old cell type distinction but also related
to new cell type distinction. Actually, they are two different learning objectives. Therefore, we
decompose the loss Lnew according to the two learning objectives as follows,

Lnew(fϕ(hθ(x)), y) = − log(
exp(oyi)∑|∪t
l=1

Cl|
j=1 exp(oj)

) (5)

= − log(
exp(oyi)∑|Ct\∪t−1
l=1

Cl|
j=1 exp(oj)

)− log(

∑|Ct\∪t−1
l=1

Cl|
j=1 exp(oj)∑|∪t

l=1
Cl|

j=1 exp(oj)
) (6)

= Lcur(fϕ(hθ(x)), y; Ct \ ∪t−1
l=1Cl) + Lpre(fϕ(hθ(x))). (7)

Here, we use Lcur(·; Ct \ ∪t−1
l=1Cl) to denote the cross-entropy loss restricted to new cell types.

Obviously, Lcur(fϕ(hθ(x)), y; Ct \ ∪t−1
l=1Cl) is related to new cell type distinction; Lpre(fϕ(hθ(x)))

is related to new/old cell type distinction (see Figure 2(a)). Note that both Lcur(fϕ(hθ(x)), y; Ct \
∪t−1
l=1Cl) and Lpre(fϕ(hθ(x))) are for the plasticity of the model and may cause catastrophic forgetting.

Furthermore, these two losses have the same weight in Equation 3 due to the coupling property.

(a) Quake 10x (b) Quake Smart-seq2

Figure 3: (a & b ) The variation of the first task’s accuracy with the training task number on different datasets.

To evaluate the impact of Lcur(·; Ct \ ∪t−1
l=1Cl) and Lpre(·), we conduct control experiments on two

datasets Quake 10x and Quake Smart-seq2 from Tabula Muris atlas. Specifically, we first let the
model learn on the first task through valina cross-entropy loss. Then, before learning the subsequent
tasks, we remove one of the two losses in Equation 7 and analyze the forgetting of the first task.
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Table 1: Comparative analysis of performance among diverse baselines in intra-tissue continual compatible
annotation benchmark.

Task 1 (Baron_human) Task 2 (Enge) Task 3 (Muraro) Task 4 (Segerstolpe)

Pancreas tissue old new overall old new overall old new overall old new overall

Finetune - 98.0 98.0 86.1 94.7 87.9 93.3 96.8 93.9 83.1 92.9 83.8

Joint - 98.0 98.0 97.7 96.5 97.5 97.5 95.8 97.2 97.2 98.9 97.4

scNym - 97.4 97.4 94.5 95.3 94.6 95.7 95.7 95.7 92.8 95.9 93.1

scArches - 96.1 96.1 61.3 78.7 65.0 78.3 79.2 78.4 77.9 73.6 77.6

SCALEX - 92.9 92.9 76.2 72.5 75.4 71.3 65.8 70.4 66.0 64.5 65.9

CIForm - 98.4 98.4 79.6 94.2 82.7 92.6 96.6 93.3 82.8 92.5 83.5

scDOT - 94.5 94.5 64.7 93.1 71.9 80.5 83.8 81.3 80.1 85.6 81.5

Replay - 98.0 98.0 97.9 96.4 97.6 97.1 96.0 97.0 96.8 99.2 97.0

scROD - 98.2 98.2 98.0 96.2 97.6 97.1 96.2 97.0 96.8 99.2 97.0

Table 2: Comparative analysis of performance among diverse baselines in inter-tissue continual compatible
annotation benchmark.

Task 1 (Eye) Task 2 (Intestine) Task 3 (Pancreas) Task 4 (Stomach)

Cao atlas old new overall old new overall old new overall old new overall

Finetune - 98.6 98.6 3.4 97.8 59.0 11.7 97.6 41.0 30.2 96.5 34.2

Joint - 97.5 97.5 97.8 96.2 96.9 96.4 94.9 95.9 95.6 84.4 94.9

scNym - 99.5 99.5 71.1 98.4 87.2 81.4 93.9 85.7 75.2 86.8 75.9

scArches - 99.4 99.4 68.0 97.4 85.3 82.9 93.4 86.5 76.1 77.2 76.2

SCALEX - 97.9 97.9 32.4 79.4 60.1 60.7 74.5 65.4 58.2 34.4 56.8

CIForm - 97.4 97.4 53.6 97.2 80.1 78.4 97.4 84.2 76.7 93.2 80.8

scDOT - 98.5 98.5 47.3 96.2 76.6 70.1 95.3 74.9 71.2 91.5 74.5

Replay - 98.6 98.6 93.3 97.9 96.0 80.7 97.7 86.5 87.3 94.4 87.7

scROD - 99.1 99.1 97.7 97.4 97.5 88.2 97.0 91.2 89.3 92.6 89.5

The experimental results in Figure 3 show the annotation accuracy of the first task when the model
learns subsequent tasks. We can see that removing Lpre(·) results in less forgetting of the first
task than removing Lcur(·; Ct \ ∪t−1

l=1Cl). In other words, Lpre(·) leads to more forgetting than
Lcur(·; Ct \ ∪t−1

l=1Cl). It is intuitively reasonable for these results. Since our method keeps limited
samples in the memory buffer when the model learns a new task, it has access to much fewer samples
from the old cell types than from the new cell types. So utilizing loss Lpre(·) to learn to distinguish
between new cell types and old cell types introduces a risk of biasing the model towards the new cell
types, potentially leading to serious catastrophic forgetting. In contrast, loss Lcur(·; Ct \ ∪t−1

l=1Cl) is
independent of the old cell types, thereby avoiding introducing a risk of biasing the model towards
the new cell types. In particular, based on this analysis, we can conclude that a good continual
compatible learner should assign a larger weight to Lcur(·; Ct \ ∪t−1

l=1Cl) and a smaller weight to
Lpre(·). However, loss in Equation 3 fails to achieve this goal due to the coupling property.

3.4 DECOMPOSING OBJECTIVE FUNCTION

The last section has demonstrated the impact of different learning objectives on the model’s forgetting
and the issue of the coupling property. To address this issue, we propose a new strategy called
objective decomposition to remove the coupling property. Specifically, our method uses the following
loss to perform continual compatible learning,

Lcls =
1

|Bt|

|Bt|∑
i=1

(α1Lcur(fϕ(hθ(x)), y; Ct \ ∪t−1
l=1Cl) (8)

+ α2Lpre(fϕ(hθ(x)))) +
1

|BM|

|BM|∑
i=1

Lrep(fϕ(hθ(x
M
i )), yM

i ),

where α1 and α2 are two coefficients that control the weight of the two different learning objectives
(see Figure 2(b)). The finding in the last section tells us that we should set α2 to be smaller than α1,
to make the model achieve a better trade-off between stability and plasticity than the approach with
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Table 3: Comparative analysis of performance among diverse baselines in inter-data continual compatible
annotation benchmark.

Task 1 (He) Task 2 (Madissoon) Task 3 (Stewart) Task 4 (Vento)

Mixed atlas old new overall old new overall old new overall old new overall

Finetune - 78.7 78.7 2.0 90.9 72.7 37.1 95.1 51.2 22.6 97.9 52.7

Joint - 78.7 78.7 79.0 90.9 88.5 88.5 93.3 89.7 88.6 96.1 91.6

scNym - 83.2 83.2 34.0 90.4 78.9 75.6 87.4 78.5 69.2 91.2 78.0

scArches - 74.9 74.9 35.3 88.6 77.7 67.7 85.2 71.9 70.5 90.8 78.6

SCALEX - 78.2 78.2 10.0 85.4 70.0 60.8 60.7 60.8 63.2 81.3 70.4

CIForm - 81.5 81.5 48.7 90.2 80.6 73.1 93.9 79.7 71.4 94.0 79.2

scDOT - 77.9 77.9 39.0 89.2 78.1 74.5 89.6 78.8 71.3 92.4 78.3

Replay - 79.2 79.2 78.9 90.9 88.5 83.4 95.4 86.3 72.1 97.6 82.3

scROD - 80.2 80.2 81.0 91.1 89.0 86.3 95.0 88.5 78.8 97.0 86.1

Figure 4: UMAP visualization of test data for four methods on the intra-tissue benchmark after the fourth task.

coupled loss. Furthermore, since Lpre(·) is for new/old cell type distinction, we set α2 proportional to

the ratio |Ct\∪t−1
l=1Cl|

|∪t−1
l=1Cl|

to make the model not bias toward old or new cell types, i.e., α2 = ρ
|Ct\∪t−1

l=1Cl|
|∪t−1

l=1Cl|
,

where ρ is a hyperparameter. In contrast, since Lcur(·; Ct \ ∪t−1
l=1Cl) is only related to the new cell

types, we set α1 to be a constant value. Note that when the number of tasks increases, the number
of old cell types also increases. In particular, when the number of old tasks is large, the number of
old cell types | ∪t−1

l=1 Cl| is usually much larger than the number of new cell types Ct \ ∪t−1
l=1Cl. At

this time, α2 is much smaller than α1. Setting α2 to be as large as α1, or setting α1 to be as small as
α2 fails to make the model achieve a good trade-off between stability and plasticity, which will be
verified in the experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. To simulate the continual compatible learning of scRNA-seq annotation
systems, we design three types of annotation scenarios: intra-tissue annotation, inter-tissue annotation,
and inter-data annotation. For the first one, we select four datasets from pancreatic tissue generated
by different sequencing technologies, namely Baron_human (Baron et al., 2016), Enge (Enge et al.,
2017), Muraro (Muraro et al., 2016), and Segerstolpe (Segerstolpe et al., 2016). They share most of
the cell types, especially for Baron_human, which includes almost all cell types in the other three
datasets. For the second one, we use a large-scale atlas dataset called Cao (Cao et al., 2020a) and
select four tissues from it, i.e., Eye, Intestine, Pancreas, and Stomach. Compared with the intra-tissue
setting, only a small number of cell types are shared between the four tissues, which can easily lead
to catastrophic forgetting. For the third one, we choose four large-scale datasets that are sequenced by
various tissues and technologies, namely He (He et al., 2021), Madissoon (Madissoon et al., 2020),
Stewart (Stewart et al., 2019), and Vento (Vento-Tormo et al., 2018). It is worth noting that there
is a strong batch effect between them, which directly affects the accuracy of annotations. In each
experimental setting, we learn the cell type knowledge from each dataset sequentially, i.e., a total of
four stages. Unless otherwise noted, the train set and test set are split according to the ratio 1:9 in
each stage, i.e., labeled ratio=0.1. At each stage, we calculate three types of accuracy: the annotation
accuracy on the test set in all previous stages, that is, the old accuracy, which quantitatively expresses
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(a) Labeled ratio (b) Exemplar size (c) ρ (d) ρ

Figure 5: Overall accuracy on inter-tissue and inter-data benchmarks. (a) Varying the labeled ratio; (b) Varying
the exemplar size; (c, d) Varying the parameter ρ.

the stability of the model; the annotation accuracy on the test set in the current stage, that is, the
new accuracy, which quantitatively expresses the plasticity of the model; the annotation accuracy on
all test sets up to the current stage, that is, the overall accuracy, which quantitatively expresses the
trade-off between stability and plasticity. The accuracy in the result tables is the average of three runs.

Comparison baselines. We first select four state-of-the-art deep single-cell annotation methods,
scNym (Kimmel & Kelley, 2021), scArches (Lotfollahi et al., 2022), CIForm (Xu et al., 2023), and
scDOT (Xiong & Zhang, 2024), for comparison to illustrate that they are not directly adapted to our
tasks. At the same time, we also compare with SCALEX (Xiong et al., 2022), an online annotation
method, which claims to be able to project cells into a common embedding space without retraining
the model. Without loss of generality, the results obtained by the three methods are all run under their
default parameter settings. To confirm the advantage of our objective decomposition strategy, we
also use the standard cross-entropy function as the training objective, and this baseline is denoted
as Replay. We also include two methods without continual learning, Joint and Finetune, in the
comparison. Here, Joint denotes the method that learns all the tasks jointly while Finetune denotes
the method that learns all the tasks sequentially without any sample replay. The accuracy of Joint can
be treated as the accuracy upper-bound and the accuracy of Finetune can be treated as the accuracy
lower-bound.

Implementation details. Our algorithm is implemented by PyTorch and we conduct all experiments
on one Tesla A100 GPU. Similar to scNym, scArches, and SCALEX, we also use the denoising
autoencoder as our basic network (Eraslan et al., 2019). The encoder consists of two fully connected
layers with sizes 512 and 256 respectively. The size of the low-dimensional latent space is 128,
on top of which we externally attach a prototype-based classifier. The decoder is a symmetrical
structure to the encoder and also consists of two fully connected layers with sizes of 256 and 512
respectively. The training batch size is set to 256 and the optimizer is Adam with a learning rate
of 1e-4. The exemplar size τ for each learned cell type is set to 20 by default. We use the weight
hyperparameters α1 = 1.0 and ρ = 0.1 in classification loss for model training. For each continual
learning stage, the whole model is updated for 200 epochs. Subsequent stages utilize the checkpoint
from the terminating stage to initiate the model.

4.2 EXPERIMENTAL RESULTS

Intra-tissue benchmark. Table 1 shows the accuracy of each method in four sequential tasks on
pancreatic tissue. By comparing the old and overall accuracy of Finetune and Joint, it is not difficult
to see that even when fewer new cell types appear in each stage, continual compatible annotation
will still have a slight catastrophic forgetting problem. However, after we use the memory buffer
to store a very small number of samples, the replay strategy immediately alleviates this forgetting
issue, and scROD also performs well. Both of them find a good trade-off between remembering old
knowledge and accumulating new knowledge. Among the other three annotation methods, we found
that scNym performed relatively competitively, followed by CIForm, scDOT, and scArches. On the
contrary, SCALEX, which was customized for online annotation, performed less satisfactorily. The
main reason for this phenomenon is that scNym learns a low-dimensional latent space that is more
suitable for continual annotation, while the embedding representation learned by SCALEX in the
absence of training data from the previous stage cannot accurately separate old cell types and new
cell types.

Inter-tissue benchmark. We turn to observations of continued compatible annotation scenarios
across tissues where new cell types emerge frequently. Table 2 shows the annotation accuracy of
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each method in four different tissues on the Cao atlas. First of all, compared with the results in the
intra-tissue benchmark, Finetune’s accuracy on the old task dropped off a cliff starting from the
second task. Although Finetune’s new accuracy is excellent compared to Joint, its overall accuracy
rate is almost unacceptable. However, Replay alleviates the collapse of the old accuracy to a certain
extent by replaying a small number of old samples, while scROD further improves the old accuracy
based on it by decomposing the loss function, achieving a better balance between stability and
plasticity. Interestingly, by comparing Joint and scROD, we find that the new accuracy of scROD is
higher, and the old accuracy of Joint is higher, which shows that massive samples of old cell types
will also restrict the annotation of new cell types. Similar to the results of the intra-tissue setting,
scNym performs better than the other four tested annotation algorithms but is still far inferior to our
method. This evidence suggests that existing annotation methods are not well suited to the task of
continual compatible annotation across tissues.

Inter-data benchmark. Next, we analyze the challenging task of continual compatible annotation
in the inter-data setting, where there are serious batch effects between datasets. Judging from the
results in Table 3, the overall accuracy of almost all methods has declined compared with the former
two benchmarks, which shows that the batch effect affects the accuracy of the annotation process.
However, compared with Finetune and other annotation algorithms, our methods Replay and scROD
can still solve the catastrophic forgetting problem well, especially scROD, which not only benefits
from the sample replay strategy but also benefits from decoupling the learning objectives of old and
new tasks. In addition, we can also find that scROD even performs better than the Joint baseline
on some tasks. This is not surprising because, for such a large-scale continuous compatibility task,
a subset of cells at classification boundaries can confuse the discriminative ability of the model.
Although scNym, CIForm, scDOT, and scArches still outperform SCALEX on this benchmark, it is
obvious that the gap between them is relatively smaller than the gap on the former two benchmarks.
This may also be due to the fact that these methods have difficulty learning discriminative feature
representations on large-scale benchmarks that carry severe batch effects.

Feature visualization. To further observe the annotation result of each method after continual
learning intuitively, we extract their low-dimensional embedding features and use the UMAP approach
to visualize them in the two-dimensional plane. Figure 4 shows the UMAP plots of four methods’
test data on the intra-tissue benchmark after training the last task. We can see that SCALEX and
scArches mix most different cell types, seriously compromising the plasticity and stability of the
model. scNym performs better than them but still does not separate pancreatic D cells, pancreatic PP
cells, and type B pancreatic cells clearly. On the contrary, scROD performs well, effectively distances
different cell types, and avoids forgetting problems when the model continuously learns multiple
tasks. In addition, we also present the visualization of scROD after each task in the supplementary.

Robustness analysis. We first discuss the effect of the labeled ratio on the model, which controls the
ratio of train and test data in each task. We set its value in the range of [0.05, 0.075, 0.1, 0.125, 0.15].
Figure 5(a) shows the trends of the overall accuracy at the fourth tasks of scROD and other baselines
on inter-data benchmarks, respectively. It can be seen that the overall accuracy of scROD is relatively
stable with respect to the labeled ratio, indicating that the effect of the labeled ratio on our method
is slight. Moreover, scROD maintains satisfactory performance among the compared methods,
validating its superiority in preventing catastrophic forgetting and resisting the batch effect.

Then we study the impact of τ that controls the number of exemplars stored for each cell type. We
also conduct experiments on inter-data benchmarks and give the variation of the overall accuracy for
Replay and scROD at the fourth task in Figure 5(b). The value of τ ranges from 10 to 30 and the
results show that the overall accuracy increases as τ increases for both methods, indicating that we
need to balance the model precision and computational burden in practicality. We can also see that
when the value of τ is small, such as 10, scROD can still provide excellent performance, validating
the superiority of scROD under an extremely limited memory buffer.

Ablation study. We change the value of α1 and α2 to show the effectiveness of setting α1 = 1

and α2 = 0.1
|Ct\∪t−1

l=1Cl|
|∪t−1

l=1Cl|
. We first set the value of α1 = α2 to remove the decoupling property.

There are two possibilities to set α1 = α2. The first possibility is to set α1 = α2 = 1 and the

second possibility is to set α1 = α2 = 0.1
|Ct\∪t−1

l=1Cl|
|∪t−1

l=1Cl|
. Table 4 shows the results of these two

possibilities, which are significantly inferior to our method. This indicates that separating the two
different objectives by decomposing the loss of the new task is necessary for the model to achieve

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study for α1 and α2 on the inter-tissue and inter-data benchmarks, where Cnew
Cold

=
|Ct\∪t−1

l=1
Cl|

|∪t−1
l=1

Cl|
.

inter-tissue inter-data

Choice old new overall old new overall

α1 = 1, α2 = 0.1 Cnew
Cold

89.3 92.6 89.5 78.8 97.0 86.1

α1 = 1, α2 = 1 88.2 93.6 88.5 76.9 97.5 85.2

α1 = 0.1 Cnew
Cold

, α2 = 0.1 Cnew
Cold

87.7 91.8 87.3 76.3 96.6 84.4

α1 = 0.1 Cnew
Cold

, α2 = 1 86.0 28.9 82.6 81.0 55.7 70.9

good performance. In Table 4, we also show the result of a variant by exchanging the value of α1

and α2, i.e., α = 0.1
|Ct\∪t−1

l=1Cl|
|∪t−1

l=1Cl|
and α2 = 1. We can find that the performance of this variant is still

significantly inferior to our method.

Hyperparameter sensitivity. We vary the value of ρ in the α2 setting to show its impact on the
performance of the model. Figure 5(c) and Figure 5(d) give the analysis of the inter-tissue and
inter-data benchmarks. Note that when ρ = 0, α2 = 0 and the weight of Lpre is always zero. At this
time, the Lnew degenerates to the situation where the model focuses on new cell type distinction.
When the value of ρ increases, α2 also increases, and the performance of the model first increases
and then decreases. This phenomenon is reasonable since a larger weight for Lpre leads to more
forgetting and thus influences the overall model performance.

5 CONCLUSION

In this paper, we propose a novel method called scROD for continual compatible learning of scRNA-
seq data. scROD introduces the concepts of sample replay and objective decomposition to alleviate
the catastrophic forgetting problem encountered by annotation systems during update upgrades.
Extensive experiments on large-scale intra-tissue, inter-tissue, and inter-data benchmarks show that
scROD can achieve a better trade-off between model stability and plasticity than other state-of-the-art
scRNA-seq annotation methods.
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A APPENDIX

Table 5: The detailed information of all used datasets in our experiments.

Data Tissue Technique Cell type number Cell number Reference
Baron_human Pancreas inDrop 9 8569 (Baron et al., 2016)

Enge Pancreas Smart-seq2 6 2282 (Enge et al., 2017)
Muraro Pancreas CEL-Seq2 7 2122 (Muraro et al., 2016)

Segerstolpe Pancreas Smart-seq2 6 1070 (Segerstolpe et al., 2016)
Cao_Eye Eye sci-RNA-seq3 11 51836 (Cao et al., 2020a)

Cao_Intestine Intestine sci-RNA-seq3 12 51650 (Cao et al., 2020a)
Cao_Pancreas Pancreas sci-RNA-seq3 13 45653 (Cao et al., 2020a)
Cao_Stomach Stomach sci-RNA-seq3 12 12106 (Cao et al., 2020a)

He Lone Bone 10x Genomics 11 15680 (He et al., 2021)
Madissoon Lung 10x 17 57020 (Madissoon et al., 2020)

Stewart Kidney 10x 18 26628 (Stewart et al., 2019)
Vento Placenta 10x 17 64734 (Vento-Tormo et al., 2018)

Table 6: Summary of five baseline methods for comparison.

Method Year Programming Download URL Reference

Annotation

scNym 2020 Python https://www.github.com/calico/scnym (Kimmel & Kelley, 2021)

scArches 2022 Python https://github.com/theislab/scarches (Lotfollahi et al., 2022)

CIForm 2023 Python https://github.com/zhanglab-wbgcas/CIForm (Xu et al., 2023)

scDOT 2024 Python https://github.com/Zhangxf-ccnu/scDOT (Xiong & Zhang, 2024)

Online integration SCALEX 2022 Python https://github.com/jsxlei/SCALEX (Xiong et al., 2022)

Table 7: Comparative analysis of performance among diverse baselines in intra-tissue continual compatible
annotation benchmark.

Task 1 (Segerstolpe) Task 2 (Muraro) Task 3 (Enge) Task 4 (Baron_human)

Pancreas tissue old new overall old new overall old new overall old new overall

Finetune - 93.3 93.3 92.7 96.1 95.0 90.5 96.7 93.1 94.9 98.2 96.9

Joint - 93.3 93.3 95.6 96.9 96.5 95.9 96.5 96.2 96.8 97.6 97.3

scNym - 93.3 93.3 99.0 96.6 97.4 95.1 94.9 95.0 97.1 96.8 96.9

scArches - 62.1 62.1 84.3 84.1 84.2 74.7 78.7 76.4 93.1 93.3 93.2

SCALEX - 74.6 74.6 83.8 84.8 84.5 78.0 84.4 80.8 92.5 93.2 92.9

CIForm - 96.1 96.1 82.3 95.4 86.2 82.7 95.5 87.9 85.8 96.0 91.7

scDOT - 80.4 80.4 75.9 90.3 82.6 71.3 88.1 78.9 83.2 94.5 88.6

Replay - 93.3 93.3 95.9 96.9 96.6 96.4 96.8 96.6 96.8 97.8 97.4

scROD - 98.6 98.6 99.0 97.0 97.6 97.7 96.7 97.3 96.7 98.0 97.5

A.1 ADDITIONAL DETAILS

Basic framework of scROD. First, considering the discrete, sparse, and large variance characteristics
of scRNA-seq data, we use the zero-inflated negative binomial (ZINB) distribution to model this gene
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Table 8: Comparative analysis of performance among diverse baselines in inter-tissue continual compatible
annotation benchmark.

Task 1 (Stomach) Task 2 (Pancreas) Task 3 (Intestine) Task 4 (Eye)

Cao atlas old new overall old new overall old new overall old new overall

Finetune - 96.7 96.7 11.2 97.7 83.9 32.2 98.1 64.4 20.5 98.6 40.3

Joint - 96.7 96.7 88.8 97.4 96.0 95.5 95.2 95.4 95.0 97.3 95.6

scNym - 96.7 96.7 73.7 96.9 93.2 75.1 86.9 80.9 65.4 97.1 73.4

scArches - 96.5 96.5 64.6 97.3 92.0 85.9 94.6 90.1 56.6 96.8 66.8

SCALEX - 93.0 93.0 60.3 95.2 89.6 82.8 79.2 81.0 90.1 65.4 83.8

CIForm - 97.2 97.2 70.4 96.1 92.3 79.8 90.3 84.7 61.5 97.6 70.3

scDOT - 93.4 93.4 61.9 95.8 90.7 77.6 84.8 79.8 58.1 94.5 67.2

Replay - 96.7 96.7 65.1 97.7 92.5 82.3 97.4 89.7 89.9 98.3 92.0

scROD - 97.8 97.8 83.5 97.7 95.5 89.3 96.4 92.8 92.9 97.4 94.0

Table 9: Comparative analysis of performance among diverse baselines in inter-data continual compatible
annotation benchmark.

Task 1 (Vento) Task 2 (Stewart) Task 3 (Madissoon) Task 4 (He)

Mixed atlas old new overall old new overall old new overall old new overall

Finetune - 98.0 98.0 30.6 95.9 48.0 10.2 91.2 42.5 19.5 80.0 25.1

Joint - 98.0 98.0 97.9 93.3 96.7 96.5 89.5 93.7 93.7 79.5 92.4

scNym - 98.3 98.3 93.4 89.3 92.3 83.4 77.6 81.1 59.1 75.0 60.6

scArches - 97.4 97.4 89.6 87.2 89.0 85.1 79.3 82.8 58.3 72.9 59.6

SCALEX - 97.3 97.3 94.7 65.4 86.9 84.2 63.9 76.1 87.2 12.9 80.3

CIForm - 97.7 97.7 91.2 92.9 92.6 84.5 78.4 82.0 63.7 74.2 65.8

scDOT - 96.5 96.5 87.4 90.1 88.6 78.6 75.3 77.2 56.9 73.4 59.2

Replay - 98.0 98.0 93.3 95.4 93.8 80.8 91.2 84.9 87.0 79.9 86.4

scROD - 98.4 98.4 95.3 95.2 95.3 87.3 90.7 88.6 89.2 80.0 88.3

expression pattern, that is:
pzinb(x

∗
ij |πij , µij , θij) = πijδx∗

ij=0 + (1− πij)× (9)

Γ(x∗
ij + θij)

Γ(x∗
ij + 1)Γ(θij)

× (
θij

θij + µij
)θij × (

µij

θij + µij
)x

∗
ij .

Among them, x∗
ij represents the raw read counts of the i-th cell on the j-th gene. πij , µij , θij

represent the zero-inflated parameters, mean parameters, and dispersion parameters, respectively, and
they constitute the parameters to be estimated for the model.

Due to the complex interaction between genes, these three sets of parameters are not independent
of each other but actually fall into a low-dimensional manifold. Therefore, we use the DCA model
to estimate the parameters, and at the same time, to approximate the manifold, so as to effectively
reduce the dimension and denoise the scRNA-seq data (Eraslan et al., 2019). Specifically, let
hθ(x) : R

m → Rd be the encoder function that maps the cells into the low-dimensional embedding
space and gets the embedding representation z = hθ(x). Similarly, let hd

θ(x) : R
d → Rm be the

decoder function and get the reconstructed variable xr = hd
θ(z). Then we use the reconstruct variable

xr to estimate the parameters:

π̂ = sigmoid(w′
πxr); θ̂ = exp(w′

θxr); µ̂ = exp(w′
µxr) (10)

where wπ, wθ, wµ are the corresponding weights. Given the parameters, we can assume that
the conditional distribution of the reconstructed data is independent, so we can use the negative
log-likelihood of ZINB distribution as the first loss function:

Lzinb = −
nr+nt∑
i=1

m∑
j=1

p(x∗
ij |π̂ij , µ̂ij , θ̂ij). (11)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 10: Time-consuming analysis among diverse baselines on the large-scale inter-tissue benchmark.

Cao atlas Task 1 (Eye) Task 2 (Intestine) Task 3 (Pancreas) Task 4 (Stomach)

Finetune 454 876 983 1326

Joint 450 1248 2157 3496

scNym 312 598 726 1014

scArches 635 1204 1387 1859

SCALEX 706 1321 1569 2248

CIForm 386 752 961 1387

scDOT 581 1095 1302 1735

Replay 487 962 1095 1502

scROD 493 971 1108 1521

Table 11: Comparative analysis of performance among diverse baselines on MCL datasets.

pre-treatment post-treatment

Method old new overall old new overall

scNym - 86.3 86.3 52.7 89.1 74.5

scArches - 81.2 81.2 40.9 85.8 67.4

SCALEX - 75.2 75.2 36.6 78.5 62.9

CIForm - 84.1 84.1 48.3 87.4 71.7

scDOT - 78.5 78.5 42.2 81.6 65.3

scROD - 92.7 92.7 85.4 95.2 91.6

Actually, using data reconstruction as another kind of regularization can help reveal the global
probabilistic structure of the whole dataset (Lopez et al., 2018; Chen et al., 2020).

In order to assign an annotation label for each cell, we attach a prototype-based classifier fϕ to
the embedding layer. Take t-th period for example, fϕ projects the l2 normalized embedding zi
into one of the | ∪t

l=1 Cl| cell types together with a similarity vector sr, where si = V zi and
V = [v1, v2, ..., v|∪t

l=1Cl|]
T is the l2 normalized prototype matrix. Then the annotation logits oi is

obtained by regularizing si.

A.2 DATA INFORMATION

The details of the twelve single-cell RNA sequencing (scRNA-seq) datasets employed in our in-
vestigations are comprehensively presented in Table 5. These experiments encompass intra-tissue
analyses, as well as inter-tissue and inter-dataset comparisons. Each dataset features a cellular count
exceeding 10,000 and encompasses a diversity of cell types, with a minimum of ten distinct types
identified in any given set. Furthermore, these datasets originate from a range of organs and have
been sequenced utilizing various platforms, highlighting the heterogeneity of the data sources in our
study.

A.3 DATA PREPROCESSING

For data preprocessing, we first normalize the total gene expression of each cell to 1e6, and then
perform logarithmic transformation on the normalized data. Then we screen the top 2000 highly
variable genes for training by default. Finally, we perform a z-score transformation for each gene in
the training data. For the first training stage, there is no memory buffer at this time. We only need to
select the highly variable genes of the training data in the first stage as model input. It is noted that
our memory buffer stores the original gene expression and cell type labels of the cells. Starting from
the second training stage, the single-cell data obtained in the current stage needs to be integrated with
the single-cell data stored in the memory buffer. The principle of the integration is to select their
intersecting genes as common features, and then perform data preprocessing and screening of highly
variable genes based on these common features. Such a procedure has taken into account the state of
data streams in real-world scenarios when they are continuously obtained.
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Table 12: Comparative analysis of performance on the spatial data.

Tonsil BE

Method old new overall old new overall

STELLAR - 92.5 92.5 81.2 90.4 84.7

scROD - 92.4 92.4 88.6 90.1 89.0

Table 13: Comparative analysis of performance between different continual learning methods.

inter-tissue inter-data

Choice old new overall old new overall

(sc)SCR 86.4 92.9 87.0 74.8 96.6 84.5

(sc)ACE 87.2 92.5 87.6 76.1 95.8 84.9

scROD 89.3 92.6 89.5 78.8 97.0 86.1

A.4 ADDITIONAL RESULTS

Intra-tissue annotation Given the constraints of space, we have included only a single instance
of the tissue-based data stream within the main body of the text. The outcomes from an alternate
sequential scenario are presented in Table 7. Remarkably, this scenario depicts a sequence that is
entirely inverse to the one discussed in the text. Even when the sequence of data learning is inverted,
scROD consistently outperforms other benchmark methods, including Joint, by significant margins,
which further underscores its superiority as detailed in the text. This highlights scROD’s robustness
in the context of continual learning compatibility. The superior performance of scROD compared
to all benchmarks during the initial phase of learning underscores its exceptional proficiency in
performing foundational annotations. Its sustained performance in subsequent phases underscores the
strategy’s efficacy in mitigating catastrophic forgetting through mechanisms such as sample replay
and objective decomposition. A closer comparison between scROD and Joint reveals that although
Joint retains all training samples, it fails to offer competitive results. This discrepancy suggests that
objective decomposition may play a more pivotal role in preventing forgetting than merely retaining
a larger sample size.

To gain a clearer visualization of scROD’s learning progress following task completion, we
extracted its low-dimensional embedding features. Subsequently, we applied the Uniform Manifold
Approximation and Projection (UMAP) methodology to visually represent these features within a
two-dimensional space, thus facilitating an intuitive understanding of the learning situation. Figure
6 shows the UMAP plots of scROD after each learning task. The findings indicate that scROD
successfully retains the knowledge of previously learned cell types while concurrently acquiring
new tasks, thus showcasing its exceptional performance in continual compatible learning. This is
particularly evident in its capacity to accurately classify both historical and recently introduced
cell types. Notably, scROD demonstrates robust recognition and retention abilities even for cell
types represented by smaller sample sizes, including PP cells, macrophages, and endothelial cells.
These results underscore scROD’s capability to strike an effective balance between learning new
information (plasticity) and preserving existing knowledge (stability), reinforcing its potential as a
tool for advancing the field of continual learning in single-cell type classification.

Inter-tissue annotation. Similarly, we have included only a single instance of the tissue-based
data stream in the main body of the text. The outcomes from an additional sequential scenario are
illustrated in Table 8. Relative to its efficacy in intra-tissue experiments, the performance of scROD
in inter-tissue assays has demonstrated a degree of consistency across the three measures of accuracy,
with no substantial decline. This finding underscores the robustness of scROD in mitigating batch
effects. Conversely, the alternate baseline models demonstrated a marked reduction in accuracy,
notably in terms of retaining previously acquired information. This decline in ’old accuracy’ could
be attributed to the amplification of batch effects arising from the heterogeneous data assimilated
during distinct task learning phases, thereby exacerbating the model’s challenge in preserving its
acquired knowledge. Our observations indicate that the Joint approach consistently outperforms in
terms of both old and overall accuracy, a result attributed to its comprehensive caching of samples.
Nevertheless, the practicality of this strategy is constrained by limited available memory, rendering
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Table 14: Performance comparison among diverse baselines on the CIFAR-10 and CIFAR-100 datasets.

CIFAR-10 CIFAR-100

ResNet18 buffer=500 buffer=5000 buffer=500 buffer=5000

Finetune 19.7 19.7 14.7 14.7

Joint 91.8 91.8 70.1 70.1

Replay 61.7 83.6 27.7 53.9

(sc)ROD 68.8 85.9 41.5 58.6

Figure 6: The UMAP plots of scROD after each task on the intra-tissue benchmark. Baron_human, Enge,
Muraro, and Segerstolpe are serialized as four sequential learning tasks.

it less feasible for extensive application. Moreover, the predilection of the Joint method to retain
an excessive number of samples from prior tasks has a discernible impact on its capacity to acquire
new information. Consequently, when evaluated on its proficiency in learning novel tasks, Joint
exhibits a marginal underperformance compared to the scROD method in terms of new accuracy
metrics. scROD exhibited superior performance, outperformed only by Joint, in terms of both old
and overall accuracy, underscoring the success of its approach in mitigating catastrophic forgetting
and eliminating batch differences. The outstanding achievement of scROD in maintaining high
levels of accuracy for both previously encountered and novel datasets emphasizes the significance of
its objective decomposition strategy as a means of achieving an optimal balance between stability
and adaptability. Thus, although the order of data learning is reversed, scROD still has excellent
performance in the inter-tissue experiment.

Inter-data annotation. In the context of this benchmark, we have identified and chosen four extensive
datasets—namely He, Madissoon, Stewart, and Vento—each of which has been sequenced utilizing
distinct tissues and technologies. This diverse selection will enable a comprehensive evaluation across
a variety of sequencing parameters and biological samples. The manuscript presents one representative
instance from these four datasets within the main text, while the corresponding experimental outcomes
for an additional case are delineated in Table 9. The presence of a batch effect introduces a level
of intimidation across the performance of all methodologies employed. Despite this challenge,
scROD retains a commendable level of performance, illustrating its proficiency in integrating cells
from diverse datasets into a coherent embedding space. Additionally, the observed consistency in
accuracy suggests that scROD’s capacity to mitigate catastrophic forgetting remains unimpaired
by batch effects. This finding underscores the method’s resilience and adaptability within varying
experimental conditions. The observed data reveal a noteworthy trend where, with the exception of
baseline Joint, alternative baselines exhibit a diminished level of competitiveness, particularly with
respect to old accuracy metrics. This decline in performance becomes increasingly pronounced in
correlation with the augmentation of the number of datasets subjected to the learning process. While
the Joint approach yields impressive results in inter-dataset experiments, its methodology, which
involves retaining all previously learned samples, is not recommended due to potential scalability
and efficiency issues. In contrast, scROD consistently exhibits superior performance in the context
of continuous learning that is compatible with dynamic data streams. This advantage has led to its
widespread adoption in practical applications of single-cell annotation.

Statistical Analysis. In order to prove the consistency and stability of the results of our method, we
report their standard deviation values. Corresponding to Table 1, Table 2 and Table 3 in the text, the
standard deviations of three runs results are within the interval (0.3, 1.1) for scROD, which fluctuates
relatively little. We also conduct the significance test of the improvements in results. Specifically, we
choose the first two best-performing baselines Joint and scNym to perform the one-sided pairwise
t-test with scROD on the overall accuracy. The p-values are 0.910 (scROD vs Joint) and 0.002
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(scROD vs scNym), demonstrating that the improvement of scROD compared to scNym is significant,
and the performance of scROD and Joint is comparable.

Time-consuming analysis. Here we give the average running time of each method on the large-scale
inter-tissue benchmark in Table 10. It can be seen that scROD and Replay methods hold almost
the same magnitude of running costs as the Finetune strategy, much lower than the Joint strategy.
In addition, as the number of tasks increases, the time consumed by the Joint method is twice
that consumed by the Finetune, Replay, and scROD. Although scNym and CIFOrm consume the
smallest computational cost, their performance cannot be competitive with our method. In general,
the combination of efficiency and performance shows the advantages of our approach to solving this
task.

Application in longitudinal data. Here We apply scROD to a multi-timepoint longitudinal single-
cell dataset, i.e., mantle cell lymphoma (MCL) dataset (Zhang et al., 2021). Since the timing of
measurements varies from patient to patient, we manually binarize the time variable into two groups:
pre-treatment and post-treatment, which also aligns with the analysis in the original paper. We first
train each method in the pre-treatment group and then continually train models in the post-treatment
group. The labeled ratio is set to 0.1 by default. The results in Table 11 show that our method can
consistently outperform other baselines in the longitudinal data situation.

Application in spatial data. Our method can be extended to spatial data by simply replacing the
model backbone with a network that adapts to spatial data, such as the graph neural network. Here
we select two single-cell spatial data, i.e., Tonsil and BE datasets (Goltsev et al., 2018). Then we
use the same data preprocessing and model backbone as in STELLAR (Brbić et al., 2022). We first
train the model on the Tonsil dataset and continually train the model on the BE dataset. The labeled
ratio is also set to 0.1 by default. The results in Table 12 show that once we enter the second stage,
STELLAR will lose some accuracy on the Tonsil dataset, but our method can alleviate this problem
and achieve higher accuracy on the two datasets.

Comparison with continual algorithms. Here we select two representative continual learning
algorithms in the machine learning community, i.e., supervised contrastive replay (SCR) (Mai et al.,
2021) and asymmetric cross-entropy (ACE) (Caccia et al., 2022). They also use the memory buffer
and have customized designs in training loss functions for continual learning tasks. We run these
algorithms on inter-tissue and inter-data annotation benchmarks. The results after the fourth training
stage are shown in the Table 13. We can see that our loss decomposition strategy performs better than
the other two continual learning methods in the trade-off between model stability and plasticity. It is
reasonable because they mix the learning objectives of new/old cell type distinction and new cell type
distinction.

Application in other domain. Since this paper aims to solve the problem of continual compatible
annotation of scRNA-seq data, all experiments are focused on this data type for verification. In
terms of the overall idea, our method is a general machine-learning approach that can be applied
to continual learning tasks on different data types. To validate this claim, we choose two image
classification datasets, i.e., CIFAR-10 and CIFAR-100, in the vision field for experiments. Following
the task-setting in this field, two datasets consist of 5 disjoint tasks with each task having 2 and 20
classes, respectively. We report the average accuracy of all tasks after the last training stage. The
results in Table 14 show that our method can be applied to the continual learning task in the vision
field.

Method limitation. One limitation of scROD is that we need to maintain a lightweight memory
buffer to replay a few samples during the compatible continual annotation process. Once these
samples become unreachable due to data privacy, the memory buffer cannot be constructed. So our
future work is to develop replay-free algorithms that eliminate the necessity for memory buffers.
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